10,158 research outputs found

    Study of combining GPU/FPGA accelerators for high-performance computing

    Get PDF
    This contribution presents the performance modeling of a super desktop with GPU and FPGA accelerators, using OpenCL for the GPU and a high-level synthesis compiler for the FPGAs. The performance model is used to evaluate the different high-level synthesis optimizations, taking into account the resource usage, and to compare the compute power of the FPGA with the GP

    Putting the "Fun Factor" Into Gaming: The Influence of Social Contexts on Experiences of Playing Videogames

    Get PDF
    The increasingly social nature of gaming suggests the importance of understanding its associated experiences and potential outcomes. This study examined the influence of social processes in gameplay and different gaming contexts on the experience of individual and group flow when engaged in the activity. It also examined the affective experiences associated with different types of social gaming. The research consisted of a series of focus groups with regular gamers. The results of the thematic analysis revealed the importance of social belonging, opportunities for social networking and the promotion of social integration for game enjoyment. However, social experiences could also facilitate feelings of frustration in gameplay as a result of poor social dynamics and competitiveness. The analysis furthermore suggested that group flow occurs in social gaming contexts, particularly in cooperative gameplay. A number of antecedents of this shared experience were identified (e.g., collective competence, collaboration, task-relevant skills). Taken together, the findings suggest social gaming contexts enhance the emotional experiences of gaming. The study demonstrates the importance of examining social gaming processes and experiences to further understand their potential influence on associated affective outcomes. Areas of further empirical research are discussed in reference to the study’s findings

    Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies

    Get PDF
    A systematic search of the research literature from 1996 through July 2008 identified more than a thousand empirical studies of online learning. Analysts screened these studies to find those that (a) contrasted an online to a face-to-face condition, (b) measured student learning outcomes, (c) used a rigorous research design, and (d) provided adequate information to calculate an effect size. As a result of this screening, 51 independent effects were identified that could be subjected to meta-analysis. The meta-analysis found that, on average, students in online learning conditions performed better than those receiving face-to-face instruction. The difference between student outcomes for online and face-to-face classes—measured as the difference between treatment and control means, divided by the pooled standard deviation—was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. Analysts noted that these blended conditions often included additional learning time and instructional elements not received by students in control conditions. This finding suggests that the positive effects associated with blended learning should not be attributed to the media, per se. An unexpected finding was the small number of rigorous published studies contrasting online and face-to-face learning conditions for K–12 students. In light of this small corpus, caution is required in generalizing to the K–12 population because the results are derived for the most part from studies in other settings (e.g., medical training, higher education)

    Data-driven design of intelligent wireless networks: an overview and tutorial

    Get PDF
    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves
    corecore