

Citation for published version:
He, Z, Lutteroth, C & Perlin, K 2022, TapGazer: Text Entry with finger tapping and gaze-directed word selection.
in CHI 2022 - Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems., 337,
Conference on Human Factors in Computing Systems - Proceedings, Association for Computing Machinery.
https://doi.org/10.1145/3491102.3501838

DOI:
10.1145/3491102.3501838

Publication date:
2022

Document Version
Peer reviewed version

Link to publication

© ACM, 2022. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems, {April 2022} http://doi.acm.org/10.1145/3491102.3501838

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. Nov. 2022

https://doi.org/10.1145/3491102.3501838
https://doi.org/10.1145/3491102.3501838
https://researchportal.bath.ac.uk/en/publications/45d3b270-c2e8-4b37-bf10-5a5e9a48e958

TapGazer: Text Entry with Finger Tapping and Gaze-directed
Word Selection

Zhenyi He
New York University

New York, United States
zhenyi.he@nyu.edu

Christof Lutteroth
University of Bath

Bath, United Kingdom
c.lutteroth@bath.ac.uk

Ken Perlin
New York University

New York, United States
perlin@cs.nyu.edu

a) c)b)

Figure 1: a) Physical setup: A VR user enters text without needing to see hands or keyboard, by tapping on a surface and
resolving ambiguity between candidate words via gaze selection. b) Visual interface: Fingers are mapped to multiple letters (see
colors at bottom); the central area shows candidate words corresponding to the current input sequence of finger taps. Users can
select a word by gazing at it and tapping the right thumb. c) State machine of Tapgazer with gaze selection and word completion.

ABSTRACT
While using VR, efficient text entry is a challenge: users cannot
easily locate standard physical keyboards, and keys are often out
of reach, e.g. when standing. We present TapGazer, a text entry
system where users type by tapping their fingers in place. Users
can tap anywhere as long as the identity of each tapping finger
can be detected with sensors. Ambiguity between different possible
input words is resolved by selecting target words with gaze. If gaze
tracking is unavailable, ambiguity is resolved by selecting target
words with additional taps. We evaluated TapGazer for seated and
standing VR: seated novice users using touchpads as tap surfaces
reached 44.81 words per minute (WPM), 79.17% of their QWERTY
typing speed. Standing novice users tapped on their thighs with
touch-sensitive gloves, reaching 45.26 WPM (71.91%). We analyze
TapGazer with a theoretical performance model and discuss its
potential for text input in future AR scenarios.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3501838

CCS CONCEPTS
• Human-centered computing→ Text input.

KEYWORDS
Input Techniques; Text Entry; Eye Tracking; Virtual Reality; Typing

ACM Reference Format:
Zhenyi He, Christof Lutteroth, and Ken Perlin. 2022. TapGazer: Text Entry
with Finger Tapping and Gaze-directed Word Selection. In CHI Conference
on Human Factors in Computing Systems (CHI ’22), April 29-May 5, 2022, New
Orleans, LA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3491102.3501838

1 INTRODUCTION
Text entry is one of the most frequent, important, and demanding
tasks in personal computing. Because efficient text entry meth-
ods are crucial to productivity, an enormous amount of research
has been conducted on methods that improve their usability. As
new types of electronic devices such as smartphones have become
available, new text entry methods have been proposed [3, 25, 96].
With the increasing popularity of Virtual Reality (VR), there is
an expanding interest in text entry methods that can support VR
users [40, 55, 110, 112]. While using VR, efficient text entry poses
the following challenges:

Proximity. VR users typically interact with virtual environments
using their hands, often turning their bodies to change orientation,
and are frequently standing or even walking in their VR usage
area. These movements generally take a user’s hands away from

1

https://doi.org/10.1145/3491102.3501838
https://doi.org/10.1145/3491102.3501838
https://doi.org/10.1145/3491102.3501838

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

stationary physical keyboards, and often out of reach of the keys.
Therefore, a versatile VR text entry method should allow users to
be more mobile than with a standard physical keyboard and also
relax the requirement of having to keep fingers aligned with keys.
Related works have addressed this by proposing virtual keyboards
controlled with VR headsets [103, 104], portable standard keyboards
[33, 44, 80], and input methods using hands [50, 101], fingers [26,
36, 52, 67, 74, 94, 108, 109], gaze [48, 49, 65], or stylus [21].

Visibility. VR headsets occlude the real world, making it harder
to locate physical keyboards, move to a suitable pose close to the
keyboard, and align the fingers with the keys for efficient touch
typing. Ideally, a VR text entry method should afford users aware-
ness of physical keyboards, or avoid the use of a physical key-
board in the first place. Related works have addressed this by
by providing visual cues about the physical keyboard position
[11, 33, 41, 44, 55, 69, 74, 97], attaching keyboards to a user’s body
so she is kinaesthetically aware of their position [80], or virtual key-
boards that readily show up in the user’s field of view [19, 53, 106].

Learnability. Because text entry is a basic task of computing
systems, it should ideally be easy to learn. Many novel text entry
methods require users to learn entirely new, non-standard text entry
skills such as new keyboard layouts [7, 63, 85, 113]. However, as
many users are already proficient in the use of a QWERTY keyboard,
much previous work on VR text entry has aimed to exploit this
familiarity to improve learnability [10, 33, 44, 80, 106].

We propose TapGazer, a novel method for casual text entry
in VR designed to address these challenges by combining finger
tapping and eye gaze input (Figure 1). We envision VR users to use
TapGazer if they mainly use their hands to interact naturally in
VR (without controllers), but need to enter some text quickly from
time to time, e.g. to take notes or send text messages. Users type by
tapping their fingers, without needing to look at their hands or be
aware of finger position. The location where a finger is tapped is
not needed by TapGazer, therefore taps may be detected with any
input device capable of discerning which finger is currently being
tapped, e.g. finger-worn accelerometers such as TapStrap, touch-
sensitive surfaces such as smart cloth, or visual finger tracking like
leap motion. This enables users to quickly move from VR hand
interaction to text entry without having to align their fingers on
keys, and facilitates use of TapGazer on soft surfaces such as thighs
and in different poses such as seating or standing. Tracking fingers’
identities and detecting whether a finger has tapped is generally
less complicated and more accurate than tracking both the identity
and location of each finger, and it is generally easier for users to
focus on tapping their fingers without the need to worry about
finger location. Given a suitable input device, any available surface
may be used to support the hands and facilitate tapping movements,
e.g. a table or one’s thighs.

To enable text entry by finger tapping, TapGazer simplifies key-
board input by assigning multiple letters to each finger. Because
this mapping is one-to-many, it is ambiguous (see the color-coded
keyboard layout in Figure 1(b)). We resolve this ambiguity by show-
ing word suggestions in the users’ display and allowing users to
select the correct word via gaze and determine the selection via a
thumb tap. TapGazer’s finger-to-letter mapping is based on a QW-
ERTY keyboard layout, so people can reuse their QWERTY skills
and retain the performance benefits of ten-finger typing, which is

generally faster than alternatives such as word-gesture keyboards
[17]. TapGazer supports the entry of unknown words, symbols, and
cursor navigation by allowing users to switch between different
modes. Furthermore, because gaze tracking may not always be
available, we describe variants of TapGazer that work without gaze
tracking by allowing users to select target words with additional
taps. We investigate the following research questions:

RQ1 How can text input be efficiently achieved using only
finger taps and gaze?

RQ2 How does TapGazer perform in terms of speed, accuracy,
and user preference?

RQ3 How can we model user performance in TapGazer?
We address these questions by first discussing the design of TapGazer
(RQ1), then reporting on user studies evaluating TapGazer (RQ2)
in seated and standing VR scenarios with different tap sensors, and
lastly providing a model-based analysis of how different users of
TapGazer will likely perform (RQ3).

Novelty. Some previous work has looked at reduced QWERTY
keyboards and word disambiguation. VType [26] applies a reduced
keyboard layout, attempting to reconstruct words automatically
based on finger sequence, grammar, and context, but does not allow
users to choose between ambiguous words. The 1Line keyboard [54]
and the stick keyboard [32] flatten the QWERTY keyboard from
three rows to one, allowing users to choose between ambiguous
words through touchscreen gestures and arrow keys. Yet to the
best of our knowledge we are the first to investigate tapping while
resolving ambiguity through gaze. The performance we measured
for TapGazer (45.26 WPM on average in a standing VR scenario)
compares favorably with those reported for similar works (see
Table 1). In summary, we make the following key contributions:

(1) A design that combines tap and gaze for effective text entry
in VR, with variants for use without gaze tracking and for
accommodating different user preferences.

(2) Evidence that TapGazer is usable and easy-to-learn for novice
users, and able to reach average speeds of 44.81WPM (78.81%
of their QWERTY typing speed) using touchpads in a sitting
VR scenario (n=14) and 45.26 WPM with word completion
(71.91%) using touch-sensitive gloves in a standing VR sce-
nario (n=5).

(3) A model-based performance analysis illustrating the effects
of different design options and usage strategies.

(4) Open-source software and hardware designs to facilitate
future research.

2 RELATEDWORK
To develop a fast and usable text entry design using tap and gaze,
we closely investigated prior work in alternative keyboard layout
design, gaze interaction, and text entry for VR and similar scenarios.
An overview of the most relevant and fastest methods, with their
average speeds in words per minute (WPM), is shown in Table 1.
For works that reported users’ QWERTY performance, we list also
the percentage of their QWERTY WPM users were able to achieve.

For devices where a full-size physical keyboard is not avail-
able, many specialized text entry solutions have been proposed,
e.g. for touch screens [43, 54, 88], mobile phones [25, 115], and
handheld devices [15]. Moreover, using a finger [9, 76] or pen [45]

2

TapGazer: Text Entry with Finger Tapping and Gaze-directed Word Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Table 1: Summary of prior text entry solutions that are compatible with our usage scenarios, ordered by their average WPMs.

Design Average
WPMs

% of QWERTY
keyboard WPM

Examples

Typing QWERTY on a touch surface 17.2–44.6 74.59% [88] BlindType [58], PalmBoard [107], TOAST [88]
Tapping on tiny surface 11.0–41.0 Ahn & Lee [3], Vertanen et al. [95], VelociTap [96]
Reduced physical QWERTY keyboard 7.3–30.0 37.17% [54] Stick [32], 1Line [54], LetterWise [61], VType [26]
Gesture typing 15.6–34.2 GestureType [110], Chen et al. [17]s
Mid-air chord gesture typing 22.0–24.7 Sridhar et al. [93], Adhikary [2]
Typing with pinch gestures 11.9–23.4 TipText [105], DigiTouch [101], BiTipText [105]
Mid-air finger tapping 17.8–23.0 49.24% [108] VISAR [24], ATK [108]
Tapping with head or controller on a soft
alternative keyboard

7.25–21.1 PizzaText [112], RingText [104], HiPad [40], Curved
QWERTY [106], Boletsis & Kongsvik [10]

Tapping QWERTY with head or controller 11.3–15.6 Tap/Dwell [110]
Gaze typing plus touch 14.6–15.5 EyeSwipe [48, 49], TAGSwipe [47]

for handwritten text input has been considered, although this is
slow compared to typing. Speech-to-text is also a widely explored
option with the potential to be faster than typing [86]; however,
it has limited accuracy and is not always suitable, e.g. when the
environment is noisy, other people are talking, or the content is of
a sensitive or personal nature.

A key requirement of manual typing approaches is detection
and tracking of the fingers. Gloves [52, 94], markers [36, 67], audio
signals [98], cameras [84, 109], and specific devices such as Leap
Motion [108] have all been investigated. Based on this, various input
recognition methods have been proposed, with some recognizing
input as single characters (‘character-level’) and others recognizing
entire words (‘word-level’). Methods recognizing larger chunks of
input (e.g. words, sentences [96]) are typically more effective than
those recognizing characters [95]. Input prediction and correction
methods can be used to improve the performance of text entry [20,
31, 75, 114].

2.1 Alternative Keyboard Layouts
Some alternative layouts support a limited interaction size with a
reduced number of keys, which makes them relevant for TapGazer.
A common consideration is the similarity to familiar layouts such
as QWERTY or T9 for learnability, e.g. for mobile phones [25, 61],
smart glasses [3], and smartwatches [81]. Familiar layouts are of-
ten adapted to new typing gestures, e.g. using thumb-to-finger
interaction for small-screen devices or VR/AR using split QW-
ERTY [73, 101] or T9 layouts [102]. Another trend is rearranging
keyboard characters into different 2D or 3D shapes: QuikWrit-
ing [79] and its gaze-version [5] distribute letters into a circle;
PizzaText [112], WrisText [30], and HiPad [40] use a pie-shaped
layout; Keycube [13] attaches push buttons to a physical magic
cube for typing.

When applying a reduced keyboard layout, fingers or keys are
not uniquely assigned to characters, so a mechanism for disam-
biguation becomes necessary. LetterWise [61] uses prefix-based
rather than word-based disambiguation, i.e. users press a button if
the current character is wrong and then the respective character
of the next-likely prefix is shown. By repeatedly pressing the but-
ton, even non-dictionary words can be typed. Stick keyboard [32]

compresses the QWERTY keyboard into one line, with each key
mapped to 2-3 characters. Users choose one of several ambiguous
words by scrolling through possible candidates with button presses.
Similarly, 1Line keyboard [54] reorganizes the QWERTY keyboard
to a single line specifically for touchscreen typing, using touch
gestures to support candidate selection. TapGazer is also based on
a reduced QWERTY layout, but it uses different mechanisms for
faster disambiguation.

