470 research outputs found

    Exploration of Finite 2D Square Grid by a Metamorphic Robotic System

    Full text link
    We consider exploration of finite 2D square grid by a metamorphic robotic system consisting of anonymous oblivious modules. The number of possible shapes of a metamorphic robotic system grows as the number of modules increases. The shape of the system serves as its memory and shows its functionality. We consider the effect of global compass on the minimum number of modules necessary to explore a finite 2D square grid. We show that if the modules agree on the directions (north, south, east, and west), three modules are necessary and sufficient for exploration from an arbitrary initial configuration, otherwise five modules are necessary and sufficient for restricted initial configurations

    Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

    Get PDF
    We consider search in a finite 3D cubic grid by a metamorphic robotic system (MRS), that consists of anonymous modules. A module can perform a sliding and rotation while the whole modules keep connectivity. As the number of modules increases, the variety of actions that the MRS can perform increases. The search problem requires the MRS to find a target in a given finite field. Doi et al. (SSS 2018) demonstrate a necessary and sufficient number of modules for search in a finite 2D square grid. We consider search in a finite 3D cubic grid and investigate the effect of common knowledge. We consider three different settings. First, we show that three modules are necessary and sufficient when all modules are equipped with a common compass, i.e., they agree on the direction and orientation of the x, y, and z axes. Second, we show that four modules are necessary and sufficient when all modules agree on the direction and orientation of the vertical axis. Finally, we show that five modules are necessary and sufficient when all modules are not equipped with a common compass. Our results show that the shapes of the MRS in the 3D cubic grid have richer structure than those in the 2D square grid

    Nested reconfigurable robots: theory, design, and realization

    Get PDF
    Rather than the conventional classification method, we propose to divide modular and reconfigurable robots into intra-, inter-, and nested reconfigurations. We suggest designing the robot with nested reconfigurability, which utilizes individual robots with intra-reconfigurability capable of combining with other homogeneous/heterogeneous robots (inter-reconfigurability). The objective of this approach is to generate more complex morphologies for performing specific tasks that are far from the capabilities of a single module or to respond to programmable assembly requirements. In this paper, we discuss the theory, concept, and initial mechanical design of Hinged-Tetro, a self-reconfigurable module conceived for the study of nested reconfiguration. Hinged-Tetro is a mobile robot that uses the principle of hinged dissection of polyominoes to transform itself into any of the seven one-sided tetrominoes in a straightforward way. The robot can also combine with other modules for shaping complex structures or giving rise to a robot with new capabilities. Finally, the validation experiments verify the nested reconfigurability of Hinged-Tetro. Extensive tests and analyses of intra-reconfiguration are provided in terms of energy and time consumptions. Experiments using two robots validate the inter-reconfigurability of the proposed module

    A Stochastic Approach to Shortcut Bridging in Programmable Matter

    Full text link
    In a self-organizing particle system, an abstraction of programmable matter, simple computational elements called particles with limited memory and communication self-organize to solve system-wide problems of movement, coordination, and configuration. In this paper, we consider a stochastic, distributed, local, asynchronous algorithm for "shortcut bridging", in which particles self-assemble bridges over gaps that simultaneously balance minimizing the length and cost of the bridge. Army ants of the genus Eciton have been observed exhibiting a similar behavior in their foraging trails, dynamically adjusting their bridges to satisfy an efficiency trade-off using local interactions. Using techniques from Markov chain analysis, we rigorously analyze our algorithm, show it achieves a near-optimal balance between the competing factors of path length and bridge cost, and prove that it exhibits a dependence on the angle of the gap being "shortcut" similar to that of the ant bridges. We also present simulation results that qualitatively compare our algorithm with the army ant bridging behavior. Our work gives a plausible explanation of how convergence to globally optimal configurations can be achieved via local interactions by simple organisms (e.g., ants) with some limited computational power and access to random bits. The proposed algorithm also demonstrates the robustness of the stochastic approach to algorithms for programmable matter, as it is a surprisingly simple extension of our previous stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming - 23rd International Conference, 2017. An updated journal version will appear in the DNA23 Special Issue of Natural Computin

