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Resumo

Os dispositivos móveis com ecrã tátil, como smartphones ou smartwatches, são um
aspeto predominante nas nossas vidas. Eles foram evoluindo ao longo do tempo bem
como as suas funcionalidades, e devido ao constante crescimento e avanços na tecnologia,
usar estes dispositivos para realizar uma grande diversidade de tarefas tornou-se uma
prática comum no nosso dia a dia.

No entanto, a sua dependência de interações à base de toques, a exigência de boa habi-
lidade espacial e de boa memorização inerentes a tais dispositivos, e a falta de indicações
táteis suficientes, faz com que este tipo de dispositivos seja visualmente exigente, aca-
bando assim por proporcionar uma experiência de interação extenuante para pessoas com
insuficiência visual. Isto é algo que se torna ainda mais evidente em cenários que ocor-
rem em contextos à base de movimento ou onde o uso de uma só mão é enfaticamente
necessário.

Mesmo que os leitores de ecrã atuais e outras tecnologias existentes já comuniquem
alguns avanços em relação a questões de acessibilidade direcionada para pessoas com
deficiência visual, ainda existem diversas interações que requerem soluções mais sofis-
ticadas de modo a tornarem-se mais acessı́veis, como por exemplo inserção de texto
ou navegação em menus. Uma das opções existentes bastante usada para inserir texto
é através do reconhecimento de voz. Contudo, esta modalidade nem sempre é a mais
apropriada podendo inclusive levar a resultados diferentes dos pretendidos, ou acaba por
levantar questões sociais e de privacidade.

Sendo a comunicação de extrema importância e intrı́nseca ao ser humano, uma tarefa,
em particular, para a qual é imperativo fornecer soluções que abordem as preocupações
relacionadas com acessibilidade circundantes é a inserção de texto.

Acreditamos que dispositivos tais como smartwatches podem oferecer inúmeras van-
tagens na abordagem dos temas mencionados. No entanto, ao fazermos uma revisão sobre
estudos realizados na área, foi possı́vel perceber que estes carecem de soluções focadas
em acessibilidade para a realização de diversas tarefas, sendo que a maioria das opções
existentes para dispositivos móveis com ecrãs táteis é desenhada para smartphones. A
falta de soluções apropriadas para esta modalidade de interação é um indı́cio da falta de
padronização existente para este tipo de dispositivo, e que acaba por contribuir para a falta
de inclusão de pessoas cegas aos mesmos.
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Sendo o Braille um padrão de leitura bem estabelecido para pessoas cegas e tendo
mostrado resultados positivos quando usado em trabalhos anteriores relacionados com
abordagens acessı́veis de inserção de texto, acreditamos que usá-lo como base para uma
solução de entrada de texto acessı́vel pode ajudar a solidificar um padrão para este tipo de
modalidade de interação. Acreditamos ainda que pode permitir os possı́veis utilizadores
tirarem proveito do seu conhecimento prévio de Braille, reduzindo dessa forma qualquer
carga cognitiva extra. Através da revisão do estado da arte realizada no inı́cio da tese, foi
nos possı́vel identificar quais as abordagens que permitiram obter os melhores resultados,
podendo assim destacar um artigo em particular [9]. A abordagem explorada neste ar-
tigo, denominada BrailleTouch, consiste numa abordagem à base de múltiplos toques em
simultâneo num teclado virtual tátil mapeado à semelhança de uma célula Braille. Atual-
mente, soluções semelhantes podem ser encontradas embutidas diretamente em smartpho-
nes fazendo parte das opções de acessibilidade. No entanto, embora soluções como esta
que requerem interações com múltiplos alvos em simultâneo baseadas em Braille tenham
alcançado bons resultados, devido ao espaço reduzido do ecrã tátil do smartwatch, uma
abordagem de toque não é a mais viável. Desta forma, decidimos que uma opção mais
exequı́vel passa por recorrer a uma solução à base de gestos.

Assim, foi possı́vel delinear o objetivo desta tese como sendo a exploração do conceito
de formas baseadas em Braille, e a validação da viabilidade do seu uso como base para
um método acessı́vel de entrada de texto para smartwatch baseado em gestos, direcionado
para pessoas com deficiência visual. Apesar do foco deste método de escrita ser em
smartwatches, esta abordagem foi pensada com o intuito de ser facilmente traduzı́vel para
outros formatos.

De forma a alcançar o nosso objetivo, começámos por definir o conceito de formas
baseadas em Braille, o qual denominámos de Braille Shapes, bem como conceitos adja-
centes identificados como relevantes. A definição alcançada descreve uma Braille Shape
como uma forma obtida realizando um único traço, passando por todos os pontos desta-
cados de uma determinada célula Braille sem passar mais do que uma vez por nenhum
desses pontos. Após conseguida esta definição, foi realizado um estudo com utilizadores
cegos e normovisuais para recolha de Braille Shapes e subsequente análise. Este primeiro
estudo foi concretizado com o intuito de obter uma melhor compreensão de como estas
eram assimiladas e concebidas pelos participantes, bem como avaliar a sua aceitação por
parte dos mesmos.

Sendo que o desenvolvimento de um sistema à base da conceção de formas livres
requer o reconhecimento das mesmas, as Braille Shapes recolhidas no primeiro estudo
foram ainda utilizadas para avaliação de diferentes mecanismos de reconhecimento. Me-
canismos estes selecionados com base na revisão de trabalhos anteriores realizados na
área. Explorámos duas abordagens em especı́fico, uma baseada na correspondência de
modelos e outra no reconhecimento de imagens. Para ambas, diferentes técnicas e reco-
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nhecedores foram ainda testados. Com base nesta análise, pudemos concluir que analo-
gamente ao trabalho revisto previamente, os mecanismos de reconhecimento testados não
produziram resultados aceitáveis para posterior validação em cenários do mundo real.

Obtendo feedback positivo por parte dos participantes relativamente à ideia a ser ex-
plorada e vendo uma rápida assimilação de conceitos, procedemos para uma validação
do uso de Braille Shapes num contexto de inserção de texto. Para tal, foi realizado um
segundo estudo com utilizadores para recolha de gestos, desta vez num contexto mais
real. Neste caso, tendo os mecanismos de reconhecimento testados produzido resultados
aquém do aceitável para tal validação, realizámos o que considerámos ser uma validação
preliminar em que nenhum tipo de reconhecimento foi utilizado aquando da recolha, so-
mente na análise posterior. Neste estudo foi pedido aos participantes que inserissem de-
terminadas frases utilizando para tal Braille Shapes, sendo lhes dadas ainda algumas fun-
cionalidades de edição de texto de forma a que inserissem espaços, apagassem caracteres,
ou confirmassem a inserção de frases quando terminassem.

Terminando este estudo e analisando os resultados obtidos, foi possı́vel observar um
forte interesse e uma grande adesão por parte dos participantes à abordagem explorada,
com os mesmos a indicar que a nossa solução abordava os seus aspetos de maior preocupação.
Apesar das métricas avaliadas relativas à eficiência e eficácia de um sistema usando esta
abordagem terem ficado aquém das espectativas, este mostrou proporcionar uma ex-
periência ágil e de fácil habituação, com os participantes a melhorarem os resultados
alcançados quanto mais tempo ficavam expostos ao método a ser estudado.

Estas conclusões permitem-nos acreditar no potencial de um método de escrita apli-
cando esta abordagem, e levam-nos a perceber que este não só é alcançável como é
também desejável, podendo trazer inúmeras vantagens para as pessoas cegas. Mesmo
que a abordagem explorada não seja utilizada para implementação de um método de es-
crita como inicialmente previsto, devido à sua flexibilidade de implementação é possı́vel
idealizar-mos diversas modalidades para a qual uma abordagem deste tipo possa ser apli-
cada, como por exemplo para atalhos de navegação. Em todo o caso, é do nosso entender
que este trabalho seja um contributo para uma área de investigação de grande interesse
que precisava de ser abordada.

Palavras-chave: Não-visual, entrada de texto, Braille, ecrã tátil, reconhecimento de
gestos
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Abstract

Mobile touchscreen devices like smartphones or smartwatches are a predominant part
of our lives. They have evolved, and so have their applications. Due to the constant
growth and advancements in technology, using such devices as a means to accomplish a
vast amount of tasks has become common practice.

Nonetheless, relying on touch-based interactions, requiring good spatial ability and
memorization inherent to mobile devices, and lacking sufficient tactile cues, makes these
devices visually demanding, thus providing a strenuous interaction modality for visu-
ally impaired people. In scenarios occurring in movement-based contexts or where one-
handed use is required, it is even more apparent.

We believe devices like smartwatches can provide numerous advantages when ad-
dressing such topics. However, they lack accessible solutions for several tasks, with most
of the existing ones for mobile touchscreen devices targeting smartphones. With commu-
nication being of the utmost importance and intrinsic to humankind, one task, in particu-
lar, for which it is imperative to provide solutions addressing its surrounding accessibility
concerns is text entry.

Since Braille is a reading standard for blind people and provided positive results in
prior work regarding accessible text entry approaches, we believe using it as the basis for
an accessible text entry solution can help solidify a standardization for this type of interac-
tion modality. It can also allow users to leverage previous knowledge, reducing possible
extra cognitive load. Yet, even though Braille-based chording solutions achieved good
results, due to the reduced space of the smartwatch’s touchscreen, a tapping approach is
not the most feasible. Hence, we found the best option to be a gesture-based solution.

Therefore, with this thesis, we explored and validated the concept and feasibility of
Braille-based shapes as the foundation for an accessible gesture-based smartwatch text
entry method for visually impaired people.

Keywords: Non-visual, text entry, Braille, touchscreen, gesture recognition
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Chapter 1

Introduction

Over the years, advancements in technology propelled the usage of mobile touchscreen
devices to perform mundane tasks. These devices, such as smartphones and smartwatches,
are already a huge and ever-growing part of our lives. They allow us to perform numerous
actions in different contexts, relying mostly on touch-based interactions. Nonetheless,
these devices still need adaptations to be viable in some scenarios and for specific users.

1.1 Motivation

Mobile devices applications have extended beyond basic communications, but although
they offer a wide variety of functionalities, interacting with them is usually visually de-
manding. This, alongside the lack of tactile cues, the need for good spatial ability and
good memorization, can be hindering factors for visually impaired people when trying to
get the most out of these devices.

Even though screen-readers and other assistive technologies already communicate ad-
vancements regarding accessibility for visually impaired people, there are still several
interactions that require more sophisticated solutions to become more accessible, such as
text entry or menu navigation. Since communication is such an essential aspect of our
lives, and text entry is one of the most common and visually demanding tasks, there is an
imperative need to provide solutions for this issue.

Blind people have the option to input text via speech recognition, but this modality
may not always be appropriate or raise privacy and social concerns [16]. There are already
multiple other approaches focused on improving text entry’s accessibility, whether built-
in on existing devices like Apple’s VoiceOver1, or others like the ones described in section
2, however, most of these usually target a specific type of devices – smartphones – and
are not suitable for scenarios requiring single-hand usage or movement-based contexts.

Even if the use of smartwatches facilitates interactions in those cases, the vast diversity
of existing text input methods for such devices, not only is normally not suited for visually

1https://www.apple.com/accessibility/vision/ (last visited 02/11/2021)
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Chapter 1. Introduction 2

impaired people but is also a representation of the lack of standardization for this type of
device [19].

With Braille being a reading standard for blind people, implementing a text entry
solution based on the Braille alphabet offers a solution to the standardization issue while
allowing blind users to leverage previous Braille knowledge. The usage of Braille in such
techniques [9, 33, 31, 16, 36] has also been shown to provide efficient results when used
in Braille chording approaches, but even so, with the reduced space of the smartwatch’s
touchscreen, an approach like that would not be the most feasible.

1.2 Goals

With this in mind, our end goal for this thesis is to explore the concept of Braille-based
shapes and their feasibility as the basis for a gesture-based smartwatch text entry method
for visually impaired people.

We aim to explore how people perceive and perform Braille Shapes, specifically visu-
ally impaired people, understanding their consistency and ease in doing so. We also aim
to subsequently validate its usage as the foundation for a text entry method by conceiving
and evaluating such a system. This solution would allow leveraging from all of Braille’s
advantages and could be used single-handed and “on the go” in a small screen device.

Even though the focus is on smaller-sized devices, we believe this approach will be
easily translatable to other form factors.

1.3 Contributions

To accomplish this, we were required to undergo several stages which, after carrying out
this work, are expected to provide contributions.

1. Our first contribution is a detailed literature review in section 2 regarding text en-
try methods for mobile devices, focusing on touchscreen devices and approaches
relying on Braille.

2. Our second contribution is the conceptualization of Braille-based shapes and how
people perceive and perform them. In sections 3.4 and 4.2, we provide an overview
of shapes performed by sighted and visually impaired people and a comparative
analysis between the shapes of the two groups. Our analysis also highlights some
nuances to account for in future developments of systems based on this concept.

3. Section 5 provides our third contribution, a comparative analysis of various recog-
nition approaches evaluated on the shapes collected from the participants of this
study. Here we describe the process of training and testing several recognition
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mechanisms to help find the most-suited solution required for future implementa-
tion of a gesture-based system using Braille Shapes.

4. All the shapes collected for this study compose our fourth contribution, a data set of
Braille Shapes performed by sighted and visually impaired people, which is unique
and intended to assist in future similar studies.

5. Lastly, we contribute with a prototype of a Braille-based text entry approach and its
subsequent preliminary validation to understand its efficiency, efficacy, and usabil-
ity characteristics.

1.4 Context

This project is developed in collaboration with LASIGE, a research unit at the Faculdade
de Ciências da Unicersidade de Lisboa, in the field of Computer Science and Engineering.
LASIGE is organised around six Research Lines of Excellence, namely Digital Accessi-
bility and Systems for the Ageing Population, Cyber-Physical Systems, Data and Sys-
tems Intelligence, Health and Biomedical Informatics, Reliable Software Systems, and
Resilient Distributed and Networked Systems.

Since one of the main areas of expertise of LASIGE is Digital Accessibility, the real-
ization of this project will benefit it, possibly adding to the foundation already existing.

Due to this project’s nature and specific requirements, it was also carried out in collab-
oration with Raquel e Martin Sain Foundation, a Private Institution of Social Solidarity.
This institution has the main purpose of carrying out a work of typhlological education
and occupation. More specifically, its objective is to conduct the professional training of
the blind, focusing on ensuring future paid work possibilities.

The author of this work started his master’s degree in Informatics Engineering, with an
emphasis in the field of Human-Computer Interactions as well as Mobile and Ubiquitous
Computing, which allowed him to acquire some of the necessary capacities to take on the
project in question.

1.5 Structure of the document

This document is organised as follows:

• Chapter 2 - Related Work: Provides an overview and discussion of prior work
related to the topic in question as well as the state of the art for text entry methods
on mobile devices.

• Chapter 3 – BrailleShapes: This chapter provides a background overview of the
Braille code and Braille literacy, as well as the impact they have on visually im-
paired people’s lives. It comprises the definition of a BrailleShape, a description of
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the text entry system envisioned, and the framing of certain concepts relevant for a
better understanding of this project. It also presents the auxiliary systems devised
for the purpose of this study.

• Chapter 4 - Exploring the Feasibility of BrailleShapes: In this chapter, the data
collection process is detailed alongside subsequent analysis, and are identified the
conclusions drawn from its results regarding understanding and performance of
BrailleShapes by the participants.

• Chapter 5 - Automatically Recognizing BrailleShapes: Provides an evaluation of
various recognition approaches tested on the gestures collected.

• Chapter 6 - Exploring BrailleShapes for a Text Entry Approach: This chapter
details the preliminary validation of a system using the approach in question. It de-
scribes the procedure as well as the results and conclusions obtained from a perfor-
mance evaluation. It also presents the participants opinions on how they perceived
and accepted this type of approach.

• Chapter 7 - Conclusion: Summarizes and analyzes the contributions of this work,
explaining any challenges found and providing directions for future endeavours.



Chapter 2

Related Work

In this chapter, is discussed prior work regarding 3 topics: non-visual text input on mobile
devices where we highlight Braille-based approaches, both visual and non-visual text
input on smartwatches, and shape and gesture recognition.

2.1 Non-visual text entry on mobile devices

Since the appearance of mobile devices, accessibility in that area has been an evolving
concern. Prior to the dominance of mobile touchscreen devices, solutions like NavTap
[12] had been developed to improve accessibility regarding text entry on mobile devices.
This approach allowed blind users to input text on a mobile device provided with a keypad,
by allowing them to navigate through the letters by tapping one of four keys (2, 4, 6 and 8)
before selecting the desired letter. The alphabet would be rearranged in a vowel-indexed
manner which would eliminate the need for memorization. Later on, with the emergence
of mobile touchscreen devices, such an approach was then translated to a touch-based
method, where instead of tapping keys, the users would perform directional gestures [11].
Although other systems [41] also used this type of multi-directional approach, Bonner
et al. went a step further and provided what they thought to be three key qualities an
eyes-free text entry system should have: a robust entry technique, a familiar layout, and
painless exploration [3].

With the arrival of Apple’s iPhone, interest in touchscreen devices increased and with
the release of the iPhone 3GS, VoiceOver12 was added to iOS. This accessibility feature is
a screen reader built into the iPhone, that guides the users by providing TTS output for ev-
ery on-screen item selected by sliding a finger over it. VoiceOver’s text entry component
works in the same way over a soft QWERTY-based keyboard and requires split-tapping
or double-tapping to enter a selected key. This type of QWERTY-based approach presents
the user with numerous visual targets, that can induce accuracy errors, especially for users

1https://www.apple.com/accessibility/vision/ (last visited 02/11/2021)
2https://en.wikipedia.org/wiki/VoiceOver (last visited 02/11/2021)
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not familiar with computer keyboards [3].
To avoid the need for multiple operation processes and precise location interactions,

Vidal et al. presented a system based on handwriting recognition, named oPhone, that al-
lows the users to compose a dialling number without visual feedback, by simply drawing
a number from 0 to 9 one at a time. This system is based on coupling gesture recogni-
tion and vocal synthesis [40]. Although oPhone only allowed to input digits, Tinwala et
al. provided another handwriting-based approach that combined the single-stroke based
alphabet from Graffiti [22] shown in figure 2.1 with audio and vibrotactile feedback, thus
allowing the users to input text, a character at a time, with just one finger. The audio and
vibrotactile feedback provided were at character-level, and the system required a space
(double tap) to enter a word [35].

Figure 2.1: The Graffiti alphabet. Image taken from [35].

Physical gestures are usually performed alongside verbal expression and help convey
communicative information. Studies have shown that blind people perform gestures while
speaking with other blind people, and since smartphones are equipped with sophisticated
motion sensors, Dim et al. focused their attention on the usage of motion gestures for
blind people’s interaction with such devices. They show [6] that motion gestures are not
only usable as mobile interactions for blind people but are also well received for certain
types of interactions being capable of producing acceptable results.