2.2 Gaze-assisted Text Entry
Text entry with gaze does not require a physical keyboard; it is
a natural option to consider for VR, which can incorporate gaze
tracking. Gaze-only methods mainly fall into four categories [66]:
direct gaze pointing with dwell (“gaze typing”), eye switches, dis-
crete gaze gestures, and continuous gaze gestures (“gaze writing”).
Dwell [6, 38, 65] (i.e. looking at keys for a certain time to trigger
clicks) has been widely applied and optimized to solve the Midas
Touch problem [39] (i.e. inadvertent clicks). Approaches for reduc-
ing the dwell time necessary for each key have been explored, e.g.
by dynamically adjusting it based on prefix [64], word frequency, or
character placement [70]; however, it is still a major factor slowing
down typing speed. Eye-switch approaches try to avoid dwell by
using other operations such as blinking, brow interaction or head
movements [29] as triggers. Similarly, discrete gaze gestures have
been proposed to avoid dwell, e.g. by adding a resting zone in the
typing area [5], ‘swiping’ over a keyboard with gaze to enter a
word [16, 48], or using other confirmatory eye movements such
as inside-outside-inside saccades [87].Some disambiguation algo-
rithms have been proposed to improve the accuracy of word-level
gaze gestures [56, 77]. Dasher [99] uses continuous gaze gestures
to zoom towards and select candidate letters and words.

Some approaches try to speed up gaze-only text entry methods
by using other modalities for key and word selection, e.g. a brain-
computer interface [60], or touch gestures [3, 47]. If gaze tracking
is not available, many gaze-based approaches can be modified to
use head movement only [104, 110]. This can be combined with
other head gestures, e.g. nodding for letter selection [57]. Overall,
gaze-based text entry methods facilitate social privacy and can
be used while standing or moving in VR [83]; however, they are

3

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

still much slower than physical keyboards (below 25 WPM) as
gaze movements are generally time-consuming [28]. Therefore,
TapGazer uses gaze for disambiguation rather than typing.

2.3 Text Entry in VR
Various methods have been investigated for text entry in VR [22].
Because text entry using a physical keyboard is faster than other
typing solutions, many approaches for text entry in VR try to facil-
itate access to a standard physical keyboard rather than replace it.
This has mainly been done by tracking and visualizing a physical
keyboard in VR while sitting at a desk, either by blending in a video
stream showing the real keyboard [11, 41, 55, 69] or by visualizing
the keyboard in VR [11, 33, 44, 74, 97]. To support better mobility,
HawKEY [80] uses a portable keyboard for users to type on while
standing and walking in VR. These approaches show that using a
physical keyboard and high-quality tracking can lead to good per-
formance. However, using a physical keyboard can be cumbersome
and break immersion when interacting naturally with a virtual
environment through body movements, e.g. when standing.

In order to integrate text entry more closely with natural VR
interaction, pointing gestures on virtual keyboards have been inves-
tigated. Xu et al. [103] and Speicher et al. [92] compared pointing
methods to selecting virtual keys with controllers, head, and hand.
Boletsis & Kongsvik [10] proposed virtual keyboard layouts to
optimize controller-based key selection. PizzaText [112] arranges
virtual keys in a circle separated into segments. Didehkhorshid et
al. [21] compared controller-based with stylus-based virtual key-
board interaction. Yanagihara et al. [106] introduced a curved vir-
tual QWERTY keyboard, allowing users to use a controller to swipe
between different keys. Similarly, Chen et al. [17] proposed word
gestures by pointing and swiping at a virtual keyboard. Addition-
ally, Dube & Arif [23] researched the impact of key design on virtual
keyboards for typing speed and accuracy. While these approaches
improve mobility, similar to what TapGazer aims to do, they are
much slower than physical keyboards, typically below 25 WPM.

Some VR text entry methods use fingers or hands directly. A
popular approach is to detect pinch gestures between fingers and
thumbs, e.g. using a data glove. Pinch keyboard [12] combines pinch
with hand rotation and position to select letters. KITTY [46] uses
pinch gestures on different parts of the thumb. PinchType uses a
reduced keyboard, and if necessary, allows the user to disambiguate
words with hand gestures [27]. DigiTouch [101] uses continuous
touch position and pressure. Quadmetric [50] and HiFinger [42]
support one-handed text entry with pinch. RotoSwype [35] uses
one-handed word gestures by rotating a ring worn on one hand.
Yu et al. propose one-dimensional ‘handwriting’ of words with a
tracked finger or controller [111]. Such pinch and word gesture
based approaches are flexible but slow, with typical speeds far below
20 WPM. Also, mid-air finger gestures can be hard to track and can
lead to fatigue when performing longer tasks [2, 24].

Some approaches for eyes-free typing could be feasible for use
in VR scenarios although they were not originally designed for VR.
BlindType [58] allows users to type without looking at the typing in-
terface using single-thumb touchpad gestures. PalmBoard [107] pro-
vides a one-handed touch typing solution that decodes which keys
users likely intend to type on a flat touchpad. Similarly, TOAST [88]

leverages statistical decoding algorithms for ten-finger typing on
flat touch-sensitive surfaces.

Some approaches use finger touch or taps similar to TapGazer.
FaceTouch [34] allows users to type on a touch surface attached
to their headset. ARKB [51] proposes visual tracking of fingers for
tapping on a virtual QWERTY keyboard. VISAR [24] facilitates mid-
air one-finger tapping on an AR QWERTY keyboard. VType [26]
uses finger tapping on a reduced QWERTY keyboard layout and
reconstructs words based on finger sequence, grammar, and context
for text input in VR. The accuracy reported for a predefined vo-
cabulary is high; however, no method for disambiguation between
candidate words was considered and no typing speed was reported.
VType, the 1Line keyboard [54] and the stick keyboard [32], which
all involve tapping on a reduced QWERTY keyboard, are the works
closest to TapGazer. Tapping on a reduced QWERTY keyboard is
promising for text entry in VR as it is flexible and robust compared
to alternatives. Therefore, we explore how it can be optimized by
using gaze input and additional taps for disambiguation.

3 TAPGAZER DESIGN
TapGazer allows users to tap words as if they are typing them on
a physical QWERTY keyboard and then to disambiguate their tap
input by selecting their target word through gaze. It was designed
primarily for VR users, but could also be useful for other scenarios
where more conventional input devices are unavailable or difficult
to access. Given suitable sensors, users can type by tapping their
fingers on any surface or even in mid-air. As TapGazer only consid-
ers the identity of the finger that is currently tapping and not its
position, it only needs to know which of the user’s 10 fingers has
just been tapped, if any, at any given time. Each of the 26 letters
of the alphabet is mapped to at least one of the eight non-thumb
fingers, while the two thumbs are reserved for controlling editing
functions for word selection, undoing a selection, deletion and cur-
sor navigation. Figure 1 illustrates the state machine of TapGazer
with gaze selection and word completion. Starting from an idle
state, TapGazer waits for tap or gaze input events. Except for the
thumbs, a finger tap adds a letter to the input string, starting from
an empty string. The input string is constructed from an input
alphabet with one character for each of the eight fingers: we are
using the characters asdfjkl;, which correspond to the rest posi-
tions of each finger on a QWERTY keyboard, for later reference.
When typing a word with TapGazer, the user taps the fingers as
they would do when typing on a QWERTY keyboard. However, as
each finger tap can be interpreted as one of several characters, the
word represented by the input is ambiguous: for example, fjd is
the input string for the words ‘the’ and ‘bye’. We refer to a set of
words that all have the same tapping input string as a homograph
set. A tap with the left thumb deletes the current input string so
users can start the word again. A tap of the right thumb selects the
word to enter from a list of suggestions while the word is pointed
at by the user’s gaze.

As a user enters an input string, the central area of TapGazer’s
user interface shows a list of word candidates: similar to predictive
text on a mobile phone, the user is given a list of the most likely
words to choose from. TapGazer shows all words in the homograph
set for the given input string, which we call complete candidates as

4

TapGazer: Text Entry with Finger Tapping and Gaze-directed Word Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

a) b) VR headset with
gaze tracking

TapStrap

c)

d)

e)

f)

Figure 2: TapGazer text entry example: a) A user is ‘typing’ on her thighs using a TapStrap device instead of a keyboard. b) The
user just started to ‘type’ the word “children”. The interface provides optional visualizations of the finger-key mapping as a
virtual keyboard and/or hands. c) The user first tapped the left middle finger (mapped to ‘c’), then d) the right index finger
(mapped to ‘h’), and e) the right middle finger (mapped to ‘i’). f) Finally, the user looks at the word “children”, which gets
highlighted with an underline as it is gazed upon, and taps the right thumb to select the highlighted word.

they are based on the whole input string (e.g. ‘the’ for fjd). Addi-
tionally, TapGazer uses a language model to show the most likely
incomplete candidates, i.e. words with a prefix matching the current
input string (e.g. ‘these’ for fjd). After each tap, TapGazer updates
the candidates shown. In order to select a candidate, the user looks
at it, and in response, the fixated candidate is highlighted with an
underline. If the right thumb is tapped, the currently highlighted
candidate is selected and added to the entered text. At this point, the
TapGazer state machine starts again with an empty input string. If
the user taps the right thumb but does not fixate any candidate, then
the most likely candidate is selected based on a language model.
Figure 2 illustrates how to type ‘children’ with TapGazer. Word
completion in TapGazer can be disabled; in this variant, only com-
plete candidates are shown if they exist. If no complete candidate
exists, we show the shortest incomplete candidate to inform users
about the progress of typing. Furthermore, we have designed a
purely manual variant of TapGazer without gaze tracking, allowing
users to disambiguate candidates with extra taps. Figure 4 illustrates
different input devices (left) and variants (as decision nodes in the
state machine) of Tapgazer.

Several design decisions were made: First, we use finger tapping
so that users can ‘type’ on any surface and require no context
knowledge between the surface location and finger/hand location.
Second, we help users find the word to type in the list of candidates
by facilitating visual search in the layout of the graphical interface.
Third, we provided word completion and compare whether word
completion benefits TapGazer in terms of performance.

3.1 Virtual Keyboard Layout
Customization. TapGazer reuses the standard QWERTY layout to
support learnability. However, in our pilot studies, we found peo-
ple had varying finger preferences for typing on the QWERTY
keyboard, e.g. key ‘m’ may be pressed with either the right index
finger or the right middle finger. The mappings were consistent, i.e.

remained overall stable for each user. As a result, TapGazer creates
a profile for each user to record their finger-to-key mapping, also
allowing users to map multiple fingers to the same letter (e.g. ‘y’
could be triggered by both the left and right index fingers). To guide
novice users, we optionally visualize the customized finger-to-key
mapping in a virtual keyboard and/or a hand model (Figure 2b),
with each key colored according to its associated fingers and letters
rendered on their corresponding fingers. Based on users’ mappings,
we generate prefix trees to quickly look up complete and incom-
plete candidate words and their word frequencies for each input
string.

Feasibility. Text entry is only feasible if all the words in the ho-
mograph set of any input string can be somehow selected. The
minimum candidate number (MCN) is the minimum number of can-
didate words the interface must be able to disambiguate at a time. It
is equal to the maximum number of homographs an input string can
have, i.e. it describes the worst possible ambiguity that may need to
be resolved. The design needs to determine the MCN in advance be-
cause display space needs to be adequately allocated, or users must
be given the option to page through sets of candidates. The MCN is
also relevant for performance as it describes the worst-case scenario
of visual search for the right candidate. We determined popular
QWERTY-based finger-to-key mappings in pilot experiments and
then ran a simulation to determine their overall MCN based on
different word sources: the 1000 most common words (“1K”) re-
trieved from Wikipedia with MCN1K = 4; the standard MacKenzie
phrase corpus [62], which contains 500 phrases for evaluation use,
with MCNMacKenzie = 6; and the 90% most frequent words (7,440,
“7K”) generated from the wordfreq library [1], which includes many
very-low-frequency specialized words and acronyms that are not
typically part of dictionaries, with MCN7K = 7. We design our
interface to be able to show at least 10 candidates to cover all Eng-
lish dictionary words and also many low-frequency non-dictionary

5

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

(a) Lexical Layout. (b) WordCloud Layout. (c) Division Layout. (d) Pentagon Layout.

Figure 3: Evolution of TapGazer candidate layout designs: a) Lexical Layout places the most common candidate word in the first
row and arranges the other candidates in alphabetical order. All the candidates have the same font size. b)WordCloud Layout
emphasizes frequent candidates with a larger font size. Candidates that were already shown on the previous tap keep their
position. c) Division Layout divides all candidates into three columns according to their last letter. d) Pentagon Layout orders
the candidates based on the frequency and arranges the candidates in a compact single or double pentagon shape, separating
them for easier gaze selection.

words across typical QWERTY finger-to-key mappings. For unsup-
ported words such as neologisms and special acronyms, we provide
a spelling mode for character-level text entry (see subsection 3.4).

