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Abstract 
 

New designs of user input systems have resulted from the developing technologies and 

specialized user demands. Conventional keyboard and mouse input devices still dominate 

the input speed, but other input mechanisms are demanded in special application 

scenarios. Touch screen and stylus input methods have been widely adopted by PDAs 

and smartphones. Reduced keypads are necessary for mobile phones. A new design trend 

is exploring the design space in applications requiring single-handed input, even with 

eyes-free on small mobile devices. This requires as few keys on the input device to make 

it feasible to operate. But representing many characters with fewer keys can make the 

input ambiguous. Accelerometers embedded in mobile devices provide opportunities to 

combine device movements with keys for input signal disambiguation. Recent research 

has explored its design space for text input. 

 

In this dissertation an accelerometer assisted single key positioning input system is 

developed. It utilizes input device tilt directions as input signals and maps their sequences 

to output characters and functions. A generic positioning model is developed as 

guidelines for designing positioning input systems. A calculator prototype and a text 

input prototype on the 4+1 (5 positions) positioning input system and the 8+1 (9 positions) 

positioning input system are implemented using accelerometer readings on a smartphone. 

Users use one physical key to operate and feedbacks are audible. Controlled experiments 

are conducted to evaluate the feasibility, learnability, and design space of the 

accelerometer assisted single key positioning input system. This research can provide 

inspiration and innovational references for researchers and practitioners in the positioning 

user input designs, applications of accelerometer readings, and new development of 

standard machine readable sign languages.   
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Chapter 1 

  

Introduction 

 
The advances of digital technology have brought pervasive computing devices into 

people's daily lives. With devices getting smaller and smaller, the display screen and 

input mechanisms must also shrink. This has presented a dilemma on the interface design. 

On the one hand, smaller devices are good because users can carry them anywhere and 

hold them with one hand. On the other hand, the small size of the interface makes user 

interactions harder. The traditional user input such as the keyboard and mouse is 

generally impractical for these small devices. On mobile phones, keypads with reduced 

keys are used to input text. On PDAs and smartphones, gesturing and touch screen 

techniques are used to input text. On some smaller devices like the music device, the iPod 

Shuffle, there is no screen and users can only make sequential or random selections by 

using a few buttons. User input on such small devices is a challenge, and generally the 

functionality of the device is limited. 

 

Text input is one medium for providing increased functionality on small devices.  For 

example, text input methods would enable the searching of tunes on the iPod Shuffle.  

One handed input may be advantageous on small devices. If the device does not have a 

screen then visual feedback is not possible and eyes free input would be advantageous.  
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One-handed eyes-free text input technique would not only benefit small devices, but it 

could also benefit users in special environments and users without sight or with other 

disabilities.  For text input using a large wall display (1,2), non-visual feedback during 

walking (3,4), and applications for users with disabilities (5-8), one-handed eyes-free 

input could be advantageous. A study (9) showed that most mobile phone users prefer 

operating the phones with only one hand because the other hand is not available. In some 

fieldwork or military applications, one-handed eyes-free user input could be required. 

 

In this dissertation, we seek to design a one-handed eyes-free text input technique. We 

will develop a generic model to assist in designing and evaluating the limited key 

representation of a larger character set. Using the traditional keyboard, one character is 

represented by one or a combination of two keys. A mode change permits the same key 

to represent either the lowercase or uppercase. Consequently, there is no uncertainty of 

the input for any keystroke using the traditional keyboard, but representing multiple 

characters with fewer keys ambiguity becomes a problem. The model is based on a 

modified finite state automaton and helps to resolve the potential problem of ambiguity in 

character mappings. We will present a positioning input model and implement the text 

input using only one key and one accelerometer. Also, we eliminate the need for a screen 

or visible feedback by using audible feedback. The sequence of device tilt positions can 

be used for both text and command input. We call this single key tilt input technique 

YAUIM (Yet Another User Input Method) (10). 

 

In this research, data input is via a handheld device with a built-in tri-axial accelerometer. 

A tri-axial accelerometer detects accelerations in three dimensions in real time. The 

device tilt positions are derived from the accelerations and mapped to characters. 

However, the number of tilt positions is limited because tilt orientations could be hard for 

users to classify accurately. This research limits the tilt directions to up, front, back, left, 

right and four diagonal directions in the horizontal space. The modified finite state 

automaton model will assist with the design and analysis of character formations. In our 
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implementation, two consecutive tilt positions represent one character. Another challenge 

for the technique is that accelerometer readings are noisy. All the vibrations are recorded  

by accelerometers, so unintentional movements will interfere with the intended input. Tilt 

reading can also be difficult without delineating the boundaries between consecutive tilts. 

Our technique uses a single keystroke (pressing a button on the device) to delineate the 

tilt directions. Another challenge is insuring that the technique is easy to learn and simple 

to perform, otherwise hand movements can be tiresome and make the mechanism 

inapplicable. Consequently, we develop the technique on the common tilt directions 

familiar to users. 

 

This dissertation is in four phases. First, a literary review examines small device input 

techniques and one handed eyes free input techniques. Second, a modified finite state 

automaton is developed to represent character input based on limited input positions or 

keys. Third, accelerometer readings are analyzed in order to implement the automaton 

model. Fourth, controlled user and usability experiments [IRB approval number M0565] 

of the implementation space and system performances are presented and analyzed. 
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Chapter 2 

 

Background and Related Work 

 
2.1 Demands on Alternative Text Input Mechanisms 

 
While people can use conventional keyboard and mouse input for desktop and laptop 

computers, they may need different input techniques while standing or moving during a 

presentation, or in fieldwork.  Also, special users such as people with disabilities may 

need unconventional input methods. Research has been conducted to enable user input 

via hand gestures, head movements, foot steps, voice, etc. 

 

Here are some examples of interface designs for special application scenarios. Mid-air (1) 

and Soap-mid-air (2) proposed to manipulate objects on a large wall display using a 

handheld device. In their research, the pointing positions are detected by built-in light 

sensors and mapped to the screen objects. TwoStick (11) uses a game controller for text 

input for video games. Touch-wheel (12) designed a one-handed input on a touch-wheel 

device. Watch-top (13) tried to enable text entry with five keys on watch-like devices by 

enabling dictionary predictions. DistScroll (14) used an infrared light sensor to detect 

user-device distance to scroll the menus on the screen. SCURRY (15) designed a hand 
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wearable device with native accelerometers and detected hand and finger movements for 

inputting. Foot-Step (3) used foot steps to operate the user input system for music menu 

selection. ToothClick (5) used head movements to enable screen selections for 

handicapped people. All these input mechanisms have addressed special needs for 

unconventional user input. 

 

2.2 Research on Text Input with Various Media 

 
Among the novel input designs and developments, hand-held user input devices have 

been broadly studied (1,2,12-14,16) to support the demands of pervasive computing. 

Many of these designs have focused on mobile phone applications. Text input on mobile 

phones is necessary for text messaging. Non-texting users would still need to input text 

for example while recording names with phone numbers. On the mobile phone keypad, 

the English letters, numeric digits, and special symbols are designated using only 12 keys. 

The keys are labeled with four or five characters, e.g., key 2 is labeled with `2', `a', `b', 

and `c', and key 9 is labeled with `9', `w', `x', `y', `z'. The usual usage, called multi-tap, 

uses consecutive taps to designate the specific character. Hence each character input 

requires one to five keystrokes, i.e., the performance is between 1 to 5 KSPC (keystrokes 

per character).  Alternative methods to disambiguate keypad input are TiltText (17) 

which uses the combination of keys and phone tilt angles and T9 (18) which uses the 

sequence of keystrokes to predict user input. These techniques have illustrated that fewer 

key input is possible and performance can be enhanced by using dictionary predictions. 

 

Researchers have designed text input with fewer than 12 keys. Bellman and Mackenzie 

(19) studied the feasibility of five keys input with various layouts of letters. Evreinova et 

al. (6) presented a four key input design achieving an average of 3-5 WPM (words per 

minute). MacKenzie (20) studied a three key setup which uses two arrow keys to 

maneuver a cursor over a linear sequence of characters, and uses one key to select the 
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desired characters. The average KSPC can be up to 10.66. Most of the few key designs 

are based on navigating followed by selecting. These techniques usually suffer from a 

high navigation overhead. They can be enhanced by optimizing the layout of the 

characters so that there is lower KSPC and learning time. 

 

Some small device input designs are based on touch screen interactions. Users select an 

object either directly on the touch screen or indirectly by a sequence of operations. An 

example is AppLens and LauchTile (16). It presented a one-handed thumb interaction 

technique on small mobile devices for a zooming interface that provided multiple views 

of application data. It utilized thumb gestures on the screen to activate the various 

functions. Like AppLens and LauchTile, most text input techniques on touch screen use 

finger gestures. Other techniques use interactions via the accelerometers to select objects 

or characters on the screen. Unigesture (21) is an input technique based on accelerometer 

interaction. It uses a sequence of tilt positions to predict words, but does not input 

individual character or words not in the dictionary. 

 

The involvement of accelerometers and touch screen in user input design brought new 

opportunities for small mobile device operations. Native accelerometers in small devices 

can be used to analyze device movements and tilts (10,22), or to observe gestures with 

the device (4,23). The gestures and tilts have been used for controls in games (24), 

monitoring physical activity (22), operations on the mobile phone (25), menu selections 

(3,26), and text input (10,17). Gestures are natural for simulating sports like in Wii sport 

games. Gestures have limitations when applied to text input because they are less reliable 

and error prone (23). Tilting inputs are relatively reliable (27), but the number of tilt 

directions is limited. Some approaches have tried to use multiple keys to combine with 

the tilt operations (17,18) to use a sequence of operations and checking the dictionary for 

the meaning of user input (21), or to use multi-level selection (29). 
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2.3 Development of One-Handed Eyes-Free Text Input 

 
Some recent developments on small device input have explored one-handed eyes-free 

input techniques (10,30,31). One handed eyes-free input is important on small devices 

because many mobile phone users use one hand inputs while the other hand is occupied 

(9). Smaller devices such as iPod Shuffle does not have a screen, consequently an eyes-

free input technique is necessary.  One-handed eyes-free text input technique would not 

only benefit small devices, but could also benefit users in special working environments 

and users without sight. One technique for one-handed eyes-free input is to use audible 

feedback instead of visual feedback. No-look (30) and VoiceOver (31) both used audio 

feedback and implemented one-hand eyes-free input on smartphones. VoiceOver built the 

full QWERTY soft keyboard on screen. When a finger touches a key on the screen the 

letter is pronounced and a second tap on the screen confirms the selection. No-look 

pursued a multi-touch method in a multi-level selection technique. VoiceOver achieved 

an input speed of 0.76 WPM and No-look gained 1.67 WPM (30). 