2.1.1 Braille-based approaches

Since the Braille writing system, developed specifically for blind people communication,
is common knowledge for many blind users and allows for reasonably efficient inputting,
researchers have also explored Braille-based approaches for mobile touchscreen devices
text entry [31, 28, 9, 33, 25, 24, 26, 16]. Oliveira et al. presented BrailleType [28],
a single-touch text entry method, that consists of a single screen embodying a Braille
cell, composed of 6 targets representing the dots in the Braille matrix. It allowed blind
users to input Braille chords, by tapping targets one at a time – not requiring a specific
order – to select the corresponding dots of the desired braille chord. To mark a dot in
the Braille cell, the user must press the desired target and wait for audible confirmation.
Touching a dot already marked would remove it and provide audio feedback. When all the
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necessary dots for a Braille character are selected, a double-tap in any part of the screen
is required to accept it. A space would be made by entering an empty Braille cell, and a
swipe left gesture would clear the Braille cell if any dots were marked, or delete the last
entered character if the matrix was empty. BrailleTouch [9] consists of a similar approach
although it includes an extra soft button for the spacebar and allows for multi-touch input
just like a traditional Braille typewriter. To help the users with finger placement, the
system also comprised of a case for the device used as shown in figure 2.2.

(a) BrailleTouch’s input surface facing away
from the user (b) BrailleTouch’s back facing the user

Figure 2.2: BrailleTouch on a smartphone. Images taken from [9].

In their study [33], Siqueira et al. evaluated the performance of BrailleTouch for three
groups of participants A, B and C, with different levels of experience, ranging from expert
users to participants with poor performance respectively. Participants from groups A and
B achieved an average of 23.2 WPM (words per minute) and 21 WPM respectively, while
participants from group C only achieved speeds of 9.4 WPM. Even though the majority
of the groups showed good results, only group A exhibited error rates (14.5%) suitable
enough for real-world use. Although multi-touch approaches are faster than single-touch
ones, they are also more error-prone [25, 28]. Nicolau et al. try to mitigate this issue by
providing an approach for a multi-touch Braille input correction system that uses chords
as an atomic unit of information instead of characters, meaning it looks at the chord
itself and uses its information to correct its character counterpart [25]. This chord-based
spellchecker was shown to be consistently more accurate at word-level correction than
Android’s (AOSP) spellchecker, which suggested that leveraging chord information plays
a major effect on correction accuracy. This study also showed that combined character-
word-level correction was ineffective.

In the same way that audio isn’t always the most suitable modality for text input, it
may also not always be the most suitable for output. Nicolau et al. presented an approach
where a Braille-based vibrotactile reading device is used as an output/reading method
[24]. This method enables blind users to read textual information, by leveraging the
users’ Braille knowledge, since it draws inspiration from the standard writing system of
the Perkins Brailler. The device consists of six vibrotactile actuators, that are used to
code a Braille cell and communicate single characters, through simultaneous vibrotactile
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feedback from such actuators. The actuators are placed in the index, middle and ring
fingers of both hands, and each actuator represents one dot of the Braille cell, or character.
Overall, results showed that recognition rates are usually high with the right stimuli and
interval duration, even though some characters were more troublesome to identify. This
indicates potential for the use of vibrotactile feedback on mobile devices.

Understanding the potential of vibrotactile feedback and taking advantage of braille
multi-touch approaches’ high input speeds [9], Nicolau et al. presented Holibraille [26],
a system that enables Braille input and output on mobile devices. The input method
used is based on BrailleTouch’s approach, hence, the major contribution being the output
mechanism. It consists of six vibration motors on the top and bottom of the device (on a
custom-made case), with each actuator representing a dot of the braille cell. This allows
for localized feedback regarding the outputted information. Although this system was
only evaluated on character discrimination and had some limitations regarding the im-
plementation of the physical actuators, it showed improvements in recognition speed in
comparison to other mobile Braille feedback solutions. It also suggested that vibrotactile
feedback should be carefully designed in order to mitigate different types of errors, either
omissions or insertions, according to the fingers that are being actuated.

Even with solutions for input error correction [25], some typing errors still remain and
need to be amended by the users. Trindade et al. presented an approach that allows Braille
text entry and edit through the use of both physical and gestural interactions on a mobile
device [36]. To do so, they developed a system consisting of a physical Braille keyboard
built-in on a custom case as well as an interface that provides editing controls - caret
movement, text selection and clipboard operations - via touchscreen gesture interaction.
The keyboard draws inspiration from the traditional Braille writing system that contains
seven keys, although it has extra buttons to enter different input operations and modes
such as edit mode, backspace, and space. The addition of these buttons also allows for the
device to be used both in portrait and landscape mode. Although this system didn’t show
significant improvements regarding input speed in comparison to another touch-based
system, it showed to be more accurate and to allow better error correction.

Other studies [40, 35] have already provided gesture-based solutions for blind text
input, however, these approaches have either limitations or require the learning of a new
alphabet. Li et al. presented BrailleSketch [16], an approach to a gesture-based text
input method for mobile devices that leverages previous Braille knowledge. This method
allows for users to input a letter by sketching a gesture, or more specifically, by drawing
a path that passes by the corresponding dots of the Braille code as seen in figure 2.3.
The gesture can be performed from anywhere on the screen and the Braille code can be
drawn in many ways. This solution utilizing an auto-correction method produced better
results regarding input speed than others mentioned in the study except for BrailleTouch
in certain conditions. It achieved average input speeds of 14.53 WPM without signs of
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plateauing, and an average error rate of 11%. It also proved that word-level feedback
instead of character level can be advantageous, and all this combined, makes the system
potentially better than most tapping and typing methods, for visually impaired users with
Braille knowledge.

Figure 2.3: BrailleS-
ketch on a smart-
phone. Images taken
from [16].

All these different existing solutions for mobile text entry ac-
cessibility not only introduce more demanding systems from a
skillset point of view but also disregard the differences amongst
blind people [27]. Oliveira et al. propose to identify and quan-
tify individual characteristics that make a difference in a blind
user’s experience when using a mobile touchscreen device, more
specifically in scenarios with mobile touch-based text entry. In
their study [27], they conclude that age and age of blindness on-
set have a great impact on overall abilities and that tactile sen-
sibility, spatial ability and verbal IQ affect the ability of blind
users to perform touch-based interactions. They also mention
that different system designs suit different people better and that
this should be taken into consideration in order to provide more
inclusive solutions.

2.2 Text entry on smartwatches

Smartwatches have been emerging and are becoming a bigger
presence in consumers’ lives. They allow for quicker and more
practical interactions and can ease scenarios where only one hand is available. Since
blind people are usually guided with the aid of a cane or a guide dog, or can simply
be carrying something with one hand making it unavailable, smartwatches are easily a
powerful tool for people with visual disabilities. However, this means accessibility-related
issues present in other mobile devices have emerged in this type of device as well. One
task, in particular, that is not fully covered yet is text entry [19].

Yi et al. proposed a non-touch bezel-based rotational approach for text entry on smart-
watches [42]. To do so, they presented a system comprised of multiple cursors on a
circular keyboard, dynamically positioned to optimize rotational distance. The system
allowed the users to enter text by selecting letters with the nearby cursors positioned, by
the rotation of the smartwatch bezel. Continuous gesture recognition was also used as
an approach for smartwatch text entry. Nascimento et al. presented a gesture-based sys-
tem, that allowed the input of letters with at most two interactions, without requiring the
full drawing of the letter [23]. The system relies on an incremental gesture recognition
algorithm developed in another study, as well as on a Naı̈ve Bayes classifier for gesture
classification.
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Luna et al. show [19] that there is a large range and diversity of text entry methods for
smartwatches, where it is possible to see substantial potential as well as some limitations.
However, this diversity also indicates the lack of standardization in this area. Not only
that but the solutions identified don’t necessarily target text entry accessibility concerns.

2.2.1 Non-visual text entry

One concern in particular - the effect of different target sizes on non-visual text entry –
was addressed by Rodrigues et al. [29]. They showed that the participants’ input speed,
landing accuracy as well as movement/exploration efficiency decreased overall as target
size also decreased, however, results [29] suggest that even though larger targets presented
better text entry results than smaller ones, there is an upper limit to larger sized targets,
which was understood to be 10mm.

In order to address the lack of smartwatch text entry accessible methods, Luna et al.
provided an evaluation for five different Braille input methods for smartwatches, as well
as some relevant information on the topic [18]. To do so, they developed five differ-
ent prototypes with different input approaches each - Connect, Touch, Swipe, Serial and
Perkins - as well as with three extra features for complementing interactions: vibration
patterns per dot, multi-frequency dual-tone feedback and screen rotation. From his study,
it was concluded that a connect the dots approach, a swipe gestures approach, and a touch
approach were all considered acceptable for future evaluation, with the first being the pre-
ferred method. Dual-tone feedback and screen rotation were also considered to be useful
for the system’s usage.

Figure 2.4: Prototype screens of some of the methods developed in use. Image taken from
[18].

With approaches narrowed down to three (i.e., Connect, Swipe, and Touch) following
their pilot study, Luna et al. proceeded their investigation by evaluating said approaches
[20]. Their study shows the Connect approach providing the best results out of the three
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averaging 10.89 WPM, followed by the Touch approach (mean=7.51 WPM), and then the
Swipe approach (mean=5.78 WPM).

Since smartwatches support a collection of motion gestures, an interaction modality
that can be appealing for visually impaired people, Feiz et al. assessed [8] how acces-
sible wrist gestures are for people with visual impairments’ interactions with wearable
devices. The study showed that wrist gestures still have some barriers to overcome and
provided principles for more accessible wrist gestures. It also showed that although users
performed android provided gestures more accurately, they preferred and found custom
gestures to be easier.

2.3 Gesture Recognition

One barrier that still stands in the way when designing and developing accessible touch-
screen interfaces, is the lack of understanding regarding the way blind people use such
technologies. A study [14] by Kane et al. suggests that blind people have different ges-
ture preferences from sighted people, preferring gestures coming from corners or edges,
and are more likely to perform multi-touch gestures. It also shows that blind users per-
form larger gestures, more slowly and with less accuracy, less form closure, and less line
steadiness. With this in mind, it was possible to define some guidelines for more accessi-
ble touchscreen interfaces [14].

Figure 2.5: Lines drawn by a blind and a sighted participant respectively. Image taken
from [14].

Understanding gesture preference and performance is a step in the right direction, but
there is still the need to find more and better ways to recognize such gestures. There
have been considered [4] two approaches for creating a multi-touch gesture recognizer:
formally defining multi-touch gestures, and then trying to identify them based on their
formal model; or by example where learning techniques try to identify a certain gesture
from a set of other possible gestures. Both have their own advantages and disadvantages,
and the most promising results are understood to come from mixed solutions.
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Kristensson et al. presented a technique that allows visualization as “feedback” and
continuous recognition of pen strokes and touchscreen gestures [15]. This technique uti-
lizes an incremental recognition algorithm, that estimates the probabilities of a user’s
currently partial or complete stroke within a set of template classes. From their study, it
was understood that recognizers should use Turning Angle with an end-point bias instead
of the Euclidean Distance for the recognition algorithm implementation, to achieve better
accuracy performance.

Amongst some of the recognizers previously mentioned [4], the “$-family” is a popu-
lar group of recognizers based on the Nearest-Neighbour approach. Vatavu et al. proposed
an updated algorithmic design [37] of the one that at the time provided the best results,
$P [38]. In this design update, the proposed algorithm $P+ consisted of a more flexible
point matching strategy that did not rely on stroke’s chronological order. It ended up pro-
viding a statistically significant difference in recognition performance compared to any
other of the recognizers evaluated, producing the point matching seen in figure 2.6. Al-
though the $P is considered to be the most flexible of the “$-family”, it’s not suitable even
with optimizations for low-resource devices. With this in mind, Vatavu et al. presented
$Q, “a super-quick, articulation-invariant point-cloud stroke-gesture recognizer for mo-
bile, wearable, and embedded devices with low computing resources” [39]. $Q ended
up unexpectedly outperforming $P in every parameter but accomplished even greater im-
provement in classification time. It also achieved a reduction of 97% CPU time using less
than 3% of the computations of $P.

(a) Point matchings by $P (b) Point matchings by $P+

Figure 2.6: Different point matchings by $P and $P+, for a ”star” gesture produced by a
participant with low vision. Images taken from [37].

This type of recognizer showed great recognition results, yet, most present inherent
limitations regarding the types of gestures they can discriminate. For example, some of
the ”$-family” recognizers require explicitly defined templates for each gesture articula-



Chapter 2. Related Work 13

tion, while others ignore such aspects. Both approaches have their advantages and disad-
vantages however, knowing more about how users perform their gestures would enable
the design of a recognizer that could capitalize on such characteristics. This knowledge
could also be applied to the design of gesture sets to minimize existing conflicts. With
this in mind, Anthony et al. defined a methodology based on a set of articulation fea-
tures to measure the consistency with which people produce gestures. In their study, they
also measured the consistency of 4 gesture data sets and concluded that people are more
internally consistent than between themselves. These findings had also been made in
prior work [34, 5] that defined people as highly individual and internally more consistent
regarding handwriting recognition and multi-touch gestures. With this, they established
some guidelines for designing gesture sets and implemented a toolkit - GECKo - to help
measure gesture consistency.

Aslam et al. presented a gesture recognition algorithm optimization using the Crow
Search Algorithm, capable of predicting Braille coded gesture patterns. It consisted of an
Artificial Neural Network with structure optimization using the Crow Search Algorithm,
that could predict the gesture coordinates in four directions (left, right, top, bottom). The
system showed a maximum prediction accuracy range for top, bottom, left and right di-
rections to be 99.9%, 99.5%, 95.5% and 94.23% respectively. It also showed that the
proposed NN optimization outperformed other existing techniques in both accuracy, sen-
sitivity (98.5%), and specificity (99.3%) [2].

Hidden Markovian Models (HMM) had already been applied to recognition problems
such as speech recognition and gesture and handwriting recognition, however, this model
class presents some limitations. It does not include explicit information regarding time
and duration, and only Markovian systems can be modelled exactly. Dittmar et al. tried
to mitigate these issues and tried to prove that a system based on Hidden non-Markovian
Models could recognize gestures that only differed in execution speed. To do so, they de-
veloped a touch gesture recognition system that uses Conversive Hidden non-Markovian
Models (CHnMM). In his approach, a single model only represents a single gesture. In a
first study, the devised CHnMM system had an overall precision of 95.5% and a recall of
88.3%, while in a second experiment it even reached “perfect precision”. Those results
combined with a processing time between 31ms and 47ms made the system feasible for
real-time scenarios [7].

2.3.1 Convolutional Neural Networks

Deep learning is used in numerous areas thanks to its diverse range of applications, and it
has been improving thanks to the increase of Artificial Neural Networks (ANN). One big
propeller of advances in deep learning is Convolutional Neural Networks (CNN), systems
that combine ANN with current deep learning strategies. CNNs are used in deep learning
for many areas [30, 17, 13] such as analysis of visual imagery, pattern recognition, im-
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age classification and more, and with tools like TensorFlow Lite3 – an open-source deep
learning framework for on-device inference – they have been made more efficient for low
resource devices.

Siddique et al. presented an evaluation of a Convolutional Neural Network’s accuracy
variation, for handwritten digits’ classification, developed using TensorFlow [30]. To do
so, they designed a CNN with one input layer, one output layer, and five hidden layers.
These five hidden layers consisted of two convolutional layers, two pooling layers, and a
fully connected layer. The study results of the training and validation accuracy obtained
when altering the combination of the hidden layers, showed that the best arrangement of
hidden layers consists of each convolutional layer being followed by a pooling layer, with
a dropout regularization method followed by a flatten layer and another dropout, before
the fully connected layer. Such arrangement provided a maximum accuracy of 99.21%
for 15 epochs, and when compared to other approaches, it also provided better results.

Huang et al. utilized a different grouping of hidden layers for a CNN-based recog-
nition model for Braille music notation. He presented [13] a CNN consisting of 3 con-
volutional layers, 2 pooling layers and 2 full connection layers, as well as a training and
testing algorithm for the recognition model. Although it provided better results than other
approaches it was compared to, it achieved worse accuracy when compared to them [30].
Li et al. also used a CNN and TensorFlow for the implementation of a handwriting recog-
nition model. They presented a personal Neural Network Model for Chinese handwritten
characters’ recognition [17]. One particular aspect of this approach is that it allows the
user to train and adapt their own model according to their own handwriting characteristics
and writing style. This CNN-based system showed a recognition accuracy of 98.137%,
with 44 errors, in a total of 2362 test sets with not only Chinese characters, but also
English letters, punctuation marks and Arabic numerals.

2.4 Discussion

Table 2.1 summarizes the studies previously mentioned regarding non-visual text entry
methods for smartphones as well as the text entry methods for smartwatches.

With all the aforementioned information and by analysing table 2.1, we can under-
stand that there is already a diverse variety of non-visual text entry approaches for smart-
phones. Even though most of the methods analysed were designed for a specific type
of device, there is still some variety regarding the approaches used, whether gesture-,
navigation-, or touch-based. Amongst those, the ones that rely on the Braille writing sys-
tem take advantage of previous Braille knowledge from the user, hence easing some of the
cognitive load. Out of those, it is clear to see that the ones allowing multi-touch provide
faster text entry results, however, those are also more susceptible to accuracy errors.

3https://www.tensorflow.org/lite (last visited 30/11/2021)
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Such issue can be mitigated by the use of correction systems [25], some form of
physical contraption to aid with spatial awareness [9], and by providing good feedback
mechanisms. In cases where word-level audio feedback can be used, it has been proved to
be more beneficial than character-level feedback increasing the users’ typing speed [16].
Vibrotactile feedback showed great potential when applying the right stimuli, although
findings suggested it should be carefully implemented when used.

These approaches can easily be translated to larger screen devices like tablets since the
change from a smaller screen to a larger one doesn’t necessarily constrain the previously
implemented systems’ interfaces. However, the same is not applicable for smaller sized
devices. As seen, the amount of text entry methods specifically designed for smartwatches
is still scarce, and the existing methods are not exactly accessibility oriented. In order to
fill this gap, and since smartwatches smaller screen size makes it difficult to implement
complex touch-based approaches, gesture-based methods would be an appropriate choice.

This decision can also be supported by the now better understanding of blind people’s
gestures [14], and the fact that recognizers have been evolving and more solutions for low
resource devices [39] are being developed. Most of the recognizers mentioned work by
analysing gesture data but with technologies like TensorFlow Lite also evolving, using
Convolutional Neural Networks for image recognition is being made more efficient for
low resource devices like smartwatches. This variety in recognizers provides multiple
options for a gesture-based system’s implementation.

Having in mind some of the users’ individual characteristics mentioned to affect their
touch-based interactions’ performance [27], all this information could be of good use to
establish some guidelines for the design and development of non-visual text entry methods
for smartphones. Nevertheless, the majority of the studies mentioned were conducted
in controlled environments, which leaves open questions regarding the usability of such
approaches in real-life scenarios.

So, by analysing this, there is a visible area to be explored - non-visual text entry
methods for smartwatches – as well as guidelines to tackle this effort in the most effective
way.
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Table 2.1: Overview of text entry methods for mobile devices and respective studies

Method Devices
Tested IT TT WPM ER (%) Feedback Env.