Alternative Layouts. We also calculated the MCNs of standard
keyboard layouts other than QWERTY to gauge their suitabil-
ity for use in TapGazer. Optimal word gesture keyboards such
as Smith et al.’s GK-D (MCNMacKenzie = 11, MCN7K = 12) and
GK-T (MCNMacKenzie = 7, MCN7K = 17) [90] have higher MCNs,
probably because they are not optimized for key-based typing.
If the left thumb is used for tapping instead of deletion (e.g. by
triggering deletion with a chord), having 9 fingers to tap reduces
ambiguity in the finger-to-key assignment, potentially decreas-
ing the MCN. We calculated the MCN for some known 9-key lay-
outs: standard T9 [102] (MCNMacKenzie = MCN7K = 5); HiFin-
ger [42], which distributes letters in lexical order over nine keys
(MCNMacKenzie = 5, MCN7K = 8); and the quadmetric optimized
layout [50] (MCNMacKenzie = MCN7K = 4). Finally, we performed
an extensive combinatorial search of non-QWERTY layouts and
found that there is a very large number of mappings for eight fin-
gers with MCNMacKenzie = MCN7K = 4. These results suggest that
layout optimization can help to reduce the number of candidates
that have to be shown at one time, which could speed up text input.

3.2 Word Candidate Layout
Themost important part of TapGazer’s visual interface is the central
gray area where word candidates are shown for selection by the user
(Figure 2b). These candidates are colored to indicate the tapping
progress of each word: the prefix of each word that has already
been tapped is colored in blue, while yet-to-be-tapped postfixes are
colored in orange. Complete candidates are completely blue and
are always shown in the interface as they must be available as word
choices. Any further available space can be filled with incomplete
candidates, indicating options for word completion. The number
of candidates shown is a trade-off between saving taps through
word completion, and visual search time spent looking for the right
candidate. Visual search time is affected by the way we arrange

the candidates, therefore we designed, tested, and re-designed the
layout to reach a suitable design. Figure 3 illustrates the design
evolution of TapGazer’s candidate layout.

Initial Design. We first designed (a) Lexical Layout and (b) Word-
Cloud Layout based on the following design principles. Systematic
locations: Users should intuitively know where to look for a word.
Salience: More likely words should be more salient (e.g. larger or
more central). Continuity: Avoiding changes in the position of a
suggested word between taps may help users to spot it. Lexical
Layout places the most frequent word into the first row by itself
for salience, and fills the rows below with other candidates in al-
phabetical order to achieve systematic locations. This prioritizes
systematic locations over continuity, as candidates’ positions may
change between taps, e.g. “welcome” in Figure 3. WordCloud Lay-
out arranges candidates in word-cloud style, with more frequent
words arranged at the center and in a larger font. Candidates keep
their positions between taps, prioritizing continuity over systematic
locations. Both layouts use only the central part of the VR display
to avoid large eye movements.

Formative Design Study. To understand the effects of the lay-
outs and their design principles on novices, we conducted a for-
mative study with 12 participants (5 female, 7 male; aged 18 to 30,
𝑀 = 24.67, 𝑆𝐷 = 3.94), comparing the two layouts which were
implemented in Unity in a within-participant design. After a 5-
minute training phase, each participant used each layout twice for
5 minutes each, with a small break in between, to enter random
sentences from the MacKenzie corpus [62] as quickly and accu-
rately as possible. Wearing a Tobii HTC VIVE Devkit gaze tracking
VR headset, they tapped on a QWERTY keyboard, keeping their
fingers on the same keys for tapping. To investigate the effects of
a different input device, participants then repeated the task with
the TapStrap using only their preferred layout. Each condition was
followed by quantitative and qualitative questionnaires collecting
their feedback on each layout, design principle and input device.

6

TapGazer: Text Entry with Finger Tapping and Gaze-directed Word Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Paired t-tests showed no significant differences in typing speed
(𝑡 (11) = 0.897, 𝑝 = .389, Cohen’s𝑑 = 0.259), accuracy in terms of To-
tal Error Rate (TER) [91] (𝑡 (11) = 0.099, 𝑝 = .923, 𝑑 = 0.029), System
Usability Scale (SUS) scores [4] (𝑡 (11) = 1.081, 𝑝 = .202, 𝑑 = 0.312),
or NASA-TLX task load scores [37] (𝑡 (11) = 1.307, 𝑝 = .218, 𝑑 =

377). Participants were split equally in their layout preference. Their
qualitative responses showed that they immediately understood
Lexical layout’s systematic locations but did not find them helpful
in spotting target words quickly. Having the most frequent word at
the top or center was found useful, but variations in font size were
found to be distracting when typing low-frequency words (“words
with larger font size draw too much attention and it became dif-
ficult to locate the infrequent words”). Some participants noticed
WordCloud’s continuity but did not find it beneficial (“confusing”)
as tapping was too fast to visually follow candidates.

In conclusion, our most important finding was that it is not
useful to design the visual layout around the tapping process or
around cognitively demanding criteria such as relative alphabetic
ordering, as fingers are much faster than the eye or the mind [82].
It is more useful to consider the layout as a pure visual search
task, where visual search time is correlated with the number of
candidates and the distance of eye movement [72]. The study also
highlights the importance of the tap input device: leaving the fingers
on the same keys for tapping felt unnatural and slowed them down
considerably (on average 15.37 WPM for Lexical and 14.34 WPM
for WordCloud); participants liked the idea of TapStrap but were
frustrated and slowed down by its low tap recognition rates (on
average 9.89 WPM; TER of 0.34 vs. 0.15 for Lexical and 0.14 for
WordCloud). We will introduce the input device we used for final
evaluation in subsection 3.5.

Final Designs. Based on the formative study, we developed two
new layouts that focus on optimizing visual search by reducing
distances between words, improving salience of frequent words,
dropping the continuity principle, and applying the systematic lo-
cations principle more carefully to avoid cognitive load: one layout
for power users and one for novices. Division Layout (Figure 3c) dis-
tributes candidates into three columns according to their last letter,
ordering each column by word frequency. The column boundaries
were chosen to balance the expected number of candidates in each
column, with words ending in A-E on the left, F-R in the middle, and
S-Z on the right. This layout is designed for power users who have
learned where to expect a word, potentially reducing search time
by 2/3. The authors tested this on themselves over several days and
found that with practice, the eyes would subliminally move to the
right column when tapping frequent words. Pentagon Layout (d)
is designed to be suitable both for novices and experts. It arranges
candidates in compact groups of five, close together to minimize eye
movement but with enough separation for accurate gaze selection
(at least 0.5◦ visual angle between the edge of two neighbour words,
which typically leads to considerably more separation between the
center of any two words and enabled accurate selection in our pilot
studies). The pentagon shapes mitigate overlap between long adja-
cent words and try to take advantage of people’s ability to quickly
scan groups of five items at a time [68]. Complete candidates are
always shown before incomplete candidates, with frequent words
closer to the top.

The two new layouts were delivered to a group of users remotely
for subjective feedback. Most participants believed both layouts
could facilitate fast typing given enough practice. However, they
preferred the Pentagon layout because it was more compact (less
“sprawling” and “confusing”) and more straightforward and intu-
itive to search since they would usually scan for the word to type
downwards one by one (“from the top”). Thus we chose Pentagon
Layout for our main study as it is easier to use for non-experts.

3.3 Disambiguation
After presenting possible word candidates, users need to select
a candidate to disambiguate the input. In text entry on mobile
devices where word candidates are commonly selected by touch,
users typically fixate on a candidate with their eyes right before and
while selecting it [100], and similar gaze behaviour can be observed
for pointer-based selection [8]. TapGazer takes advantage of these
quick, subliminal fixations by employing gaze tracking for word
selection to minimize taps and reduce cognitive load. Once the user
has found the right word and is looking at it, the user can select it
with a tap of the right thumb. We chose to use a tap rather than a
gaze-dwell for selection as the latter is much more time-consuming
and can lead to Midas Touch (inadvertent activations) [78]. We
tested our gaze selection implementation With an HTC Vive Tobii
DevKit for VR users and also a Tobii 5 tracker bar for non-VR
users, showing a small transparent circle as gaze indicator to give
users feedback about gaze tracking. Pilot user feedback showed
that, based on the estimated gaze coordinates, it was possible to
determined which candidate word was being gazed at.

In the absence of gaze tracking, we provide a variant of TapGazer
with purelymanual selection (Figure 4 bottom-right). In this variant,
selecting a candidate is a two-step operation: 1) tapping with the
right thumb, and 2) tapping with one of five fingers (right thumb,
right middle, right index, left middle, left index) to select one among
a maximum of five candidates shown. To support selection from
more than five candidates, users can page through sets of five
candidates with their left and right little fingers. The layout design
helps to avoid paging operations by showing complete candidates
first and ordering complete and incomplete candidates by their
descending word frequencies.

Impact Study for Manual Selection. To understand howmanual se-
lection impacts TapGazer, we conducted a studywith 20 participants
(3 female and 17 male; aged 24 to 35,𝑀 = 28.25, 𝑆𝐷 = 3.45) using
a within-participant design. The study was conducted remotely
because of COVID restrictions, so participants used their personal
computers without VR headset or gaze tracker. Participants were
sent a Unity executable and completed the same procedure as in
the formative design study (subsection 3.2) except that they were
allowed to ‘tap’ using their whole keyboard (i.e. type as usual).
We compared manual selection with simulated gaze selection, i.e.
the prototype assumes the user gazed on the correct word when
selecting a candidate. To mitigate the bias of simulated gaze, we
impressed on our participants the importance of locating the right
candidates with their eyes before selecting them with a key tap.

Paired t-tests showed that selection with simulated gaze was
significantly faster than manual selection (average 51.84 vs. 36.85
WPM, 𝑡 (19) = 9.697, 𝑝 < .001∗∗∗, 𝑑 = 2.168), with significantly

7

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

Yes

word
completion

No
Yes

No

has
complete
candidate

Yes

No
with gaze

Yes

No

word
completion

Figure 4: TapGazer’s workflow: After receiving a tap from a suitable input device, TapGazer updates the candidates according
to the word completion mode, and allows users to select a candidate either with gaze or with additional taps.

higher SUS scores (77.00 vs. 60.63, 𝑡 (19) = 4.052, 𝑝 < .001∗∗∗, 𝑑 =

0.906). The differences in TER (0.040 vs. 0.046, 𝑡 (19) = 1.422, 𝑝 =

.171, 𝑑 = 0.318) and TLX scores (36.94 vs. 54.14, t(19)=1.990, p=.061,
d=0.445) were not significant. Participants were able to reach 76%
and 54% of their QWERTY typing speed, respectively. This setup
favoured gaze selection because simulated gaze tracking does not
suffer from tracking inaccuracy and selection mistakes, hence the
results arguably estimate an upper bound for the impact of man-
ual selection. While the reduction in performance is marked, the
results indicate that manual selection is possible with a reasonable
performance, and that users are able to learn it quickly.

3.4 Miscellaneous Text Entry Functionality
Wehave designedmiscellaneous text editing functions for TapGazer
in order to make it a complete text entry method. Deletion of the
current input string is performed by tapping the left thumb, al-
lowing users to start a word again. If the left thumb is pressed
right after selecting a candidate, the candidates for the last input
string will be shown again, allowing users to change the selection
or tap the left thumb again to delete the word. Spelling mode is trig-
gered with a chord operation. Users can switch between word-level
and character-level text entry by tapping their left and right index
fingers simultaneously. Afterward, users can rotate through the
characters mapped to each finger by repeatedly tapping a respective
finger, and enter the character by tapping the right thumb. Tapping
the right thumb again concludes the character-level input. Cursor
navigationwith gaze is performed by selecting words in the entered
text directly with gaze and right thumb [89], or by entering a cursor
navigation mode through a button in the periphery of the inter-
face [59] with gaze and right thumb. Users can then move the cursor
by tapping the left/right index finger and exit cursor mode with a
right thumb tap. If the gaze is unavailable, users can enter cursor
mode by tapping the right index and ring fingers simultaneously.

3.5 Input Devices
We tested TapGazer with several off-the-shelf input devices (Fig-
ure 4 left): 1) QWERTY keyboards are partitioned into areas that
are each mapped to one finger. This partitioning is consistent with
a user’s usual finger-to-key mapping, so the user can retain their
QWERTY skills. 2) Touchpads (Sensel Morph in our case) report
pressure images of fingers for every frame. We detect the hand
directions (left and right hand) and identify fingers based on the
shape and configuration of recent pressure points. Users can cali-
brate the finger detection at any time by placing all fingers onto the
touchpad. In pilot studies we estimated the accuracy of finger detec-
tion on Sensel Morph touchpads at 99.86%. 3) Wearable devices such
as TapStrap can report tapping information through Bluetooth. In
addition to TapStrap, which had a comparatively poor accuracy (see
subsection 3.2), we also designed a pair of touch-sensitive gloves
that report taps with finger identities (Figure 4 bottom left). We
connected a pair of cotton gloves to an Arduino UNO board through
wires with conductive foil tape around each finger, and used foil
tape on hard and soft surfaces such as tabletops and things to detect
taps based on electric currents. In pilot studies we estimated the
accuracy of the gloves at close to 100%.

3.6 Discussion
Our current prototype has limitations.Word prediction is based only
on word frequency; it could be improved by also taking the context
of a word into account. We also do not provide auto-correction
(neither at the character level of finger-key mappings nor the word
level), as this could confound our study of accuracy. Finally, there
is the wider design question of using only the finger identities
of taps: is it a good idea to disregard finger positions altogether,
although they were shown to be beneficial to input speed when
tapping on hard, flat surfaces [84]? Most participants of the pilot
studies presented in this section believed that just tapping could
be more efficient, and there is some evidence in session input logs

8

TapGazer: Text Entry with Finger Tapping and Gaze-directed Word Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

(from the study in subsection 3.3) of users becoming ‘lazy’ and
just tapping the correct finger instead of hitting the corresponding
QWERTY key. Our main motivation was that “just tapping” would
better support the use of non-standard surfaces and poses such as
one’s thighs while standing, which will be further investigated in
the next section. TapGazer was not designed to replace typing, but
rather to complement it to address casual text entry in VR.