 

Small devices appear to have lower input speed and lower WPM than what can be 

achieved on a conventional keyboard input. Many techniques have explored enhancing 

the input speed (18,32-37). Many techniques use input context to predict the user 

complete input, for example T9 (18) and LetterWise (32). T9 is a very popular technique 

for texting on the mobile phone. Potentially users can type a word with only one 

keystroke for one letter. With the help of preloaded dictionary, T9 provides a guessed 

word from the keystroke sequences. When two or more words have the same keystroke 

sequences, the system could offer the user an option to select the desired word. 

LetterWise uses prefixes of the user input to guess the intended letter. A prefix is formed 

by the letters preceding the current keystroke. The next letter is suggested based on the 

probabilities of letter sequences in a language. These speed enhancements are 

supplementary to many input mechanisms and can be adopted by many input designs. 
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YAUIM (10) uses a single key combined with tilt positions to input characters and 

commands. Many applications, which require short text input, phone number dialing, 

calculation, etc. could use YAUIM input technique. Novice users achieved 2.8 WPM in 

their first hour of use.  In a calculator application, a speed of 33.4 seconds per calculation 

was achieved by novice users for five digits calculation.  
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Chapter 3 

 

Single Key Positioning Input Systems 

 
For an input system, the input signals can be any readings from the device operated by 

user. The output can be a text character, a menu selection, or any other response to the 

system. The mapping from input signal to output response can be a one-to-one mapping 

or a many-to-many mapping depending on the number of unique input signals and the 

number of unique output responses. The full QWERTY keyboard maps each key to a 

specific English letter or a special symbol depending on the input mode. A mobile phone 

keypad uses the same key to represent multiple characters. A measure of efficiency for 

keyboards or mobile keypads is keystrokes per character (KSPC) (38). Lower KSPC 

implies more efficient inputs. An experimental measurement of performance is the words 

per minute (WPM). Assuming an average of five characters per word, WPM can be 

estimated by dividing five into the number of characters inputted in one minute. In this 

study, tilt positions of the input device are used to input characters. A single key is used 

to designate a position. 

 

This chapter is organized as follows. First, general input-output mapping methods are 

described and the corresponding output cost is discussed. Second, the clockwise 

composition rule for inputting is explained. This rule is applied to two different alphabets, 
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developing the 4+1 and the 8+1 positioning input systems. Third, this chapter explains a 

modified finite state automaton model of the system which assists the design and the 

implementation of the input system. Finally, the applications of the automaton model are 

discussed. 

 

3.1 Input-Output Mappings 

 
Definition 1 Selection-based mapping: Selection-based mapping is an input-output 

mapping where output characters are defined by a sequence of selections from a 

hierarchy of graphical presentations. 

 

Examples of input systems based on selection-based mappings are Bimanual (39), Tilt-

Text (17), MultiTap (28), TiltType (28), GesText (29), No-look (30), VoiceOver (31). 

The primary operations performed by the user during input are selections from a single 

level or multiple levels of graphical presentations. For example in VoiceOver, a single 

level selection-based mapping, users select characters from a layout on the screen. No-

look is a two-level design where characters are inputted by selecting a group then 

selecting a character in the group. In MultiTap a character is inputted by pressing a key 

multiple times until the desired character appears on the screen. 

 

Definition 2 Rule-based mapping: Rule-based mapping is an input-output mapping 

where output characters are defined by rules on combining the sequence of input signals. 

 

Examples of input systems based on rule-based mappings are like Unigesture (21) and 

YAUIM (10). Unigesture uses a sequence of keystrokes to index into a dictionary and 

form words instead of directly forming single characters. YAUIM, the input technique of 

this dissertation, use rules to represent individual characters. 
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The mapping from input to output can be represented by: 

 

Y = f (mode, X1, X2, …, Xi, …, Xn);                                         (3.1) 

 

where Xi (i = 1 to n) is an input signal, Y is an output character, n is the size of the input 

signal sequence for each output, the function f is the conversion rule, and mode denotes 

the input mode. The mode is used to represent lowercase input, uppercase input, special 

symbol input, mouse operation, and calculator, etc. The mode could have been specified 

by the user using the input system. In this case, it is defined by a similar formula.  

 

In rule-based mappings, KSPC is the number of keystrokes to specify the mode plus the 

size of the sequence for an output. In a selection-based mapping, KSPC is the number of 

keystrokes to specify the mode plus the number of levels that are navigated during the 

input. The fundamental difference between selection-based mapping and rule-based 

mapping is how they affect the input devices and operations. In selection-based designs, 

graphical presentations are required. Users input characters by making selections on the 

presentations or layouts represented by the graphics. Consequently, the user must be able 

to see the layouts. In rule-based designs, layouts are not necessary, hence the device does 

not need a screen and can be small. This research pursues a rule-based approach. 

 

3.2 Clockwise Composition 

 
The Positioning Signals. A positioning input system refers to a technique which uses 

positions or orientations of the device as input signals. Every position is an input 

character. The positions can be the tilt orientations or the movement directions of the 

input device. In this study, we use tilt orientations of the input device as the input signals. 
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The Alphabet. For illustration, we will only consider the output character set consisting 

of 26 English letters, 10 numeric digits, 15 punctuation symbols, 14 special symbols, and 

a few special functions, or a subset of these characters. For example, a phone dialing 

application will only need the 10 numeric characters and a few function symbols. A 

simple calculator application will only need the 10 digits and a few operator symbols. A 

note taking application will use more characters and symbols. We call the set of these 

characters in a specific application the alphabet of the application. Hence an alphabet is a 

subset of the output character set for the input system. 

 

To be explicit, the characters and functions in this research are: 

 

1)  26 English letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z 

2)  10 numeric digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

3) 15 Punctuation symbols: period, comma, semicolon, colon, question mark, 

exclamation point, underscore, double quotation marks, apostrophe, left and right 

parentheses, left and right square brackets, left and right curly braces. 

4)  14 Special symbols: @, #, $, %, &, +, -, *, /, =, <, >, |. 

5) Special functions: lower case letter input mode, upper case letter input mode, 

mouse operation mode, punctuation and special symbols input mode, calculator 

mode, backspace, space, selection/enter. 

 

These characters and functions are required for "texting" and note-taking applications. 

Many of the punctuation and special symbols are infrequently used.  We also assume that 

mouse or pointing operations will not be utilized during eyes-free application scenarios. 

We consider the 26 English letters, 10 numeric digits, and 4 common punctuation 

symbols (`,', `.', `?', `!') as the most used characters during text input and design the input 

system for texting applications using this reduced alphabet. 
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Clockwise Composition. To enhance the learning of the mapping of the characters, we 

propose to use the clockwise concept to map the alphabet. The clockwise composition 

refers to the circular layout of the tilt positions. The characters of the alphabet are then 

mapped clockwise on this circle of positions based on either a one-to-one or a many-to-

many mapping rule. 

 

Clockwise composition rule will be used to compose the output alphabet. For our 

positioning input system, every two positions will represent one output character. Using 

the clockwise composition, the 4+1 and 8+1 positioning input systems will be developed 

in the next section. 

 
3.3 Single Key Positioning Input System Models 

 
3.3.1 The 4+1 Positioning Input System 
 

The 4+1 positioning input system has five positions for inputting characters. Relative to 

the users, the five positions are backward, left, forward, right and up. They correspond to 

the directions south, west, north, east, and up, as in a map which is illustrated in Figure 

3.1. 

NORTH

EAST

SOUTH

WEST UP

 
Figure 3.1: The five positions in the 4+1 input system. 
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NORTH

EAST

SOUTH

WEST UP

1

0
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7

4

3

5

2 8

6

 
Figure 3.2: Clockwise number formation using five positions. Every two positions 
represent one number. The formation starts from south and goes clockwise. 
 

 
Our clockwise composition begins in the south position and maps numbers or characters 

to two positions. This clockwise composition is a many-to-many mapping. For example, 

south + south outputs the number 1. Then going clockwise, west + west outputs the 

number 2. The number 3 is inputted by south + west; number 4 is west + south. The north 

+ north input positions correspond to the number 5. The number 6 is west + north, and 

the number 7 is north + west. The composition rule continues clockwise until all 10 

numbers are defined. All the mappings are illustrated in Figure 3.2. The up position is 

reserved for special functions and will be discussed in the experimental studies of the 

application of the 4+1 positioning input system. 

 

3.3.2 The 8+1 Positioning Input System 

 
The 8+1 positioning input system has nine positions for inputting characters. The nine tilt 

positions relative to the user are illustrated in Figure 3.3, and marked as S(south), SW 
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Up

North

South

W
est

E
ast

NW

SESW

NE

 
Figure 3.3: The nine common positions 

 

(south-west), W (west), NW (north-west), N (north), NE (north-east), E (east), SE (south-

east), and U (up). We divide the input position space into four areas: southwest, 

northwest, northeast, and southeast areas. The southwest area includes S, SW, and W tilt 

positions. The northwest area includes W, NW, and N tilt positions. The northeast area 

includes N, NE, and E tilt positions. The southeast area includes E, SE, and S tilt 

positions. We assume that the southwest, northwest, and northeast areas are comfortable 

titling areas for right handed users. 

 

The southwest area is for inputting the letters a, b, c, d, e, f, g, h, and i. The northwest 

area is for inputting the letters j, k, l, m, n, o, p, and q. The northeast area is for inputting 

the letters r, s, t, u, v, w, x and y. The southeast area is for inputting the letter z. Every 

two consecutive tilt positions in an area represent a single letter. Letter input starts from 

south and goes clockwise. To illustrate this clockwise formation, we present the 

following examples: 
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S + S => a 

SW + SW => b 

S + SW => c 

SW + S => d 

W + W => e 

S + W => f 

W + S => g 

SW + W => h 

W + SW => i 

NW + NW => j 

W + NW => k 

NW + W => l 

Etc. 

 

The composition rules are illustrated in Figure 3.4. 