NavTap [12] SP K S 1.25 10 A C-level C, R-L

NavTouch
[11]

SP T S 1.79 4 A C-level C

No-look
Notes [3]

SP N S / M 1.32 11 A C/W-level C

Yfantidis et
al. [41]

CRT N S 7.00 - A/V C-level C

oPhone [40] SP G S - - A/V C-level C

Tinwala et
al. [35]

SP G S 7.60 0.4 A/V C-level C

COMPASS
[42]

SW B Non 9.30 < 0.5 T C

Nascimento
et al. [23]

SW G / T S - < 6.86 - C

Braille-based

BrailleType
[28]

SP T S 1.49 8.91 A D-level C

BrailleTouch
[9]

SP T M 17.86 28.60 A C-level C

Hybrid-
Brailler [36]

SP T M 6.10 10.1 A C/W-level C

BrailleSketch
[16]

SP G S 14.53 11 A D/W-level C

Luna et al.
[20] (Min)

SW T S / M 5.78 9.53 A/V D-level C

Luna et al.
[20] (Max)

SW T S / M 10.89 18.75 A/V D-level C

Columns observations: IT - Input Type, TT - Touch Type, Env. - Environment
Devices Tested observations: SP - Smartphone, SW - Smartwatch, CRT - CRT Monitor
TT observations: S - Single Touch, M - Multi Touch
IT observations: G - Gesture-based, N - Navigation-based, B - Bezel-based, T - Touch-based, K

- Key-based
Feedback observations: A - Audio, V - Vibrotactile, T - Tactile, D - Dot, C - Character, W -

Word
Env. observations: C - Controlled, R-L - Real-Life



Chapter 3

BrailleShapes

The main goal of this work is to assess the validity and usability of Braille-based shapes
as the basis for a gesture-based text entry approach for smartwatches. This comes as an
attempt to mitigate some of the problems identified in section 1.1, highlighting the need
for an agile and accessible text entry method. To do so, we defined the concept of a Braille
Shape, and devised and validated a system based on such concept.

We opted to use shapes composed of single strokes so that our approach does not
require precise multi-touch interactions. Doing so makes it a more appropriate option for
smaller-sized devices like smartwatches, amongst other benefits later mentioned, which
provides a more agile and ”on the go” approach.

With Braille providing positive results as the foundation for several accessible text
entry methods, the shapes are also based on the Braille alphabet. It is a standard for
visually impaired people, meaning its prior knowledge that they can leverage, helping
reduce any cognitive load required. It is also a way to establish a standard for this type of
interaction.

Before describing and discussing the process and results of doing so, it is helpful to
establish some key concepts. For starters, let us expose a definition of Braille.

3.1 Braille

Braille1 is a tactile writing and reading system that is used by visually impaired people.
It was developed in 1824 by Louis Braille2 who became blind at age three. This tactile
code allows the reading and writing of many different languages as well as musical and
mathematical notations. Additionally to text, Braille also allows to create graphs with
different types of lines and illustrations.

Braille encodes up to 64 characters, by a combination of dots in a 3x2 matrix called
Braille cell. A single cell can represent alphabet letters, numbers, punctuation marks,

1https://www.britannica.com/topic/Braille-writing-system#ref281452 (last visited 10/11/2021)
2https://www.biography.com/scholar/louis-braille (last visited 29/08/2022)
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mathematical symbols, musical notes, or even a whole word. Its mapping differs from
language to language and it may even vary within the same language. For example in
the case of English Braille there are 3 levels: contracted braille, uncontracted braille and
grade 3 braille.

It is common knowledge for many blind users and paramount to their daily lives.

Figure 3.1: English Braille alphabet and cell labelling. Images taken from the internet56

3.2 Braille Literacy

It has been shown3 that Braille reading proficiency is a vital tool that, if learned early
on, could potentiate visually impaired people to do as well as, if not better than, sighted
people in numerous areas. It can increase their exposure to more and better opportunities,
thus enabling a better quality of life. For example, regarding professional life, of the
estimated4 85 thousand blind adults in the United States in 2018, 90 per cent deemed
Braille literate were employed.

Moreover, knowing Braille allows blind people to indulge in certain activities like
reading physical format books while providing them access to fundamental aspects of any
written language as punctuation and spelling, which are less accessible via audio. These
activities can go beyond leisure, also aiding in various tasks. Reading a book using Braille
instead of listening to it can be helpful when there is the need to consult something mid-

3https://en.wikipedia.org/wiki/Braille literacy (last visited 10/11/2021)
4https://www.afb.org/blindness-and-low-vision (last visited 10/11/2021)
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speech. For instance, a school teacher can consult a book while explaining it to students.

3.3 Spatial Ability

Spatial ability is another key concept and is referred to as one’s capability for reasoning,
understanding and remembering the spatial relations amongst objects or space5. It’s a
combination of multiple sub-skills interrelated amongst each other, vital to everyday life.

It’s of great importance for numerous tasks and a key factor for success in various
fields of study, however, with the always emerging new technologies and consequent
increase of spatially demanding tasks, it has become even more important.

3.4 Braille Shapes

Having depicted some fundamental concepts, we now expose how they relate to the idea
of a gesture-based text entry approach by explaining what it means to have a gesture-
based system that takes advantage of Braille. For this, we also need to understand how to
conceive gestures translated from characters encoded by dots.

We consider a Braille-based gesture-based text entry system as a system in which
users can input a character by drawing its corresponding Braille cell using what we call
a Braille Shape. We describe a Braille Shape as the shape obtained from performing a
single stroke, passing over all the raised dots of a given Braille cell without going more
than once over any of those dots.

By exploring this type of approach, we address three main aspects already mentioned
and contextualized in chapter 2:

• The need for good spatial ability - described in 3.3 - required to perform multi-touch
interactions or ones that require precise locations

• The cognitive load of learning a new alphabet

• The need for a new standard for accessible text entry in small devices

We address the need for good spatial ability and the complexity of performing multi-
touch and precise location interactions by restraining the shape to be performed with a
single stroke. This way, a system using this approach does not require its users to lift
their fingers while performing the gesture, which could cause them to lose track of the
touch space of the device. That is even more important for small-screen devices like a
smartwatch and beneficial for usage in nomadic contexts or when single-handed use is

5https://www.tbase.com/the-braille-alphabet/
6https://commons.wikimedia.org/wiki/File Braille cell.svg
5https://www.yumpu.com/s/s4uQeSqaWoli2GvW (last visited 08/08/2022)
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required. It is also advantageous since a system with this approach does not need any
type of confirmation after each shape drawn. This decision is also supported by previous
studies [1, 34, 5] that identify single-stroke gestures as more consistent and subsequently
an adequate choice for recognition purposes.

Basing our approach on the Braille system helps reduce the learning and memorization
required to interact with any system that uses it. This way, we address the cognitive load
of learning a new alphabet since users with any prior Braille knowledge can leverage it to
devise the shapes performed.

Since Braille has proven to be advantageous by providing good results in other domain-
related approaches, being of common knowledge for blind people, and being versatile in
its applications in various domains, it can be referred to as a good standard for accessible
text entry in small devices hence addressing that topic as well.

3.4.1 Ambiguity

While using this approach, even though it is possible to represent each character in the
alphabet using a unique shape, we acknowledge the possibility of ambiguous represen-
tations for several letters. For example, inputting the letters “L” and “K” could be done
the same way, producing the same outcome, a vertical line, as seen in figure 3.2a. This
ambiguity increases the difficulty in the recognition tasks making this approach more
challenging to implement for real-life applications. It must be noted that throughout this
study we only considered the 26 letters of the alphabet, meaning no ambiguity resulting
from numbers and punctuation was accounted for.

(a) Same Braille Shapes representation
of two different characters

(b) Different Braille Shapes representation
for the same character

Figure 3.2: Examples of ambiguous character representations using Braille Shapes

One way our approach attempts to mitigate this issue while also decreasing its com-
plexity is by requiring that the shape composed must not go over the same cell dots more
than once. This way, the shapes tend to be more ”open”, and the number of shape pos-
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sibilities for each character diminishes. However, there is still a significant amount of
possible variations leading to ambiguity in systems using this approach.

For that reason, we analysed different ways a system with this approach can further
attempt to mitigate those scenarios:

1. Using a Braille-aware spellchecker to help with character-level and/or word-level
correction

2. Providing the user with a choice between multiple options per shape drawn

3. Using a user-dependent recognizer

4. Using a recognizer that takes into account the size and position of the gestures
performed

This analysis is presented in the following chapters.

3.5 BrailleShapes System

Having established the concept of a Braille Shape and bearing in mind the information
regarding prior work, we have conceived a system using our approach. This section en-
compasses a rundown of the features envisioned for that system as well as the reasoning
behind such design decisions and how the system helps address topics highlighted in
chapter 2, further extending the beneficial impact of using Braille Shapes.

We describe our system as an ambiguous keyboard where users insert text by inputting
Braille Shapes and where words are suggested based on a Braille-aware spellchecker.
Even though the spellchecker reduces the need to amend each wrongly recognized char-
acter, the system still provides the user with multiple character options per shape drawn.
The strokes composing the shapes can be started anywhere on the screen without specific
orientation, as long as they are entirely within screen bounds. Our approach relies on a
lightweight recognizer capable of real-time recognition on low-resource devices. It re-
sorts to the Android TextToSpeech engine to provide audio feedback, and it also provides
haptic feedback when needed.

The system is focused on smaller-sized touchscreen devices like smartwatches to help
mitigate the lack of accessible text entry methods for those devices. Such a decision is
supported by Braille Shapes’ effort to reduce the need for good spatial ability and multi-
touch and precise location interactions, which could prove to be an even bigger challenge
in such a form factor. The system also reinforces this effort by allowing gestures to be
performed anywhere on the touch surface without specific orientation.

This implementation does not require any interface components other than the touch
surface. Hence, it does not present significant difficulties in being converted to larger
form factors, also helping support the decision of focusing on smaller-sized devices. Any
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information of the text being composed is also absent, thus addressing one particular
concern depicted in section 2, the privacy and social concerns raised by other approaches
like ones requiring voice input.

By using a Braille-aware spellchecker and providing options at a character level, the
system tackles the existence of ambiguity in character representation, resorting to the
ways mentioned in points 1 and 2 of section 3.4.1. However, providing character options
is thought of as an optional togglable feature since the aim is to focus on word-level feed-
back, due to conclusions drawn from prior work [16] that mentions word-level feedback
to provide better results than at a character level.

To help with that matter, audio feedback is also defaulted to word-level, with the op-
tion to have character-level feedback only when using the character options feature. By
default, the system reproduces distinct sounds for any wrongly performed action (i.e., un-
recognized gesture, a gesture performed out of bounds) and speaks the recognized and
corrected word after confirmation, with the option to reproduce every character recog-
nized. Since the system focuses on word-level feedback and correction, it also defaults
the delete option to be applied to the entire word unless the character options mode is
enabled. However, in a situation where a user knowingly wrongfully performs a gesture,
the system also allows character-level deletion with a different interaction mechanism.

Based on already existing approaches and the information gathered from the data
collection study presented in section 4.2, we decided on a possible set of actions to interact
with the system. Some of them were already mentioned but are further detailed and
contextualized in table 3.1

3.6 Auxiliary Systems

Throughout this work, two user studies took place. These studies are in more detail in
sections 4 and 6. Nonetheless, each required a set of custom applications for a specific
purpose, each specified in this section.

3.6.1 Collecting BrailleShapes

Our goal with the first study was to collect Braille Shapes performed on a smartwatch
from sighted and visually impaired people. For that, we developed an inputting applica-
tion and a control application.

With the desired mean of participant interaction being a smartwatch device, we devel-
oped the inputting application for that specific form factor. When conceiving it, we did
so that participants only input requested shapes and receive different types of feedback.
We developed the control application to manage the state of the inputting application
and visualize data and information during the procedure. It was conceived for a larger
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Table 3.1: System’s interaction possibilities

Action Description Outcome Feedback
Type Feedback

Input
Character

Drawing Braille
Shapes on the touch
surface - only one

shape at a time

Recognized
character added
to current word

Haptic Short vibration

Double-tap
(1)

Performing a
double-tap a first

time - after
inputting a character

Word
confirmation.

”Space” added
after current

word

Haptic &
Audio

Pattern
vibration, word

spoken

Double-tap
(2)

Performing a
double-tap a second

time - after
performing a
double-tap

Sentence
confirmation. ”.”

added after
current word

Haptic &
Audio

Pattern
vibration,
sentence
spoken

Input Shape
(”Circle”)

Drawing a ”Circle”
on the touch surface

Last entered
word deleted

Haptic &
Audio

Short vibration,
the now current

last word is
spoken

Long-press
Performing a

long-press

”Scroll” through
word suggestions
- select word on

release

Haptic &
Audio

Pattern
vibration,
suggested

words spoken

Two fingers
downwards

slide

Performing a
downwards slide w/

2 fingers

Last entered
word provided

via text to speech
Audio Word spoken

(2 x) Two
fingers

downwards
slide

Performing 2
downwards slides

w/ 2 fingers
sequentially

Last entered
sentence

provided via text
to speech

Audio
Sentence
spoken

Error

Wrongly performed
action - i.e.,

unrecognized
gesture, a gesture
performed out of

bounds

Audio feedback
provided

Audio

”No” and a
buzzer like

sound provided
via text to

speech
respectively
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and more powerful device (e.g., smartphone) to provide more flexibility and performance
when interacting with it.

The inputting application consists of a single blank screen with two possible states
managed by the control application - blocked and unblocked - intended to prevent un-
wanted interactions with the system. When in its unblocked state, it listens for touch
events. If any is detected, it saves information about the event until it stops. Oppositely,
no interaction data is recorded when in a blocked state. In both states, it allows different
types of feedback- i.e., audio and vibrotactile - when requested by the control application.
According to the action performed or being performed, the vibrations produced can be
of different frequencies, duration, and intensities. The audio reproduced can be a simple
beep-like sound or an actual character or word, processed using the ToneGenerator class
or Android’s TextToSpeech Engine, depending on which it is. By request of the control
application, the state of the inputting one can be in training or collecting mode. The dif-
ference between the two is that the training mode provides continuous audio feedback
during a touch event, meaning that while a participant touches the screen, a beep sound
gets reproduced. We implemented this to help participants get used to the approach and
the device.

(a) Initial screen. (b) Control screen.

Figure 3.3: Data collection study control (smartphone / host) application’s interface in
different stages of the process.

Contrarily, the control application is more complex due to its interactions’ require-
ments and the space available in its designated form factor. It allows the selection of
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which shape to request from the participant and subsequently acceptance of the gesture
produced, and controlling the state and functioning of the inputting application through-
out. Besides managing the procedure, it also processes and stores data.

Its interface consists of two screens, as seen in figure 3.3, an initial screen to set up
the procedure for the participant and stage in question and a second one to control and
perform the actual procedure. Setting things up is done by inputting participant data
(i.e., participant ID) and procedure settings (i.e., the number of iterations and the state
of the procedure). For managing the procedure there is a visualization area (the top area
of the screen) and one for interaction purposes (the bottom area of the screen). The
visualization area shows the character requested and the corresponding braille cell, and the
gestures being performed in real-time. It is a helpful feature to monitor the procedure and
ensure it is performed correctly by the participants. In the interaction area are the buttons
that control the procedure. These buttons send commands to the inputting application to
perform actions such as changing its state or providing a certain type of feedback while
also updating the control application’s state.

A two-way communication exists between the applications through the Wearable Data
Layer. The inputting application sends the data collected from the touch events in the form
of XML files and receives commands controlling its state and the actions it performs.
Those commands are sent by the control application, which also receives the gesture data
produced by the participants on the inputting application.

3.6.2 BrailleShapes for Text Entry

The second study was to provide a preliminary validation of the approach as a text entry
method, which was done by performing a similar type of data collection as in the previous
one. For this one, however, besides collecting Braille Shapes for each character of the
alphabet individually, we also collected them as part of sentences. For it, updated versions
of the previously built control and inputting applications were conceived.

This new iteration of the control application allows changing between characters and
sentence collection modes on the initial screen. Selecting the character’s option leads to
the same control screen as the previous version of the system. The real change is when
opting for the sentences mode, which leads to the screen shown in figure 3.4c. Its interface
consists of two areas, as before, with the visualization area adapted to handle sentences.
The control area allows the selection of which phrase is requested to the participant while
monitoring its progress throughout the sentence, i.e., visualize which character of the sen-
tence the participant is currently on. The application’s design and functioning regarding
data storage and processing are the same as in the previous version.

Having this second study focusing on validating the approach from a text entry per-
spective, inputting features were added to the smartwatch application allowing a more
complete usage. Apart from collecting data from the touch events, it also allows inputting
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spaces between words, deleting inserted gestures, and confirming inputted sentences.
These actions are completed by performing a double-tap for inserting space characters
and sentence confirmation (which is dealt with by the system), and a long-press for ges-
ture deletion, with each providing different types of audio and haptic feedback.

There is still a two-way communication between the applications using the Wearable
Data Layer, and all the existing features of the previous version are also inherited.

(a) Initial screen. (b) Secondary Screen. (c) Control screen.

Figure 3.4: Text entry study control (smartphone / host) application’s interface.



Chapter 4

Exploring the Feasibility of
BrailleShapes

As previously mentioned, to accomplish our goal of validating Braille-based shapes as the
foundation for a text entry method, we first need to collect and analyse Braille Shapes.
This chapter is divided into two sections, one describing the steps taken and another dis-
cussing the results obtained.

The first section – 4.1 – describes the data collection process detailing its different
stages and requirements, the study’s population and the data collected.

The second section – 4.2 – presents the results of analysing the data collected in terms
of its properties and the way it was conceived.

4.1 Data Collection

We started by conducting a user study to collect information and gestures – Braille Shapes
– from both sighted and visually impaired people. This allowed us to compose our data
set and to acquire important information for our system’s design and development. It also
allowed us to better understand our population, how they perceived our approach, and
how they conceived and performed the gestures requested.

Even though the system is meant for people with visual impairments, we saw it as ben-
eficial to also collect gestures from sighted people since using their gestures to recognize
gestures from blind people showed promising results in previous studies [14].

4.1.1 Participants

We recruited 20 participants with visual impairments (9 self-identified males, 11 self-
identified females) and 18 without visual impairments (12 self-identified males, 6 self-
identified females) for this study, as described in table 4.1. Participants were recruited
from the institution Fundação Raquel e Martin Sain and via word of mouth.

27
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Sighted participants had an average age between 24 and 35 (SD=0.51) and were pre-
dominantly right-handed, with only one participant being ambidextrous. They all reported
to be at ease with touchscreen devices on a 5-level Likert scale (mean = 4.9) which can
be a result of all participants using their smartphones daily (self reportedly). Regarding
smartwatches, 7 participants mentioned having had any form of contact with such devices,
with only 4 of them mentioning wearing one daily.

Visually impaired participants had an average age between 36 and 45 (SD=1.17) and
were also mostly right-handed, with only 3 participants being ambidextrous and 3 being
left-handed. Of those participants, 12 were totally blind and the rest reported to have up to
10% vision with 9 of them having this impairment since birth. Out of those who acquired
vision loss with age, only one reported to having had visual contact with a touchscreen
device (smartphone). Visually impaired participants reported an average of 4 on a 5-level
Likert scale regarding being at ease with touchscreen devices, even though all but one
reported using their smartphones daily. This is hypothesized to be due to some of the
participants’ minimal use of those devices since several of them reported only perform-
ing actions such as making and receiving phone calls and sending and receiving mes-
sages. Regarding smartwatches, 6 participants mentioned wearing one every day, while
the remainders reported never having contact with such devices. Those who mentioned
wearing one regularly reported to interacting minimally with the device only performing
basic tasks such as hearing the time and notifications. In comparison to other studies, our
visually impaired population is very specific and can be considered as an older and less
tech-savvy population.

