610 research outputs found

    A Viable LoRa Framework for Smart Cities

    Get PDF
    This research is intended to provide practical insights to empower designers, developers and management to develop smart cities underpinned by Long Range (LoRa) technology. LoRa, one of most prevalent long-range wireless communication technologies, can be used to underpin the development of smart cities. This study draws upon relevant research to gain an understanding of underlying principles and issues involved in the design and management of long-range and low-power networks such as LoRa. This research uses empirical evidence that has been gathered through experiments with a LoRa network to analyse network design and identify challenges and then proposes cost-effective and timely solutions. Particularly, practical measurements of LoRa network dependencies and performance metrics are used to support our proposals. This research identifies a number of network performance metrics that need to be considered and controlled when designing and managing LoRa- specific networks from the perspectives of hardware, software, networking and security

    Towards LoRa mesh networks for the IoT

    Get PDF
    There are several LPWAN radio technologies providing wireless communication to the billions of connected devices that form the so-called IoT. Among them, LoRa has emerged in recent years as a popular solution for low power embedded devices to transmit data at long distances on a reduced energy budget. Most often, LoRa is used as the physical layer of LoRaWAN, an open standard that defines a MAC layer and specifies the star-of-stars topology, operation, roles and mechanisms for an integrated, full-stack IoT architecture. Nowadays, millions of devices use LoRaWAN networks in all sorts of agriculture, smart cities and buildings, industry, logistics and utilities scenarios. Despite its success in all sorts of IoT domains and environments, there are still use cases that would benefit from more flexible network topologies than LoRaWAN's star-of-stars. For instance, in scenarios where the deployment and operation of the backbone network infrastructure is technically or economically challenging, a more flexible model may improve certain performance metrics. As a first major contribution, this thesis investigates the effects of adding multi-hop capability to LoRaWAN, by means of the realistic use case of a communication system based on this architecture that provides a coordinated response in the aftermath of natural disasters like an earthquake. The capacity of end nodes to forward packets and perform multi-hop transmissions is explored, as a strategy to overcome gateway infrastructure failures, and analyzed for challenges, benefits and drawbacks in a massive system with thousands of devices. LoRa is also used as a stand-alone radio technology, independently from the LoRaWAN architecture. Its CSS modulation offers many advantages in LPWANs for IoT deployments. In particular, its different SFs available determine a trade-off between transmission time (i.e., data rate) and sensitivity (i.e., distance reach), and also generate quasi-orthogonal signals that can be demodulated concurrently by different receivers. The second major contribution of this thesis is the design of a minimalistic distance-vector routing protocol for embedded IoT devices featuring a LoRa transceiver, and the proposal of a path cost calculation metric that takes advantage of the multi-SF capability to reduce end-to-end transmission time. The protocol is evaluated through simulation and compared with other well-known routing strategies, analyzing and discussing its suitability for heterogeneous IoT LoRa mesh networks.Hi ha diverses tecnologies de ràdio LPWAN que proporcionen comunicació sense fils als milers de milions de dispositius connectats que conformen l'anomenada IoT. D'entre elles, LoRa ha emergit en els darrers anys com una solució popular per a què dispositius encastats amb pocs recursos transmetin dades a llargues distàncies amb un cost energètic reduït. Tot sovint, LoRa s'empra com la capa física de LoRaWAN, un estàndard obert que defineix una capa MAC i que especifica la topologia en estrella d'estrelles, l'operació, els rols i els mecanismes per implementar una arquitectura de la IoT integrada. A dia d'avui, milions de dispositius fan servir xarxes LoRaWAN en escenaris d'agricultura, edificis i ciutats intel·ligents, indústria, logística i subministraments. Malgrat el seu èxit en tot tipus d'entorns i àmbits de la IoT, encara romanen casos d'ús que es beneficiarien de topologies de xarxa més flexibles que l'estrella d'estrelles de LoRaWAN. Per exemple, en escenaris on el desplegament i l'operació de la infraestructura troncal de xarxa és tècnicament o econòmica inviable, una topologia més flexible podria millorar certs