 

Up

North
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D
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OP

Q
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S

T

X

Y

Backspace

Space

 
Figure 3.4: Clockwise letter formation using nine positions. Every two positions 
represent one letter. The formation starts from south and goes clockwise. 
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Figure 3.5: Clockwise number formation using nine positions. Every two positions 
represent one number. The formation starts from south and goes clockwise. 

 

The ten numeric digits are represented by the combinations of opposite and diagonal 

positions and illustrated in Figure 3.5. It starts from the South and goes clockwise as 

follows: 

 

S + N => 1 

SW + NE => 2 

W + E => 3 

NW + SE => 4 

N + S => 5 

NE + SW => 6 

E + W => 7 

SE + NW => 8 

SW + NW => 9 

NW + SW => 0 
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The combination of positions NW, NE and SE form the punctuation symbols: `,', `.', `?', 

and `!': 

 

NW + NE => , 

NE + NW => . 

NE + SE => ? 

SE + NE =>  

 

Combining the up position (U) with other tilt positions denotes special functions. South 

followed by U enables lowercase input mode. West followed by U enables uppercase 

input mode. North followed by U enables the special symbol input mode. East followed 

by U enables the calculator mode which is an application for calculation. U followed by 

west denotes backspace. U followed by east denotes suggested word selection or Enter. 

Both of lower and upper letter input modes include the numeric digits and the four 

punctuation symbols input. In the character input mode, two consecutive U positions 

denote a space character. 

 

The mappings of all the characters are designated in Table 3.1. Uppercase letters and 

lowercase letters are inputted using separate input modes, so similar tilt combinations are 

used to represent uppercase letters. The mappings for uppercase letters along with the 

numeric digits and four punctuation symbols are listed in Table 3.2. The mappings for the 

special symbols are listed in Table 3.3. The numbers and math operators are listed in 

Table 3.4. 
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Table 3.1 
The mapping of the lowercase letters, numerical digits, and punctuation 
symbols 

 
 S SW W NW N NE E SE U 

S a c f  1    lowercase 

SW d b h 9  2    

W g i e k n  3  uppercase 

NW  0 l j p ,  4  

N 5  o q m s v  symbols 

NE  6  . t r x ?  

E   7  w y u  calculator 

SE    8  !  z  

U   <=      space 

 
 

Table 3.2 
The mapping of the uppercase letters, numeric digits, and punctuation 
symbols 

 
 S SW W NW N NE E SE U 

S A C F  1    lowercase 

SW D B H 9  2    

W G I E K N  3  uppercase 

NW  0 L J P ,  4  

N 5  O Q M S V  symbols 

NE  6  . T R X ?  

E   7  W Y U  calculator 

SE    8  !  Z  

U   <=      space 
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Table 3.3 
The mapping of the punctuation symbols and special symbols 

 
 S SW W NW N NE E SE U 

S . ; !  =    lowercase 

SW : , “         

W _    ?  ) {     uppercase 

NW    ( @ [      

N |   } ] # + *  symbols 

NE      - $ >    

E      / < %  calculator 

SE          &   

U   <=      space 

 
 

 
Table 3.4 

The mapping of the numbers and math operators at calculator mode 
 

 S SW W NW N NE E SE U 

S +    1    lowercase 

SW    9  2    

W   -    3  uppercase 

NW  0      4  

N 5    *    symbols 

NE  6    =    

E   7    /  calculator 

SE    8      

U   <=      space 
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3.4 The Modified Finite State Automaton Model 

 
Finite state automaton is a tool to parse regular languages. It is formally defined by a 5-

tuple (Q, Σ, δ, q0, F) (40). We modify the finite state automaton formalism in order to 

explain the parsing of our clockwise composition input system. The modified finite state 

automaton model is represented by a 7-tuple (Q, Σ, δ, q0, F, f, Ω). Σ denotes the input 

character set.  Ω will denote the output character set. In an accept state, the conversion 

rule, f, is applied to the accepted input characters producing output characters. 

 

Definition 3 The finite state automaton for the positioning input system is defined as a 

7-tuple (Q, Σ, δ, q0, F, f, Ω), where 

1. Q is the finite state set 

2. Σ is the input character set 

3. δ: Q x Σ -> Q is the transition function 

4. q0 is the start state 

5. F is the accept states set 

6. f is the conversion rule to convert the input character into the output character 

7. Ω is the output character set 

 

A finite state automaton can be described by a directed graph G = (V, E), where V are the 

vertices and E are the edges of the graph G. Every vertex represents a state where the 

device waits for a new user input. Every edge represents what state the specific user input 

will lead to. When a user inputs a character, the system is triggered into a new state. We 

label the output actions by using the notation from the study of Sandnes (41). If an input 

character `S' triggers an `a' to output, it is denoted as S:a. If there is no output for the 

input character `S', then it is designated by S:. 
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Figure 3.6: A directed graph for the finite state automaton representation of the 8+1 
positioning input system. The 8+1 positions input system is depicted as a hierarchical 
nested finite state automaton. 
 

 

The 8+1 positioning input system is depicted as a hierarchical nested finite state 

automaton in Figure 3.6.  The START state is the top most node. The second level nodes 

are represented with large rectangular symbols which are the input modes. The lower 

level nodes, represented by square symbols, are for the character transition states and 

ACCEPT states. The crossed circles represent the ACCEPT states. Small circles are 

equivalent points. The symbol ε denotes transitions without any input. H denotes an input 

of the horizontal position such as S, SW, W, NW, N, NE, E, and SE. P denotes H and 

U(up) positions. OUT denotes any output character. Unique to this finite state automaton 

model is that the ACCEPT state will use conversion tables to translate the sequence of 

two positions into an output character or an operation. 
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3.5 Evaluation of the Finite State Automaton Application to 

the Positioning Input System 

 
The finite state automaton is designed to accept any user input. Hence there is no error 

state. If the user inputs are parsed as undefined in the conversion table, the automaton 

will move to the beginning of the input mode. The finite state automaton can help design 

the positioning input system. First, it can verify the correctness of the design. Second, it 

can help manage the system input modules. Third, it can assist in designing an efficient 

system. 

 

Correctness Study. Correctness implies full coverage of the output alphabet. In another 

word, for every character in the alphabet, there must be a path from START to an 

ACCEPT state. In order to create the alphabet after the START state, there must be a path 

from any one state to any other state. In this way, a character could be inputted without 

going to the START state. The full coverage could be verified by applying a recursive 

depth-first marking algorithm to traverse the directed graph of the finite state automaton. 

 
Algorithm 1 Depth-first-marking 

 

Upon input graph G = (V, E) and a vertex v, 

Mark v as visited. 

For each outgoing edge (v, w) of v do 

if w has not been visited then 

Recursively call Depth-first-marking(G, w). 

 

Flexibility Study. The finite state automaton can be used to manage the input modules. 

From the graph representation of Figure 3.6, it is apparent that sub-graphs can be added 

to the graph. The sub-graphs represent new input modules. The top level states are like 
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the index into the automaton modules and corresponding lower level states form the 

components of each module. This representation reflects an object oriented software 

design. Consequently, the finite state automaton model can be used as a guide during the 

software development. 

 

Efficiency Evaluation. The finite state automaton graph illustrates that two input 

characters (positions) create one output character, if the input mode does not change. If 

the input mode changes then the cost for character formation increases. Hence the 

average character cost in the system is expected to be slightly above two input operations. 
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Chapter 4 

 

Accelerometer Assisted Single Key 

Positioning User Input 

 
A static tri-axial accelerometer detects gravity. When the accelerometer is tilted into 

different positions the total gravity remains the same, but the values from the individual 

axes change. Consequently, the values of the three axes can determine the tilting 

direction.  This chapter explores capabilities of accelerometers to implement the single 

key positioning input systems. 

 

Figure 4.1 depicts possible YAUIM devices embedded with accelerometers. The first is a 

joystick which could be used for regular desktop computing. The second one is a pen 

computing device with onboard storage and wireless communication. The pen could be 

used for remote input device during presentation using a large display (11). The third is a 

small mobile device with embedded accelerometer systems. 
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Figure 4.1: Accelerometer embedded devices that can use the YAUIM technique.  

4.1 Single Key Triggered Positioning Signal Selection 
 
Figure 4.2 displays the readings of the three axes while the tri-axial accelerometer is held 

upward during 16 seconds. The Z axis signal varies around 9.8 m/s² average value. The X 

and Y signals vary around their average values close to zero. Filtering the signal can 

remove the variations in the signal. 

 

 
 

Figure 4.2: Accelerometer readings when the device is held upward at rest. On the 
average, the Z axis has the value of gravity and values of X and Y axes are close to zero 
(unit: m/s²) 
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The small deviations, noise signals, are uniformly distributed along the 16 seconds. We 

can average the signal over a short period of time TICK to filter the noise and determine 

valid signal S: 

 

                                            (4.1) 

 

where t0 denotes the moment of the key press. S(t) is the accelerometer reading at time t. 

S is the mean value in the period of TICK, and it will be used for the individual readings 

of the three axes. The optimal TICK is determined by the specific device and determined 

experimentally. 

 

4.2 Determining Tilt Positions 

 
Generally, relative measurements are more reliable than absolute measurements. Relative 

measurement from two or more sensors can compensate for instrument bias and 

environmental effects, while an absolute measurement from a single sensor requires strict 

control of undesired effects. For example differential amplifiers are far more effective at 

eliminate noise than single input amplifiers. We prefer to develop an orientation 

measurement technique that does not rely on the absolute value of gravity, but rather 

determines the orientation from the ratio of two accelerometer readings. 

 

We denote the value of gravity by g. The readings from three axes are x, y and z. They 

have the following relationship: 
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The technique requires that the up direction (z-axis) coincides with the direction of 

gravity. When the device points to the left (west), and the tilt is 90 degrees, x is equal to g. 

When the device points forward (north) and the tilt is 90 degrees, y has the value of g. In 

general, when the device tilts to the left an angle of θ, the value of x is gsin(θ), z is equal 

to gcos(θ) and y is zero. When the device tilts forward an angle θ, y is equal to gsin(θ), z 

is equal to gcos(θ), and x is zero. Similarly, when the device tilts to the right (east) or 

back (south) at the angle of θ, x and y are equal to -gsin(θ) respectively, while z is equal 

to gcos(θ). 

 

When the device is tilted to the front left (northwest) with an angle θ, z becomes gcos(θ) 

and x and y become gsin(θ) /2. When the device is tilted to other diagonal directions 

with the angle θ, x and y will become correspondingly negative but with absolute value 

gsin(θ) /2. 