4.1.2 Requirements

Our only requirement for visually impaired participants was that they possessed Braille
knowledge. This information is detailed in table 4.1 where participants are referred to as
numbers from 1 to 20 to preserve anonymity. This requirement did not apply to sighted
participants since we could show them the Braille alphabet in an agile manner, and it
would probably restrain their recruitment.

4.1.3 Apparatus

The devices used for the data collection task were a Google Pixel 4a running Android 12
and a 44 mm Samsung Galaxy Watch4 with Google WearOS. Both devices were running
the custom apps mentioned in section 3.6.1 which were devised for the purpose of the
study, however, participants only interacted with the smartwatch.

The smartphone was running a “host app” that allowed the investigator in charge to
communicate with the smartwatch application, controlling its execution flow and thus the
study’s procedure. This application allowed the investigator to go through the various
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Table 4.1: Visually impaired participants’ collected information

# Age
Group

Age of
Blindness Literacy Braille

Proficiency1
Used typing
method(s)2

1 24 - 35 10 Higher Education 4 / 5
QWERTY (direct

touch)

2 46 - 55 19
Primary

Education
3 / 3 Dictation

3 56 - 65 47 Higher Education 3 / 2 Dictation
4 24 - 35 11 Higher Education 5 / 4 QWERTY

5 24 - 35 0
Secondary
Education

4 / 5
QWERTY (standard

mode)
6 46 - 55 0 Higher Education 5 / 5 QWERTY

7 36 - 45 31
Secondary
Education

4 / 0 Dictation

8 24 - 35 0
Primary

Education
4 / 3

QWERTY (standard
mode) & Dictation

9 24 - 35 0
Secondary
Education

0 / 3
QWERTY
(magnified)

10 36 - 45 10
Primary

Education
5 / 5 Dictation

11 24 - 35 0
Secondary
Education

5 / 4
QWERTY (touch

typing mode)

12 46 - 55 23 Higher Education 4 / 4
QWERTY (standard

mode)

13 56 - 65 3
Primary

Education
4 / 4 -

14 56 - 65 44
Secondary
Education

4 / 5 Dictation

15 24 - 35 18
Secondary
Education

5 / 4
QWERTY (standard

mode)

16 36 - 45 0 Higher Education 5 / 5
QWERTY (touch
typing mode) &

Dictation

17 24 - 35 0
Primary

Education
5 / 5

QWERTY (touch
typing mode) &

Dictation

18 36 - 45 0
Primary

Education
5 / 4

QWERTY (standard
mode) & Dictation

19 46 - 55 28
Secondary
Education

5 / 4
QWERTY (standard

mode)

20 36 - 45 0
Secondary
Education

4 / 4
QWERTY (standard
mode) & Dictation

1 Reading / Writing - Self-declared in a Likert scale of 1 to 5
2 All participants that used QWERTY but participant 9 used TalkBack or VoiceOver
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characters one by one, whether backwards or forwards, to change the state of the smart-
watch’s application and to make the smartwatch audibly reproduce a specific character.
It also dealt with all the necessary processing and storage of any gesture data received
from the smartwatch, allowing its visualization both in real-time and after all data was
collected.

The smartwatch application was designed solely for inputting and initial testing of the
different feedback types we intended to use. For that reason, its interface consisted only
of an empty screen whose state was controlled by the investigator. It possessed both audio
and vibrotactile feedback, as well as safety mechanisms to prevent undesired interactions.

Both applications’ layout configurations and some stages of their workflow can be
seen in figure 4.1.

(a) Smartphone host app
waiting for gesture data.

(b) Smartphone host app
while receiving gesture data.

(c) Smartwatch app while
performing gesture.

Figure 4.1: Data collection study applications’ workflow stages.

4.1.4 Procedure

This first study started with an introduction of the investigators, and the study itself, men-
tioning its purpose and the procedure. While introducing the study, participants had the
opportunity to interact with the smartwatch device with the screen blocked by the custom
application to accustom themselves to it. Then, an initial characterization session took
place consisting of an oral questionnaire regarding demographic data and technology pro-
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ficiency. Visually impaired participants were also enquired about their Braille proficiency
in reading and writing.

Afterwards, a brief training session of around 5 minutes was performed to allow the
participants to better understand both the system and the procedure. In this session, par-
ticipants were asked to input a small number of letters from the alphabet by drawing their
corresponding Braille Shapes. To do so, for each letter we asked the participants to “envi-
sion the shape resulting from drawing a single stroke that would go over all the raised dots
in its corresponding Braille cell”. It also had to be done without going over any dot more
than once. Those were the only two restrictions imposed on the participants throughout
the study. We also advised them not to perform the gestures starting or ending at the edge
of the smartwatch. This was intended to minimize situations where the gesture would not
be recorded due to the device not detecting any interaction. The letters selected for this
particular session - ABDGKMORUXZ - were the ones thought to go over most scenarios
(e.g., a single dot, ambiguous representation, missing dots in the middle row, etc.). Other
than the letters mentioned, participants were asked to input a circle as in print writing
and not in Braille. It was not explained the intention behind such a request, however, this
shape was collected for recognition and interaction purposes.

The session started with the smartwatch application screen in a blocked state to pre-
vent any unwanted touches. The application state and the entirety of the procedure (e.g.,
the actions it performed) were controlled by the investigator using the smartphone “host
app”, as previously mentioned. During the training session, the smartwatch application
presented the participants with a randomly selected letter at a time by reading it aloud
using Android’s TextToSpeech engine. Participants were instructed to say the letter heard
back to confirm they had perceived it correctly. If so, the investigator unblocked the smart-
watch application screen, and participants performed the gesture of the letter requested.
While touching the screen, a beep-like sound played so that participants knew if they
were performing the interaction correctly. Haptic feedback was also provided on differ-
ent occasions to aid the participants in situating the procedure and the action they were
performing. If no situation arose requiring the repetition of the gesture, it was accepted
and the data was sent to the smartphone application. The smartwatch screen would go
back to a blocked state. This process was repeated for all the aforementioned letters, or
until reaching the time limit.

For the data collection session, the same procedure took place only this time we re-
quested each participant to input all 26 letters of the alphabet plus a circle, a total of 3
times for visually impaired participants and 2 times for sighted participants minus the
”circle” shape. In this session, no sound was emitted when touching the smartwatch
screen since it is a mechanism meant for participants to adapt to the device, but the haptic
feedback remained the same. Even though no time limit was established, we tried to cap
the session to a maximum of 45 minutes to limit this study to an hour per participant.
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Finally, after collecting the gestures’ data, participants were prompted to opine re-
garding interaction mechanisms for a possible finalized version of a system using this
approach. First, they were asked to imagine a full functioning system that would rec-
ognize the gestures performed, allowing them to input characters and write words and
sentences. Then, having that in mind, they were asked 2 questions:

• ”Of the following options, which would make the most sense for you to use to insert
a space when you finish writing a word?”

• ”Of the following options, which would make the most sense for you to use to erase
the last character you entered?”

For each question, they were presented with the same options to chose from: double-tap,
single two-finger touch, long press, and draw a circle. They were also given the option to
suggest a new way to perform any of those actions.

This procedure was idealized to a maximum of an hour per participant, and toke about
45 minutes to an hour to complete depending on the participants’ performance.

4.1.5 Data

The data collected from the participants of the gestures performed was stored in XML
files.

For each gesture class per user a file was created, and it harvests all the instances of
that class for that user. It contains information regarding the entire gesture, i.e., the corre-
sponding character and the number of existing points and strokes, and it is structured ac-
cording to the gesture’s components, i.e., the strokes composing the gesture. Each stroke
is characterized by an index, and it comprises all the respective points of that specific
stroke. Each point is made of X and Y coordinates and a timestamp.

Information regarding the collection itself is also present, with the starting and fin-
ishing times of the collection – since the user is asked to perform the gesture until its
completion – also being stored. This way of structuring and storing the data allows for
a quicker visualization of the raw data, and an easier utilization for future need. It also
allows a gesture to be reconstructed if a visual representation is needed.

The questionnaires regarding demographic data and technological and Braille profi-
ciency were created and performed using Google Forms.

4.2 Data Analysis

4.2.1 Gestures Collected

As mentioned, visually impaired participants were asked to input 3 Braille Shapes for
each of the 26 letters of the English alphabet plus 3 ”circle” shapes as in print writing.
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Only 2 gestures per letter were requested for sighted participants, and no ”circle” shape
was requested. This makes a total of 27 * 3 * 20 = 1620 gestures performed by visually
impaired participants and 26 * 2 * 18 = 936 by sighted participants. This decision was
required to expedite the procedure due to time constraints created by the COVID-19 pan-
demic, and since our focus was on visually impaired participants’ gestures, it served as a
safety measure to ensure we gathered the most data from them to mitigate any situation
where gestures end up not meeting our requirements.

One visually impaired participant in particular performed all of the gestures as if the
Braille cells were inverted vertically, something the participant mentioned to be due to
using a slate and stylus to write. This method allows typing Braille by using a stylus to
punch holes in a slate, which is to be done in reverse order so the slate can be flipped
and read. When performing any analysis on the gestures, however, those were inverted to
match the orientation of the remainder.

Gestures from 4 visually impaired participants are not accounted for in this analysis.
None of these participants completed the task as requested, with some not even perform-
ing the number of gestures required within the stipulated time frame. Hence, the number
of gestures from visually impaired participants used throughout this analysis is 27 * 3 *
16 = 1296, making a combined total of 2232 gestures collected.

Each participant whose data was discarded from this analysis presented similar rea-
sons for this, with the most noticeable being, in frequency order:

1. The uneasiness when interacting with the smartwatch. This led to the participants
not performing the gestures in their entirety within screen bounds, with some of
them even starting the gestures on their arm or hand instead of the watch. They also
performed several touches on the screen each time they went to perform a gesture,
to situate/identify the touch surface.

2. The lack of hand steadiness made it hard to perform single-stroke gestures. Partici-
pants unwillingly raised their hands mid-gesture.

3. The inability to envision different shapes for each letter. Participants performed the
strokes similarly to the way they read a Braille cell. They performed the strokes
going through the numbers corresponding to the dots of the cell in sequential or-
der from 1 to 6, with the only difference being not going through some of them
depending on the character, making their shapes indistinguishable from each other.

4.2.2 Gestures’ Properties

In addition to collecting the gestures from the participants, we examined various proper-
ties of such gestures to better understand the way they were performed and if there is any
significant difference between gestures from visually impaired and sighted participants
and even between the gestures performed by each participant.
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Size

For each gesture, using its bounding box area, we measured its overall size.
Sighted participants produced gestures with an average size of 85371 (SD=92890.2)

pixels2, whereas visually impaired participants produced gestures with an average size of
91290 (SD=11664.3) pixels2. Unlike [14], no significant differences in size were found
between the gestures of both participants’ groups (t(28.6)=−1.6, p>0.1), however visu-
ally impaired participants still performed larger gestures overall.

Size Variation

Other than the gesture size, we also examined the size variation of multiple instances of
the same gesture. We did this for each participant using the standard deviation of the
gesture size for each gesture class.

Sighted participants averaged a deviation of 4700 (SD=1309.0) pixels2, while visually
impaired participants averaged 11956 (SD=3074) pixels2. There is a significant difference
in the standard deviation of sizes between gestures from sighted and visually impaired
participants (W=0, p<0.05), with the latter producing greater deviations when performing
the same gesture multiple times.

Aspect Ratio

Regarding the aspect ratio of each gesture’s bounding box (width/height), the average
for sighted participants is 1.04 (SD=0.07) and for visually impaired participants is 1.06
(SD=0.16). This suggests that visually impaired participants tend to create slightly wider
gestures however, no significant difference was found between the two groups (t(19.9)=−0.4,
p>0.1). This findings go in accordance with the findings from [14].

Length

We also measured the length of the gestures, meaning we measured the distance between
their points in sequential order, from the first chronological point to the last one.

Sighted participants produced gestures averaging 332.2 (SD=56.7) pixels long, while
visually impaired participants averaged 338.0 (SD=81.8) pixels in length. When compar-
ing the length of the gestures produced, no significant difference is found (t(26.3)=−0.2,
p>0.1).

Thinking Duration

One aspect in particular we wanted to understand was the amount of time participants toke
to think of a Braille Shapes. We intended to see whether participants’ Braille knowledge
had any impact on the time they took to conceive the shapes, and if there were other
aspects impacting it as well.
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For that, we analysed the time they toke since a gesture was requested until they
started to perform the gesture. On average, sighted participants toke 3340 (SD=964.2)
milliseconds to perform a gesture from the moment it was requested, while visually im-
paired participants toke on average 5924 (SD=3292.6) milliseconds. A Wilcoxon rank-
sum test found a significant difference in the thinking duration required by both groups
of participants (W=38, p<0.05), which indicates that visually impaired participants toke
significantly more time to idealize the shapes performed.

When trying to understand what affected participants’ thinking duration, we can see
that its significantly correlated to the number of dots per Braille cell with a correlation
coefficient of 0.7 and p-value below 0.05. If we consider cells with more dots to be
more complex, this can mean that more complex cells impact the time visually impaired
participants take to conceive the gestures however, the cell’s complexity is more than just
its number of points. The position of the dots in comparison to each other, is another
aspect that can further impact the complexity of devising a shape. For example, the fact
that the dots of the Braille cell are all in the same column (e.g., character ”L”), or that the
middle dot is in a different column then the rest or is even absent (e.g., character ”W”),
can decrease and increase the thinking duration respectively as can be seen in figure 4.2.

Figure 4.2: Thinking Duration vs Number of Dots in a Braille Cell

Another aspect to take into consideration is the participants’ Braille knowledge. By
basing our approach on the Braille alphabet, we intended to allow participants to leverage
their Braille knowledge, thus reducing the cognitive load of learning a new alphabet and
possibly reduce the time taken to process the characters and translate them into shapes.
However, no significant correlation was found between visually impaired participants’
Braille knowledge and thinking duration. One thing/aspect that is worth mentioning is that
participants self-reported Braille proficiency was not necessarily accurately representative
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of their actual knowledge, since several participants required assistance in remembering
several Braille cells.

Duration

On average, sighted participants toke 833.5 (SD=169.4) milliseconds to perform their
gestures from the moment they touched the screen until the moment they raised their
fingers, while visually impaired participants toke 1705.9 (SD=558.9) milliseconds to per-
form theirs. A Wilcoxon rank-sum test showed a significant difference in the duration of
which sighted and visually impaired participants performed their gestures (W=8, p<0.05),
indicating that visually impaired participants take longer to do so.

As we can see in figure 4.3, the same reasons that impact thinking duration (i.e., what
we mentioned as complexity of a Braille cell) can impact the time each gesture takes to
perform. There is a significant correlation between the number of dots per Braille cell
and the time both groups toke to perform the corresponding shape, with a correlation
coefficient of 0.80 and p-value below 0.05. This correlation is even stronger for visually
impaired participants alone with a correlation coefficient of 0.83 and p-value also below
0.05.

Of all the characters, ”a” is the one that toke the least time to gesture with an average
duration of 139.6 milliseconds also being the one with the least amount of dots, while the
character ”X” is the one that toke the most time to compose.

Again, the cell’s complexity is more than just its number of points which can be high-
lighted by the outliers (i.e., the characters ”L” and ”X”) in figure 4.3.

Figure 4.3: Gesture Duration vs Number of Dots in a Braille Cell

Nonetheless, even though the duration a gesture takes to be produced can be influ-
enced by the cells’ complexity, it can also be impacted by the shape’s complexity which
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in part can be reflected by its thinking duration. There is a significant correlation between
the duration a gesture takes to produce and the time its shape takes to conceive with a
correlation coefficient of 0.8 and a p-value below 0.05.

4.2.3 Gesture Consistency

Besides looking at the properties that characterize the gestures performed by the two
groups to compare them, measuring the gestures’ consistency within users and between
users can improve the understanding of how participants perform their gestures and sub-
sequently help decide the recognition mechanisms to apply.

So, using GECKo [1], we measured the consistency of the gestures between users
and within-users for all participants. We did this both considering and not considering
articulation direction as differentiating aspect since some recognizers take it into account.

Clusters

For both cases, we started by clustering the gesture data, which allowed us to know the
average number of variations per gesture class. GECKo [1] groups the gestures with
its clustering technique however, it also allows us to manually manage the clusters of
gestures according to our preferences and needs. This way, we managed to group the
gestures taking and not taking their articulation direction into account as illustrated in
figure 4.4.

Accounting for the articulation direction, based on our gesture clustering, visually
impaired participants produced an average of 4.9 (SD=2.6) variations per gesture class,
while sighted participants produced an average of 3.4 (SD=2.1). A Wilcoxon rank-sum
test confirmed that this difference is significant (W=491.5, p<0.025), with visually im-
paired participants producing more variations per gesture class. For visually impaired
participants, the characters ”B”, ”C”, ”E”, ”H”, ”I”, ”L”, and ”V” had the least amount
of representations with 2 variations per gesture class, and the ”circle” shape had the most
with 13 followed by the character ”R”, with 9 different representations. For sighted par-
ticipants, the characters ”A”, ”D”, ”E”, and ”V” had the least amount of variations with
only 1 representation per gesture class, and the character ”W” had the most variations
with 8 different representations.

Discarding the articulation direction as a clustering feature, visually impaired partic-
ipants produced an average of 2.9 (SD=1.6) variations per gesture class while sighted
participants produced an average of 2.3 (SD=1.7). In this case, there is no significant
difference between the 2 groups. Visually impaired participants produced a single repre-
sentation for the characters ”B”, ”C”, ”D”, ”E”, ”H”, ”I”, ”L”, ”V” and the ”circle” shape,
while the character ”O” had 6 different representations. For sighted participants, half of
the characters had a single representation, including the ”circle” shape, and the character
”X” had the most variations with 6 different representations.
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Figure 4.4: Number of representations per gesture class for each group (with and without
accounting for articulation direction)

Even though the character ”A” has only a single dot in its corresponding Braille cell,
it is not amongst the characters with the fewest variations in its representation for visu-
ally impaired participants as it is for sighted participants. This is due to the interactions
visually impaired participants sometimes had with the touch surface, in which they would
slightly move their finger when attempting to tap it to perform the gesture. This led to
more and different shapes for the character in question with and without accounting for
articulation direction. Nonetheless, when looking at the gestures with the least amount
of representations, we can see a slight similarity between groups. In both cases and for
both groups, no significant correlation was found between the number of representations
per gesture class and what we considered as some of the complexity features of a ges-
ture. However, there is a significant positive correlation between the two groups when
discarding articulation direction with a correlation coefficient of 0.5 and p-value below
0.05, which can complement the similarity found between the characters with the least
representations.

With these results, we can understand the impact the gesture’s articulation direction
has on the number of representations produced when comparing both groups. As we can
see, there is only a significant difference in the number of representations per gesture class
between groups when taking articulation direction into account, with visually impaired
participants performing more variations for each gesture class. When further analysing
the gestures from each group, it is noticeable that sighted participants started most of
theirs from the top, while visually impaired participants had a more mixed approach which
can explain that difference.