aspectes del rendiment. Com a primera contribució principal, en aquesta tesi s'investiguen els efectes d'afegir capacitat de transmissió multi-salt a LoRaWAN, mitjançant el cas d'ús realista d'un sistema de comunicació, basat en aquesta arquitectura, per proporcionar una resposta coordinada en els moments posteriors a desastres naturals, tals com un terratrèmol. En concret, s'explora l'estratègia d'afegir la capacitat de reenviar paquets als nodes finals per tal d'eludir les fallades en la infraestructura, i se n'analitzen els reptes, beneficis i inconvenients per a un sistema massiu amb milers de dispositius LoRa s'empra també com a tecnologia de ràdio de forma autònoma, independentment de l'arquitectura LoRaWAN. La seva modulació CSS li confereix molts avantatges en xarxes LPWAN per a desplegaments de la IoT. En particular, els diferents SFs disponibles hi determinen un compromís entre la durada de les transmissions (i.e., la taxa de dades) i la sensibilitat en la recepció (i.e., l'abast en distància), alhora que generen senyals quasi-ortogonals que poden ser desmodulades de forma concurrent per receptors diferents. La segona contribució principal d'aquesta tesi és el disseny d'un protocol d'encaminament dinàmic vector-distància per a dispositius de la IoT encastats amb un transceptor LoRa, i la proposta d'una mètrica per calcular el cost d'un camí que aprofita la capacitat multi-SF per minimitzar el temps de transmissió d'extrem a extrem. El protocol és avaluat mitjançant simulacions i comparat amb altres estratègies d'encaminament conegudes, analitzant la seva conveniència per a xarxes LoRa mallades per a la IoT.Existen varias tecnologías de radio LPWAN que proporcionan comunicación inalámbrica a los miles de millones de dispositivos conectados que forman el llamado IoT. De entre ellas, LoRa ha emergido en los últimos años como una solución popular para que dispositivos embebidos con pocos recursos transmitan datos a largas distancias con un coste energético reducido. Habitualmente, LoRa se usa como la capa física de LoRaWAN, un estándar abierto que define una capa MAC y que especi_ca la topología en estrella de estrellas, la operación, los roles y los mecanismos para implantar una arquitectura del IoT integrada. A día de hoy, millones de dispositivos utilizan redes LoRaWAN en escenarios de agricultura, edificios y ciudades inteligentes, industria, logística y suministros. A pesar de su éxito en todo tipo de entornos y ámbitos del IoT, existen casos de uso que se beneficiaran de topologías de red más flexibles que la estrella de estrellas de LoRaWAN. Por ejemplo, en escenarios en los que el despliegue y la operación de la infraestructura troncal de red es técnica o económicamente inviable, una topología más flexible podrá mejorar ciertos aspectos del rendimiento. Como primera contribución principal, en esta tesis se investigan los efectos de añadir capacidad de transmisión multi-salto a LoRaWAN, mediante el caso de uso realista de un sistema de comunicación basado en dicha arquitectura, para proporcionar una respuesta coordinada en los momentos posteriores a desastres naturales, tales como un terremoto. En concreto, se explora la estrategia de añadir la capacidad de reenviar paquetes a los nodos finales para sortear las fallas en la infraestructura, y se analizan los retos, beneficios e inconvenientes para un sistema masivo con miles de dispositivos. LoRa se usa también como tecnología de radio de forma autónoma, independientemente de la arquitectura LoRaWAN. Su modulación CSS le confiere muchas ventajas en redes LPWAN para despliegues de IoT. En particular, los distintos SFs disponibles determinan un compromiso entre la duración de las transmisiones (i.e., la tasa de datos) y la sensibilidad en la recepción (i.e., el alcance en distancia), a la vez que generan señales cuasi-ortogonales que pueden ser desmoduladas de forma concurrente por receptores distintos. En segundo lugar, esta tesis contiene el diseño de un protocolo de enrutamiento dinámico vector-distancia para dispositivos Internet of Things (IoT) embebidos con un transceptor LoRa, y propone una métrica para calcular el coste de un camino que aprovecha la capacidad multi-SF para minimizar el tiempo de transmisión de extremo a extremo. El protocolo es evaluado y comparado con otras estrategias de enrutamiento conocidas, analizando su conveniencia para redes LoRa malladas para el IoT.Postprint (published version

    A Survey on Subsurface Signal Propagation

    Get PDF
    Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the components and example UG wireless communication systems. Finally, the current research challenges of the system are presented for further improvement of the WUCs

    Hybrid Architectures to Improve Coverage in Remote Areas and Incorporate Long-range LPWAN Multi-hop IoT Strategies