 

To derive the tilt direction from the readings of three axes, we assume that the tilts angle 

is no more than 90 degrees. We can ignore the value of z, and conclude that if x is greater 

than zero while y is zero then the device is tilted to the left. If y is greater than zero and x 

is zero then the device is tilted forward. If x equals y and both values are positive then the 

device is tilted to the front left and so on. This suggests an approximation algorithm, 

when x and y are non-vanishing and unequal.  For example, if x is greater than y and both 

are positive, we can conclude that the device points between the left and front left. 

 

As a special case, we divide the device tilts space evenly into eight horizontal regions. 

The eight directions are at the center of each region, as illustrated in Figure 4.3. Assume 

that the device tilts to some region with angle of θ and points with an angle of φ, 

clockwise away from the south axis as illustrated in Figure 4.4. Table 4.1 shows the 

expected accelerometers signals and reveals the correspondence between the values of φ, 

x, y, and the regions. 
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Figure 4.3: Eight regions seen in the horizontal space when divided evenly. 
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Figure 4.4: Accelerometer embedded device tilting relative to the up orientation. The 
angle φ is relative to south and goes clockwise. 

 
Table 4.1 

The set of values of φ, x, y, z and the corresponding regions 
 

φ -/8,/8 /8,3/8 3/8,5/8 5/8,7/8 7/8,9/8 9/8,11/8 11/8,13/8 13/8,-/8  

x gsinθsinφ gsinθsinφ gsinθcosφ gsinθcosφ gsinθsinφ - gsinθsinφ - gsinθcosφ - gsinθcosφ 0 

y -gsinθcosφ - gsinθcosφ gsinθsinφ gsinθsinφ gsinθcosφ gsinθcosφ gsinθsinφ - gsinθsinφ 0 

z gcosθ gcosθ gcosθ gcosθ gcosθ gcosθ gcosθ gcosθ g 

Region S SW W NW N NE E SE U 
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Table 4.2 
The set of absolute value of the ratio of x over y, their signs and the 
corresponding regions 
 

φ -/8,/8 /8,3/8 3/8,5/8 5/8,7/8 7/8,9/8 9/8,11/8 11/8,13/8 13/8,-/8  

x  + + +  - - - 0 

y - -  + + +  - 0 

Region S SW W NW N NE E SE U 

 
 

We state that the relative values of x, y along with their signs define the zone which the 

device tilts to. The z values are the same across horizontal positions for the same tilt 

angle θ. Therefore the azimuth tilt position is independent of z. The ratio of x and y 

defines the angle; their signs determine the region. Hence the absolute value of gravity g 

is not a factor because it is eliminated in the ratio of x and y. The angle φ determines the 

region. We display the truth values in Table 4.2 to decide the region that the device points 

to by evaluating the ratio of x over y and their signs. 

 

In Table 4.2, for the x and y fields, the ‘+’ or ‘-’ for the x and y fields denote the signs of 

x and y. A blank space in a field means Don't-care, which could be either `+', or `-', or 

zero. 

 

The truth table requires both x and y to be zero for the up position, which is not 

applicable in reality. In order to make the system feasible for the up position, we define a 

minimum of angle θ’ as a valid device tilts. We use the threshold that x and y greater than 

min = gsinθ’ to determine significant tilting away from the vertical. The up position 

serves as the base position from which all tilts are oriented. This requires us to give 

special consideration to the size of the up region. If the size of the up region is small then 

it is easier to tilt to the other positions from the up position. It also reduces the movement 

tilt amplitude from one tilt position to the next tilt position. The disadvantage of a small 

up region is that it might be hard to locate, while a large up region would be easy to 

locate. In the experiment, we will explore the reasonable value of θ’ for the up zone. 
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Table 4.3 
Tilt angle ranges, signs of x and y, and the corresponding regions 

 
φ φ1, φ2 φ3, φ4 φ5, φ6 φ7, φ8 φ9, φ10 φ11, φ12 φ13, φ14 φ15, φ16  

x  + + +  - - - 0 

y - -  + + +  - 0 

Region S SW W NW N NE E SE U 

 
 

As a conclusion, the following algorithm is used to decide the tilt position using the 

accelerometer readings. 

 

Algorithm 2 Determining the tilt positions 

Upon detecting a user input of (x, y): 

If y = zero, 

then y = min/10.0; 

If |x| <= min && |y| <= min, 

then sign(x) = 0, sign(y) = 0; 

Check the truth table, 

Return region(arctangent(x/y), sign(x), sign(y)).  

 

In our implementations, the regions can have different sizes. In that case, only the angular 

range in the first row of Table 4.1 needs to change, and the values of the first row in 

Table 4.2 will change accordingly by applying the tangent calculations. In a usability 

experiment, we will study the varying region sizes. The truth table can be derived from a 

table like Table 4.3, where φ denotes the tilt angles relative to the south axis. 

 

4.3 Accelerometers' Effects during Clicking 
 

This section inspects the accuracy of the accelerometer tilt measurements during clicking. 

In Liu et al.'s (23) technique the device tilt movement introduced noise and uncertainty 
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during the gesture analysis. In our approach, the device tilt is the valid signal and other 

movements are noise. The ideal user input would keep the device still and only move 

during the tilting prior to the click.  In reality, this is impossible. Clicking itself can cause 

movement, and the user might click while the device is not yet still. We investigate these 

movements and potential source of uncertainties in the accelerometer signal during titling 

and clicking. 

 

Figure 4.5 shows the reading from 12 seconds of sequential titling operations. The 

operations were composed of up, north, west, and up without clicking. The sequence of 

operations was then repeated with three clicks for each position, which is the reason for 

the long tilt interval in the second 4 orientations. Three axial readings are displayed along 

with the total which should equal the value of gravity except when the device is 

accelerated during the transition between tilt orientations and during the click. Comparing 

the first four tilt movements with the second four with clicking, the clicks caused small 

surges in the total acceleration but did not drastically change the overall noise level. The 

large surges occurred during transition between tilt orientations and lasted for a trivial 

short time. Their effects can be avoided during the analysis. 

 

 
 

Figure 4.5: Readings of the three axials and the total acceleration during tilting with and 
without clicking. The operations were composed of up, north, west, and up without 
clicking, followed by a sequence of repeated operations with three clicks for each 
position (unit: m/s²) 
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The YAUIM system identified the 8 operations during the 12 seconds. The parameter 

TICK is set to be zero because of the high precision of the accelerometers in the 

smartphone. The minimum value for θ is set to 15 degrees. Figure 4.3 also shows that the 

transition time is much shorter than the stable position time. Consequently, experienced 

users can input tilt position quickly, and the system ought to be able to keep up with the 

user input. 
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Chapter 5 

 

User Test and Usability Study of the 4+1 

Positioning Input System 

 
5.1 Introduction 

The tilt space of the 4+1 positioning input system is divided into five primary regions: 

south, west, north, east, and up.  This experiment evaluated the 4+1 positioning input 

system using 3 tasks. Task 1 determined what participants naturally do using the tilt-click 

operations. The participants were asked to tilt and then click to the 5 primary positions 

without feedback being provided. Task 2 evaluated clockwise number formations with 

alphabet sized 5, 7, and 10. The alphabets included numbers 1 to 5, 1 to 7, and 0 to 9 

respectively. Task 3 evaluated the calculator application using the 4+1 positioning input 

system. 
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5.2 Methods 
 

5.2.1 Participants 

 
The twenty four participants were undergraduate students majoring in computer science, 

computer engineering, or mathematical science.  Their ages ranged from 19 to 24 years, 

mean of 19.9 years. One participant was female and three were left handed. Twenty one 

participants reported having experience playing Wii sports or other tilt games on hand-

held devices. 

 

5.2.2 Apparatus 

 
Three HTC smartphones with built-in tri-axial accelerometers were used for this 

experiment. The smartphones ran Windows Mobile 6.1 Professional operating system. 

They had single processor running at 528MHz, one 2.8 inch LCD touch screen, 192MB 

of RAM, 4GB of internal storage capacity, and one static tri-axial accelerometer. The 

weight of the smartphone with battery was 110g. The software was written by the author 

in the C programming language on a Windows PC and the executables were deployed 

onto the smartphones. The execution and interactions were solely on the smartphone. The 

recorded data were transferred and processed on a PC. 

 

5.2.3 Procedures 

 
The participants were asked to sign the consent form in Appendix A before they were 

allowed to participate in the experiments. 

 

The participants sat in armchairs and held the smartphone with one hand. The smartphone 

was in upside-down position so that the participants could put their thumb on the round 
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button of the smartphone. They were told to hold the smartphone in a comfortable 

position either by putting the arm against the chair or in front of the body. The maps of 

numbers illustrating the corresponding positions for each number were in front of the 

participants. The participants responded to the phones' audio output of a number by 

tilting and then clicking the smartphones. The smartphones recorded the accelerometers' 

values and time when clicked. The systems also recorded the accelerometer values at 20 

hertz for analyzing the path of the phone. That analysis is not made for this dissertation. 

The data was saved in a text file and later transferred to a PC for analysis. 

 

The first three participants composed the pilot study. They completed Task 1 and 2. In 

Task 1 the participants in the pilot study performed 200 tilts and clicks.  In Task 2 one 

participant performed tilt and clicks with alphabet sized 5, another participant performed 

tilts with alphabet sized 7, and the third participant with alphabet sized 10. The 

experiment setup was modified after the pilot study. 

 

The total number of clicks for Task 1 was reduced from 200 to 100, because we 

suspected the extra tilts and clicks bored the participants. The 100 tilts and clicks were 

completed within around 3 minutes compared with 7 minutes for 200 tilts and clicks. 

 

Participant 4 through participant 24 performed both Task 1 and Task 2. The alphabet 

sized 5 was removed from Task 2 because the participants learned the mapping of the 5 

numbers immediately. The total number of prompts for both alphabet sized 7 and 

alphabet sized 10 were also reduced from the pilot study. The total number of prompts for 

size 7 test was reduced from 360 to 320. The total number of prompts of size 10 test was 

reduced from 400 to 340. Participant 4 through participant 11 performed Task 2 with 

alphabet sized 7.  Participant 12 through participant 24 performed Task 2 with alphabet 

sized 10. 
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Participant 17 through 24 performed Task 3. Task 3 is a prototype of a calculator with 6 

functions and symbols: addition, subtraction, multiplication, division, and equal sign. The 

tilt positions for the functions were illustrated in a second map (operator map). One 

participant chose to use both the number map and the operator map. All other 7 

participants used only the operator map. 