This impact is also felt within each group. There is a significant difference in the num-
ber of representations each group produced with and without accounting for articulation
direction. Sighted participants produced significantly more variations for each gesture
class when accounting for articulation direction (W=494, p<0.05), and so did visually
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impaired participants (W=531, p<0.05), with the difference being more significant for
the latter.

Agreement Rate

After clustering the gestures as found appropriate, we measured their agreement rate using
GECKo [1], which allowed us to understand how similar the gestures produced are. The
higher the rate, the higher the similarity between the gestures produced. We did this again
between and within groups, accounting and not accounting for the articulation direction,
which can be seen in 4.5. It is expected that a lower number of representations for each
gesture class would translate to a higher agreement rate.

When considering articulation direction, we found a low degree of agreement for
both groups individually, with sighted participants showing an agreement rate of 0.64
(SD=0.28) and visually impaired participants displaying a rate of 0.49 (SD=0.27). A
higher degree of consistency, however, is found when not considering articulation direc-
tion, as it would be expected based on the above-mentioned results that show a lower
number of representations when not taking articulation direction into account. Sighted
participants showed an agreement rate of 0.79 (SD=0.29), and visually impaired partic-
ipants had a rate of 0.72 (SD=0.28). This difference caused by articulation direction
is significant for both groups, being more noticeable for visually impaired participants
(W=190, p<0.01) than for sighted participants (W=227, p<0.05). However, there is no
significant difference when comparing each group against the other, meaning visually im-
paired participants are as consistent amongst each other as sighted participants. If we take
the gestures from both groups all together, the results are similar with an agreement rate
of 0.54 (SD=0.26) considering articulation direction, and 0.72 (SD=0.27) not considering
it.

Figure 4.5: Agreement Rate per gesture class for each group of participants (with and
without accounting for articulation direction)

Analysing each participant individually, we find a degree of agreement of the gestures
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produced to be overall higher than the agreement rate measured between the groups. This
is in agreement with the findings from prior studies [1, 34, 5] that mention users to be
highly individual and internally consistent. For sighted participants, accounting and not
accounting for articulation direction, the agreement rates averaged 0.83 (SD=0.12) and
0.92 (SD=0.07) respectively. Visually impaired participants averaged an agreement rate
of 0.78 (SD=0.11) considering articulation direction and 0.89 (SD=0.06) not consider-
ing articulation direction. However, this difference between the groups’ agreement rate
and individual consistency is only significant for visually impaired participants and when
accounting for articulation direction.

4.2.4 Interaction Modalities

Other than the gestures conceived, we also collected participants’ opinions regarding in-
teraction mechanisms for a possible finalized version of a system using this approach. As
previously stated, participants were asked to select from a list - double-tap, single two-
finger touch, long press, and draw a circle - or to suggest a new interaction modality to
perform a word confirmation and a word deletion action.

To perform a confirmation action, i.e., to add a space or a full stop after a word, the
majority of participants indicated a double-tap as their preferred way. Several participants
supported this choice by saying it is what they are used to using when interacting with
touch-screen devices. Other than the options listed, participants also suggested a two-
finger double-tap.

As a way to perform a deletion action, i.e., to delete an element from the composed
text, participants chose a single two-finger touch. They also suggested a triple-tap, hand
covering the screen, and drawing a triangle beside the options listed.

4.2.5 Device Feedback

Another aspect we also intended to understand was whether the feedback used was ade-
quate and could be kept for further stages of the study.

Regarding haptic feedback, we questioned participants on whether the vibrations were
perceptible in every case, whether the vibration patterns used in each situation were ap-
propriate and if the intensity was properly calibrated. The response was positive, with all
participants accepting the haptic feedback employed.

Since at this stage we only used audio feedback to reproduce the characters requested,
our main concerns were the volume and perceptibility of the output. Even though the
audio was at max level, there were not many complaints since the study occurred in a
controlled and quiet environment. However, the characters’ output using Google’s Text-
ToSpeech Engine was sometimes imperceptible. Participants mentioned having signifi-
cant difficulties distinguishing characters with similar sounds like ”N” and ”M” or ”P”
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and ”B”. The efforts made to mitigate this issue were somewhat effective nonetheless,
the only reliable way to overcome this adversity was to orally repeat the characters to the
participants after they were announced.

4.3 Discussion

This first study aims to help understand people’s perception and conceptualization of
Braille Shapes by collecting and analysing their gestures and additional information,
which serves as the foundation for the remainder of this work.

To properly understand and contextualize our findings, we first need to know our
study’s population. It consists of sighted and visually impaired people, with the latter
being significantly older, averaging ages between 36 and 45, leaning more towards the
older side of that interval. Even though visually impaired participants reported a 4 out
of 5 regarding being at ease with touchscreen devices, this does not transpire when per-
forming the study’s procedure. It is especially noticeable when compared against sighted
participants and is hypothesized to be due to the minimal use participants reported to give
their touchscreen devices, mostly making phone calls, messaging and checking the time.

Compared with other studies [42, 41, 35, 15], our population can be considered older
and less tech-savvy, making their interactions with the touch devices a bit more cum-
bersome, leading in some cases to the inability to complete the tasks requested. The
participants unable to complete the procedure presented similar reasons for it to happen:
uneasiness when interacting with the smartwatch, lack of hand steadiness, and inability
to envision different shapes for each letter.

While performing the study, it also came to attention that their Braille proficiency is
below the self-reported. Throughout the study, several participants forgot the Braille cell
coding of several characters, which had to be reminded by the investigator present.

When understanding how participants conceive and perform the gestures, similarly to
prior work, we can see that visually impaired participants did it somewhat differently from
sighted participants. In a general way, visually impaired participants produced gestures
overall bigger, slower, and varying more in size. They also required more time to think
of Braille Shapes for each character, which correlates to what we consider part of the
complexity of a Braille cell, i.e., the number of dots and their position relative to each
other. The higher the complexity, the more time it took participants to devise a shape. The
duration participants took to produce the gestures correlates as well with the complexity
of the Braille cell.

To compare the actual shapes devised by the participants, we did so considering and
not considering articulation direction. For both cases, visually impaired participants pro-
duced more variations per gesture class (i.e., per character), however, there is a signifi-
cantly higher impact in the number of representations when accounting for articulation
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direction. Sighted participants showed to be more consistent than visually impaired par-
ticipants when devising shapes, however, when combining the two groups, the consistency
measured is similar to each group separately. Individually, sighted participants showed
to be more consistent. Nonetheless, participants from both groups showed higher indi-
vidual consistency than when in a group. In all cases, articulation direction significantly
negatively impacted the measurements.

Even with the highlighted differences between groups, there are slight similarities in
which characters have the least number of variations in both groups. It is also noticeable
that visually impaired participants start their gestures mostly from the top, and in one
particular occurrence, a participant devised the shapes considering the Braille cell to be
vertically inverted.

Considering all the above-mentioned aspects can help idealize some guidelines for
future development:

Pre-defining some of the gestures with the least number of variations. As mentioned,
the characters with the least amount of different representations were similar among vi-
sually impaired people. Defining how they are performed can help reduce possible ambi-
guity, with a low probability of not going over all the possible cases. This way, if opting
for a template-match-based approach, ”perfect templates” can be used for those specific
characters, and disambiguation mechanisms can also be applied.

Using gestures’ starting points as a recognition feature. Since visually impaired par-
ticipants started most of their gestures primarily from the top of the touch surface, know-
ing which gestures can help differentiate from the gestures started elsewhere.

Opting for user-dependent recognition approaches. With participants being individ-
ually more consistent than in a group, opting for tailored solutions like user-dependent
recognizers can provide the best results.

Providing a mirroring option to allow people to perform gestures invertedly. With
visually impaired people knowing how to write using a slate and stylus, they may prefer
to think of the gestures the same way they write them, vertically inverted. Providing an
option to leverage that, would reduce any extra cognitive load associated with the use of
the system.

In the end, we believe that the number of sessions and iterations held was not enough
to allow participants to adjust and become more comfortable with the system, especially
since they were interacting with a type of device they were not used to. With each session,
participants showed signs of improvement and increased ease with the method.



Chapter 5

Automatically Recognizing
BrailleShapes

Conceiving a system relying on gestures as an interaction modality requires an appropriate
recognition mechanism. Aiming to explore a broader range of options and not focus solely
on the data analysis findings, we evaluated several recognition approaches mentioned in
section 2 as having the best results and being the most adequate for our end goal. This way,
we can ensure we explore how the differences described above in the gestures produced
by visually impaired and sighted participants affect recognition accuracy and influence
our decision regarding the type of recognition to employ.

5.1 Template-Matching

We started by testing our data on some of the recognizers from the ”$-family”. This fam-
ily of recognizers is meant to be easy to implement for rapid prototyping of gesture-based
user interfaces and has shown great results in stroke-gesture recognition. These recogniz-
ers use template-based matching algorithms for gesture recognition, meaning each can-
didate gesture is compared against a predefined set of templates provided until the one
with the most similarities is found. These templates serve as a blueprint for the gestures
in question however, in this case, participants did not always produce them in the same
manner. Some participants did not conceive the gestures for each class the same way in
every iteration, which can prove to be a hindering factor for recognition accuracy in this
type of recognizer. The same can be said about the previously highlighted issue regarding
ambiguous representation between and within participants.

We tested the $P [38], $P+ [37], and $Q [39]. The $P was the first in the family to
consider gestures as clouds of points allowing it to overcome some limitations of prior
members that reasoned about the gestures as a chronological order of points drawn. This
makes it a direction-invariant recognizer and provides more freedom when producing the
gestures. Then, focusing on improving accessibility in touch screens for visually impaired
people, $P+ was developed as an improvement from $P. It provided slightly better accu-

43
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racy with reduced execution times. Superseding it, however, is $Q, a recognizer optimized
for low-power and mobile devices. It is built upon $P, providing utterly faster recognition
speeds while slightly improving its accuracy. It is the $-family’s most performant recog-
nizer so far and is also intended for devices with low capabilities making it the optimal
choice for our use case. Nonetheless, we tested the other two recognizers mentioned to
have a point of comparison.

All these recognizers are invariant to sampling, scaling, translation, and articulation,
meaning the strokes can be performed anywhere on the touch surface and with any size,
in whichever direction desired, and disregarding the sampling rate of the device. They
are only susceptible to rotation which is beneficial for this case in particular since slight
changes in the angle of the shape produced can correspond to an entirely different char-
acter.

5.1.1 Evaluation Methodology

We measured all recognizers’ user-dependent and user-independent accuracy and classi-
fication times as follows.

For user-dependent recognition rates, we selected T samples as templates for each
gesture class from a participant P, and one additional sample from P, different from the
first T, as the gesture to be classified. Due to the diversity of representations per gesture
class, T is always the total amount of samples from the participant in question minus
the one used as a candidate gesture. We made sure to use all the gestures produced by
the participant as a candidate to go over over as many cases as possible. This process
repeats for each participant (sighted and visually impaired), and the recognition results
are averaged and expressed as a percentage in table 5.1 and classification times in table
5.3.

As mentioned in the literature, the optimal number of templates for the dollar family
recognizers is around 8 samples per gesture class. Since we only collected a maximum
of 3 per user, we also measured user-dependent recognition rates by applying some form
of augmentation to the data to have 8 samples per gesture class. With these recognizers
being susceptible to rotation, we augmented the data by applying slight rotations to the
gestures that would not change the shape completely.

To measure user-independent recognition rates, we used T samples from a group G
of participants as templates to match against, and all of the samples from an additional
participant P different from any in G as candidate gestures. This process repeats for every
participant, and whether P is sighted or visually impaired, G is always composed of all
the remaining participants of a single group (i.e., sighted and visually impaired), and T
is always equal to the total amount of gestures of each group. Even though the optimal
number of templates is around 8 samples per gesture class and using all of the samples
as templates reduced performance, it allowed us to measure the max recognition rate
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possible for each participant. Results are averaged and expressed as a percentage in table
5.1 and classification times in table 5.3.

For both user-dependent and user-independent recognition rates, we also measured the
accuracy of the top-k results produced by the recognizers to understand the potential of
providing options at a character level, and it could also prove beneficial for spellchecking.
However, these recognizers are only meant to produce a single outcome which meant the
k fluctuated and did not guarantee that the correct suggestion was present. Results were
averaged and presented as percentage in table 5.2.

5.1.2 Benchmark Devices

To properly measure and understand the recognizers’ performance and usability in real-
world use cases, we performed these evaluations on a real device instead of an emulator.
We used the same device as in the data collection study, a 44 mm Samsung Galaxy Watch4
with Google WearOS. When this study took place, this was the latest and most advanced
Android-based smartwatch with a dual-core 1.18 GHz Cortex-A55 processor and 1.5 GB
of RAM. The implementation of the $-family recognizers was done on Android Studio
and fully in Kotlin.

5.1.3 Results

Tables 5.1 and 5.2 show user-dependent and user-independent recognition rates for every
recognizer tested and for every case (e.g., using data from different participant groups as
training data). When analysing the accuracy of those recognizers, no significant differ-
ence is shown between them in any evaluation case, with all of them presenting similar
recognition rates for each. The same can not be said regarding classification times de-
scribed in table 5.3, in which $Q presented significantly quicker results averaging less
than a second for every evaluation case. Hence, the following results described are from
testing the $Q recognizer only.

User-dependent recognition rates were significantly lower for visually impaired par-
ticipants than for sighted participants (W=237, p<0.01), averaging 55.1% and 71.2%
respectively. The same can be seen when evaluating the accuracy of the top-k results,
where visually impaired participants averaged 73.3% while sighted participants 81.6%,
also presenting a significant difference (W=209, p<0.05).

When measuring user-dependent accuracy with augmented data (8 templates per ges-
ture class), however, no significant difference was found between the two groups, not even
when analysing the top-k results. Visually impaired participants averaged a recognition
rate of 84.6% and sighted participants a rate of 85.3%, and for top-k results 91.9% and
92.2% respectively.

User-independent recognition rates were also significantly lower for visually impaired
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participants than for sighted participants (W=282, p<0.05), respectively averaging 43.9%
and 66.5%. The same goes for recognition rates of the top-k results with 59.9% accuracy
for visually impaired participants and 79.5% for sighted participants. When comparing
the two main conditions, i.e., using sighted participants’ data or visually impaired partic-
ipants’ data as training data, our findings go according to prior work highlighting the first
condition to show better results than the second. Each group presented recognition rates
significantly higher for the first condition (W=0.96, p<0.05). Sighted participants aver-
aged accuracies of 72% with sighted data as training data vs 61% with visually impaired
participants’ as training data, while visually impaired participants presented an average
of 46.8% vs 40.9% respectively. Again, the same can be seen in the top-k results.

Overall, we can see that user-dependent recognition rates were mostly higher than
user-independent recognition rates in every condition, specially with augmented data
which showed better results than the rest.

Table 5.1: User-dependent and user-independent recognition rates for both participants groups
of $P, $P+, and $Q.

vs Self vs Self
Augmented vs Sighted vs Visually

Impaired

$P

Shapes by Sighted 72.0% 84.9% 70.7% 60.0%

Shapes by Visually
Impaired

54.2% 83.6% 45.6% 40.3%

$P+

Shapes by Sighted 74.8% 87.9% 72.6% 63%

Shapes by Visually
Impaired

57.7% 90.1% 48.2% 43.1%

$Q

Shapes by Sighted 71.2% 85.3% 72.1% 60.5%

Shapes by Visually
Impaired

55.1% 84.6% 46.8% 40.9%

Observations: Each gesture was tested against (Self ) the participant’s other gestures, (Sighted) gestures
from sighted participants, and (Visually Impaired) and gestures from visually impaired participants. Table
cells report mean recognition accuracy as percentage.

5.1.4 Spellchecking

To further increase the accuracy of the output produced and to help mitigate the ambiguity-
related issues, as mentioned in the previous chapter, we evaluated a spellchecker on the
gestures recognized. To do so, we grouped gestures from isolated characters to form sen-
tences and then passed them to the spellchecker. Similarly to prior work [20], the phrases
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Table 5.2: User-dependent and user-independent top-k recognition rates for both participants
groups of $P, $P+, and $Q.

vs Self vs Self
Augmented vs Sighted vs Visually

Impaired

$P

Shapes by Sighted 82% 91.8% 82.7% 74.2%

Shapes by Visually
Impaired

72% 91.5% 60.1% 56.3%

$P+

Shapes by Sighted 84% 93.9% 84.8% 78%

Shapes by Visually
Impaired

74% 95.2% 64.1% 59.9%

$Q

Shapes by Sighted 81.6% 92.1% 82.5% 75.8%

Shapes by Visually
Impaired

73.3% 91.9% 62.2% 57.6%

Observations: Each gesture was tested against (Self ) the participant’s other gestures, (Sighted) gestures
from sighted participants, and (Visually Impaired) and gestures from visually impaired participants. Table
cells report mean top-k recognition accuracy as percentage.

Table 5.3: User-dependent and user-independent classification times (ms) per gesture for both
participants groups of $P, $P+, and $Q.

vs Self vs Sighted vs Visually
Impaired

$P

Shapes by Sighted 84 1770 1954

Shapes by Visually Impaired 126 1810 2100

$P+

Shapes by Sighted 43 721 719

Shapes by Visually Impaired 65 780 810

$Q

Shapes by Sighted 8 112 109

Shapes by Visually Impaired 14 120 118
Columns observations: Each gesture was tested against (Self ) the participant’s other gestures, (Sighted)

gestures from sighted participants, and (Visually Impaired) and gestures from visually impaired participants.
Table cells report approximate mean classification times in milliseconds.

selection process was aware of MacKenzie’s phrase set and its challenges for this case.
This study’s participants only understood Portuguese and no other similar phrase sets for
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this language were found, despite the efforts. Therefore, the three phrases conceived in
prior work were used and can be seen in figure 5.1. These phrases were devised containing
the seven most frequent letters of the Portuguese vocabulary and to resemble sentences
that people would use in the context of short reply messaging. Since our data set contains
no punctuation or accents, the same goes for the phrases used.

Due to time constraints, conceiving a Braille-aware spellchecker was deemed unfeasi-
ble and intended for future work, so in this case, we resorted to the Android Spell checker
framework. However, it showed to be inadequate for our needs. The spellchecker did not
provide sufficient improvements in the outcome frequently producing unwanted sugges-
tions and sometimes not even providing suggestions at all.

Figure 5.1: Braille cells for spellchecking sentences in Portuguese. Sentences equivalent
to “Hi, how are you?”, “I’m home” and “It’s cold today”

5.2 Image Recognition

Using image recognition for handwriting classification tasks is another popular strategy at
present, providing outstanding results. As mentioned, deep learning is used in numerous
areas - including the field of computer vision - thanks to its diverse range of applications,
and its biggest propeller has been Convolutional Neural Networks (CNN). Tools like Ten-
sorFlow Lite make it even more feasible to use these techniques in mobile contexts and
devices with low resources, making it a potential solution for our system’s recognition
approach.