4 EVALUATION
We conducted two user studies to examine I) how the different
TapGazer variants perform in terms of speed, accuracy and user
preference (RQ2), as compared to typing on a physical QWERTY
keyboard outside of VR, and II) how tapping on the thighs in dif-
ferent poses (sitting vs. standing) impacts TapGazer performance.
In Evaluation I, we used a within-participant design with three
conditions: typing on a standard QWERTY keyboard (K) in a typ-
ical manner outside of VR, using TapGazer with gaze candidate
selection and word completion (GC) while wearing a VR headset,
and using TapGazer with gaze candidate selection and no word
completion (GN) while wearing a VR headset. Participants were
sitting at a desk in all conditions and were tapping on touchpads
(two Sensel Morphs) when using TapGazer. In Evaluation II we
used a within-participant design with three conditions: typing on a
standard QWERTY keyboard (K) outside of VR, tapping on thighs
while sitting (SIT) in VR, and tapping on thighs while standing
(STAND) in VR with a pair of touch-sensitive gloves made by us.
The order of the conditions was counterbalanced to mitigate the
effects of learning and fatigue. All TapGazer prototypes were built
in Unity, using the Pentagon layout. Participants wore a Tobii HTC
VIVE Devkit HMD with gaze tracking connected to a windows
laptop (Intel Core i7, NVidia GeForce RTX 2070) in the TapGazer
conditions.

Measures. We compared the conditions using as objective perfor-
mancemeasures typing speed (WPM) and total error rate (TER) [91],
and as subjective measures SUS usability scores [4] and NASA-TLX
task load scores [37]. Each tap/keystroke operation was recorded
for analysis. WPM and TER were calculated following Mackenzie
et al.’s definition [91]:𝑊𝑃𝑀 =

|𝑇−1 |
𝑆

× 60/5, where |𝑇 | is the length
of the final transcribed string and 𝑆 is the elapsed time in seconds
from the first to the last tap in a phrase; 𝑇𝐸𝑅 = 𝐼𝑁𝐹+𝐼𝐹

𝐶+𝐼𝑁𝐹+𝐼𝐹 , where
𝐼𝑁 𝐹 is the number of incorrect keystrokes that were not fixed by
the user, 𝐼𝐹 are keystrokes (excluding editing keys) that occurred in
the input stream but not in the transcribed text, and 𝐶 are correct
keystrokes.

Procedure. Both Evaluation I and II followed a similar procedure.
After a brief introduction of TapGazer, participants were asked to
type phrases randomly selected from the MacKenzie & Soukoreff
corpus [62] on a standard QWERTY keyboard, to measure their
speed and TER. Then we recorded their finger-to-key mapping
preference: participants were instructed to first type letters from ‘A’
to ‘Z’ and then random phrases from the MacKenzie & Soukoreff
corpus [62], while being observed by the experimenter. Customized
finger-to-key mappings for each participant were then generated
with a Python script according to the fingers they were using for
each letter. Participants were able to update their mappings during
the following training sessions if desired. For both evaluations, they

performed each of the two conditions (GC vs. GN for Evaluation
I, and SIT vs. STAND for Evaluation II) in counterbalanced order,
with each condition consisting of a training session and five test
sessions. First, gaze calibration was performed after putting on the
VR headset. Then, in the training session, participants were given
a brief tutorial of the respective text entry condition and were able
to practice it for a couple of minutes until they felt comfortable. In
the following five test sessions, participants were again asked to
enter phrases randomly sampled from the MacKenzie & Soukoreff
corpus [62] as fast and accurately as possible. Each test session was
one minute long and participants were allowed to take short breaks
between the sessions. In Evaluation I, participants completed SUS
and NASA-TLX questionnaires after each condition. Each condi-
tion took around 10-15 minutes. After finishing all two conditions,
participants completed a demographics questionnaire and for Eval-
uation I, ranked the conditions according to their preference. Lastly,
participants were interviewed about their TapGazer experience.
Each experiment took between 40 and 60 minutes.

Participants. For Evaluation I, we recruited 14 participants (10
male, 4 female), with an average age of 23.6 (SD = 1.7). All of them
used a QWERTY keyboard regularly. Their QWERTY typing speed
was on average 52.61 WPM (SD = 21.07) with a TER of 11.5% (𝑆𝐷 =

5.85%). 11 had used eye-tracking devices before. For Evaluation
II, we recruited 5 different participants (3 male, 2 female), with an
average age of 23.8 (𝑆𝐷 = 1.1). Their QWERTY typing speed was on
average 62.94 WPM (𝑆𝐷 = 12.38) with a TER of 9.3% (𝑆𝐷 = 3.3%). 4
had used eye-tracking devices before.

4.1 Results
We validated that the data satisfies the assumptions of a repeated
measures analysis of variance (ANOVA).We used one-way repeated
measures ANOVAs to compare effects across all TapGazer condi-
tions, and two-way repeated measures ANOVAs to compare the
effects of TapGazer variants with regards to the factors Completion
(word completion vs. no word completion) and Session in Evalu-
ation I, and Pose (sitting vs. standing) and Session in Evaluation
II. Paired t-tests with Holm correction were used for all pairwise
comparisons between conditions. All tests for significance were
made at the 𝛼 = 0.05 level. The error bars in the graphs show the
standard error.

Text Entry Speed. In Evaluation I (Figure 5a), users tapped at
𝑀 = 42.80 WPM (𝑆𝐷 = 14.87) for GC, 𝑀 = 42.34 WPM (𝑆𝐷 =

16.11) for GN, and 𝑀 = 44.81 WPM (𝑆𝐷 = 14.67) for their pre-
ferred TapGazer variant. The main effect of Condition (K, GN, GC)
(𝐹 (2, 26) = 11.15, 𝑝 < .001∗∗∗) was significant. K was significantly
faster than both TapGazer variants (𝑡 (13) ≥ 3.93, 𝑝 < .002∗∗).
The main effect of Session (1 to 5) (𝐹 (4, 52) = 13.08, 𝑝 < .001∗∗∗)
was significant, while the main effect of Completion (GN, GC)
(𝐹 (1, 13) = 0.42, 𝑝 = .53) and the interaction effect of Completion
and Session (𝐹 (4, 52) = 1.16, 𝑝 = .34) were not significant (Fig-
ure 5b). In Evaluation II (Figure 5c), users tapped at 𝑀 = 47.16
WPM (𝑆𝐷 = 12.74) for SIT and 𝑀 = 45.26 WPM (𝑆𝐷 = 14.12) for
STAND. The main effect of Condition (K, SIT, STAND) (𝐹 (2, 8) =
7.76, 𝑝 = .013∗) was significant. K was significantly faster than
SIT (𝑡 (8) = 3.2, 𝑝 = .037∗∗) and STAND (𝑡 (8) = 3.6, 𝑝 = .021∗∗).
The main effects of Pose (SIT, STAND) (𝐹 (1, 4) = 1.32, 𝑝 = .33)

9

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

QWERTY(K) GN GC
0

20

40

60

80

42.8042.34
52.61

Method

✱✱✱

✱✱✱

(a) Eval I: WPM of QWERTY, GN
and GC.

1 2 3 4 5
0

20

40

60

Session

GN GC

(b) Eval I: WPM of GN and GC
across 5 sessions.

QWERTY(K) SIT STAND
0

20

40

60

80

45.2647.16

62.94

Method

✱

✱

(c) Eval II: WPM of QWERTY, SIT
and STAND.

1 2 3 4 5
0

20

40

60

Session

SIT STAND

(d) Eval II: WPM of SIT and
STAND across 5 sessions.

Figure 5: Evaluation results for WPM comparing QWERTY keyboard (K), TapGazer with gaze selection and no word completion
(GN), and TapGazer with gaze selection and word completion (GC), as well as SIT and STAND poses while tapping on the thighs.

and Session (𝐹 (4, 16) = 0.40, 𝑝 = .81), and the interaction effect
(𝐹 (4, 16) = 0.30, 𝑝 = .88) were not significant (Figure 5d). Users
saved on average 3.4% of taps by using word completion in GN
(if there was only one possible candidate) and 7.1% of taps in GC.
Using word completion in GC could theoretically have saved up to
34.2%, but participants used word completion mostly only for long
words.

Error Rate. In Evaluation I (Figure 6a), users typed with a TER
of𝑀 = 11.55% (𝑆𝐷 = 0.058) for K,𝑀 = 2.13% (𝑆𝐷 = 0.017) for GN,
and𝑀 = 3.64% (𝑆𝐷 = 0.026) for GC. The main effect of Condition
(𝐹 (1, 13) = 12.62, 𝑝 = .004∗∗) was significant, while the main effect
of Session (𝐹 (4, 52) = 1.44, 𝑝 = .23) and the interaction effect of
Condition and Session (𝐹 (4, 52) = 1.21, 𝑝 = .38) were not significant.
All TapGazer variants had significantly lower error rates than K
(𝑡 (13) ≥ 6.53, 𝑝 < .001∗∗∗). In Evaluation II (Figure 6a), users typed
with a TER of 𝑀 = 10.25% (𝑆𝐷 = 0.039) for K, 𝑀 = 3.69% (𝑆𝐷 =

0.029) for SIT, and𝑀 = 4.03% (𝑆𝐷 = 0.028) for STAND. The main
effects of Pose (𝐹 (1, 4) = 0.97, 𝑝 = .40) and Session (𝐹 (4, 16) =

0.56, 𝑝 = .70), and the interaction effect (𝐹 (4, 16) = 0.3, 𝑝 = .87)
were not significant. Again, all TapGazer variants had significantly
lower error rates than K (𝑡 (4) ≥ 6.47, 𝑝 < .001∗∗∗).

Usability and Workload. Figure 6c shows the average SUS us-
ability scores for Evaluation I, with 𝑀 = 69.64 (𝑆𝐷 = 18.55) for
GN and𝑀 = 73.21 (𝑆𝐷 = 11.87) for GC. Figure 6d shows the aver-
age NASA-TLX task load scores, with 𝑀 = 48.47 (𝑆𝐷 = 11.15)
for GN and 𝑀 = 48.60 (𝑆𝐷 = 13.49) for GC. The differences
in SUS scores (𝑡 (13) = −0.109, 𝑝 = .29) and NASA-TLX scores
(𝑡 (13) = 0.378, 𝑝 = .71) between GN and GC were not significant.

Preferences and Qualitative Feedback. When asked about which
variant of Tapgazer they preferred in Evaluation I, 10 of the 14 par-
ticipants preferred GC and 4 preferred GN. In the post-interviews,
participants were overall positive about Tapgazer (“I can type very
fast after practice”, “save energy by just tapping without reaching
the specific letter”). Several participants stated it was easy to find
the right candidate words (“the candidate words are different from
each other and easy to locate the word to type”, “look at where the
word will show up and select it when it shows”). Most participants
appreciated the ability to complete words (“I’d love to have more
words to select from”, “can save quite a few keystrokes when using
TapGazer with completion”, “I want to scan all candidates words in

case I found the correct one”), but some noted that it was easier not
to consider completion of words (“focus on typing the word and no
need to worry about the candidates shown. And usually I don’t need
to type the entire word when it is long” – referring to the fact that
without word completion, TapGazer shows the most likely incom-
plete candidate if there are no complete candidates, allowing users
to quickly complete long words). In Evaluation II, all participants
reported that they would be willing to use TapGazer for off-desktop
scenarios like VR as it felt comfortable in both a seated and standing
pose.

4.2 Discussion
Our results demonstrate that overall, TapGazer is an easy-to-use
system that can reach similar or higher average typing speeds
than other text entry methods addressing similar use cases (see
Table 1): on average 47.2 WPM when tapping on the thighs while
sitting, compared to 44.6 WPM and 41.0 WPM, respectively, for the
best competitors TOAST [88] and VelociTap [96]. In contrast to
most competitors, Evaluation II demonstrates that TapGazer can
be used effectively by tapping on one’s thighs, both in a sitting and
a standing pose, without apparent loss of performance. Further-
more, TapGazer achieves significantly lower error rates than the
QWERTY keyboard, as word-level text entry avoids some sources
of error of character-level text entry: while QWERTY typing, par-
ticipants frequently used the correct finger on the wrong key – a
mistake that does not affect TapGazer. Our study data logs show
that mistakes due to inconsistent finger-to-key mappings happened
very rarely in TapGazer. The higher WPM averages listed in Table 1
are mainly for experienced ‘expert’ users; however, our participants
were all novice users of TapGazer, so it is plausible that even better
performance could be achieved with more practice. TapGazer with
and without word completion perform similarly and both have
their place: some users prefer to just type and not think about the
completion of words, while others prefer to look for incomplete can-
didates before completion. We analyze these two strategies further
in subsection 5.1.

When comparing TapGazer with the best alternative method,
TOAST [88], it appears that TOAST is potentially more efficient at
entering individual letters: it uses a standard QWERTY layout on a
table-mounted touchpad where specific key strokes are detected,

10

TapGazer: Text Entry with Finger Tapping and Gaze-directed Word Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

QWERTY(K) GN GC
0%

5%

10%

15%

20%

Method

✱✱✱✱

✱✱✱✱

(a) Eval I: TER of QWERTY, GN, and
GC.

QWERTY(K) SIT STAND
0%

5%

10%

15%

Method

✱✱✱

✱✱✱

(b) Eval II: TER of QWERTY, SIT, and
STAND.