    Heterogeneous Self-Reconfiguring Robotics

    Get PDF
    Self-reconfiguring (SR) robots are modular systems that can autonomously change shape, or reconfigure, for increased versatility and adaptability in unknown environments. In this thesis, we investigate planning and control for systems of non-identical modules, known as heterogeneous SR robots. Although previous approaches rely on module homogeneity as a critical property, we show that the planning complexity of fundamental algorithmic problems in the heterogeneous case is equivalent to that of systems with identical modules. Primarily, we study the problem of how to plan shape changes while considering the placement of specific modules within the structure. We characterize this key challenge in terms of the amount of free space available to the robot and develop a series of decentralized reconfiguration planning algorithms that assume progressively more severe free space constraints and support reconfiguration among obstacles. In addition, we compose our basic planning techniques in different ways to address problems in the related task domains of positioning modules according to function, locomotion among obstacles, self-repair, and recognizing the achievement of distributed goal-states. We also describe the design of a novel simulation environment, implementation results using this simulator, and experimental results in hardware using a planar SR system called the Crystal Robot. These results encourage development of heterogeneous systems. Our algorithms enhance the versatility and adaptability of SR robots by enabling them to use functionally specialized components to match capability, in addition to shape, to the task at hand

    Geological Object Recognition in Extraterrestrial Environments

    Get PDF
    On July 4 1997, the landing of NASA’s Pathnder probe and its rover Sojourner marked the beginning of a new era in space exploration; robots with the ability to move have made up the vanguard of human extraterrestrial exploration ever since. With Sojourners landing, for the rst time, a ground traversing robot was at a distance too far from earth to make direct human control practical. This has given rise to the development of autonomous systems to improve the e?ciency of these robots,in both their ability to move,and their ability to make decisions regarding their environment. Computer Vision comprises a large part of these autonomous systems, and in the course of performing these tasks a large number of images are taken for the purpose of navigation. The limited nature of the current Deep Space Network means that a majority of these images are never seen by human eyes. This work explores the possibility of using these images to target certain features by using a combination of three AdaBoost algorithms and established image feature approaches to help prioritize interesting subjects from an ever growing data set of imaging data

    Distributed reinforcement learning for self-reconfiguring modular robots

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 101-106).In this thesis, we study distributed reinforcement learning in the context of automating the design of decentralized control for groups of cooperating, coupled robots. Specifically, we develop a framework and algorithms for automatically generating distributed controllers for self-reconfiguring modular robots using reinforcement learning. The promise of self-reconfiguring modular robots is that of robustness, adaptability and versatility. Yet most state-of-the-art distributed controllers are laboriously handcrafted and task-specific, due to the inherent complexities of distributed, local-only control. In this thesis, we propose and develop a framework for using reinforcement learning for automatic generation of such controllers. The approach is profitable because reinforcement learning methods search for good behaviors during the lifetime of the learning agent, and are therefore applicable to online adaptation as well as automatic controller design. However, we must overcome the challenges due to the fundamental partial observability inherent in a distributed system such as a self reconfiguring modular robot. We use a family of policy search methods that we adapt to our distributed problem. The outcome of a local search is always influenced by the search space dimensionality, its starting point, and the amount and quality of available exploration through experience.(cont) We undertake a systematic study of the effects that certain robot and task parameters, such as the number of modules, presence of exploration constraints, availability of nearest-neighbor communications, and partial behavioral knowledge from previous experience, have on the speed and reliability of learning through policy search in self-reconfiguring modular robots. In the process, we develop novel algorithmic variations and compact search space representations for learning in our domain, which we test experimentally on a number of tasks. This thesis is an empirical study of reinforcement learning in a simulated lattice based self-reconfiguring modular robot domain. However, our results contribute to the broader understanding of automatic generation of group control and design of distributed reinforcement learning algorithms.by Paulina Varshavskaya.Ph.D
    corecore