A CNN is a class of Artificial Neural Networks commonly used in visual imagery
analysis. Its models are composed of a combination of 5 different layers that usually
present the architectural structure seen in figure 5.2. There is an input layer containing
the image data to work on, a group of hidden layers, and an output layer. The group of
hidden layers starts with a convolutional layer, also known as the feature extraction layer
since it extracts features from the inputted image. It is accompanied by an activation func-
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tion which is usually ReLU. This layer convolves the input passing its result to the next
layer. It is followed by a pooling layer that reduces the spatial volume of the input im-
age after convolution, with the most common type being max pooling. A fully connected
layer follows to connect neurons in one layer to neurons in another layer and to map the
representations between the input and the output. With both the convolutional layer’s and
the pooling layer’s outputs being 3D volumes, they need to be flattened - by a flattening
layer - to be inputted in the fully connected layer which requires a 1D vector of numbers.
Finally, when performing multi-class classifications, a softmax layer is applied to convert
a vector of N real numbers into a probability distribution of N possible outcomes. These
outcomes then get matched against labels in the output layer.

Figure 5.2: Basic CNN architecture.

5.2.1 Evaluation Methodology

In this work, we tested different CNN configurations and different approaches to achieve
the best performance possible. Not discarding the findings acquired in the first study, we
decided to cover the broadest range of possibilities within our time frame.

We started by training and evaluating several CNN configurations mentioned in prior
work, with some adaptations to fit our purpose. We began with gestures from sighted
participants to have as a baseline. After that, we tested the same configurations with
gestures solely from visually impaired participants. Since sighted participants proved to
have more consistent and reliable gestures, with similarities with the ones from visually
impaired participants, we also tested the same CNN configurations on a combination of
gestures from both groups.

For each configuration, the procedure is as follows. The gestures get converted into
images, with a size equal to the one mentioned in the specific article, and the data gets split
into 80% training data and 20% testing data. The testing data is divided 10% into testing
data and 10% into validation data. The model trains on the training data for 50 epochs
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before being evaluated on the testing and validation data. This procedure repeats for 100
trials, with the best results being presented in table 5.4. To help prevent overfitting, all
data is augmented with a random zoom (with a width and height factor of -0.1) and a
random rotation (with a rotation factor of 0.01 in both directions), and the model trains
with an early stopping function. Layer regularizations were also applied to further attempt
to mitigate overfitting.

Table 5.4: Performance of CNNs with configurations from prior work.

# Number of
Hidden Layers Data

Maximum Training
Accuracy (%)

Maximum
Validation

Accuracy (%)

Accuracy Top-3
Accuracy Accuracy Top-3

Accuracy

1 4 S 93% 99% 74% 89%

1 4 VI 83% 96% 41% 59%

1 4 B 83% 97% 61% 82%

2 4 S 97% 100% 75% 89%

2 4 VI 98% 99% 40% 58%

2 4 B 98% 99% 59% 77%

3 4 S 98% 99% 77% 90%

3 4 VI 97% 97% 49% 61%

3 4 B 98% 98% 65% 87%

Column Observations: # - CNN Configuration Number
Data: S - Sighted, VI - Visually Impaired, B - Both

The first configuration has 4 hidden layers consisting of 2 groups with a convolutional
layer and a pooling layer. The convolutional layers consist of 32 and 64 filters respec-
tively, with a kernel of size 3x3 pixels and the ReLU activation function. Both pooling
layers are Max Pooling layers and have a pool size of 2x2 pixels. The hidden layers are
followed by a dropout of 25%, a flattening layer, and a fully connected layer with 128
neurons. Finally, there is another dropout of 50% before the final fully connected layer
(i.e., the output layer). In the second configuration, the number and composition of the
hidden layers are the same as in the previous one. The hidden layers are followed by a
flattening layer and 2 fully connected layers without any dropout. For the third configu-
ration, the structure of the hidden layers is also the same, however, it is only followed by
a fully connected layer with 12544 neurons and an output layer.

In every configuration, the final fully connected layer, i.e., the output layer, has 27
neurons, 1 for each gesture class. Since it is a multi-class classification task, it uses a
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softmax activation function.
With results far below the ones achieved in prior work and not better than the pre-

viously tried approaches, the same above-mentioned procedure was applied to a custom
CNN configuration devised by tuning hyper-parameters, i.e., parameters that define the
model’s architecture. This technique allows trying different combinations of parameters
to help make design choices in search of the optimal model architecture. It can be applied
using a Tuner which changes the parameters with options provided, and in our case, was
performed using the KerasTuner framework.

Figure 5.3: Custom CNN configuration.

The general architecture of the model is presented in figure 5.3, and similarly to the
ones mentioned prior, consists of an input layer, groups of hidden layers, and an output
layer. All the parameters tweaked by the tuner are also present in the figure, alongside the
values they can take. Even though our input data are images sized 450x450 pixels, they
are resized to 60x60 to reduce processing time, however, this did not affect recognition
accuracy. To make the image data more suitable for a neural network, it is also normal-
ized by a processing layer. The number of hidden layer groups is one of the parameters
changed by the tuner ranging from 1 to 3, however, the groups always consist of a convo-
lutional layer followed by a batch normalization layer (to make training faster and more
stable) and a pooling layer. The activation function used with the convolutional layers
can be ReLU or ELU, the kernel size is always 3x3 pixels, and the number of filters used
varies between 16 and 64. The pooling layers always have a pooling size of 2x2 and are
of the type Max Pooling. The hidden layers are followed by a flattening layer and by the
first fully connected layer. This connected layer has units ranging from 32 to 512 and an
activation function that can also be ReLU or ELU. Layer regularizations were applied to
help prevent overfitting. Before the final fully connected layer or output layer, there can
be a dropout. For the cases where the tuner opts to use a dropout, its values range from
0.2 to 0.5, with steps of 0.05. Finally, the output layer has 27 neurons, 1 for each gesture
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class, and uses a softmax activation function.
With this approach, we achieved the accuracies described in table 5.5 as well as dif-

ferent model configurations depending on the data they were trained and tested with. The
model configuration resulting from training and testing with data from sighted partici-
pants (1) is composed of 5 groups of hidden layers, each layer having 64 filters, a fully
connected layer with 992 units, and a dropout of 0.5. All layers use the ReLU activation
function. The configuration resulting from using data from visually impaired participants
(2) is composed of 5 groups of hidden layers, each layer having 64 filters, a fully con-
nected layer with 128 units, and a dropout of 0.2. All layers use the ReLU activation
function. And finally, the configuration conceived from using data from both groups is
composed of 5 groups of hidden layers, each layer having 64 filters. It has a fully con-
nected layer with 224 units and a dropout of 0.5. Each layer used the ReLU activation
function as well.

Table 5.5: Configuration and performance of CNN devised with a hyper-parameters tuner.

# Data
Maximum Training

Accuracy (%)
Maximum Validation

Accuracy (%)

Accuracy Top-3
Accuracy Accuracy Top-3

Accuracy

(1) S 93% 100% 72% 96%

(2) VI 74% 93% 49% 75%

(3) B 83% 98% 64% 88%

Column Observations: # - CNN Configuration Number
Data: S - Sighted, VI - Visually Impaired, B - Both

Another approach evaluated was the use of transfer learning in different models.
Transfer learning is a technique in which models that are pre-trained on larger data sets de-
veloped for a specific task get reused as a starting point for a model for another task. This
technique allows improved performance and rapid progress when modelling the second
task. First, we evaluated general image recognition purpose pre-trained models provided
by the TensorFlow community. Table 5.6 describes those models and their performance.
They were selected for being some of the more effective and efficient models used by
the TensorFlow community. For this case, the models had to be adapted, redefining their
input and output to meet our data’s criteria before being trained with said data.

However, these models were designed for more general purposes. So, we tested a
transfer learning approach on a model trained on a data set more similar to ours. This
model was pre-trained on the Chinese MNIST, a version of a popular data set (of hand-
written digits) in computer vision problems called MNIST1. The model is composed of 2

1http://yann.lecun.com/exdb/mnist/
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Table 5.6: Performance of applying transfer learning to TensorFlow pre-trained models.

Model Data
Maximum Training

Accuracy (%)

Maximum
Validation

Accuracy (%)

Accuracy Top-3
Accuracy Accuracy Top-3

Accuracy

EfficientNet V2 - S S 76% 96% 61% 87%

EfficientNet V2 - S VI 73% 94% 40% 76%

EfficientNet V2 - S B 84% 97% 59% 88%

EfficientNet V2 - XL
(21k)

S 92% 100% 76% 97%

EfficientNet V2 - XL
(21k)

VI 54% 80% 32% 60%

EfficientNet V2 - XL
(21k)

B 77% 85% 57% 88%

EfficientNet - Lite 4 S 78% 95% 52% 88%

EfficientNet - Lite 4 VI 54% 81% 40% 69%

EfficientNet - Lite 4 B 63% 88% 48% 79%

Data: S - Sighted, VI - Visually Impaired, B - Both

sets of hidden layers, which, differently from any model previously tested, are composed
of 2 sequential convolutional layers and a pooling layer. Each convolutional layer has 16,
16, 32, and 64 filters respectively, all using ReLU as the activation function. A dropout of
0.4 follows each set, and the hidden layers are followed by a flattening before the output
layer. The results achieved with this model are in table 5.7.

Table 5.7: Performance of applying transfer learning to model pre-trained on Chinese MNIST.

Model Data
Maximum Training

Accuracy (%)

Maximum
Validation

Accuracy (%)

Accuracy Top-3
Accuracy Accuracy Top-3

Accuracy

Chinese MNIST
Pre-Trained Model

S 88% 99% 67% 87%

VI 67% 77% 35% 58%

B 77% 94% 51% 76%

Data: S - Sighted, VI - Visually Impaired, B - Both
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5.2.2 Results

Table 5.4 illustrates the performance of the different CNN configurations from prior work
with the different data sets’ configurations. All models provided similar results, with an
overall training accuracy of over 90% for both single (avg=93.9%) and top-3 (avg=98.2%)
results. However, in all cases there are signs of model overfitting, with validation results
being far inferior, averaging 60% for single results and 76.9% for top-3 results. Validation
accuracy also showed the most variation, with model 1 presenting the lowest value of 40%
using visually impaired participant data and model 3 the highest value of 77% with data
from sighted participants, both cases for single results accuracy. This variation is also
visible in the top-3 results.

Table 5.5 shows the results of devising a CNN by tuning its hyper-parameters. This
approach achieved training accuracy for single results averaging 83.3%, and top-3 results
averaging 97%. Validation results were also significantly inferior to training averaging
61.7% and 86.3% for single and top-3 results respectively. The maximum validation
accuracy achieved (72%) was using sighted participants’ data and the lowest (49%) was
using visually impaired participants’ data.

Regarding transfer learning approaches, results were similar, whether using more
general-purpose models or one pre-trained on a more similar data set to ours. Table 5.6
shows the results obtained in the first case with training accuracies, averaging 72.3% for
single results and 90.6% for top-3 results, and average validation accuracies of 51.6% and
81.3% for single and top-3 results. Both the highest (76%) and the lowest (32%) valida-
tion accuracy values obtained were with the EfficientNetV2 - XL model using data from
sighted and visually impaired participants respectively.

The results stemming from the model pre-trained on the Chinese MNIST averaged
a training accuracy of 77.3% for single results and 90% for top-3 results and validation
accuracies of 51% and 73.7% for single and top-3 results. Again, we can see model
overfitting with validation results being significantly lower.

5.3 Discussion

In the process of analysing the recognizability of the shapes collected and aiming to find
the recognition mechanism that best suits our system and our needs, we explored several
recognition approaches that can be divided into two main categories: template-matching-
based and image recognition based. In doing so, we also approached some of the findings
from the first study (chapter 4).

The template-matching approaches evaluated were from the $-family - $P [38], $P+
[37], and $Q [39] - due to their positive results in prior work and design philosophy. Over-
all, they provided similar recognition accuracy for single and top-k results, with higher
values for user-dependent recognition for each participant’s group, achieving a maximum
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accuracy of 74.8% and 57.7% with visually impaired participants’ data. This is in line
with the findings from chapter 4, which mentions people as being more internally con-
sistent and hints at the advantages of using a user-dependent recognition approach. We
managed to improve on these results by augmenting the data used, however, this method
is not reliable for further testing with participants. Since it only applies rotation to the
gestures, it does not replicate different possibilities of articulations for each shape. With
only an average of three samples per gesture class per participant, the same participants
would likely perform a different gesture variation from those collected. Regarding classi-
fication speed, $Q was by far the most prolific, being the only one to provide acceptable
results for further real-life testing. It was expected since it is developed for low-resource
devices and had shown the best results among the three in prior work.

Another result supporting our findings is the recognition accuracy obtained using ges-
tures from sighted participants as templates. Even though it provided worse results than
using the participants’ gestures, it still provided better results than with gestures from
visually impaired participants.

As a measure to counter ambiguity-related accuracy decrease, we also tested a general-
purpose spellchecker which did not provide acceptable results, leaving open the question
of whether to use a Braille-based spellchecker to improve the method’s recognition accu-
racy.

We evaluate image recognition approaches by testing different techniques and model
configurations, whether based on the literature or by altering each model parameter indi-
vidually. To start, we tested various configurations from prior work. With the results be-
low expected, we attempted a custom model configuration devised by tuning each hyper-
parameter individually using a tuner. Since this approach did not provide results at the
desired level, we turned to the transfer learning technique using both general-purpose
pre-trained models and a model pre-trained on a data set more similar to ours.

In any case, there was some overfitting of the models evaluated, regardless of our
attempts to mitigate such issues. It led our validation accuracy to be much lower than our
training accuracy achieving a maximum value of 77% for single results and 90% for top-3
results using one of the model configurations from prior work.

Due to the difficulties presented by participants in using the device and the time con-
straints that disabled them from further adapting to it and our approach, based on the
results gathered, we deemed any of the approaches as being unfeasible for further user
testing.
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Chapter 6

Exploring BrailleShapes for a Text
Entry Approach

To properly validate the use of Braille Shapes as the basis for any text entry system re-
quires implementing and subsequently evaluating such a system. With prior results re-
garding recognition accuracy being below what is acceptable to perform said validation,
we only performed a preliminary one without the live recognition aspect. It serves as a
proof of concept and helps us understand the validity and how well people adapt to this
kind of approach. This chapter describes the validation performed and is divided in two
main sections.

The first section – 6.1 – describes the data collection process detailing its different
stages and requirements, the study’s population and the data collected.

The second section – 6.2 – presents the results of a performance analysis of the pre-
liminary version of the system. It also shows a recognition evaluation using such data.

6.1 Data Collection & System Exploration

Similarly to the first user study, we conducted another one to collect gesture data and
information. With the system aiming only to be used by visually impaired people, this
time, however, they were our only target population. This study focused not only on
collecting more data from the participants but doing so in a more realistic usage scenario,
allowing us to grasp how participants perceived and interacted with the system.

6.1.1 Participants

Our population comprises some participants from the previous study, which helps min-
imize the practice and habituation required, maintains some degree of consistency, and
allows using their previous respective gestures as elements for recognition analysis.

We recruited 7 visually impaired participants (5 self-identified females and 2 self-
identified males) who we thought to be more at ease with the device, our approach, and

57
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the concept of a gesture-based system using Braille Shapes. They were again recruited
through the institution Fundação Raquel e Martin Sain and via word of mouth.

These participants averaged between 46 and 55 years old (SD=1.27) and were all
right-handed. Of those participants, three had partial vision, while the rest were fully
blind. All of them use a smartphone daily and three also use a smartwatch regularly.
Self-reportedly, they were relatively at ease with touchscreen devices, averaging 4.1 on
a 5-level Likert scale. However, they reported only performing a few simple actions like
contacting others (mostly via phone calls or audio messages), looking at the time and
getting notifications. This applies to both devices mentioned. It can still be considered an
aged and less tech-savvy population compared to other studies.

Table 6.1: Visually impaired participants’ collected information

# Age
Group

Age of
Blindness Literacy Braille

Proficiency1
Used typing
method(s)2

1 24 - 35 0
Secondary
Education

5 / 4
QWERTY (touch

typing mode)

2 46 - 55 23 Higher Education 4 / 4
QWERTY (standard

mode)

3 56 - 65 44
Secondary
Education

4 / 5 Dictation

4 24 - 35 0
Primary

Education
5 / 5

QWERTY (touch
typing mode) &

Dictation

5 36 - 45 0
Primary

Education
5 / 4

QWERTY (standard
mode) & Dictation

6 46 - 55 28
Secondary
Education

5 / 4
QWERTY (standard

mode)

7 56 - 65 0 Higher Education 5 / 5
QWERTY (standard
mode) & Dictation

1 Reading / Writing - Self-declared in a Likert scale of 1 to 5
2 All participants that used QWERTY but participant 9 used TalkBack or VoiceOver

6.1.2 Requirements

For this study, we required participants to possess Braille knowledge and preferably reg-
ular contact and ease with touchscreen devices. These were deciding factors when select-
ing participants from the ones participating in the previous study. Table 6.1 details this
information, with participants identified as numbers from 1 to 7 to preserve anonymity.
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6.1.3 Apparatus

To perform this study, we used a Google Pixel 4a running Android 12 and a 44 mm Sam-
sung Galaxy Watch4 with Google WearOS, both devices running the custom applications
mentioned in section 3.6.2 devised for the study, with participants only interacting with
the smartwatch device and application.

The “host app” on the smartphone allowed the investigator in charge to control the
study’s procedure by communicating with the smartwatch application and managing its
execution flow. It allowed the investigator to opt between two tasks - collecting characters
or sentences - and carry out each procedure accordingly. Regardless of which procedure it
was, the investigator could go through the various characters or sentences one by one, both
backwards or forwards, change the smartwatch’s application state and make it reproduce a
specific character or sentence via TextToSpeech. The application dealt with all processing
and storage of any gesture data received from the smartwatch, allowing its visualization
in real-time and after all data collected. Its layout configuration is displayed in figure 3.4

On the smartwatch side, for the characters’ collection task, the application used was
similar to the one used in the previous study. For the sentences collection task, how-
ever, other than collecting gesture data, the inputting application had editing features that
allowed participants to delete characters and confirm words and sentences. It had a sim-
plistic interface with a single empty screen whose state was controlled by the investigator.
It possessed audio and vibrotactile feedback and safety mechanisms to prevent undesired
interactions.

6.1.4 Procedure

The procedure started with an introduction of the investigators and a presentation of the
study, explaining its purpose and providing an overview of its procedure. Since our partic-
ipants all took part in the previous study, they were already familiarized with the concepts
approached and the devices used. Nonetheless, they still had a brief moment to adjust
to the smartwatch device. In a scenario in which participants did not participate in the
first study, a more detailed explanation is provided, and characterization questionnaires
are performed.

After the introductory part, we briefly allowed participants to train for around 5 min-
utes. Similarly to the first user study, the training session consisted of participants in-
putting a small set of characters from the alphabet by drawing their corresponding Braille
Shapes. We asked them to “envision the shape resulting from drawing a single stroke
that would go over all the raised dots in its corresponding Braille cell”, and they had to
complete it without passing over any of the dots more than once. Those were the only
restrictions imposed on the participants. Starting or ending the gestures at the edge of the
smartwatch was also mentioned as not the best practice to mitigate situations where the
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device did not detect any interaction, not recording the gestures performed. For this par-
ticular session, we used the letter - ABDGKMORUXZ - thought to go over most scenarios
(e.g., a single dot, ambiguous representation, missing dots in the middle row, etc.). Other
than the letters mentioned, we asked participants to input a circle as in print writing and
not in Braille. We did not explain what the intention behind such a request was, however,
we collected this shape for recognition and interaction purposes and further enrichment
of our data set.