    Get PDF
    At the height of M2M communications, there are many alternatives and architectures that present solutions for each case and each environment. The interoperability strategy or the combination of different solutions with adequate flexibility can be solutions to maintain a capacity for easy incorporation of new sensor nodes depending on the coverage or not of operators. In addition to interoperability strategies, this chapter presents some alternatives that include multi-hop techniques, combining different technologies. Special emphasis will be placed on low-power wide area networks systems (LoRa, Narrow Band IoT, LTE, etc.) applied in remote environments, such as nature reserves and ocean or fluvial ecosystems. An estate of art of these areas will be presented, as well as results of different development of our group

    Green communication approach for the smart city using renewable energy systems

    Get PDF
    A smart city is an evolving Internet of Things (IoT) technique that links different digital gadgets via a network, offering several new services to the manufacturing and medical field to commerce. A smart city is an omnipresent and fundamental change that has altered the whole environment using Information Communication Technology (ICT) and sensor-enabled IoT gadgets. Renewable energy storage, the solar, wind, and distributed resources can be better integrated into the grid. The leading theory in the digital domain for improved and broad use of all the situations with high digital media accessibility (i.e., video, sound, words, and pictures), nevertheless it is challenging to talk freely about such small appliances because of resource constraints (starving power and battery capacity), and large quantities of the information. The green communication approach for the smart city (GCA-SC) is proposed in this article. Thus, using saved video streams to solve these difficulties is recommended by Hybrid Adaptation and Power Algorithms and Delay-tolerant Streamed Algorithms. A new architecture is similarly proposed for the smart city network. Empirical findings such as power drainage, battery capacity, latency, and bandwidth are acquired and evaluated. It was reached that, with less effort than Baseline, GCA-SC optimises energy drainage, the battery capacity, variance, power delivery ratio of the IoT compatible gadgets in the smart city environment. The simulation analysis of the proposed GCA-SC method enhances the packet delivery ratio of 39% and throughput of 99 kbps. It reduces the delay by 2.5 s and the standard deviation by −0.9 s.publishedVersio

    A fair channel hopping scheme for LoRa Networks with multiple single-channel gateways

    Get PDF
    LoRa is one of the most prominent LPWAN technologies due to its suitable characteristics for supporting large-scale IoT networks, as it offers long-range communications at low power consumption. The latter is granted mainly because end-nodes transmit directly to the gateways and no energy is spent in multi-hop transmissions. LoRaWAN gateways can successfully receive simultaneous transmissions on multiple channels. However, such gateways can be costly when compared to simpler single-channel LoRa transceivers, and at the same time they are configured to operate with pure-ALOHA, the well-known and fragile channel access scheme used in LoRaWAN. This work presents a fair, control-based channel hopping-based medium access scheme for LoRa networks with multiple single-channel gateways. Compared with the pure-ALOHA used in LoRaWAN, the protocol proposed here achieves higher goodput and fairness levels because each device can choose its most appropriate channel to transmit at a higher rate and spending less energy. Several simulation results considering different network densities and different numbers of single-channel LoRa gateways show that our proposal is able to achieve a packet delivery ratio (PDR) of around 18% for a network size of 2000 end-nodes and one gateway, and a PDR of almost 50% when four LoRa gateways are considered, compared to 2% and 6%, respectively, achieved by the pure-ALOHA approachinfo:eu-repo/semantics/publishedVersio