 

5.3 Task 1: Tilt-Click Operations without Feedback 

 
5.3.1 Task Goals 

 
It is important to learn what potential participants can do without practice. Ideally, the tilt 

ranges should be derived from participants' natural operations using the device. Hence, 

Task 1 studied the participants' natural performance for the primary regions and the 

results were used to derive the tilt ranges for both the primary and diagonal orientations 

in the 8+1 positioning input system. 

 

5.3.2 Task Procedures 

 
The participants were prompted to tilt and click over the 5 primary regions. The 

participants were first introduced with the five tilt orientations. They were asked to tilt to 

the smartphone to the prompted orientation after hearing the prompt from the smartphone. 

They clicked the round button at the upper side of the smartphone after tilting. Every 

participant responded to 100 prompts and performed 100 tilt-clicks. Successive prompts 

were made after the participants clicked. The system did not provide feedback to the 

participants whether the tilt orientations were correct or not. The participants were 

allowed to ask questions or to make comments before and after the task. They were 

introduced as follows: 
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"In this task, you will be prompted audibly by the smartphone to tilt to a 

position and click. Then you will be prompted to tilt to another position to 

click. There are five positions you will perform. They are up position, 

south position, west position, north position, and east position.  (A 

demonstration of the tilt operations was provided.) 

 

"You will tilt the smartphone to the position and click the button. The 

smart phone will record the position when you click, not the movement 

about how you tilt. So please just tilt as you feel comfortable and don't 

wave the smartphone. 

 

"You need to decide the up position. You tilt to a position which is away 

from up position and to a comfortable angle. Just keep consistent to make 

yourself feel comfortable and respond in a comfortable speed. 

 

"You will spend about 3 to 10 minutes on this task and there're 100 clicks 

to operate. After 100 clicks the smartphone will let you know the task is 

complete. When it's complete, you may exit the program and wait for 

others to complete. 

 

"Now, what question do you have?  If you don't have questions, please 

start the program." 

 

5.3.3 Results 

 
The 21 participants were divided into two groups based on their error rates: a regular 

group and an irregular group. The purpose for dividing the participants into two groups 

was to derive reasonable tilt angle ranges from the regular group for the 8+1 input system. 
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Table 5.1  
Mean error rates of the 5 sessions (unit: percentage) 

 
Sessions One Two Three Four Five Average 

Regular group 8.13 5.63 6.25 8.44 6.88 7.07 

Irregular group 19.0 29.0 33.0 21.0 27.0 25.8 

All 21 users 10.7 11.2 12.6 11.4 11.7 11.5 

 

Error Rates. The error rate was calculated using predefined regions which were set 

along the diagonal directions 45 degrees to the cardinal directions in the horizontal plane. 

The up region was defined as a cone with a range of 15 degrees away from the vertical 

position. The error rates of the 21 participants (participant 4 through participant 24) were 

(0.01, 0.12, 0.09, 0.02, 0.03, 0.20, 0.28, 0.22, 0.05, 0.35, 0.18, 0.01, 0.0, 0.24, 0.14, 0.11, 

0.11, 0.05, 0.07, 0.08, 0.08). Participants 9, 10, 11, 13, and 17 had error rates equal to or 

larger than 20 percent. Participant 9 made large motion during the task. Participant 10 

frequently confused the directions. Participant 11 had small motion and frequently did 

not perform a tilt. Participants 13 and 17 had no observed abnormal operations. These 5 

participants were put in the irregular operation group. The remaining 16 participants were 

considered to be the regular group which we presumed performed regularly. The mean 

error rates in percentages divided into 5 sessions (every 20 clicks were a session) were 

presented in Table 5.1. 

 

Tilt Angle Ranges. The mean tilt angles and their standard deviations were calculated for 

the five primary regions and reported in Table 5.2. The measurement of angles was 

relative to south and going clockwise. 

 

The pie charts in Figure 5.1 and Figure 5.2 were for four primary tilt ranges (south, west, 

north, east) and the diagonal ranges (not utilized in this experiment). They were derived 

from the regular group and of 90 and 95 percent probabilities region for the tilting 

orientation after responding to a prompt. The probability here refers to how many percent 
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of tilt operations fell into the specific range. For example, 90 percent of south operations 

fell into range of the 26 degrees. 

 

Table 5.2 
Means of the tilt angles of the primary regions (With standard deviations 
after the commas, angle unit: degree) 
 

Regions South West North East Up 

Regular group 1,8 87,13 179,9 278,13 8,4 

Irregular group 4,7 84,12 183,14 288,15 7,4 

All 21 users 1,8 86,13 180,10 281,14 8,4 
 

 

 

 
 

Figure 5.1: The 90 percent pie chart of 4+1 system experiment. The ranges of south, 
west, north, and east were calculated based on the 90 percent probabilities (unit: degree) 
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Figure 5.2: The 95 percent pie chart of 4+1 system experiment. The ranges of south, 
west, north, and east were calculated based on the 95 percent probabilities (unit: degree) 
 

Practice and Performance Time. The response time was determined from the end of the 

audible prompt to the participant's click. We model practice using the power law of 

practice (42). 

 

                                                    (5.1) 

 

Where RT is the response time; N is the click sequence number; a and b are coefficients 

to be determined; b is called the learning power. 

 

The best fit is determined by linear regression of the logarithm of the response times by 

the logarithm of the click number on the regular group, the irregular group, and overall. 

In either category, the intercept and slopes were significant. The results are reported in 

Table 5.3. 
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Table 5.3 
Results of the linear regression of the logarithm of the response times by 
the logarithm of the click number 
 

 df intercept    t     p slope    t     p  R 

Regular group 98    0.77 15.16 <2e-16 -0.15 -11.32 <2e-16 0.57 

Irregular group 98    0.78 7.46 3.61e-11 -0.13 -4.62 1.17e-05 0.18 

All 21 users 98    0.81 15.07 <2e-16 -0.16 -10.95 <2e-16 0.55 

 

The learning power b and coefficient a in the three groups were (0.15, 2.16), (0.13, 2.18), 

and (0.16, 2.25) respectively. The learning powers showed the learning in any of the three 

groups. The model of all 21 participants is plotted in Figure 5.3. The results will be 

discussed in next section. 

 
Figure 5.3: The learning curve of the 4+1 system operations of all the users. 
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5.3.4 Discussion 

 
The participants ideally should be from various demographics and ages of the potential 

participants, which was not feasible in this study. We could only recruit college students 

for this study. During the analysis, some participants showed irregular operations which 

might have been avoided by careful explanations of the tilt mechanism. It is necessary 

and important to explain the tilt mechanism before the experiment so that the participants 

can avoid waving movements or other irregular operations. 

 

Without feedback, participants didn't know if their click was in the correct region. The 

linear regression analysis of the error-rate over click number for the 100 clicks in either 

of the two groups (F(1,98) < 1.0, p > .05) showed that error rates were not significant 

over click numbers. However, the low overall error rate (11.5%) showed that the 

participants could adapt the tilt-click operations naturally without much training. 

 

The pie charts in Figure 5.1 and Figure 5.2 left room for the diagonal regions that will be 

used in the 8+1 region experiments. Suspecting that the diagonal regions will be harder to 

tilt to, we propose to design the 8+1 region ranges based on the 90 percent pie chart. The 

up operations had mean tilt angle of 7.55 degrees, with standard deviation of 4.0 degrees. 

Hence the setup of up region of 15 degrees from vertical is reasonable. Table 5.4 lists the 

proposed region for the 8+1 experiments. Although we used tilt angles of the regular 

group for the calculations, based on Table 5.2, the paired-t tests on both tilt angles (df = 4, 

p = 0.31) and standard deviations (df = 4, p = 0.43) showed the differences between the 

two groups were in fact not statistically significant. Hence the derivation of the tilt angle 

ranges based on the regular group will be applicable to all potential users. 

 

The pie charts also showed that the east and west have larger pointing angle ranges than 

north and south in the regular group. By consulting Table 5.2, the standard deviations of 

the regular group for east and west were both 13 degrees, while north and south had 9   
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Table 5.4 
Proposed region setups of the 8+1 positioning input system (unit: degree) 

 
South SW West NW North NE East SE 

-12,14 14,66 66,108 108,164 164,194 194,256 256,299 299,348(-12) 

 

degrees and 8 degrees respectively. This confirmed the observation from the pie charts. 

For the irregular group, north and east had a slight higher standard deviations. In either 

group, the south had the smallest standard deviations. We could not identify an apparent 

reason for this observation. 

 

Table 5.3 and Figure 5.3 show that participants got more efficient with the tilt-clicks. The 

figure also revealed that during the first 20 clicks, the participants learned the most of the 

operations. 

 

The 4+1 positioning system is feasible for most participants. Within a few minutes of 

practice the participants reduced the time to perform the operations. The tilt angle ranges 

derived in this study will serve as the guideline for the design of 8+1 positioning system. 

 

5.4 Task 2: Number Input Operations over the 4+1 System 

 
5.4.1 Task Goals 

 
Task 2 evaluated the clockwise number composition input method for the 4+1 system. 

Every number was formed by two clicks on the five primary regions as illustrated in the 

number map (see Figure 3.2). The learnability of the mapping method and feasibility of 

the tilt-click operations were evaluated by studying the error rates and performance times 

of the operations. 
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5.4.2 Task Procedures 

 
The participants were seated in comfortable chairs facing the map for the numbers. The 

clockwise formation method was explained and the number input was demonstrated. The 

participants were prompted to input single digit numbers using the map. Then they were 

asked to operate without using the map. They alternately performed 4 sessions with the 

map and 4 sessions without the map. The single digit numbers were randomly prompted. 

There were two alphabets of numbers: alphabet sized 7 included numbers 1 to 7 and 

alphabet sized 10 included numbers 0 to 9. The participants were randomly assigned to 

perform one or the other alphabet. The task took less than 30 minutes to complete. 

 

Like in Task 1, the system did not provide feedback to the participants whether the input 

was correct or not. The next number was prompted audibly after the participants 

completed an input. The following instructions were read to the participants: 

 

"In this task, you are prompted to input some numbers randomly. Every 

number is formed by two consecutive tilt-clicks. The formation rule is 

demonstrated in the number map in front of you. You tilt and click at one 

position then tilt and click at the other position to input a number. 