At the start of the session, the smartwatch was in a blocked state, which was controlled
by the investigator on the ”host app”. The system audibly presented participants with
random letters, one at a time, which participants had to confirm to understand. After
that, the investigator would unblock the smartwatch application, and participants would
perform the gesture corresponding to the character requested. The smartwatch application
played a beep-like sound alongside haptic feedback whenever the screen was touched, to
help participants guide themselves on the touch surface. If no situation arose requiring
the repetition of the gesture, it was accepted and the data was sent to the smartphone
application, and the smartwatch application would go back to a blocked state. This process
is repeated for each of the aforementioned letters or during the 5 minutes.

The actual collection session is divided into two phases, a character and a sentence
collection phase. The character collection phase is similar to the training session, with
participants having to input the 26 letters of the alphabet and a symbol (i.e., circle shape)
a total of 2 times each. This time, no sound is emitted at the touch of the screen. Even
though no time limit was imposed, we tried to limit the session to 30 minutes maximum
so the study would not go over an hour and a half per participant.

In the sentences collection phase, the procedure, even though similar, focused more on
a realistic use case scenario. We asked participants to input 3 full sentences by entering
each character at a time, allowing them to delete undesired gestures and insert spaces
between words. At the end of each sentence, they also had to enter the sentence to confirm
it. Other than reading the sentences, the system also provided audio feedback for each of
the actions performed (e.g., ”Ok” for sentence confirmation).

We used a Portuguese phrase set following MacKenzie’s methodology, with a corpus
of Portuguese proverbs adapted to this context and the challenges found. The phrase set
only comprised sentences with around five words for a more agile procedure, allowing
better memorization of such items, and resembling a more probable scenario in which
users can make sense of a more likely interaction. Since the gestures collected did not
include any punctuation, capital letters, or accents, neither did the phrase set.

We finished the study by inciting participants to provide feedback on the possibility
of a system using this type of approach, to understand whether it would be too complex
and complicated, whether they would use it and whether they would quickly adapt to it.
We did this using an adaptation of the SUS questionnaire.
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6.1.5 Data

All gesture data collected was stored in XML files structured differently depending on
whether it was characters or sentences.

For character gestures, we created a file per gesture class containing all the instances
of that class for that user. The gesture information comprises the corresponding character
and the gesture’s strokes. Each stroke is characterized by an index and contains points
with X and Y coordinates and a timestamp.

The sentences were stored in an XML file per sentence, identified by the sentence
name, and containing gesture information for each of the characters in that sentence. The
gestures are made up the same way as in the individual gestures’ files, including the space,
delete, and enter gestures.

Collection data like starting and finishing times are also present in any of the files.

The questionnaires regarding demographic data and technological and Braille profi-
ciency were created and performed using Google Forms.

6.2 Data Analysis and System Evaluation

6.2.1 Gestures Collected

This study had two separate collection phases, one for collecting gestures individually
and the other for groups of gestures composing sentences.

In the first phase, each participant inputted 2 Braille Shapes for each of the 26 letters
in the English alphabet plus 2 ”circle” shapes as in print writing, making a total of 27 * 2
* 7 = 378 individual gestures.

For the second phase, we requested each participant input 3 sentences with a ran-
dom amount of characters. We recorded 21 sentences, adding up to 448 gestures after
transcription, not accounting for the editing features gestures (e.g., space, delete).

All data were deemed usable and considered within our requirements.

6.2.2 Evaluation Metrics

As mentioned, we performed a preliminary evaluation of the system after all data were
collected. We measured and analysed several text entry metrics to understand its perfor-
mance in a more realistic scenario.

To measure the text entry performance of our approach, we calculated and analysed
four key metrics: words per minute and gestures per second to measure entry rates, ges-
tures per character and minimum string distance for error rates. These metrics are widely
accepted in text entry evaluation and are presented as defined by MacKenzie et al. [21].
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Words Per Minute (WPM)

Words per minute is one of the most commonly used metrics in text entry evaluation and
is used for measuring typing speed. Conventionally, a word is regarded as 5 characters,
including spaces. This measure only considers the length of the resulting transcribed
string and the time it took to produce.

WPM =
|T | − 1

S
× 60× 1

5
(6.1)

It is defined in Eq. 6.1, where T is the final transcribed sentence and |T| its length. In
this case, T only contains letters and spaces. The S term is seconds, and it is measured
from the entry of the first character until the entry from the last, counting with backspaces.
The value of 60 is seconds per minute, and the value of 1/5 is words per character.

Gestures Per Second (GPS)

Another metric that allows us to know the speed at which users are performing inputting
actions is the measure gestures per second. It is considered the ”action rate”, with the
gestures being an atomic action taken during the text entry process and any unproductive
action as a nonrecognition. In this case, it is considered any individual stroke used to
compose the Braille Shapes and the interactions required to perform text entry actions.

It is defined as:

GPS =
|IS∅| − 1

S
, (6.2)

where IS∅ stands for the input stream including all actions, and ∅ represents a nonrecog-
nition.

Gestures per Character (GPC)

Error rates are usually more complicated to measure than entry rates. They can be con-
sidered corrected errors (i.e., errors during entry) and uncorrected errors (i.e., errors after
entry).

One way to quantify errors performed during text entry is using the measure gestures
per character (GPC), which represents the average amount of gestures taken to input
a character. The GPC conveys an expression of the method’s efficiency and accuracy,
with a higher GPC value indicating lower accuracy and efficiency and a value closer to 1
implying a more efficient and accurate method.

As per the GPS, we account for a gesture as an atomic action taken during the process
of text entry and any unproductive action as a nonrecognition. In this case, they are any
individual stroke used to compose the Braille Shapes and the interactions required to
perform text entry actions.
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GPC =
|IS∅|
|T |

(6.3)

Since we did not have a recognition mechanism during the data collection procedure,
the errors and corrections were due to the participants forgetting to input certain charac-
ters, the system not recognizing a touch interaction, and the participant acknowledging a
gesture as wrongly performed.

Minimum String Distance (MSD)

To measure the accuracy of the resultant transcribed sentence, we can use the minimum
string distance statistic (MSD). It provides the minimum distance between two sentences
regarding the number of correction operations required to go from the transcribed (T)
string to the originally presented (P) one. It is a well-known algorithm in statistics and is
commonly used when no error corrections are allowed.

It requires a final transcribed string resulting from recognizing the characters inputted,
which in this case are the characters resulting from the gestures produced by the partici-
pants. To do so, we filtered the sentences inputted without a recognition mechanism (i.e.,
only used the gestures resulting from the corrections performed) and ran them through
the $Q recognizer to obtain a final transcribed sentence.

To calculate the minimum string distance we are using a Java implementation avail-
able online [32] and are presenting it as error values in percentage by using Eq. 6.4. |P |
and |T | are the lengths in characters of the presented and transcribed strings respectively.
We opted out of using capitalization, punctuation, and accents which required normaliza-
tion of any of the sentences used and collected.

MSDerror rate =
MSD(P, T )

MAX(|P |, |T |)
(6.4)

6.2.3 Performance Evaluation

Table 6.2 presents the averaging results per participant of the performance evaluation,
encompassing the values obtained for the entry speed and the error rates metrics except
for MSD.

Inputting Speed

Participants averaged 3.96 WPM (SD=0.99) using this approach, with every participant
showing an average increase of 0.51 WPM from the first sentence collected (mean=3.74,
SD=1.29) to the last one (mean=4.25, SD=1.11), with no signs of plateauing. The best
performance with this approach achieved 6.3 WPM, and the worst did 1.5 WPM.
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Regarding the number of gestures per second performed to input the sentences, par-
ticipants averaged 0.38 GPS (SD=0.07) gesturing less than an inputting action every sec-
ond. They also showed improvements from the input of the first sentence (mean=0.36,
SD=0.10) to the last (mean=0.39, SD=0.08), with the best performance achieving 0.52
GPS and the worst 0.24 GPS.

Compared to the Braille-based smartwatch approaches mentioned in table 2.1, ours
provided the worst results in terms of WPM. These results are below expected and desired,
nonetheless looking solely at inputting speed metrics is not enough to understand the why.

Table 6.2: Mean values of analysed metrics per participant.

# Words Per Minute Gestures Per Second Gestures per Character

1 4.42 0.38 1.04

2 5.45 0.47 1.04

3 2.75 0.31 1.46

4 3.28 0.31 1.15

5 3.11 0.31 1.18

6 3.82 0.39 1.22

7 4.88 0.46 1.15

Total 3.96 0.38 1.18

Error Rates

Similarly to the input speed metrics, participants showed improvements regarding GPC.
The number of gestures performed per character decreased from 1.18 in the first sentence
to 1.11 in the last sentence, indicating a high-efficiency level. In this case, the metric
does not directly convey the system’s accuracy since no inputting actions were performed
using character recognition.

To calculate our error rate using the MSD, we used the $Q recognizer to obtain a tran-
scribed string resulting from input recognition as required. Even though a user-dependent
approach performed the best on our recognition evaluation, we calculated the MSD with
sentences transcribed with different configurations. We used gestures from each partici-
pant, whether from the first study, the second study, or both combined, to recognize their
own inputted sentences only. We also used gestures from the first study, from each group
of participants and from a combination of both groups, accompanied by the data from the
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second study, to recognize all of the sentences.
The error rates measured using a user-dependent approach for recognition were very

similar regardless of the gesture combinations used. Using gestures from the second
study collected in the same study as the sentences, we obtained an error rate of 51.09%
(SD=13.13%, Min=17.39%, Max=72.23%). As expected, it performed better than using
gestures solely from the first study, which provided an error rate of 53.35% (SD=10.17%,
Min=32.26%, Max=69.29%). The best results, however, were with gestures from both
studies. We achieved an error rate of 50.82% (SD=12.00%, Min=17.39%, Max=71.43%).

With a user-independent approach, contrary to the expectations resulting from the
recognition evaluation performed, results improved significantly. Similarly to prior find-
ings, using gestures from sighted participants showed the best results achieving an error
rate of 42.39% (SD=8.73%, Min=24.00%, Max=61.49%) versus 42.39% (SD=8.73%,
Min=24.00%, Max=61.49%) from using gestures from blind participants, and 41.72%
(SD=9.44%, Min=25.80%, Max=64.00%) from using a combination of gestures from
both groups.

Unpacking Errors and Delays

During the sentences phase of the data collection procedure, the system did not com-
prise a recognition mechanism thus no errors were derived from wrongfully recognized
characters. However, situations arose where participants needed to undo the interactions
performed due to erroneous actions or took extra time besides what the gestures required.

At times, while repositioning their hands on the smartwatch or simply while in a rest-
ing position, participants accidentally touched the screen which unintentionally counted
as an inputting action. Other times, participants attempted to perform editing interactions
like a double-tap or a long-press and ended up miss-timing them leading to wrongfully
accomplished interactions. Regardless, several participants proceeded to act on these situ-
ations by completely pausing the inputting for a brief moment to think about it, requesting
the assistance of the investigator present. These situations led participants to perform mul-
tiple delete actions, hence increasing the time and number of gestures required to input a
sentence.

Occasionally, participants forgot how to spell certain words or the Braille Shapes of
certain characters, which required them to ask the investigator or take some extra time
to think about it. One participant, in particular, would often touch the screen to start
a gesture and stay that way for a brief moment before actually performing it. Whether
due to inputting inaccuracies or extra cognitive load, participants spent an average of
1.74 seconds between performing each inputting interaction adding up to a total of 9.86
extra seconds per word, or 57.2 extra seconds per sentence. Assuming that these types
of setbacks decrease with the use and habituation of the approach, it can be estimated an
increase of more than double (approximately up to 11 WPM) the number of words per
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minute currently produced with this approach.

Subjective Feedback

We gathered participants’ feedback regarding the usability and likeability of the system
and tried to understand its value to our target population. Participants provided their
opinions by answering a questionnaire consisting of items to be ranked on a 5-level Likert
scale.

They expressed being very interested in the system idealized (mean=4.6), mentioning
they would like to use such a system frequently and would do so if they had a smartwatch
device (mean=4.7). They thought the approach was easy to use (mean=4.6) and not un-
necessarily complex (mean=1.2), with quick and easy adaptation after a short exposure
(mean=4.9). They felt the way to interact with the system was intuitive (mean=4.9) and
reported being very confident doing so (4.5). Compared to their usual inputting methods,
they mentioned believing they were much faster.

Overall, participants were generally positive and excited about a system with this
approach, with some participants commenting ”I would love to see this project going
forward so I could finally consider acquiring a smartwatch device.”, and ”Using this idea
even if just for shortcuts would be so much more agile than what I do right now.”. One
participant, in particular, emphasized how this approach would be beneficial in several
ways, mentioning some aspects we had established as motivations for this work. They
also denoted the idea and the study to awaken an interest in smartwatch devices.

6.3 Discussion

With this second user study, we aimed to validate using Braille Shapes as the foundation
for a gesture-based text entry system. We did so by developing a system with such an
approach and testing it with participants in a somewhat realistic scenario. It helped us
measure the system’s performance and compare it against other existing methods. It also
allowed us to understand some of the hurdles found by the participants when interact-
ing with such a system, and how well this type of approach was accepted by our target
population.

For this study we recruited visually impaired participants from the first user study,
bearing in mind how at ease they were with smartwatch devices and how sharp their
Braille knowledge and subsequent translation into Braille Shapes was. We did so in
an attempt to leverage some previous accustoming to the approach and to ensure the
most similarities between the shapes used for recognition purposes and the ones collected
throughout this second user study. It was a smaller and older sample than the one from
the first study, with participants’ ages between 46 and 55 years old.
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Using this approach, participants achieved an average speed of 3.96 WPM with a
minimum average error rate of 41.39% and 0.38 GPS. Improvements throughout each
sentence collected and no signs of plateauing suggest that participants would benefit from
a longer exposure time to the approach and the device. Nonetheless, the results obtained
were below the ones of most of the Braille-based methods reviewed in section 2 and pre-
sented in table 2.1. One aspect believed to contribute to the poor results is the time taken
by participants to undo undesired actions. As mentioned, they would forget or take a while
to remember how to proceed in such situations, sometimes asking the investigator for as-
sistance. Participants would also forget which character they were currently inputting and
sometimes lingered when producing Braille Shapes. Mitigating these issues by exposing
participants to the system for prolonged periods could potentially increase the efficiency
and effectiveness of the system drastically.

One thing worth mentioning is that even though participants achieved an average of
1.18 GPC thus indicating a high level of efficiency, this is not the most accurate represen-
tation since no recognition mechanism was applied, and thus gestures were only corrected
when a participant produced an unwanted interaction or thought the shape to be poorly
gestured.

Regardless of the results obtained from the metrics evaluated, the system was well re-
ceived by our participants, indicating a strong interest in both this type of entry method as
well as smartwatch devices. They thought the system to be intuitive and uncomplicated,
providing a quick and easy adaptation, mentioning it allowed a faster and more interest-
ing inputting experience than the ones they already possessed. Participants also felt this
approach addressed several concerns raised when inputting text, most coinciding with the
ones we presented as motivations for this work.
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Chapter 7

Conclusion

One aspect, in particular, that is so paramount to our daily lives is communication. It
is intrinsic to human existence and can be accomplished in various manners (e.g., using
voice, gestures, technology, etc.). Advancements in technology allow for numerous new
ways of performing such tasks, but these also translate into an increment of accessibility
concerns. With touchscreen devices being visually demanding, it can be a constraining
factor for visually impaired people. It is even more noticeable for specific scenarios that,
for example, require single-hand usage or occur in movement-based contexts. We be-
lieve that devices such as smartwatches can prove beneficial in mitigating such issues and
others mentioned throughout this work. However, these lack accessible alternatives for
performing such a crucial task.

Our literature review shows that the already existing text entry approaches focused
on addressing accessibility concerns do not usually target different types of devices other
than smartphones. It not only limits the inclusion of visually impaired people to other
types of devices like smartwatches but also results in a lack of standardization for those.

Recognizing these concerns motivated the development of this thesis, resulting in the
elaboration and validation of the concept for a new smartwatch-accessible text entry ap-
proach for visually impaired people based on the Braille writing system.

We started by defining the concept of a Braille Shape which is the foundation for the
inputting method devised. We defined a character’s Braille Shape as the shape obtained
from performing a single stroke, passing over all the raised dots of its corresponding
Braille cell, without going over any of those dots more than once.

We then performed two user studies to collect and analyse data and validate our idea.
Our first study focused on collecting Braille Shapes from sighted and visually impaired
participants to understand how they perceived the concept and how they would perform
such gestures. The data collected was also used to perform a recognition evaluation and
help select the best recognition mechanism required by an approach like this. The second
study also consisted of a data collection process, however, this time in a more realistic sce-
nario and only from visually impaired participants. Participants were instructed to input
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complete sentences using Braille Shapes, including spaces and sentence confirmations.
They could delete any inputted characters when needed. We also collected participants’
opinions regarding the usability of the system and some demographic data.

Our findings show that sighted and visually impaired participants gesture Braille Shapes
differently and that visually impaired participants are less consistent when doing so.
Nonetheless, consistency was higher when evaluating each group member individually,
indicating that a user-dependent approach to a recognition mechanism holds the best po-
tential for this type of application. We also concluded that accounting for articulation
direction significantly impacts recognition, which suggests that an articulation-invariant
recognizer would be the best alternative. Another aspect worth mentioning is the sim-
ilarities of some of the Braille Shapes produced for certain characters in terms of their
articulation and a low number of variations among participants, which can be a leverage
point when considering the possibility of pre-establishing Braille Shapes for such charac-
ters.

When performing a preliminary evaluation using this approach, the values obtained
for speed and error rates are not comparable to the best-performing existing methods.
Even so, participants showed improvements at each stage of the study, indicating signs of
improvement with prolonged exposure to this approach. Furthermore, the system proved
to be well accepted by the participants showing signs of covering their main concerns
regarding this type of interaction modality.

The results of this work allow us to believe that pursuing this idea is not only desirable
but also feasible, with the possibility of bringing great improvements to visually impaired
people’s lives. Even if the utility of this approach ends up not being what initially in-
tended (i.e., text entry), we believe it is flexible and adaptable enough for other use cases
such as inputting shortcuts and commanding actions. In any case, we believe we helped
complement an area of investigation for topics of great interest and importance that need
to be addressed.

7.1 Limitations and Future Work

Throughout this work, the most significant limitation encountered came with the COVID-
19 pandemic. It changed the timing of the user studies and restrained the recruitment of
the participants.

Having a population with almost nonexistent prior interaction with the type of devices
in question and whose Braille knowledge was not as solidified as reported could have
negatively impacted the study’s results. Nevertheless, we did our best and recruited an
acceptable number of participants for the population in each study.

The time constraints inhibited a more prolonged study, thus impeding the collection
of more data, which affected other stages of the study as well. We believe that more
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data would prove helpful in evaluating and selecting a recognition mechanism, allowing
a more comprehensive validation of the system.