GN GC
0

20

40

60

80

100

Method

(c) Eval I: SUS scores of GN and
GC.

GN GC
0

20

40

60

80

Method

(d) Eval I: NASA-TLX scores of
GN and GC.

Figure 6: On the left, evaluation results for TER comparing a) QWERTY keyboard (K), TapGazer with gaze selection and no
word completion (GN), and TapGazer with gaze selection and word completion (GC), as well as b) SIT and STAND poses while
typing on thighs. On the right, evaluation results for c) SUS and d) TLX comparing GN with GC.

as opposed to just finger taps. However, TOAST requires additional
key strokes to select candidate words and avoid input errors, which
is likely less efficient than TapGazer’s gaze selection. The second-
best alternative method, VelociTap [96], uses finger taps on a small
mobile display to enter letters; this is likely slower than TapGazer’s
tapping, which resembles normal QWERTY typing. However, Ve-
lociTap appears to use a very efficient sentence-based language
model for text completion, which is more sophisticated than the
model we were using for TapGazer.

Limitations. Our study used novices and is mainly cross-sectional,
thereby likely underestimating the average performance of longer-
term users. Both evaluations had fairly small sample sizes; however,
they were able to detect the differences in WPM and TER between
TapGazer and QWERTY keyboard. The differences between the
TapGazer conditions (GN vs. GC and SIT vs. STAND) had only
small effect sizes, therefore it is unlikely that the statistical test
results would change with more participants [18]. The results of
Evaluation II are roughly in keeping with those of Evaluation I,
supporting their validity.

The use of gaze in TapGazer is not only a main strength but likely
also its biggest limitation: besides typical challenges of gaze tracking
such as availability and accuracy, users of TapGazer need to use
their gaze while typing, which makes eyes-free typing infeasible.
Users cannot simultaneously look at other things, such as (avatars
of) other users or visual content to transcribe. Furthermore, finger
tap detection poses its own challenges and will likely require some
kind of extra hardware such as gloves in many cases.

5 MODEL-BASED ANALYSIS
In the following we will discuss models describing the user per-
formance of TapGazer and its variants (RQ3) and then apply them
to the analysis of design options and usage strategies. Because
TapGazer is based on QWERTY typing, it is plausible to estimate
performance based on a user’s QWERTY typing speed. Based on
the data from Section 4, WPM𝐾 is significantly positively corre-
lated with WPM𝐺𝑁 (𝑟 (14) = 0.88, 𝑝 < .001∗∗∗) and with WPM𝐺𝐶
(𝑟 (14) = 0.87, 𝑝 < .001∗∗∗), with ‘large’ effect sizes. Linear slope re-
gression analysis yielded significant regression equations:WPM𝐺𝑁 =

0.788×WPM𝐾 andWPM𝐺𝐶 = 0.792×WPM𝐾 . That is, users achieved
on average 79% of their QWERTY typing speed when using the GC

variant. Similarly, the average time taken for typing a key on a QW-
ERTY keyboard 𝑡𝑦𝑝𝑒𝐾 is significantly positively correlated with the
average times for tapping a finger 𝑡𝑎𝑝𝐺𝑁 (𝑟 (14) = 0.91, 𝑝 < .001∗∗∗)
and 𝑡𝑎𝑝𝐺𝐶 (𝑟 (14) = 0.82, 𝑝 < .001∗∗∗). Linear slope regression anal-
ysis yielded significant regression equations: 𝑡𝑎𝑝𝐺𝑁 = 1.28×𝑡𝑦𝑝𝑒𝐾
and 𝑡𝑎𝑝𝐺𝐶 = 1.30 × 𝑡𝑦𝑝𝑒𝐾 . Such regression analyses confirm that
there is a strong linear relationship between QWERTY typing and
TapGazer performance with novice users, across various input de-
vices, TapGazer variants and poses. This makes QWERTY typing
speed a good estimator of TapGazer performance and a good covari-
ate to consider for fair comparisons of TapGazer variants between
different users.

5.1 Slow Typists
Some people are slow typists, e.g. when they are just learning to
type. Word completion can be particularly useful for them. This is
similar to text entry on a mobile phone, where tapping individual
keys can be slow and many people use word completion extensively
to speed up text input. In the following we show how to estimate
the QWERTY typing speed that marks the point in typing and
tapping skill where not using word completion becomes faster than
using word completion with a visual search for the correct word
after every tap.

Similar to the well-known Keystroke-Level Model (KLM) [14],
we model the time𝑇𝐺𝑁 required for entering a word𝑤 in TapGazer
without word completion based on: a) the average tapping time
for fingers 𝑡𝑎𝑝; b) the average tapping time for the right thumb
𝑠𝑝𝑎𝑐𝑒 (which types space in the standard QWERTY mapping), and
c) the average visual search time 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝑁 for finding a desired
word among the completed words shown: 𝑇𝐺𝑁 (𝑤) = |𝑤 | × 𝑡𝑎𝑝 +
𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝑁 + 𝑠𝑝𝑎𝑐𝑒 . That is, we sum up the average tapping time
for each of the |𝑤 | letters, the average search time for spotting the
right completed word, and the average time of the confirmatory tap
with the thumb. Note that by definition, this model predicts the av-
erage word completion time for our evaluation of GN exactly when
substituting our measured average values for the model parameters.
Similarly, we model the time 𝑇𝐺𝐶 required for entering a word𝑤
in TapGazer with word completion, assuming that the user looks
at the suggested words after every tap. This time we consider the
number of taps 𝑐 (𝑤) ≤ |𝑤 | required until𝑤 appears in the list of

11

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

suggestions, and the average visual search time 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝐶 for find-
ing a desired word among suggested, possibly incomplete words:
𝑇𝐺𝐶 (𝑤) = 𝑐 (𝑤) × (𝑡𝑎𝑝 + 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝐶) + 𝑠𝑝𝑎𝑐𝑒 . The model illustrates
the trade-off between a reduced number of taps and increased time
spent per tap.

In Section 5 we have shown that there is a strong linear relation-
ship between tapping and QWERTY typing speed. Therefore, in
order to estimate 𝑇𝐺𝑁 based on the time 𝑇𝐾 required to type word
𝑤 , we substitute 𝑡𝑎𝑝 and 𝑠𝑝𝑎𝑐𝑒 by corresponding linear estimates
1.28 × 𝑡𝑦𝑝𝑒𝐾 and 0.94 × 𝑡𝑦𝑝𝑒𝐾 , respectively. Because search times
do not vary with QWERTY speed, we approximate them using
averages 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝑁 = 270 ms and 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝐶 = 331 ms. The latter is
the average for GC when the maximum number of candidates is
shown (10) so that it is not immediately apparent which candidate
to choose, as this is the most likely case when looking for word
completions after every tap. Furthermore, we substitute the aver-
age word length in English text |𝑤 | = 4.79 [71], and the expected
number of taps 𝑐 = 2.41 required before a desired word appears in
the suggestions. The latter was determined using a simulation of
the word-frequency based suggestion algorithm used in GC on a
dictionary of the 7,582 most frequent English words. This results
in estimates of the average times per word dependent on 𝑡𝑦𝑝𝑒𝐾 :
𝑇𝐺𝑁 = 7.05 × 𝑡𝑦𝑝𝑒𝐾 + 270 ms and 𝑇𝐺𝐶 = 3.95 × 𝑡𝑦𝑝𝑒𝐾 + 797.71 ms.
𝑇𝐺𝑁 and 𝑇𝐺𝐶 are equal at 𝑡𝑦𝑝𝑒𝐾 = 170 ms, which is equivalent to
about WPM𝐾 = 60.95. Therefore, typists much slower than that
would likely be faster using TapGazer with word completion. A
better word prediction algorithm will reduce the expected value for
𝑐 (𝑤), increasing the estimated speed at which word completion be-
comes a hindrance. A similar analysis can be done for the non-gaze
variants of TapGazer.

5.2 Power Users
If the prediction algorithm used to generate suggestions for word
completion is reasonably stable, i.e. if users can anticipate which
word will be suggested as the most likely option, then power users
will learn for frequent words how many taps they need before
they can simply accept the most likely suggested word. In both
GC and MC, the most likely suggestion can be quickly accepted
without even looking at the word suggestions, by tapping the right
thumb. Let us assume a power user has learned all the prefixes that
must be tapped to make each of the 100 most frequent words of
the English language the most likely suggestion, e.g. “tapping ‘t’
makes ‘the’ the most likely word.” According to our word frequency
data, the 100 most common words account for 47.07% of all English
texts. Let 𝑐 (𝑤) be the number of taps a user needs to do before
the word suggested as most likely is the desired word 𝑤 . Similar
to Section 5.1, this leads to the following model for a power user
who uses word completion without visual search for the 100 most
frequent words (first summand) and types words in full otherwise
(second summand, using 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝑁 as the search is only among
the completed words, which come first): 𝑇𝐺𝐶 (𝑤) = 47.07%(𝑐 (𝑤) ×
𝑡𝑎𝑝 + 𝑠𝑝𝑎𝑐𝑒) + 52.93%(|𝑤 | × 𝑡𝑎𝑝 + 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝑁 + 𝑠𝑝𝑎𝑐𝑒).

According to our simulation of the word-frequency based sug-
gestion algorithm used in GC and MC, which is based on the 7,582
most frequent English words, the expected number of taps a user
needs to make before one of the 100 most frequent words becomes

the most likely suggestion is 𝑐 = 2.05. This is lower than one might
think, as the three most frequent words (the, of, and), which account
for more than 14% of English texts, all use different fingers on their
first tap, so each appears immediately as a most likely suggestion.
Furthermore, our simulation reveals that six of the 100 most fre-
quent words (my, or, if, now, our, then, go) are never shown as most
likely suggestion; they typically make up 1.15% of English texts,
therefore we shift this percentage from the first to the second sum-
mand in our model. As in Section 5.1, we substitute 𝑐 , the average
word length in English texts |𝑤 | = 4.79, and estimates of 𝑠𝑒𝑎𝑟𝑐ℎ𝐺𝑁 ,
𝑡𝑎𝑝 and 𝑠𝑝𝑎𝑐𝑒 . In order to relate the model to QWERTY typing
speed, we describe 𝑡𝑎𝑝 and 𝑠𝑝𝑎𝑐𝑒 as linear estimates of 𝑡𝑦𝑝𝑒𝐾 . The
result is 𝑇𝐺𝐶 = 5.49 × 𝑡𝑦𝑝𝑒𝐾 + 143; the corresponding WPM𝐺𝐶
can be approximated for typical QWERTY typing speeds (up to
80 WPM) with a linear lower bound as WPM𝐺𝐶 = 0.88 ×WPM𝐾
(compared to 0.79 ×WPM𝐾 for novice users). That is, by learning
tap prefixes for frequent words so that these words can be selected
quickly without visual search, TapGazer is expected to allow power
users to achieve typing speed closer to QWERTY typing. Even if a
user learns tap prefixes only for the 10 most common words, this
accounts for about 22.22% of English texts.

When using gaze tracking, if a power user furthermore learns
where a frequent word appears for the first time in the suggestions,
e.g. “after tapping the left ring finger ‘with’ appears at the centre
left”, then the power user could potentially look at the right sugges-
tion and select it immediately, reducing the average number of taps
per word 𝑐 and leading to an estimate of WPM𝐺𝐶 = 1.03 ×WPM𝐾
for the 100 andWPM𝐺𝐶 = 0.84 ×WPM𝐾 for the 10 most frequent
words. If a power user is willing to learn a new layout, i.e. a finger-
to-letter mapping not based on QWERTY, then 𝑐 can be reduced
further. We used branch-and-bound search to find a mapping that
minimises 𝑐 for the 100 frequent words, resulting in a mapping
with 𝑐 = 1.18 and WPM𝐺𝐶 = 1.03 ×WPM𝐾 if the positions of the
respective word suggestions are also learned. In summary, learn-
ing tap prefixes and even display positions for common words can
potentially speed TapGazer up drastically, with and without gaze
tracking.

5.3 Discussion
Similar to KLM [14], our models are based on the average measure-
ments obtained from our evaluation. As a result, their predictions
will be inaccurate to to some degree when applied to different
groups of users. In particular, our experiments collected TapGazer
performance data only from novice users, and it is likely that users
will get faster with practice. The models we created are therefore
likely to underestimate the performance of longer-term users, form-
ing a reference baseline for future research. Also, the models add
value by formalising strategies that some users will likely apply to
increase their TapGazer performance. Finally, the models identify
important parameters affecting TapGazer’s performance, providing
starting points for further improvements in future work.

6 CONCLUSION AND FUTUREWORK
We have presented TapGazer, a novel text entry method combining
tapping and gaze. TapGazer was designed to facilitate casual text
entry in VR, without the need for a physical keyboard. Our results

12

TapGazer: Text Entry with Finger Tapping and Gaze-directed Word Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

indicate that novice users can achieve 79% of their QWERTY typing
speed, with an average TapGazer WPM of 44.81, which surpasses
the performance of comparable text entry methods. Furthermore,
the error rate of TapGazer is significantly lower than for a physical
QWERTY keyboard, and TapGazer can be used in different poses
(sitting and standing) while tapping on one’s thighs without marked
loss of performance. We have created performance models illustrat-
ing how different users can benefit from different usage strategies,
and identifying performance parameters that can be optimized in
future design iterations.

In the future, when affordable AR glasses with gaze and finger
tracking will be as ubiquitous as mobile phones are today, wearers
of those glasses may use TapGazer for text entry, e.g. by tapping
on their thighs while waiting at a bus stop or walking down the
street. This is an exciting direction for future work.