    Towards the efficient use of LoRa for wireless sensor networks

    Get PDF
    Since their inception in 1998 with the Smart Dust Project from University of Berkeley, Wireless Sensor Networks (WSNs) had a tremendous impact on both science and society, influencing many (new) research fields, like Cyber-physical System (CPS), Machine to Machine (M2M), and Internet of Things (IoT). In over two decades, WSN researchers have delivered a wide-range of hardware, communication protocols, operating systems, and applications, to deal with the now classic problems of resourceconstrained devices, limited energy sources, and harsh communication environments. However, WSN research happened mostly on the same kind of hardware. With wireless communication and embedded hardware evolving, there are new opportunities to resolve the long standing issues of scaling, deploying, and maintaining a WSN. To this end, we explore in this work the most recent advances in low-power, longrange wireless communication, and the new challenges these new wireless communication techniques introduce. Specifically, we focus on the most promising such technology: LoRa. LoRa is a novel low-power, long-range communication technology, which promises a single-hop network with millions of sensor nodes. Using practical experiments, we evaluate the unique properties of LoRa, like orthogonal spreading factors, nondestructive concurrent transmissions, and carrier activity detection. Utilising these unique properties, we build a novel TDMA-style multi-hop Medium Access Control (MAC) protocol called LoRaBlink. Based on empirical results, we develop a communication model and simulator called LoRaSim to explore the scalability of a LoRa network. We conclude that, in its current deployment, LoRa cannot support the scale it is envisioned to operate at. One way to improve this scalability issue is Adaptive Data Rate (ADR). We develop two ADR protocols, Probing and Optimistic Probing, and compare them with the de facto standard ADR protocol used in the crowdsourced TTN LoRaWAN network. We demonstrate that our algorithms are much more responsive, energy efficient, and able to reach a more efficient configuration quicker, though reaching a suboptimal configuration for poor links, which is offset by the savings caused by the convergence speed. Overall, this work provides theoretical and empirical proofs that LoRa can tackle some of the long standing problems within WSN. We envision that future work, in particular on ADR and MAC protocols for LoRa and other low-power, long-range communication technologies, will help push these new communication technologies to main-stream status in WSNs

    Low-Power Wide-Area Networks: A Broad Overview of its Different Aspects

    Get PDF
    Low-power wide-area networks (LPWANs) are gaining popularity in the research community due to their low power consumption, low cost, and wide geographical coverage. LPWAN technologies complement and outperform short-range and traditional cellular wireless technologies in a variety of applications, including smart city development, machine-to-machine (M2M) communications, healthcare, intelligent transportation, industrial applications, climate-smart agriculture, and asset tracking. This review paper discusses the design objectives and the methodologies used by LPWAN to provide extensive coverage for low-power devices. We also explore how the presented LPWAN architecture employs various topologies such as star and mesh. We examine many current and emerging LPWAN technologies, as well as their system architectures and standards, and evaluate their ability to meet each design objective. In addition, the possible coexistence of LPWAN with other technologies, combining the best attributes to provide an optimum solution is also explored and reported in the current overview. Following that, a comparison of various LPWAN technologies is performed and their market opportunities are also investigated. Furthermore, an analysis of various LPWAN use cases is performed, highlighting their benefits and drawbacks. This aids in the selection of the best LPWAN technology for various applications. Before concluding the work, the open research issues, and challenges in designing LPWAN are presented.publishedVersio

    Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control,coexistence, mesh networking, cyber-physical systems, WSN, M2M

    Get PDF
    International audienceThe proliferation of embedded systems, wireless technologies, and Internet protocols have enabled the Internet of Things (IoT) to bridge the gap between the virtual and physical world through enabling the monitoring and actuation of the physical world controlled by data processing systems. Wireless technologies, despite their offered convenience, flexibility, low cost, and mobility pose unique challenges such as fading, interference, energy, and security, which must be carefully addressed when using resource-constrained IoT devices. To this end, the efforts of the research community have led to the standardization of several wireless technologies for various types of application domains depending on factors such as reliability, latency, scalability, and energy efficiency. In this paper, we first overview these standard wireless technologies, and we specifically study the MAC and physical layer technologies proposed to address the requirements and challenges of wireless communications. Furthermore, we explain the use of these standards in various application domains, such as smart homes, smart healthcare, industrial automation, and smart cities, and discuss their suitability in satisfying the requirements of these applications. In addition to proposing guidelines to weigh the pros and cons of each standard for an application at hand, we also examine what new strategies can be exploited to overcome existing challenges and support emerging IoT applications

    Study of the development of an Io T-based sensor platform for e-agriculture

    Get PDF
    E-agriculture, sometimes reffered as 'ICT in agriculture' (Information and Communication technologies) or simply "smart agriculture", is a relatively recent and emerging field focused on the enhacement on agricultural and rural development through improved information and communication processes. This concept, involves the design, development, evaluation and application of innovative ways to use IoT technologies in the rural domain, with a primary focus on agriculture, in order to achieve better ways of growing food for the masses with sustainability. In IoT-based agriculture, platforms are built for monitoring the crop field with the help of sensors (light, humidity, temperature, soil moisture, etc.) and automating the irrigation system. The farmers can monitor the field conditions from anywhere and highly more efficient compared to conventional approaches
    corecore