Resorting to the guidelines and findings provided by this work, future work can help
mitigate such limitations and evaluate the approach explored to its full potential and im-
plementation.
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## This script is performed alongside a questionnaire/form
## Questionnaire: https://forms.gle/akih1KJMnVJqdEVw7
## This script is performed alongside a Braille alphabet sheet

Take notes of what feels relevant

< Iniciar ambas as aplicações >
< Iniciar cronômetro >

Bom/Boa dia/tarde/noite,

Antes de mais muito obrigado por ter aceite participar neste estudo, esperamos que corra tudo
da melhor forma e que seja uma experiência o mais agradável possível para si.
O meu nome é Pedro Marques, sou estudante de mestrado em Engenharia Informática na
Faculdade de Ciências da Universidade de Lisboa, e estou aqui hoje acompanhado pelo Professor
Tiago Guerreiro que é o orientador responsável por este projeto.

Este estudo faz parte da minha dissertação que tem como objetivo principal desenvolver e
avaliar um método de escrita para smartwatches para pessoas cegas, através do desenho de
formas que representam caracteres Braille.
Nesta etapa do projeto, o nosso objetivo é recolher o máximo de dados e informação possível e
por este motivo, este estudo em específico vai focar-se na recolha de gestos/formas desenhadas
representativas de caracteres Braille, e vai ainda ter em conta os comentários ou sugestões que
possa ter.
Quero deixar claro que ao longo deste estudo, o nosso foco vai estar sempre na recolha de
informação e na avaliação da nossa abordagem, sendo que nunca o/a iremos avaliar a si. Para
além disso, toda a informação recolhida será tratada única e exclusivamente no âmbito do
projeto e para fins académicos. Deste modo, quero pedir-lhe que partilhe todas as observações e
sugestões que possa ter, visto que são aspetos fundamentais para a melhor compreensão do
problema e por consequência da solução. Quero ainda pedir-lhe que exponha qualquer dúvida
que tenha a qualquer momento.

Dito isto, tem alguma questão até agora?

Então antes de começarmos vou só pedir-lhe que leia e assine este formulário de consentimento
relativamente à participação neste estudo. < Pedir para assinar consentimento >

< Realizar Questionário Até Secção de Tecnologia >

Como dito anteriormente, o objetivo é desenvolver um método de escrita para smartwatches, o
que quer dizer que ao longo deste estudo vamos utilizar um. Caso não tenha conhecimento, um
smartwatch é um relógio com ecrã tátil que permite realizar algumas das mesmas tarefas que
um smartphone < dar smartwatch e pedir para colocar >. Este smartwatch em particular tem,
para além de uma face tátil, dois botões do seu lado direito. O seu ecrã tátil apresenta, apesar de
não ser palpável, um rebordo que o limita antes do fim do relógio em si. Este rebordo é pequeno
o que acaba por não ter grande efeito no uso do smartwatch, no entanto vou pedir-lhe que tente
não começar ou acabar os gestos mesmo no limite do ecrã do relógio < tentar indicar quais os
limites do smartwatch e se necessário a localização dos botões >. Pode colocar os braços na
posição que lhe parecer mais confortável para usar o relógio. Antes de prosseguirmos, vou
fazer-lhe mais algumas perguntas, neste caso, relativas a dispositivos tecnológicos < voltar para
questionário >.
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Antes de começarmos a sessão de recolha de gestos, vamos perceber um pouco melhor o que
quer dizer escrever em Braille usando gestos ou desenhando formas. Braille consiste num
sistema de escrita tátil, em que cada caractere é representado por um conjunto de pontos
levantados numa célula, e cada célula Braille é composta por duas colunas de 3 pontos cada,
como lhe será mostrado mais a frente. Se pensarmos em unir os pontos utilizados para
representar algum caractere, com um traço apenas, passando uma única vez por cada ponto, é
possível imaginarmos uma forma aberta. É essa a forma que pretendemos que utilize para
inserir os caracteres que lhe pedirmos.

Até aqui, alguma dúvida?

Iremos começar com uma pequena sessão de treino de cerca de 5 minutos para que se habitue
ao relógio e a esta nossa abordagem, e de seguida iremos prosseguir para o estudo
propriamente dito. Em ambas as sessões vou-lhe pedir para desenhar padrões Braille
equivalentes a determinados caracteres. Para o fazer, pode fazer um gesto com o dedo no ecrã,
da forma que lhe parecer mais ágil e intuitiva possível, começando no sítio que quiser e com a
orientação que quiser, desde que comece e termine dentro dos limites do ecrã.
Vai começar por ouvir uma letra dita pelo relógio e de seguida vai-me dizer que letra ouviu. Após
o fazer, eu irei ativar o ecrã e poderá então desenhar a forma correspondente à letra. Quando
completar a forma total, vou-lhe pedir que descanse a mão na mesa de forma a saber que
terminou. Caso se tenha enganado a tocar no ecrã e queira refazer a letra basta dizer.
Este processo vai ser repetido até passarmos pelas letras pelo menos uma vez.
A qualquer momento esteja à vontade para perguntar caso tenha alguma dúvida.

Vamos então começar a nossa sessão de treino.
< Treino: A B D G K M O R U X Z (repetir se necessário ou usar outras letras) >
< Aprox. 5 min >

Vamos agora dar então início à recolha em si. Tal como na sessão de treino ser-lhe-ão lidas letras
através do smartwatch, as quais lhe vou pedir que repita para depois desenhar. O resto do
processo é o mesmo, no entanto desta vez iremos desenhar todas as letras do alfabeto inglês. Se
a algum momento precisar de fazer uma pausa, não hesite em pedir.
Alguma questão?

< Estudo: Todas as letras - 2 Iterações >

< FEEDBACK SESSION >
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## This script is performed alongside a questionnaire/form
## Questionnaire: https://forms.gle/orSaxBKkVqBiBtWD8

Take notes of what feels relevant

< Iniciar ambas as aplicações >
< Iniciar cronômetro >

Bom/Boa dia/tarde/noite,

Muito obrigado por ter aceite participar neste estudo, esperamos que corra tudo da melhor
forma e que seja uma experiência o mais agradável possível para si.
O meu nome é Pedro Marques, sou estudante de mestrado em Engenharia Informática na
Faculdade de Ciências da Universidade de Lisboa, e estou aqui hoje acompanhado pelo Professor
Tiago Guerreiro que é o orientador responsável por este projeto.

Antes de mais deixe-me perguntar-lhe se tem preferência que eu utilize algum dos termos
“pessoa cega”, “pessoa invisual” ou outro que lhe faça sentido?

Este estudo faz parte da minha dissertação que tem como objetivo principal desenvolver e
avaliar um método de escrita para smartwatches para pessoas cegas, através do desenho de
formas que representam caracteres Braille.
Nesta etapa do projeto, o nosso objetivo é recolher o máximo de dados e informação possível e
por este motivo, este estudo em específico vai focar-se na recolha de gestos/formas desenhadas
representativas de caracteres Braille, e vai ainda ter em conta os comentários ou sugestões que
possa ter.
Quero deixar claro que ao longo deste estudo, o nosso foco vai estar sempre na recolha de
informação e na avaliação da nossa abordagem, sendo que nunca o/a iremos avaliar a si. Para
além disso, toda a informação recolhida será tratada única e exclusivamente no âmbito do
projeto e para fins académicos. Deste modo, quero pedir-lhe que partilhe todas as observações e
sugestões que possa ter, visto que são aspetos fundamentais para a melhor compreensão do
problema e por consequência da solução. Quero ainda pedir-lhe que exponha qualquer dúvida
que tenha a qualquer momento.

Dito isto, tem alguma questão até agora?

Então antes de começarmos vou só pedir-lhe que leia e assine este formulário de consentimento
relativamente à participação neste estudo. < Pedir para assinar consentimento >

< Realizar Questionário Até Secção de Tecnologia >

Como dito anteriormente, o objetivo é desenvolver um método de escrita para smartwatches, o
que quer dizer que ao longo deste estudo vamos utilizar um. Caso não tenha conhecimento, um
smartwatch é um relógio com ecrã tátil que permite realizar algumas das mesmas tarefas que
um smartphone < dar smartwatch e pedir para colocar o mais justo possível de forma a que
fique confortável no pulso >. Este smartwatch em particular tem, para além de uma face tátil,
dois botões do seu lado direito. O seu ecrã tátil apresenta, apesar de não ser palpável, um
rebordo que o limita antes do fim do relógio em si. Este rebordo é pequeno o que acaba por não
ter grande efeito no uso do smartwatch, no entanto vou pedir-lhe que tente não começar ou
acabar os gestos mesmo no limite do ecrã do relógio <se necessário mostrar demo app> <
tentar indicar quais os limites do smartwatch e se necessário a localização dos botões >. Pode
colocar os braços na posição que lhe parecer mais confortável para usar o relógio. Antes de
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prosseguirmos, vou fazer-lhe mais algumas perguntas, neste caso, relativas a dispositivos
tecnológicos < voltar para questionário >.

Antes de começarmos a sessão de recolha de gestos, vamos perceber um pouco melhor o que
quer dizer escrever em Braille usando gestos ou desenhando formas. Braille consiste num
sistema de escrita tátil, em que cada caractere é representado por um conjunto de pontos
levantados numa célula, e cada célula Braille é composta por duas colunas de 3 pontos cada. Se
pensarmos em unir os pontos utilizados para representar algum caractere, com um traço
apenas, passando uma única vez por cada ponto, é possível imaginarmos uma forma aberta. É
essa a forma que pretendemos que utilize para inserir os caracteres que lhe pedirmos.

Até aqui, alguma dúvida?

Iremos começar com uma pequena sessão de treino de cerca de 5 minutos para que se habitue
ao relógio e a esta nossa abordagem, e de seguida iremos prosseguir para o estudo
propriamente dito. Em ambas as sessões vou-lhe pedir para desenhar padrões Braille
equivalentes a determinados caracteres. Para o fazer, pode fazer um gesto com o dedo no ecrã,
da forma que lhe parecer mais ágil e intuitiva possível, começando no sítio que quiser e com a
orientação que quiser, desde que comece e termine a forma dentro dos limites do ecrã.
Vai começar por ouvir uma letra dita pelo relógio e de seguida vai-me dizer que letra ouviu. Após
o fazer, eu irei ativar o ecrã e poderá então desenhar a forma correspondente à letra. Quando
completar a forma total, vou-lhe pedir que descanse a mão na mesa de forma a saber que
terminou. Caso se tenha enganado a tocar no ecrã e queira refazer a letra basta dizer.
Este processo vai ser repetido até passarmos pelas letras pelo menos uma vez.
A qualquer momento esteja à vontade para perguntar caso tenha alguma dúvida.

Vamos então começar a nossa sessão de treino.
< Treino: A B D G K M O R U X Z (repetir se necessário ou usar outras letras) >
< Aprox. 5 min >

Vamos agora dar então início à recolha em si. Tal como na sessão de treino ser-lhe-ão lidas letras
através do smartwatch, as quais lhe vou pedir que repita para depois desenhar. O resto do
processo é o mesmo, no entanto desta vez iremos desenhar todas as letras do alfabeto inglês e
uma forma que será um círculo. Se a algum momento precisar de fazer uma pausa, não hesite em
pedir.
Alguma questão?

< Estudo: Todas as letras - 2 Iterações >

Para terminar o estudo, vou-lhe só fazer algumas perguntas de forma a obter a sua opinião em
relação a alguns aspetos, e de seguida terá a oportunidade de, se quiser, deixar os seus
comentários em relação a todo este processo.

< voltar para questionário >

< FEEDBACK SESSION >
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## This script is performed alongside 2 questionnaires/forms
## Questionnaire 1: https://forms.gle/umNJeuyd9J35njfF8
## Questionnaire 2: https://forms.gle/6g1WUdzMxrj4HPvN6

Take notes of what feels relevant

< Iniciar ambas as aplicações >
< Iniciar cronômetro >

Bom/Boa dia/tarde/noite,

Muito obrigado por ter aceite participar neste estudo, esperamos que corra tudo da melhor
forma e que seja uma experiência o mais agradável possível para si.
O meu nome é Pedro Marques, sou estudante de mestrado em Engenharia Informática na
Faculdade de Ciências da Universidade de Lisboa, e estou aqui hoje acompanhado pelo Professor
Tiago Guerreiro que é o orientador responsável por este projeto.

Antes de mais deixe-me perguntar-lhe se tem preferência que eu utilize algum dos termos
“pessoa cega”, “pessoa invisual” ou outro que lhe faça sentido?

Este estudo faz parte da minha dissertação que tem como objetivo principal desenvolver e
avaliar um método de escrita para smartwatches para pessoas cegas, através do desenho de
formas que representam caracteres Braille.
Esta etapa do projeto é uma continuação de uma etapa anterior, onde o nosso objetivo foi
recolher o máximo de dados e informação possível focando-se na recolha de gestos/formas
desenhadas representativas de caracteres Braille, bem como comentários ou sugestões dos
participantes.
À semelhança da etapa anterior, nesta etapa vamos também fazer uma recolha de gestos que
representam caracteres individuais, mas vamos ainda recolher frases escritas pelos
participantes sendo então este estudo dividido em 2 partes.
Quero deixar claro que ao longo deste estudo, o nosso foco vai estar sempre na recolha de
informação e na avaliação da nossa abordagem, sendo que nunca o/a iremos avaliar a si. Para
além disso, toda a informação recolhida será tratada única e exclusivamente no âmbito do
projeto e para fins académicos. Deste modo, quero pedir-lhe que partilhe todas as observações e
sugestões que possa ter, visto que são aspetos fundamentais para a melhor compreensão do
problema e por consequência da solução. Quero ainda pedir-lhe que exponha qualquer dúvida
que tenha a qualquer momento.

Dito isto, tem alguma questão até agora?

Então antes de começarmos vou só pedir-lhe que leia e assine este formulário de consentimento
relativamente à participação neste estudo. < Pedir para assinar consentimento >

____________________________________ETAPA 1_____________________________________

NO CASO DE PARTICIPANTES QUE NÃO PARTICIPARAM NO ESTUDO ANTERIOR
< Realizar Questionário Até Secção de Tecnologia >
________________________________________________________________________________

Como dito anteriormente, o objetivo é desenvolver um método de escrita para smartwatches, o
que quer dizer que ao longo deste estudo vamos utilizar um. Caso não tenha conhecimento, um
smartwatch é um relógio com ecrã tátil que permite realizar algumas das mesmas tarefas que
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um smartphone < dar smartwatch e pedir para colocar o mais justo possível de forma a que
fique confortável no pulso >. Este smartwatch em particular tem, para além de uma face tátil,
dois botões do seu lado direito. O seu ecrã tátil apresenta, apesar de não ser palpável, um
rebordo que o limita antes do fim do relógio em si. Este rebordo é pequeno o que acaba por não
ter grande efeito no uso do smartwatch, no entanto vou pedir-lhe que tente não começar ou
acabar os gestos mesmo no limite do ecrã do relógio <se necessário mostrar demo app> <
tentar indicar quais os limites do smartwatch e se necessário a localização dos botões >. Pode
colocar os braços na posição que lhe parecer mais confortável para usar o relógio. Antes de
prosseguirmos, vou fazer-lhe mais algumas perguntas, neste caso, relativas a dispositivos
tecnológicos < voltar para questionário >.

Antes de começarmos a sessão de recolha de gestos, vamos perceber um pouco melhor o que
quer dizer escrever em Braille usando gestos ou desenhando formas. Braille consiste num
sistema de escrita tátil, em que cada caractere é representado por um conjunto de pontos
levantados numa célula, e cada célula Braille é composta por duas colunas de 3 pontos cada. Se
pensarmos em unir os pontos utilizados para representar algum caractere, com um traço
apenas, passando uma única vez por cada ponto, é possível imaginarmos uma forma aberta. É
essa a forma que pretendemos que utilize para inserir os caracteres que lhe pedirmos.

Até aqui, alguma dúvida?

Iremos começar com uma pequena sessão de treino de cerca de 5 minutos para que se habitue
ao relógio e a esta nossa abordagem, e de seguida iremos prosseguir para o estudo
propriamente dito. Em ambas as sessões vou-lhe pedir para desenhar padrões Braille
equivalentes a determinados caracteres. Para o fazer, pode fazer um gesto com o dedo no ecrã,
da forma que lhe parecer mais ágil e intuitiva possível, começando no sítio que quiser e com a
orientação que quiser, desde que comece e termine a forma dentro dos limites do ecrã.
Vai começar por ouvir uma letra dita pelo relógio e de seguida vai-me dizer que letra ouviu. Após
o fazer, eu irei ativar o ecrã e poderá então desenhar a forma correspondente à letra. Quando
completar a forma total, vou-lhe pedir que descanse a mão na mesa de forma a saber que
terminou. Caso se tenha enganado a tocar no ecrã e queira refazer a letra basta dizer.
Este processo vai ser repetido até passarmos pelas letras pelo menos uma vez.
A qualquer momento esteja à vontade para perguntar caso tenha alguma dúvida.

Vamos então começar a nossa sessão de treino.
< Treino: A B D G K M O R U X Z (repetir se necessário ou usar outras letras) >
< Aprox. 5 min >

Vamos agora dar então início à recolha em si. Tal como na sessão de treino ser-lhe-ão lidas letras
através do smartwatch, as quais lhe vou pedir que repita para depois desenhar. O resto do
processo é o mesmo, no entanto desta vez iremos desenhar todas as letras do alfabeto inglês e
uma forma que será um círculo. Se a algum momento precisar de fazer uma pausa, não hesite em
pedir.
Alguma questão?

< Estudo: Todas as letras - 2 Iterações >

Para terminar esta primeira  etapa, vou-lhe só fazer algumas perguntas de forma a obter a sua
opinião em relação a alguns aspetos, e de seguida terá a oportunidade de, se quiser, deixar os
seus comentários em relação a todo este processo.

< voltar para questionário >
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____________________________________ETAPA 2_____________________________________

Nesta segunda etapa, o objetivo é, utilizando os mesmo gestos/formas que utilizou na primeira
etapa, que escreva um conjunto de frases aleatórias que lhe vão ser ditas. Tal como na primeira
etapa iremos começar com uma pequena sessão de treino para que se habitue a esta nova
metodologia, e de seguida iremos prosseguir para o estudo propriamente dito. Em ambas as
sessões vou-lhe pedir para desenhar padrões Braille como anteriormente, mas de forma a que
componha frases.
Vai começar por ouvir uma frase dita pelo relógio e de seguida vai-me dizer que frase ouviu.
Após o fazer, eu irei ativar o ecrã e poderá então escrever a frase. Vai fazê-lo desenhando uma
forma de cada vez no ecrã. Para dar um espaço entre palavras, poderá dar dois toques rápidos
no ecrã, e para apagar alguma letra, basta ficar a clicar no ecrã até ouvir um som respetivo.
Quando acabar a frase, pode dar novamente dois toques de forma a confirmar.
Este processo vai ser repetido até passarmos pelas frases todas.
Se a algum momento precisar de fazer uma pausa, não hesite em pedir.
Alguma questão?

Vamos então começar a nossa sessão de treino.
< Treino: 2 frases aleatórias (repetir se necessário) >
< Aprox. 10 min >

Vamos agora dar então início à recolha em si. O procedimento é o mesmo que o da sessão de
treino. Se a algum momento precisar de fazer uma pausa, não hesite em pedir.
< Estudo: 3 frases aleatórias >

< Realizar Questionário 2ª Etapa>

< FEEDBACK SESSION >
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