ACKNOWLEDGMENTS
This research was supported by NSF grant 1626098 and a grant
from the Verizon Corporation. We thank all our study participants.

REFERENCES
[1] 2. LuminosoInsight/wordfreq: V2.2. https://doi.org/10.5281/zenodo.1443582
[2] Jiban Adhikary. 2018. Text Entry in VR and Introducing Speech and Gestures in

VR Text Entry. In MobileHCI. Association for Computing Machinery, Barcelona,
Spain, 1083–1092. https://doi.org/10.20870/IJVR.2019.19.3.2917

[3] Sunggeun Ahn and Geehyuk Lee. 2019. Gaze-Assisted Typing for Smart Glasses.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology. 857–869. https://doi.org/10.1145/3332165.3347883

[4] Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An Empirical Evalua-
tion of the System Usability Scale. Intl. Journal of Human-Computer Interaction
24, 6 (2008), 574–594. https://doi.org/10.1080/10447310802205776

[5] Nikolaus Bee and Elisabeth André. 2008. Writing With Your Eye: a Dwell Time
Free Writing System Adapted to the Nature of Human Eye Gaze. In International
Tutorial and Research Workshop on Perception and Interactive Technologies for
Speech-Based Systems. Springer, Springer, 111–122. https://doi.org/10.1007/978

[6] Burak Benligiray, Cihan Topal, and Cuneyt Akinlar. 2019. SliceType: Fast Gaze
Typing With a Merging Keyboard. Journal on Multimodal User Interfaces 13, 4
(2019), 321–334. https://doi.org/10.1007/s12193-018-0285-z

[7] Xiaojun Bi, Barton A Smith, and Shumin Zhai. 2010. Quasi-Qwerty Soft Key-
board Optimization. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 283–286. https://doi.org/pdf/10.1145/1753326.1753367

[8] Hans-Joachim Bieg, Lewis L Chuang, Roland W Fleming, Harald Reiterer, and
Heinrich H Bülthoff. 2010. Eye and pointer coordination in search and selec-
tion tasks. In Proceedings of the 2010 Symposium on Eye-Tracking Research &
Applications. 89–92.

[9] Gaddi Blumrosen, Katsuyuki Sakuma, John Jeremy Rice, and John Knickerbocker.
2020. Back to Finger-Writing: Fingertip Writing Technology Based on Pressure
Sensing. IEEE Access 8 (2020), 35455–35468. https://doi.org/10.1109/ACCESS.
2020.2973378

[10] Costas Boletsis and Stian Kongsvik. 2019. Controller-Based Text-Input Tech-
niques for Virtual Reality: an Empirical Comparison. International Journal of
Virtual Reality 19, 3 (2019), 2–15.

[11] Sidney Bovet, Aidan Kehoe, Katie Crowley, Noirin Curran, Mario Gutierrez,
Mathieu Meisser, Damien O Sullivan, and Thomas Rouvinez. 2018. Using
Traditional Keyboards in VR: SteamVR Developer Kit and Pilot Game User
Study. In 2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE, IEEE,
1–9. https://doi.org/10.1109/GEM.2018.8516449

[12] Doug Bowman, Vinh Ly, Joshua Campbell, and Virginia Tech. 2001. Pinch
Keyboard: Natural Text Input for Immersive Virtual Environments. (01 2001).
https://doi.org/10.1007/978-3-642-24082-_94

[13] Damien Brun, Charles Gouin-Vallerand, and Sébastien George. 2019. Keycube
Is a Kind of Keyboard (k3). In Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems. 1–4. https://doi.org/fullHtml/10.1145/
3290607.3313258

[14] Stuart K Card, Thomas P Moran, and Allen Newell. 1980. The Keystroke-Level
Model for User Performance Time With Interactive Systems. Commun. ACM
23, 7 (1980), 396–410. https://doi.org/10.1145/358886.358895

[15] Steven J Castellucci, I Scott MacKenzie, Mudit Misra, Laxmi Pandey, and
Ahmed Sabbir Arif. 2019. TiltWriter: Design and Evaluation of a No-Touch
Tilt-Based Text Entry Method for Handheld Devices. In Proceedings of the 18th

International Conference on Mobile and Ubiquitous Multimedia. 1–8. https:
//doi.org/10.1145/3365610.3365629

[16] Morokot Cheat and Manop Wongsaisuwan. 2018. Eye-Swipe Typing Using
Integration of Dwell-Time and Dwell-Free Method. IEEE, IEEE, 205–208. https:
//doi.org/10.1109/ECTICon.2018.8619868

[17] Sibo Chen, JunceWang, Santiago Guerra, Neha Mittal, and Soravis Prakkamakul.
2019. Exploring Word-Gesture Text Entry Techniques in Virtual Reality. In
Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–6. https://doi.org/10.1145/3290607.3312762

[18] Jacob Cohen. 1992. A Power Primer. Psychological Bulletin 112, 1 (1992), 155.
https://doi.org/70039-power-primer-summary-article-cohen-1992

[19] Gennaro Costagliola, Vittorio Fuccella, and Michele Di Capua. 2011. Text Entry
With Keyscretch. In Proceedings of the 16th International Conference on Intelligent
User Interfaces. 277–286. https://doi.org/10.1145/1943403.1943445

[20] Wenzhe Cui, Suwen Zhu, Mingrui Ray Zhang, H Andrew Schwartz, Jacob O
Wobbrock, and Xiaojun Bi. 2020. JustCorrect: Intelligent Post Hoc Text
Correction Techniques on Smartphones. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 487–499. https:
//doi.org/10.1145/3379337.3415857

[21] Seyed Amir Ahmad Didehkhorshid, Siju Philip, Elaheh Samimi, and Robert J
Teather. 2020. Text Input in Virtual Reality Using a Tracked Drawing Tablet. In
International Conference on Human-Computer Interaction. Springer, 314–329.

[22] Tafadzwa Joseph Dube and Ahmed Sabbir Arif. 2019. Text Entry in Virtual
Reality: a Comprehensive Review of the Literature. In International Conference
on Human-Computer Interaction. Springer, Springer, 419–437. https://doi.org/
10.1145/3359996.3364265

[23] Tafadzwa Joseph Dube and Ahmed Sabbir Arif. 2020. Impact of Key Shape
and Dimension on Text Entry in Virtual Reality. In Extended Abstracts of the
2020 CHI Conference on Human Factors in Computing Systems. 1–10. https:
//doi.org/pdf/10.1145/3334480.3382882

[24] John J Dudley, Keith Vertanen, and Per Ola Kristensson. 2018. Fast and Precise
Touch-Based Text Entry for Head-Mounted Augmented Reality With Variable
Occlusion. ACM Transactions on Computer-Human Interaction (TOCHI) 25, 6
(2018), 1–40. https://doi.org/10.1145/3232163

[25] Mark D Dunlop, Naveen Durga, Sunil Motaparti, Prima Dona, and Varun Meda-
puram. 2012. QWERTH: an Optimized Semi-Ambiguous Keyboard Design. In
Proceedings of the 14th International Conference on Human-Computer Interaction
With Mobile Devices and Services Companion. 23–28. https://doi.org/pdf/10.
1145/2371664.2371671

[26] Francine Evans, Steven Skiena, and Amitabh Varshney. 1999. VType: Entering
Text in a Virtual World. Submitted to International Journal of Human-Computer
Studies (1999). https://doi.org/10.1145/1044588.1044662

[27] Jacqui Fashimpaur, Kenrick Kin, and Matt Longest. 2020. PinchType: Text Entry
for Virtual and Augmented Reality Using Comfortable Thumb to Fingertip
Pinches. In Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems Extended Abstracts. 1–7. https://doi.org/10.1145/3334480.
3382888

[28] John M Findlay. 1997. Saccade Target Selection During Visual Search. Vision
Research 37, 5 (1997), 617–631.

[29] Yulia Gizatdinova, Oleg Špakov, and Veikko Surakka. 2012. Comparison of
Video-Based Pointing and Selection Techniques for Hands-Free Text Entry. In
Proceedings of the InternationalWorking Conference on Advanced Visual Interfaces.
132–139. https://doi.org/pdf/10.1145/2254556.2254582

[30] Jun Gong, Zheer Xu, Qifan Guo, Teddy Seyed, Xiang’Anthony’ Chen, Xiaojun Bi,
and Xing-Dong Yang. 2018. Wristext: One-Handed Text Entry on Smartwatch
Using Wrist Gestures. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–14. https://doi.org/10.1145/3173574.3173755

[31] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage Modeling for Soft Keyboards. In Proceedings of the 7th International Con-
ference on Intelligent User Interfaces. 194–195. https://doi.org/10.1145/502716.
502753

[32] Nathan Green, Jan Kruger, Chirag Faldu, and Robert St. Amant. 2004. A Reduced
QWERTY Keyboard for Mobile Text Entry. In CHI’04 Extended Abstracts on
Human Factors in Computing Systems. 1429–1432. https://doi.org/pdf/10.1145/
985921.986082

[33] Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and
Per Ola Kristensson. 2018. Text Entry in Immersive Head-Mounted Display-
Based Virtual Reality Using Standard Keyboards. In 2018 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR). IEEE, IEEE, 159–166. https://doi.
org/10.1109/VR.2018.8446059

[34] Jan Gugenheimer, David Dobbelstein, Christian Winkler, Gabriel Haas, and
Enrico Rukzio. 2016. Facetouch: Enabling Touch Interaction in Display Fixed
Uis for Mobile Virtual Reality. In Proceedings of the 29th Annual Symposium on
User Interface Software and Technology. 49–60. https://doi.org/10.1145/2984511.
2984576

[35] Aakar Gupta, Cheng Ji, Hui-Shyong Yeo, Aaron Quigley, and Daniel Vogel.
2019. RotoSwype: Word-Gesture Typing Using a Ring. In Proceedings of the

13

https://doi.org/10.5281/zenodo.1443582
https://doi.org/10.20870/IJVR.2019.19.3.2917
https://doi.org/10.1145/3332165.3347883
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1007/978
https://doi.org/10.1007/s12193-018-0285-z
https://doi.org/pdf/10.1145/1753326.1753367
https://doi.org/10.1109/ACCESS.2020.2973378
https://doi.org/10.1109/ACCESS.2020.2973378
https://doi.org/10.1109/GEM.2018.8516449
https://doi.org/10.1007/978-3-642-24082-_94
https://doi.org/fullHtml/10.1145/3290607.3313258
https://doi.org/fullHtml/10.1145/3290607.3313258
https://doi.org/10.1145/358886.358895
https://doi.org/10.1145/3365610.3365629
https://doi.org/10.1145/3365610.3365629
https://doi.org/10.1109/ECTICon.2018.8619868
https://doi.org/10.1109/ECTICon.2018.8619868
https://doi.org/10.1145/3290607.3312762
https://doi.org/70039-power-primer-summary-article-cohen-1992
https://doi.org/10.1145/1943403.1943445
https://doi.org/10.1145/3379337.3415857
https://doi.org/10.1145/3379337.3415857
https://doi.org/10.1145/3359996.3364265
https://doi.org/10.1145/3359996.3364265
https://doi.org/pdf/10.1145/3334480.3382882
https://doi.org/pdf/10.1145/3334480.3382882
https://doi.org/10.1145/3232163
https://doi.org/pdf/10.1145/2371664.2371671
https://doi.org/pdf/10.1145/2371664.2371671
https://doi.org/10.1145/1044588.1044662
https://doi.org/10.1145/3334480.3382888
https://doi.org/10.1145/3334480.3382888
https://doi.org/pdf/10.1145/2254556.2254582
https://doi.org/10.1145/3173574.3173755
https://doi.org/10.1145/502716.502753
https://doi.org/10.1145/502716.502753
https://doi.org/pdf/10.1145/985921.986082
https://doi.org/pdf/10.1145/985921.986082
https://doi.org/10.1109/VR.2018.8446059
https://doi.org/10.1109/VR.2018.8446059
https://doi.org/10.1145/2984511.2984576
https://doi.org/10.1145/2984511.2984576

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

2019 CHI Conference on Human Factors in Computing Systems. 1–12. https:
//doi.org/10.1145/3290605.3300244

[36] Shangchen Han, Beibei Liu, Robert Wang, Yuting Ye, Christopher D Twigg,
and Kenrick Kin. 2018. Online Optical Marker-Based Hand Tracking With
Deep Labels. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–10. https:
//doi.org/10.1145/3197517.3201399

[37] Sandra G Hart. 2006. NASA-Task Load Index (NASA-TLX); 20 Years Later. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 50.
Sage publications Sage CA: Los Angeles, CA, Sage publications Sage CA: Los
Angeles, CA, 904–908.