 

"You will use the map first. After some while, the smartphone will tell you 

to turn over the map and you will do your best without the map. Then it 

will tell you to use the map again. This will be repeated 4 times altogether. 

This task takes about 30 minutes." 

 

5.4.3 Results 
 
Eight participants performed Task 2 with alphabet sized 7. Thirteen participants 

performed the task with alphabet sized 10. We study the data in four categories: alphabet 
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sized 10 with map, alphabet sized 10 without map, alphabet sized 7 with map, and 

alphabet sized 7 without map. All the 21 participants had finished Task 1 before 

performing this task. 

 

Error Rates of the Number Inputs. The mean error rate of a session was calculated by 

the incorrect number of inputs over the total number of prompts in the session. The mean 

error rates of the sessions in the 4 categories are presented in Table 5.5 and plotted in 

Figure 5.4. 

Table 5.5 
Mean error rates of the number inputs of the 4 categories 

 
Sessions One Two Three Four Average 

Alphabet sized 10 with map 0.10 0.06 0.07 0.07   0.08 

Alphabet sized 10 without map 0.32 0.26 0.20 0.18   0.24 

Alphabet sized 7 with map 0.04 0.07 0.09 0.07   0.07 

Alphabet sized 7 without map 0.23 0.16 0.16 0.08   0.16 

 

 

Figure 5.4: Mean number input error rates for 4 categories. A10 is for alphabet sized 10. 
A7 is for alphabet sized 7. Map denotes operations by checking the map. No-map denotes 
operations without checking the map. Sessions 1 to 4 are illustrated from white to black. 
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Table 5.6 
Mean performance times in seconds of the two clicks in the 4 categories 

 
Sessions One Two Three Four Average 

Alphabet sized 10 with map first click 1.67 1.25  1.12 1.01 1.26 

Alphabet sized 10 with map second click 0.55 0.41 0.38 0.34 0.42 

Alphabet sized 10 without map first click 1.74 1.44 1.39 1.13 1.42 

Alphabet sized 10 without map second click 0.53 0.41 0.37 0.39 0.43 

Alphabet sized 7 with map first click 1.21 0.96 0.78 0.96 0.98 

Alphabet sized 7 with map second click 0.41 0.34 0.25 0.28 0.32 

Alphabet sized 7 without map first click 1.44 1.16 1.18 1.12 1.23 

Alphabet sized 7 without map second click 0.47 0.33 0.27 0.32 0.35 

 

 

Practice and Performance Times of the Number Inputs. We examined the two clicks 

for a number individually. The response time RT was the period of time for one click. 

The response time for the first click started from the end of the audible prompt. The 

response time for the second click was the time between the first click and the second 

click. 

 

The mean performance times of the sessions are presented in Table 5.6 and plotted in 

Figure 5.5 and Figure 5.6. 
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Figure 5.5: Mean performance times of the clicks for the alphabet sized 10. Map denotes 
operations by checking the map. No-map denotes operations without checking the map. 
1st denotes the first click operations. 2nd denotes the second click operations. Sessions 1 
to 4 are illustrated from white to black. 

 

Figure 5.6: Mean performance times of the clicks for the alphabet sized 7. Map denotes 
operations by checking the map. No-map denotes operations without checking the map. 
1st denotes the first click operations. 2nd denotes the second click operations. Sessions 1 
to 4 are illustrated from white to black. 
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5.4.4 Discussion 
 

The alphabet sized 7 involved 3 tilting positions, while the alphabet sized 10 involved 4 

tilting positions (see Figure 3.2). By looking at the error rates in Table 5.5, the 

participants performing alphabet sized 7 showed lower mean error rates without the map 

(16 percent vs. 24 percent). The difference was statistically significant (t = 5.74, df = 3, p 

= 0.010). However, it was expected that the participants would perform similarly using 

the map. This was confirmed by their similar error rates with the map (8 percent vs. 7 

percent). The difference was not statistically significant (t = 0.42, df = 3, p = 0.705). 

 

Performing with the map, the participants knew the composition of the numbers, hence 

we assume that the errors performing with the map were mainly from errors due to 

improper tilt positions. The errors performing without the map were from both the 

incorrect positions and incorrect mapping of the numbers. Since no feedback was 

provided to the participants, they were unaware of the correctness of their tilt and number 

input. They could not improve on their correctness of the tilt operations without feedback. 

Hence any improvement of error rates would reflect their learning of the map. Figure 5.4 

showed that the participants had improved their error rates in the four sessions 

performing without the map, but no improvement were presented for the sessions with 

the map. 

 

The response time for the first click is mainly composed of the thinking time (or the time 

to check the map when using the map) and the operation time. The response time for the 

second click was mainly the operation time. Table 5.6 showed the mean response times 

of the second clicks were lower than those of the first clicks in the corresponding 

categories. The mean response time for the alphabet sized 7 were lower than those of the 

alphabet sized 10. 
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Table 5.7 
Results of the linear regression of the logarithm of the response times by 
the logarithm of the session number with alphabet sized 10 
 
 df intercept     t p slope t  p R 

1st click with map 2    0.50  23.75 0.002 -0.36 -16.20 0.004 0.99 

2nd click with map 2   -0.62 -19.22 0.003 -0.34 -10.06 0.010 0.98 

1st click without map 2    0.57    9.62 0.010 -0.28 -4.54 0.045 0.91 

2nd click without map 2   -0.67   -9.6  0.010    -0.24 -3.34 0.079 0.84 

 

Figure 5.5 and Figure 5.6 indicated that the response times of both the first and second 

click improved with the practice. The improvement in the first click was mainly due to 

the participants becoming more familiar with the map. The improvement in the second 

click was mainly due to their becoming more familiar with the tilt-click operations. 

Figure 5.5 suggests a smooth curve for the improvement for alphabet sized 10. We model 

practice for alphabet sized 10 using the power law in Equation 5.1. The best fit is 

determined by linear regression of the logarithm of the response times by the logarithm of 

the session number. The results are reported in Table 5.7. 

 

The correlation between response time and the session number of the first click was 0.99 

with the map. It was 0.98 for the second click with the map. The learning powers were 

0.36 and 0.34 with the map, while without the map they were 0.28 and 0.24 respectively. 

 

This task showed that the clockwise number formation method for the 4+1 system was 

learned by the participants during the experiment. The participants improved their 

performance on the number formation and the tilt-click operations during the sessions. 

Both the performance times and error rates improved in the 30 minutes of practice. 

 

 

 



 
 

67 
 

5.5 Task 3: 4+1 System Calculator Application 

 
5.5.1 Task Goals 
 

The purpose of Task 3 was to evaluate the calculator application of the 4+1 positioning 

input system. 

 

5.5.2 Task Procedures 

 
A calculator prototype was implemented on the 4+1 input system and the participants 

were asked to solve 8 math questions with this calculator. The calculator prototype used 

integer numbers and 6 operator symbols: addition, subtraction, multiplication, division, 

equal sign, and backspace. The operators were formed by the clockwise composition rule 

as well. They are illustrated in Figure 5.7. For example, south plus up is addition. West 

plus up is subtraction, etc. 

+

/

*
_

Backspace

=
UP

NORTH

SOUTH

WEST EAST

 
Figure 5.7: Map of the 4+1 system calculator operators. Every two positions represent 
one operator.  
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The 8 math questions were: 

 

1) 10 + 562 = 

2) 831 - 49 = 

3) 687 * 56 = 

4) 328 / 74 = 

5) 41 + 76 = 

6) 509 - 28 = 

7) 78 * 243 = 

8) 7659 / 37 = 

  

5.5.3 Results 

 
Eight participants, who completed Task 2 with alphabet sized 10, performed this task. 

After they completed each calculation they wrote down the answer they heard from the 

phone. During the experiment, the number map and the operators map were available to 

the participants. However, only 1 participant chose to use the number map. Whenever 

there was an input error, the participants used the backspace operation to correct the error. 

 

For each question, the completion time was calculated from the first click of the first digit 

to the second click of the equal symbol. The overall completion time for each participant 

was the total time for all 8 questions. Tables 5.8 and 5.9 displayed their overall 

performance time and the performance time on each question. 

 

Table 5.8 
Individual participants' time to complete Task 3 (unit: second) 

 
Participant 1 2 3 4 5 6 7 8 

Completion time 259 215 318 220 185 227 315 266 

Backspaces 5 0 8 0 0 3 5 7 
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Table 5.9 
Eight individual participants' completion time on individual questions 
(unit: second) 
 

Question Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Participant1 79 26 14 32 34 20 38 16 

Participant2 50 30 30 22 20 22 27 14 

Participant3 42 71 56 26 21 50 36 16 

Participant4 39 31 26 26 21 26 25 26 

Participant5 30 30 26 23 17 23 21 15 

Participant6 36 33 28 21 43 22 26 18 

Participant7 75 55 37 54 19 22 38 15 

Participant8 28 28 26 26 24 21 23 90 

Average 47.4 38.0 30.4 28.8 24.9 25.8 29.3 26.3 

 

 

The response time RT is the completion time for each question and the trial number N is 

the question number. Assuming the power law equation, the log-log analysis on the 

average performance times showed (F(1,6) = 34.06, p < .001, R = 0.85). Applying the 

non-linear least squares analysis using the original power law model for initial estimate, 

we get 

 

 

 

The plot is presented in Figure 5.8. The decreasing curve indicates that the response time 

gets improved over the practice. 
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Figure 5.8: The learning curve of the calculations including error correction times 

 

5.5.4 Discussion 
  

Equation 5.2 was based on the completion times with backspace operations included. The 

equation suggests that eventually the best performance is 21.93 seconds per question 

including backspace operations. If we do not count the backspace operations (8 values 

affected within the 64 completion times), the best performance time for each question is 6 

seconds by the non-linear least squares analysis. The plot is presented in Figure 5.9. On 

the average, each question involved 7 characters (numbers and operators). Hence the best 

performance time for each character is 0.86 seconds. 
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This task showed that the tilt-click interaction technique and the double click clockwise 

composition method could be learned in one hour for the calculator application on the 

4+1 input system. 

 
Figure 5.9: The learning curve of the calculations without including the error corrections. 
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Chapter 6 

 

User Test and Usability Study of the 8+1 

Positioning Input System 

 
6.1 Introduction 

 
The 8+1 positioning input system divided the tilt space into eight horizontal regions and 

one up region. The English letters, numbers, and special operators were mapped onto the 

tilt space using the clockwise composition rule. Every two positions represented one 

character. The experiment included two tasks. Task 1 first studied the participants' natural 

operations on the nine regions. It then examined how the participants adapted to the 

predefined tilt angle ranges of the 8+1 input system. Task 2 evaluated the text input 

prototype and the calculator prototype on the 8+1 system. Detailed explanations are 

provided in the subsections. 
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6.2 Methods 

 
6.2.1 Participants 

 
Thirteen participants were recruited. They were undergraduate students majoring in 

computer science, computer engineering, or mathematical science. Their ages ranged 

from 18 to 37 years, mean of 22.2 years. Four participants were female and two were left 

handed. Eleven participants reported having experience playing Wii sports or other tilt 

games on hand-held devices. 

 

6.2.2 Procedures 

 
The 8+1 positioning input system was implemented on the HTC smartphones running the 

Windows Mobile 6.1 operating system. The predefined tilt angle ranges were set up 

based on the experiment of the 4+1 positioning input system in Table 5.4. The 

smartphones recorded the accelerometer values and time when clicked. The systems also 

recorded the accelerometer values at 20 Hertz for analyzing the path of the phone. That 

analysis is not made for this dissertation. The data was saved in a text file and later 

transferred to a PC for analysis. 

 

The participants were asked to sign the consent form in Appendix A before they were 

allowed to participate in the experiments. 

 

The participants were seated in comfortable chairs. The maps for letters, numbers, and 

special operators were presented in front of them. The operations were explained and 

demonstrated before the participants started any task. The whole process took less than 

one hour. 
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6.3 Task 1: User Study of the 8+1 System 

 
6.3.1 Task Goals 

 

We wanted to know how the participants defined their natural tilt angle ranges and how 

they adapted to the predefined tilt angle ranges of the 8+1 positioning input system. 

  

6.3.2 Task Procedures 

 

First, the participants were audibly prompted 100 times to tilt the smartphone to one of 

the nine regions and click. The prompted tilt orientations were random. No feedback of 

the orientation was given to the participants. The following instructions were read to the 

participants: 

 

"In this task, you will be prompted audibly by the smartphone to tilt to a 

position and click. Then you will be prompted to tilt to another position to 

click. There are nine positions you will perform. They are up position, 

south position, southwest position, west position, northwest position, north 

position, northeast position, east position, and southeast position.  (A 

demonstration of the tilt operations was provided.) 

 

"You will tilt the smartphone to the position and click the button. The 

smartphone will record the position when you click, not the movement 

about how you tilt. So please just tilt as you feel comfortable and don't 

wave the smartphone. 
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"You need to decide the up position first. You tilt to a position which is 

away from up position and to a comfortable angle. Just keep consistent to 

make yourself feel comfortable and respond in a comfortable speed. 

 

"You will spend about 3 to 10 minutes on this task and there are 100 clicks 

to operate. After 100 clicks the smartphone will let you know the task is 

complete. When it is complete, you may exit the program and wait for 

others to complete." 

 

Next, the participants explored the 8+1 predefined tilt system. They tilted and clicked in a 

region and the smartphone audibly responded with the tilt region that the device was 

orientated in. The participants practiced until they felt comfortable with the input 

technique. This criterion was determined and self-reported by the participant. We tested 

the participants' preparation by asking them to input a single character. If they past that 

test, they continued the experiment. They were told as below: 

 

"Now, you are provided a system with tilt angle range predefined. You 

will try to tilt and click to locate all the 9 positions. Once you tilt to a 

position and click, the smartphone will tell you what position you have 

tilted to. After you practice for a few minutes and feel confident that you 

can locate a position that you want, you will be tested if you could tilt to 

the correct position. If you pass the test, you may go ahead to perform the 

next procedure." 

 

Finally, the participants performed the feedback operations. They were randomly 

prompted 100 times by the smartphone to tilt and click in one of the nine regions and 

feedback was given. If the participants tilted in the correct region, the system would 

prompt to the next random region. If the participants clicked in an incorrect region, the 

system would repeat the prompt until the participant tilted in the correct region. 
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6.3.3 Results 

 
Participants' Self-definition Operations. Six participants performed the tilt and click 

operations without feedback. The participants' average tilt angles and the standard 

deviations for the 9 orientations are presented in Table 6.1. Their mean response times 

over click number are plotted in Figure 6.1. We model practice using the power law in 

Equation 5.1 by applying linear regression to the logarithm of the response times by the 

logarithm of click number. The slope in the linear regression or power in the learning 

model is -0.32 (F(1,98) = 110.5, p < .0001), and  R is 0.53. 

 

 

Table 6.1 
Average tilt angles and standard deviations for the nine orientations in 
self-definition operations (unit: degree) 
 

Orientation Mean Tilt Angle Standard Deviation 

UP 10 5 

S 12 50 

SW 50 31 

W 99 49 

NW 129 37 

N 192 36 

NE 230 20 

E 263 48 

SE 311 54 
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Figure 6.1: Response times over the 100 clicks for the self-definition operations 
 

Participants' Self-explorations and Feedback Operations. Thirteen participants 

performed the self-exploration for about 5 minutes followed by the 100 prompts with 

feedback. The recorded data for the feedback operations were used to study the difference 

between the longitudinal and diagonal orientations. The longitudinal orientations 

included the south, west, north, and east orientations. The diagonal orientations included 

the southwest, northwest, northeast, and southeast orientations. 

 

The ratio of the number of correct operations over the number of total operations is the 

accuracy rate. The accuracy rates for the longitudinal and diagonal orientations for the 

individual participants are presented in Table 6.2 and plotted in Figure 6.2. The 

difference between the accuracy rates of the longitudinal and those of the diagonal in 

Table 6.2 was not statistically significant from paired t-test (t = 1.55, df = 12, p = 0.15). 
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Table 6.2 
Accuracy rate of the longitudinal and diagonal orientations for the 13 
participants 
 

Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 

Longitudinal 0.90 0.88 0.85 0.88 0.77 0.90 0.90 0.92 0.86 0.94 0.77 0.96 0.70 

Diagonal 0.96 0.70 0.80 0.63 0.85 0.75 1.0 0.85 0.90 0.85 0.75 0.65 0.79 

 

 
Figure 6.2: Individual participants' accuracy rates on longitudinal and diagonal 
orientations. The longitudinal orientations included the south, west, north, and east 
orientations. The diagonal orientations included the southwest, northwest, northeast, and 
southeast orientations. 
 

The average response times of the operations on the longitudinal and the diagonal 

orientations of the 13 participants are presented in Table 6.3 and plotted in Figure 6.3. 

The difference between the response times of longitudinal and those of the diagonal was 

statistically significant (t = -6.47, df = 12, p < 0.001).  The mean values for the 

longitudinal and those of the diagonal were 1.29 seconds and 1.67 seconds respectively. 
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Table 6.3 
Average response times of the longitudinal and the diagonal orientations 
for the 13 participants (unit: second) 

 
Participant 1 2 3 4 5 6 7 8 9 10 11 12 13 

Longitudinal 1.20 0.96 1.02 0.90 1.42 1.23 1.74 1.01 1.07 1.43 1.95 1.06 1.72 

Diagonal 1.43 1.37 1.18 1.20 1.55 1.64 2.28 1.27 1.25 1.74 2.47 1.75 2.55 

 

Figure 6.3: Individual response times on the longitudinal and diagonal orientations. The 
longitudinal orientations included the south, west, north, and east orientations. The 
diagonal orientations included the southwest, northwest, northeast, and southeast 
orientations. 
 

The log-log regression analysis showed the response times were not statistically 

significant over the click number (F(1,98) = 1.16, p = 0.28). 

 

The average tilt angles and the standard deviations for the 9 orientations are presented in 

Table 6.4. 
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Table 6.4 
Average tilt angles and standard deviations for the nine orientations in 
feedback operations (unit: degree)  
 

Orientation Mean Tilt Angle Standard Deviation 

UP 7 4 

S 2 6 

SW 39 14 

W 87 10 

NW 132 13 

N 182 6 

NE 230 14 

E 276 11 

SE 323 10 

 

 

6.3.4 Discussion 
 

Figure 6.1 showed response times improved with practice during the operations without 

feedback. It also suggests that most of the learning happened during the first 20 clicks. 

 

When the participants were provided with feedback, there was no statistically significant 

difference (p = 0.15) between the longitudinal and the diagonal accuracy rates. The 

participants achieved the average accuracy rate of 0.84 (sd = 0.09). The difference 

between the mean response times of the longitudinal and the diagonal suggests that on 

average the longitudinal operations were 23% quicker than the diagonal operations. 

Overall, the mean response time was 1.48 seconds. 
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Table 6.1 shows that the mean tilt angles were in the predefined regions (see Table 5.4) 

during the operations without feedback. However, the tilt angles, except for the up 

orientation, showed large deviations. We plot the tilt angle ranges of the 90% 

probabilities of tilt operations to compare with the predefined tilt angle ranges in Figure 

6.4. The probability here refers to how many percent of tilt operations fell into the 

specific range. 

 

The large deviations suggest that learning the predefined tilt angle ranges is necessary for 

the 8+1 positioning input system. Comparison of the mean tilt angles and standard 

deviations in Table 6.1 and Table 6.4 showed the learning effects on the tilt angles. The 

mean tilt angles were not statistically different (t = 0.62, p = 0.56), but the decrease in 

standard deviation was statistically significant (t = 5.03, p = 0.001) after the self-

exploration operations. The improvement is confirmed in Figure 6.5. 

 

 
 
Figure 6.4: Comparison of the tilt angle ranges between the 90% probabilities for the 
operations without feedback and the predefined tilt angle ranges (unit: degree) 
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Figure 6.5: Comparison of the tilt angle ranges between the 90% probabilities for the 
operations with feedback and the predefined tilt angle ranges (unit: degree) 
 

This task showed that the participants could operate the 8+1 system with reasonable 

accuracy during their first hour of use. It also showed that the operations on the 

longitudinal regions were more efficient than those of the diagonal regions. 