[38] Anke Huckauf and Mario H Urbina. 2008. Gazing With PEYEs: Towards a
Universal Input for Various Applications. In Proceedings of the 2008 Symposium
on Eye Tracking Research & Applications. 51–54. https://doi.org/10.1145/1344471.
1344483

[39] Robert JK Jacob. 1993. Eye Movement-Based Human-Computer Interaction
Techniques: Toward Non-Command Interfaces. Advances in Human-Computer
Interaction 4 (1993), 151–190. https://doi.org/10.1145/332040.332445

[40] Haiyan Jiang and Dongdong Weng. 2020. HiPad: Text Entry for Head-Mounted
Displays Using Circular Touchpad. In 2020 IEEE Conference on Virtual Reality and
3D User Interfaces (VR). IEEE, IEEE, 692–703. https://doi.org/10.1109/VR46266.
2020.00092

[41] Haiyan Jiang, Dongdong Weng, Zhenliang Zhang, Yihua Bao, Yufei Jia, and
Mengman Nie. 2018. HiKeyb: High-Efficiency Mixed Reality System for Text
Entry. In 2018 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct). IEEE, IEEE, 132–137. https://doi.org/10.1109/ISMAR-
Adjunct.2018.00051

[42] Haiyan Jiang, Dongdong Weng, Zhenliang Zhang, and Feng Chen. 2019. HiFin-
ger: One-Handed Text Entry Technique for Virtual Environments Based on
Touches Between Fingers. Sensors 19, 14 (2019), 3063. https://doi.org/10.3390/
s19143063

[43] Sunjun Kim, Jeongmin Son, Geehyuk Lee, Hwan Kim, and Woohun Lee. 2013.
TapBoard: Making a Touch Screen Keyboard More Touchable. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 553–562.
https://doi.org/10.1145/2470654.2470733

[44] Pascal Knierim, Valentin Schwind, Anna Maria Feit, Florian Nieuwenhuizen,
and Niels Henze. 2018. Physical Keyboards in Virtual Reality: Analysis of
Typing Performance and Effects of Avatar Hands. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. 1–9. https://doi.org/10.
1145/3173574.3173919

[45] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: a Large Vocabulary
Shorthand Writing System for Pen-Based Computers. In Proceedings of the
17th Annual ACM Symposium on User Interface Software and Technology. 43–52.
https://doi.org/10.1145/1029632.1029640

[46] Falko Kuester, Michelle Chen, Mark E Phair, and Carsten Mehring. 2005.
Towards Keyboard Independent Touch Typing in VR. In Proceedings of the
ACM Symposium on Virtual Reality Software and Technology. 86–95. https:
//doi.org/10.1145/1101616.1101635

[47] Chandan Kumar, Ramin Hedeshy, Scott MacKenzie, and Steffen Staab. 2020.
TAGSwipe: Touch Assisted Gaze Swipe for Text Entry. (2020). https://doi.org/
abs/10.1145/3313831.3376317

[48] Andrew Kurauchi, Wenxin Feng, Ajjen Joshi, Carlos Morimoto, and Margrit
Betke. 2016. EyeSwipe: Dwell-Free Text Entry Using Gaze Paths. 1952–1956.
https://doi.org/10.1145/2858036.2858335

[49] Andrew Toshiaki Nakayama Kurauchi. 2018. EyeSwipe: Text Entry Using Gaze
Paths. Ph.D. Dissertation. Universidade de São Paulo.

[50] Lik Hang Lee, Kit Yung Lam, Tong Li, Tristan Braud, Xiang Su, and Pan Hui. 2019.
Quadmetric Optimized Thumb-to-Finger Interaction for Force Assisted One-
Handed Text Entry on Mobile Headsets. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 3, 3 (2019), 1–27. https://doi.org/
10.1145/3351252

[51] Minkyung Lee, Woontack Woo, et al. 2003. ARKB: 3D Vision-Based Augmented
Reality Keyboard. In ICAT. https://doi.org/10.7537/marslsj1010s13.45

[52] Seongil Lee, Sang Hyuk Hong, and Jae Wook Jeon. 2002. Designing a Universal
Keyboard Using Chording Gloves. ACM SIGCAPH Computers and the Physically
Handicapped 73-74 (2002), 142–147. https://doi.org/abs/10.1145/960201.957230

[53] Luis A Leiva, Alireza Sahami, Alejandro Catala, Niels Henze, and Albrecht
Schmidt. 2015. Text entry on tiny qwerty soft keyboards. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems. 669–678.

[54] Frank Chun Yat Li, Richard T Guy, Koji Yatani, and Khai N Truong. 2011. The
1line Keyboard: a QWERTY Layout in a Single Line. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology. 461–470.
https://doi.org/10.1145/2047196.2047257

[55] Jia-Wei Lin, Ping-Hsuan Han, Jiun-Yu Lee, Yang-Sheng Chen, Ting-Wei Chang,
Kuan-Wen Chen, and Yi-Ping Hung. 2017. Visualizing the Keyboard in Virtual
Reality for Enhancing Immersive Experience. In ACM SIGGRAPH 2017 Posters.
1–2. https://doi.org/10.1145/3102163.3102175

[56] Yi Liu, Chi Zhang, Chonho Lee, Bu-Sung Lee, and Alex Qiang Chen. 2015.
Gazetry: Swipe Text Typing Using Gaze. In Proceedings of the Annual Meeting of

the Australian Special Interest Group for Computer Human Interaction. 192–196.
https://doi.org/10.1145/2838739.2838804

[57] Xueshi Lu, Difeng Yu, Hai-Ning Liang, Xiyu Feng, and Wenge Xu. 2019.
DepthText: Leveraging Head Movements Towards the Depth Dimension for
Hands-Free Text Entry in Mobile Virtual Reality Systems. In 2019 IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR). IEEE, IEEE, 1060–1061.
https://doi.org/10.1109/VR.2019.8797901

[58] Yiqin Lu, Chun Yu, Xin Yi, Yuanchun Shi, and Shengdong Zhao. 2017. Blindtype:
Eyes-Free Text Entry on Handheld Touchpad by Leveraging Thumb’s Muscle
Memory. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 1, 2 (2017), 1–24. https://doi.org/10.1145/3090083

[59] Christof Lutteroth, Moiz Penkar, and Gerald Weber. 2015. Gaze vs. Mouse:
a Fast and Accurate Gaze-Only Click Alternative. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology. 385–394.
https://doi.org/10.1145/2807442.2807461

[60] Xinyao Ma, Zhaolin Yao, Yijun Wang, Weihua Pei, and Hongda Chen. 2018.
Combining Brain-Computer Interface and Eye Tracking for High-Speed Text
Entry in Virtual Reality. In 23rd International Conference on Intelligent User
Interfaces. 263–267. https://doi.org/abs/10.1145/3172944.3172988

[61] I Scott MacKenzie, Hedy Kober, Derek Smith, Terry Jones, and Eugene Skep-
ner. 2001. LetterWise: Prefix-Based Disambiguation for Mobile Text Input. In
Proceedings of the 14th Annual ACM Symposium on User Interface Software and
Technology. 111–120. https://doi.org/10.1145/502348.502365

[62] I Scott MacKenzie and RWilliam Soukoreff. 2003. Phrase Sets for Evaluating Text
Entry Techniques. In CHI’03 Extended Abstracts on Human Factors in Computing
Systems. 754–755. https://doi.org/10.1145/765891.765971

[63] I Scott MacKenzie and Shawn X Zhang. 1999. The Design and Evaluation of a
High-Performance Soft Keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 25–31. https://doi.org/10.1145/302979.
302983

[64] I Scott MacKenzie and Xuang Zhang. 2008. Eye Typing Using Word and Letter
Prediction and a Fixation Algorithm. In Proceedings of the 2008 Symposium on
Eye Tracking Research & Applications. 55–58. https://doi.org/10.1145/1344471.
1344484

[65] PäiviMajaranta, Ulla-Kaija Ahola, andOleg Špakov. 2009. Fast Gaze TypingWith
an Adjustable Dwell Time. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 357–360. https://doi.org/10.1145/1518701.1518758

[66] Päivi Majaranta and Kari-Jouko Räihä. 2007. Text Entry by Gaze: Utilizing
Eye-Tracking. Text Entry Systems: Mobility, Accessibility, Universality (2007),
175–187. https://doi.org/abs/10.1145/3313831.3376317

[67] Anders Markussen, Mikkel Rønne Jakobsen, and Kasper Hornbæk. 2014. Vulture:
a Mid-Air Word-Gesture Keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 1073–1082. https://doi.org/10.1145/
2556288.2556964

[68] Brian McElree and Marisa Carrasco. 1999. The Temporal Dynamics of Visual
Search: Evidence for Parallel Processing in Feature and Conjunction Searches.
Journal of Experimental Psychology: Human Perception and Performance 25, 6
(1999), 1517. https://doi.org/10.1037/0096-1523.25.6.1517

[69] Mark McGill, Daniel Boland, Roderick Murray-Smith, and Stephen Brewster.
2015. A Dose of Reality: Overcoming Usability Challenges in VR Head-Mounted
Displays. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems. 2143–2152. https://doi.org/10.1145/2702123.2702382

[70] Martez E Mott, Shane Williams, Jacob OWobbrock, and Meredith Ringel Morris.
2017. Improving Dwell-Based Gaze Typing With Dynamic, Cascading Dwell
Times. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. 2558–2570. https://doi.org/10.1145/3025453.3025517

[71] Peter Norvig. 2013. English Letter Frequency Counts: Mayzner Revisited or
ETAOIN SRHLDCU. (2013).

[72] Midori Ohkita, Yoshie Obayashi, and Masako Jitsumori. 2014. Efficient Visual
Search for Multiple Targets Among Categorical Distractors: Effects of Distractor-
Distractor Similarity Across Trials. Vision Research 96 (2014), 96–105. https:
//doi.org/10.1016/j.visres.2014.01.009

[73] Jakob Olofsson. 2017. Input and Display of Text for Virtual Reality Head-
Mounted Displays and Hand-Held Positionally Tracked Controllers.

[74] Alexander Otte, Tim Menzner, Travis Gesslein, Philipp Gagel, Daniel Schneider,
and Jens Grubert. 2019. Towards Utilizing Touch-Sensitive Physical Keyboards
for Text Entry in Virtual Reality. In 2019 IEEE Conference on Virtual Reality and
3D User Interfaces (VR). IEEE, IEEE, 1729–1732. https://doi.org/10.1109/VR.2019.
8797740

[75] Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang, Myroslav Bachynskyi,
Keith Vertanen, and Per Ola Kristensson. 2013. Improving Two-Thumb Text
Entry on Touchscreen Devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2765–2774. https://doi.org/10.1145/
2470654.2481383

[76] Farshid Salemi Parizi, EricWhitmire, and Shwetak Patel. 2019. AuraRing: Precise
Electromagnetic Finger Tracking. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 3, 4 (2019), 1–28. https://doi.org/10.1145/
3369831

14

https://doi.org/10.1145/3290605.3300244
https://doi.org/10.1145/3290605.3300244
https://doi.org/10.1145/3197517.3201399
https://doi.org/10.1145/3197517.3201399
https://doi.org/10.1145/1344471.1344483
https://doi.org/10.1145/1344471.1344483
https://doi.org/10.1145/332040.332445
https://doi.org/10.1109/VR46266.2020.00092
https://doi.org/10.1109/VR46266.2020.00092
https://doi.org/10.1109/ISMAR-Adjunct.2018.00051
https://doi.org/10.1109/ISMAR-Adjunct.2018.00051
https://doi.org/10.3390/s19143063
https://doi.org/10.3390/s19143063
https://doi.org/10.1145/2470654.2470733
https://doi.org/10.1145/3173574.3173919
https://doi.org/10.1145/3173574.3173919
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1101616.1101635
https://doi.org/10.1145/1101616.1101635
https://doi.org/abs/10.1145/3313831.3376317
https://doi.org/abs/10.1145/3313831.3376317
https://doi.org/10.1145/2858036.2858335
https://doi.org/10.1145/3351252
https://doi.org/10.1145/3351252
https://doi.org/10.7537/marslsj1010s13.45
https://doi.org/abs/10.1145/960201.957230
https://doi.org/10.1145/2047196.2047257
https://doi.org/10.1145/3102163.3102175
https://doi.org/10.1145/2838739.2838804
https://doi.org/10.1109/VR.2019.8797901
https://doi.org/10.1145/3090083
https://doi.org/10.1145/2807442.2807461
https://doi.org/abs/10.1145/3172944.3172988
https://doi.org/10.1145/502348.502365
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/302979.302983
https://doi.org/10.1145/302979.302983
https://doi.org/10.1145/1344471.1344484
https://doi.org/10.1145/1344471.1344484
https://doi.org/10.1145/1518701.1518758
https://doi.org/abs/10.1145/3313831.3376317
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.1037/0096-1523.25.6.1517
https://doi.org/10.1145/2702123.2702382
https://doi.org/10.1145/3025453.3025517
https://doi.org/10.1016/j.visres.2014.01.009
https://doi.org/10.1016/j.visres.2014.01.009
https://doi.org/10.1109/VR.2019.8797740
https://doi.org/10.1109/VR.2019.8797740
https://doi.org/10.1145/2470654.2481383
https://doi.org/10.1145/2470654.2481383
https://doi.org/10.1145/3369831
https://doi.org/10.1145/3369831

TapGazer: Text Entry with Finger Tapping and Gaze-directed Word Selection CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[77] Diogo Pedrosa, Maria Da Graça Pimentel, Amy Wright, and Khai N Truong.
2015. Filteryedping: Design Challenges and User Performance of Dwell-Free
Eye Typing. ACM Transactions on Accessible Computing (TACCESS) 6, 1 (2015),
1–37. https://doi.org/10.1145/2724728

[78] Abdul Moiz Penkar, Christof Lutteroth, and Gerald Weber. 2012. Designing
for the Eye: Design Parameters for Dwell in Gaze Interaction. In Proceedings of
the 24th Australian Computer-Human Interaction Conference. 479–488. https:
//doi.org/10.1145/2414536.2414609

[79] Ken Perlin. 1998. Quikwriting: Continuous Stylus-Based Text Entry. In Pro-
ceedings of the 11th Annual ACM Symposium on User Interface Software and
Technology. 215–216. https://doi.org/10.1145/288392.288613

[80] Duc-Minh Pham and Wolfgang Stuerzlinger. 2019. HawKEY: Efficient and
Versatile Text Entry for Virtual Reality. In 25th ACM Symposium on Virtual
Reality Software and Technology. 1–11. https://doi.org/10.1145/3359996.3364265

[81] Ryan Qin, Suwen Zhu, Yu-Hao Lin, Yu-Jung Ko, and Xiaojun Bi. 2018. Optimal-
T9: an Optimized T9-Like Keyboard for Small Touchscreen Devices. In Proceed-
ings of the 2018 ACM International Conference on Interactive Surfaces and Spaces.
137–146. https://doi.org/10.1145/3279778.3279786

[82] Philip Quinn and Shumin Zhai. 2016. A cost-benefit study of text entry sugges-
tion interaction. In Proceedings of the 2016 CHI conference on human factors in
computing systems. 83–88.