 

6.4 Task 2: Usability Study of the 8+1 System Applications 

 
6.4.1 Task Goals 

 

Task 2 studied the feasibility of the 8+1 system as a text input for applications. It also 

examined the performance of the calculator prototype on the 8+1 system. 
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6.4.2 Procedures 

 
The participants who performed Task 1 were randomly selected to perform either the text 

input or the calculator application. For the text input, the participants were provided the 

map for the 26 English letters (see Figure 3.4). The text input method was demonstrated 

first. Then using the map, they practiced text input by inputting the 26 alphabet letters 

twice in the alphabet order. Next the participants were asked to input the alphabet without 

using the map. Finally, while using the map, the participants were asked to input the 

following phrases: "how are you", "on the web", "dont know", "thank you", "meet here", 

"be careful", "email jeff", "try later". The participants input a space between phrases. The 

phrases are from Unigesture (21).  

 

Another group of participants performed the calculator application. They were given a 

map (Figure 6.6) for the 10 numeric digits and the 6 operators: plus, minus, times, divides, 

equals, and backspace. The map was created based on the double click clockwise 

composition method. Using the map they would perform the following 8 calculations: 

 

1) 10 + 562 = 

2) 831 - 49 = 

3) 687 * 56 = 

4) 328 / 74 = 

5) 41 + 76 = 

6) 509 - 28 = 

7) 78 * 243 = 

8) 7659 / 37 = 

 

During the process for both text input and calculator application the participants used the 

backspace operation to correct any input error. 
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Figure 6.6:  Clockwise mapping of numbers and operators for  8+1 system.  Every two
positions represent one number or one operator. 
   

6.4.3 Results 

 
Five participants performed the text input task. The times to complete the 18 words for 

the 5 participants were 422, 430, 284, 277, and 385 seconds. The mean value was 360 

(SD=74) seconds. The number of backspaces performed were 6, 19, 6, 5, and 8 

respectively for each participant, with mean value 9 (SD=6). On average, the 5 

participants achieved an input speed of 2.8 WPM (assuming 5 characters per word by 

following the conventional calculations) within one hour's practice. The overall error rate 

for all participants was 8.7 percent. The average completion time for the individual 

characters were not statistically significant over the character sequential number (F(1,82) 

= 0.05, p = 0.83). 

 

Five other participants performed the calculator application. The individual completion 

times for the 8 questions are presented in Table 6.5. We model practice using the power 

law in Equation 5.1 by applying linear regression to the logarithm of the average 

completion times by the logarithm of question number. The slope in the linear regression 
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or the power in the learning model is -0.38 (F(1,6) = 6.16, p = 0.048), and correlation R = 

0.51. The average completion times for the 8 questions are plotted in Figure 6.7. 

 

Table 6.5 
Individual completion times in seconds for the 8 questions (unit: second) 

 
Question Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

Participant1 28 65 20 14 11 44 13 21 

Participant2 59 34 27 12 31 13 19 31 

Participant3 125 58 23 73 16 71 37 28 

Participant4 44 134 69 30 22 31 49 40 

Participant5 49 87 37 34 39 54 37 55 

Average 61 75.6 35.2 32.6 23.8 42.6 31 35 

SD 37.5 37.7 20 25 11.3 22.1 14.7 13.1 

 

 

Figure 6.7: Average completion times of the 8 questions 
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6.4.4 Discussion 

 
The participants practiced only three times the English alphabet before inputting the 18 

words. They all completed the input task using the map. They did not show improvement 

in completion times while inputting the 18 words. On the average, they achieved an input 

speed of 2.8 WPM with an error rate of 8.7%. The best performance of the 5 participants 

was 3.7 WPM with an error rate of 5.9%. 

 

Figure 6.7 suggests that there was learning during the calculation tasks. However, after 

the first two questions, the operation time for each question became stable. The log-log 

regression analysis showed that the operation time was not statistically significant on 

question number (p = 0.96). There was no improvement in performance over time after 

the first two questions. The mean value of the last 6 questions was 33.4 (SD = 6.1) 

seconds. 

 

The task for the text input and the calculator applications showed that the tilt-click 

interaction technique and the double click clockwise composition method could be 

learned in one hour for applications on the 8+1 input system. 
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Chapter 7 

 

Conclusions 

 
7.1 Contribution 

 
This dissertation studied an accelerometer assisted single key positioning input system. It 

presented a user input technique which can be operated single handed and eyes-free. The 

contributions are three-fold. 

 

First, a modified finite state automaton was developed and used to guide the design of the 

positioning input system. A two position clockwise composition rule was used to map 

characters to input positions. Two prototypes were created for the study. The finite state 

automaton was demonstrated for both the 8+1 system and the 4+1 system to input 

numbers and English letters. 

 

Second, we studied the tri-axial accelerometer readings to represent standard input 

signals. The prototypes of the accelerometer assisted single key positioning input systems 

were implemented with and without audio feedback. With audio feedback prototypes 
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were operated single handed and eyes free. We have developed a real-time positioning 

algorithm which defines device tilt orientations by analyzing the accelerometer readings. 

 

Third, we have conducted controlled experimental studies of the accelerometer assisted 

single key positioning input system. Thirty seven students participated in experiments 

studying the 4+1 and 8+1 systems. A calculator prototype was evaluated on the 4+1 

system. Both the calculator prototype and the text input prototype were examined on the 

8+1 system. The experiments showed that users could operate the 4+1 system without 

any training. Users needed some practice with the 8+1 system before comfortably 

conducting operations. On both systems, the application prototypes were welcomed by 

the participants. Participants achieved an input speed of 2.8 WPM on the text input 

prototype. An experienced user (the author) achieved the eyes free input speed of 11.2 

WPM after two hours of practice in the span of two weeks. 

 

For the experiment, 10,189 lines of codes were programmed and 714,680 data records 

were collected and analyzed. 

 

7.2 Future Work 

 
The accelerometer assisted single key positioning input system was practical in the 

experiments on the calculator prototype and text input prototype. However, with the 8+1 

system, user practice is still necessary for efficient operation. This is mainly due to 

difficulties in tilting to narrow regions. To overcome this problem, more training and 

practices could help, but a technical solution is more favorable. In an input with context, 

predictions are possible and the system could guess what users want to input. During the 

user input, the system could adopt a predictive method to help increase the input accuracy. 

Whenever a tilt falls in the border line area, the predicted result would be provided 



 
 

89 
 

instead of the result based solely on the accelerometer readings. We believe that this 

approach will reduce the error rate and result in a flexible error-tolerate system. 

 

The current accelerometer assisted single key positioning system could provide precise 

character input with audible feedback. This is attractive to some specific application 

scenarios. However, the input speed is slow compared to normal keyboard input. 

Although such approaches do not have to compete with the normal keyboard input, a 

quicker input method would be more favorable. A future study could seek higher input 

speeds. Natural language input techniques could increase input speeds. If a word is 

considered as an input unit instead of a letter as one unit, the input speed might be 

improved. The challenges are that the vocabulary could be too large to map all the 

vocabulary. On the other hand, even if there is a mapping for each word, it could be hard 

to practically operate. A system with simple mapping but with full vocabulary coverage 

would be the ultimate goal. 

 

7.3 Final Remarks 

 
This dissertation presented a general model to aid in the designs of limited input 

orientations mapping to a larger alphabet. It also implemented a single key positioning 

input on an accelerometer device. This accelerometer assisted single key positioning 

system will offer a novel one-handed eyes-free solution. It will also serve as a model for 

other positioning input system research and practices.  
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Appendix A  
  
YAUIM Experiments Informed Consent 
Form  
  
This research has been approved by the Institutional Review Board at Michigan 

Technological University with approval number M0565. The following is the content of 

the consent form signed by the participants before they conduct any experiment.  

  

Rights of Research Subjects:  

 

The Michigan Technological University Institutional Review Board has 

reviewed the request to conduct this project [approval number: M0565]. If 

you have any concerns about your rights in this study, please contact 

Joanne Polzien of the Michigan Tech-IRB at 906-487-2902 or email 

jpolzien@mtu.edu. 

 

If you have any questions regarding this study, please contact Chunming 

Gao at chgao@mtu.edu or call 906-487-1657.  

  

“I understand the YAUIM project is to experiment on the tilts/wave 

operations of a smart phone. I have freely volunteered to participate in this 

experiment. I have been informed in advance what my tasks will be and 

what procedures will be followed. I have been given the opportunity to ask 

questions and have had my questions answered to my satisfaction.  
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“I am aware that the experiment could be uncomfortable to the wrist and 

I'm free to quit the experiment anytime. I am aware that I have the right to 

withdraw consent and to discontinue participation at any time.  

  

“My signature below may be taken as affirmation of all the above 

statements; it was given prior to my participation in this study.”  

  

   

Name (Print):____________________________________ 

   

Signature: _______________________________________ 

  

Date: ___________________________________________ 
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Appendix B  
  
Experiment Database Tables  
  
  
Table 1: To hold experiments information    

1. Table name: experiments    

2. Columns:    

EXPERIMENT _ID     CHAR(2)    

EXPERIMENT _SESSION _ID   CHAR(2)    

EXPERIMENT _DESCRIPTION   CHAR(30)    

EXPERIMENT _DATE    DATE    

EXPERIMENT _USER _ID   CHAR(3)    

EXPERIMENT _DEVICE _ID   CHAR(3)    

EXPERIMENT _PLACE    CHAR(10)    

EXPERIMENT _DURATION   NUMBER(2)    

  

Table 2: To hold experiment data    

1. Table name: yauim _experiment _data    

2. Columns:    

 USER _ID                          CHAR(3)    

 DEVICE _ID                        CHAR(3)   

 TASK_ID                           CHAR(2)  

 EVENT_TYPE                 CHAR(1)  

 PROMPT_TYPE               CHAR(2)  

 TICK_COUNT                NUMBER(8)  
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 RESPONSE                        NUMBER(5)  

  IN_PROCESS                      CHAR(1)   

 CLICK_COUNT                      NUMBER(3)  

 PROMPT_COUNT                  NUMBER(3)  

 PAIR_MARK                          CHAR(1)   

 PROMPT_CHARACTER           CHAR(2)   

 ACTUAL_CHARACTER            CHAR(2)   

 PROMPT_ZONE                    CHAR(2)   

 ACTUAL_ZONE                   CHAR(2)   

 TILT_ZONE_ANGLE1                NUMBER(4)  

 TILT_ZONE_ANGLE360               NUMBER(4)  

 TILT_AWAY_FROM_TOP         NUMBER(4)  

 AX                               NUMBER   

 AY                                 NUMBER   

 AZ                                  NUMBER   

 THE_DATE                         CHAR(8)  

 THE_TIME                      CHAR(6)  
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