[83] Vijay Rajanna and John Paulin Hansen. 2018. Gaze Typing in Virtual Reality:
Impact of Keyboard Design, Selection Method, and Motion. In Proceedings
of the 2018 ACM Symposium on Eye Tracking Research & Applications. 1–10.
https://doi.org/10.1145/3204493.3204541

[84] Mark Richardson, Matt Durasoff, and Robert Wang. 2020. Decoding Surface
Touch Typing From Hand-Tracking. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. 686–696. https://doi.org/
10.1145/3379337.3415816

[85] Jochen Rick. 2010. Performance Optimizations of Virtual Keyboards for Stroke-
Based Text Entry on a Touch-Based Tabletop. In Proceedings of the 23nd Annual
ACM Symposium on User Interface Software and Technology. 77–86. https:
//doi.org/10.1145/1866029.1866043

[86] Sherry Ruan, Jacob O Wobbrock, Kenny Liou, Andrew Ng, and James A Landay.
2018. Comparing Speech and Keyboard Text Entry for Short Messages in Two
Languages on Touchscreen Phones. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 1, 4 (2018), 1–23. https://doi.org/
10.1145/3161187

[87] Sayan Sarcar, Prateek Panwar, and Tuhin Chakraborty. 2013. EyeK: an Efficient
Dwell-Free Eye Gaze-Based Text Entry System. In Proceedings of the 11th Asia
Pacific Conference on Computer Human Interaction. 215–220. https://doi.org/
pdf/10.1145/2525194.2525288

[88] Weinan Shi, Chun Yu, Xin Yi, Zhen Li, and Yuanchun Shi. 2018. TOAST: Ten-
Finger Eyes-Free Typing on Touchable Surfaces. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 1 (2018), 1–23. https:
//doi.org/10.1145/3191765

[89] Shyamli Sindhwani, Christof Lutteroth, and Gerald Weber. 2019. ReType: Quick
Text Editing With Keyboard and Gaze. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–13. https://doi.org/10.1145/3290605.
3300433

[90] Brian A Smith, Xiaojun Bi, and Shumin Zhai. 2015. Optimizing Touchscreen
Keyboards for Gesture Typing. In Proceedings of the 33rd Annual ACMConference
on Human Factors in Computing Systems. 3365–3374. https://doi.org/10.1145/
2702123.2702357

[91] R William Soukoreff and I Scott MacKenzie. 2003. Metrics for Text Entry
Research: an Evaluation of MSD and KSPC, and a New Unified Error Metric. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
113–120. https://doi.org/10.1145/642611.642632

[92] Marco Speicher, Anna Maria Feit, Pascal Ziegler, and Antonio Krüger. 2018.
Selection-Based Text Entry in Virtual Reality. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. 1–13. https://doi.org/10.
1145/3173574.3174221

[93] Srinath Sridhar, Anna Maria Feit, Christian Theobalt, and Antti Oulasvirta. 2015.
Investigating the Dexterity of Multi-Finger Input for Mid-Air Text Entry. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. 3643–3652. https://doi.org/10.1145/2702123.2702136

[94] Bruce H Thomas and Wayne Piekarski. 2002. Glove Based User Interaction
Techniques for Augmented Reality in an Outdoor Environment. Virtual Reality
6, 3 (2002), 167–180. https://doi.org/10.1145/988834.988871

[95] Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob Gould, and Per Ola Kris-
tensson. 2018. The Impact of Word, Multiple Word, and Sentence Input on
Virtual Keyboard Decoding Performance. In Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems. 1–12. https://doi.org/10.1145/
3173574.3174200

[96] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kris-
tensson. 2015. VelociTap: Investigating Fast Mobile Text Entry Using Sentence-
Based Decoding of Touchscreen Keyboard Input. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. 659–668.

https://doi.org/10.1145/2702123.2702135
[97] James Walker, Bochao Li, Keith Vertanen, and Scott Kuhl. 2017. Efficient

Typing on a Visually Occluded Physical Keyboard. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. 5457–5461. https:
//doi.org/10.1145/3025453.3025783

[98] Junjue Wang, Kaichen Zhao, Xinyu Zhang, and Chunyi Peng. 2014. Ubiquitous
Keyboard for Small Mobile Devices: Harnessing Multipath Fading for Fine-
Grained Keystroke Localization. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services. 14–27. https://doi.org/
10.1145/2594368.2594384

[99] David J Ward, Alan F Blackwell, and David JC MacKay. 2000. Dasher—a Data
Entry Interface Using Continuous Gestures and LanguageModels. In Proceedings
of the 13th Annual ACM Symposium on User Interface Software and Technology.
129–137. https://doi.org/10.1145/354401.354427

[100] Pierre Weill-Tessier, Jayson Turner, and Hans Gellersen. 2016. How do you look
at what you touch? A study of touch interaction and gaze correlation on tablets.
In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research
& Applications. 329–330.

[101] Eric Whitmire, Mohit Jain, Divye Jain, Greg Nelson, Ravi Karkar, Shwetak
Patel, and Mayank Goel. 2017. Digitouch: Reconfigurable Thumb-to-Finger
Input and Text Entry on Head-Mounted Displays. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 1–21.
https://doi.org/10.1145/3130978

[102] Pui Chung Wong, Kening Zhu, and Hongbo Fu. 2018. Fingert9: Leveraging
Thumb-to-Finger Interaction for Same-Side-Hand Text Entry on Smartwatches.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–10. https://doi.org/10.1145/3173574.3173752

[103] Wenge Xu, Hai-Ning Liang, Anqi He, and Zifan Wang. 2019. Pointing and
Selection Methods for Text Entry in Augmented Reality Head Mounted Displays.
In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE, IEEE, 279–288. https://doi.org/10.1109/ISMAR.2019.00026

[104] Wenge Xu, Hai-Ning Liang, Yuxuan Zhao, Tianyu Zhang, Difeng Yu, and Diego
Monteiro. 2019. RingText: Dwell-Free and Hands-Free Text Entry for Mobile
Head-Mounted Displays Using HeadMotions. IEEE Transactions on Visualization
and Computer Graphics 25, 5 (2019), 1991–2001. https://doi.org/10.1109/TVCG.
2019.2898736

[105] Zheer Xu, Weihao Chen, Dongyang Zhao, Jiehui Luo, Te-Yen Wu, Jun Gong,
Sicheng Yin, Jialun Zhai, and Xing-Dong Yang. 2020. BiTipText: Bimanual
Eyes-Free Text Entry on a Fingertip Keyboard. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–13. https://doi.org/
fullHtml/10.1145/3313831.3376306

[106] Naoki Yanagihara, Buntarou Shizuki, and Shin Takahashi. 2019. Text Entry
Method for Immersive Virtual Environments Using Curved Keyboard. In 25th
ACM Symposium on Virtual Reality Software and Technology. 1–2. https://doi.
org/abs/10.1145/3173574.3174221

[107] Xin Yi, Chen Wang, Xiaojun Bi, and Yuanchun Shi. 2020. PalmBoard: Leverag-
ing Implicit Touch Pressure in Statistical Decoding for Indirect Text Entry. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13. https://doi.org/abs/10.1145/3313831.3376441

[108] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun, and Yuanchun Shi. 2015. Atk:
Enabling Ten-Finger Freehand Typing in Air Based on 3d Hand Tracking Data.
In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. 539–548. https://doi.org/pdf/10.1145/2807442.2807504

[109] Yafeng Yin, Qun Li, Lei Xie, Shanhe Yi, Edmund Novak, and Sanglu Lu. 2016.
CamK: a Camera-Based Keyboard for Small Mobile Devices. In IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer Communica-
tions. IEEE, IEEE, 1–9. https://doi.org/abs/10.1109/INFOCOM.2016.7524400

[110] Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo, and Yuanchun Shi.
2017. Tap, Dwell or Gesture? Exploring Head-Based Text Entry Techniques for
HMDs. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. 4479–4488. https://doi.org/10.1145/3025453.3025964

[111] Chun Yu, Ke Sun, Mingyuan Zhong, Xincheng Li, Peijun Zhao, and Yuanchun
Shi. 2016. One-Dimensional Handwriting: Inputting Letters and Words on
Smart Glasses. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 71–82. https://doi.org/10.1145/2858036.2858542

[112] Difeng Yu, Kaixuan Fan, Heng Zhang, Diego Monteiro, Wenge Xu, and Hai-
Ning Liang. 2018. PizzaText: Text Entry for Virtual Reality Systems Using Dual
Thumbsticks. IEEE Transactions on Visualization and Computer Graphics 24, 11
(2018), 2927–2935. https://doi.org/10.1109/TVCG.2018.2868581

[113] Shumin Zhai, Michael Hunter, and Barton A Smith. 2002. Performance Op-
timization of Virtual Keyboards. Human-Computer Interaction 17, 2-3 (2002),
229–269. https://doi.org/10.1145/1866029.1866043

[114] Mingrui Ray Zhang, He Wen, and Jacob O Wobbrock. 2019. Type, Then Correct:
Intelligent Text Correction Techniques for Mobile Text Entry Using Neural
Networks. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology. 843–855. https://doi.org/10.1145/3332165.3347924

[115] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an
Invisible Keyboard. In Proceedings of the 2018 CHI Conference on Human Factors

15

https://doi.org/10.1145/2724728
https://doi.org/10.1145/2414536.2414609
https://doi.org/10.1145/2414536.2414609
https://doi.org/10.1145/288392.288613
https://doi.org/10.1145/3359996.3364265
https://doi.org/10.1145/3279778.3279786
https://doi.org/10.1145/3204493.3204541
https://doi.org/10.1145/3379337.3415816
https://doi.org/10.1145/3379337.3415816
https://doi.org/10.1145/1866029.1866043
https://doi.org/10.1145/1866029.1866043
https://doi.org/10.1145/3161187
https://doi.org/10.1145/3161187
https://doi.org/pdf/10.1145/2525194.2525288
https://doi.org/pdf/10.1145/2525194.2525288
https://doi.org/10.1145/3191765
https://doi.org/10.1145/3191765
https://doi.org/10.1145/3290605.3300433
https://doi.org/10.1145/3290605.3300433
https://doi.org/10.1145/2702123.2702357
https://doi.org/10.1145/2702123.2702357
https://doi.org/10.1145/642611.642632
https://doi.org/10.1145/3173574.3174221
https://doi.org/10.1145/3173574.3174221
https://doi.org/10.1145/2702123.2702136
https://doi.org/10.1145/988834.988871
https://doi.org/10.1145/3173574.3174200
https://doi.org/10.1145/3173574.3174200
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/3025453.3025783
https://doi.org/10.1145/3025453.3025783
https://doi.org/10.1145/2594368.2594384
https://doi.org/10.1145/2594368.2594384
https://doi.org/10.1145/354401.354427
https://doi.org/10.1145/3130978
https://doi.org/10.1145/3173574.3173752
https://doi.org/10.1109/ISMAR.2019.00026
https://doi.org/10.1109/TVCG.2019.2898736
https://doi.org/10.1109/TVCG.2019.2898736
https://doi.org/fullHtml/10.1145/3313831.3376306
https://doi.org/fullHtml/10.1145/3313831.3376306
https://doi.org/abs/10.1145/3173574.3174221
https://doi.org/abs/10.1145/3173574.3174221
https://doi.org/abs/10.1145/3313831.3376441
https://doi.org/pdf/10.1145/2807442.2807504
https://doi.org/abs/10.1109/INFOCOM.2016.7524400
https://doi.org/10.1145/3025453.3025964
https://doi.org/10.1145/2858036.2858542
https://doi.org/10.1109/TVCG.2018.2868581
https://doi.org/10.1145/1866029.1866043
https://doi.org/10.1145/3332165.3347924

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zhenyi He, Christof Lutteroth, and Ken Perlin

in Computing Systems. 1–13. https://doi.org/10.1145/3173574.3174013

16

https://doi.org/10.1145/3173574.3174013

	Abstract
	1 Introduction
	2 Related Work
	2.1 Alternative Keyboard Layouts
	2.2 Gaze-assisted Text Entry
	2.3 Text Entry in VR

	3 TapGazer Design
	3.1 Virtual Keyboard Layout
	3.2 Word Candidate Layout
	3.3 Disambiguation
	3.4 Miscellaneous Text Entry Functionality
	3.5 Input Devices
	3.6 Discussion

	4 Evaluation
	4.1 Results
	4.2 Discussion

	5 Model-based Analysis
	5.1 Slow Typists
	5.2 Power Users
	5.3 Discussion

	6 Conclusion and Future Work
	Acknowledgments
	References

