
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-16-2015 12:00 AM 

Geological Object Recognition in Extraterrestrial Environments Geological Object Recognition in Extraterrestrial Environments 

Gregory M. Elfers 
The University of Western Ontario 

Supervisor 

Dr. Olga Veksler 

The University of Western Ontario 

Graduate Program in Computer Science 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science 

© Gregory M. Elfers 2015 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Artificial Intelligence and Robotics Commons, Geology Commons, and the Other Computer 

Sciences Commons 

Recommended Citation Recommended Citation 
Elfers, Gregory M., "Geological Object Recognition in Extraterrestrial Environments" (2015). Electronic 
Thesis and Dissertation Repository. 2822. 
https://ir.lib.uwo.ca/etd/2822 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=ir.lib.uwo.ca%2Fetd%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ir.lib.uwo.ca%2Fetd%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2822?utm_source=ir.lib.uwo.ca%2Fetd%2F2822&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


GEOLOGICAL OBJECT RECOGNITION IN EXTRATERRESTRIAL
ENVIRONMENTS

(Thesis format: Monograph)

by

Greg Elfers

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Greg Elfers 2015



Acknowlegements

I would like to acknowledge Melissa Elfers, my wife, who graciously shares me with my
computer, but still loves me more than my computer ever has. Dr. Olga Veksler who probably
didn’t realize what she was getting into when she agreed to supervise me. My sister Cynthia,
whose patience with me in this life has gone far beyond what siblings should have to endure
and Stacy “Spacey” Orsat, who helped me start down the road to university. Owen McCarthy,
who spent many hours beside me in undergrad, listening to me swear at code, he protected
my sanity and challenged me academically even if he was never able to get that last mark.
Tom Cunningham whose example showed me that any problem could be solved with patience
and determination. Dr. Steven Beauchemin who gave me an opportunity to be excited about
Mathematics. Dr. Taha Kawasari who was always ready to answer a question about that math,
despite being eyeball deep in his own thesis. And a special thanks to Bernard Sandler who
pointed me in the direction of the end even if I’m not that good with following directions.

This thesis is also dedicated to the fond memory of:

Barbara and Manfred Elfers, The height of a building, depends on the strength of its foundation.
Jane Bashara, whose encouraging light was dimmed before its time,
Dr. Sheng Yu, who showed me the beauty of computing,
Greg Mate, whose optimism during his fight against cancer put the battles I face in perspective.

ii



Abstract
On July 4 1997, the landing of NASA’s Pathnder probe and its rover Sojourner marked the

beginning of a new era in space exploration; robots with the ability to move have made up the
vanguard of human extraterrestrial exploration ever since. With Sojourners landing, for the
rst time, a ground traversing robot was at a distance too far from earth to make direct human
control practical. This has given rise to the development of autonomous systems to improve
the e?ciency of these robots,in both their ability to move,and their ability to make decisions
regarding their environment. Computer Vision comprises a large part of these autonomous
systems, and in the course of performing these tasks a large number of images are taken for
the purpose of navigation. The limited nature of the current Deep Space Network means that
a majority of these images are never seen by human eyes. This work explores the possibility
of using these images to target certain features by using a combination of three AdaBoost
algorithms and established image feature approaches to help prioritize interesting subjects from
an ever growing data set of imaging data.

Keywords:Computer Vision, Shatter Cones, Autonomous Robotics, Machine Learning

iii



Contents

Certificate of Examination ii

Acknowlegements ii

Abstract iii

List of Figures vii

List of Tables xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of our investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Program Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Previous Work 6
2.1 SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Rock Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Material Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 OASIS, AEGIS and GESTALT . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Geological Features 9
3.1 Outcrops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Shatter-Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Feature Extraction 14
4.1 Teaching a Computer To “See” . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Haar Like Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 EOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 HOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Hough Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7 Intensity and Colour Histograms . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 Edge Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



5 Machine Learning Algorithms 27
5.1 What is Machine Learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 The AdaBoost algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Training Errors and Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Classification and Regression Trees . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.1 What are Classification and Regression Trees? . . . . . . . . . . . . . . 33
5.4.2 Classification and Regression Trees with AdaBoost . . . . . . . . . . . 34

6 Experimental Data Set and Test images 36
6.1 Creation of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Outcrop Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Shatter Cone Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Experimental Results 40
7.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Outcome of Outcrop Classification . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Outcome of Shatter-cone Classification . . . . . . . . . . . . . . . . . . . . . . 51

7.3.1 Training and Control Error . . . . . . . . . . . . . . . . . . . . . . . . 51
7.3.2 Test 1 Familiar Images Different Scales . . . . . . . . . . . . . . . . . 53
7.3.3 Test 2: Familiar Geology, Novel Images . . . . . . . . . . . . . . . . . 54
7.3.4 Image Test Set for use inTests 3 & 4 . . . . . . . . . . . . . . . . . . . 55
7.3.5 Test 3 Novel Geography, Limited Scope . . . . . . . . . . . . . . . . . 57
7.3.6 Test 4: Landscape images . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Discussion, Conclusions and Future Work 62
8.1 Outcrops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.1.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Detection Window Size . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Portability of Outcrop Features . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Shatter-Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.3 Boosting as a Strategy in Extraterrestrial Environments . . . . . . . . . . . . . 66
8.3.1 Validity of this Approach . . . . . . . . . . . . . . . . . . . . . . . . . 66

Methodological Benefits . . . . . . . . . . . . . . . . . . . . . . . . . 66
Methodological Limitations . . . . . . . . . . . . . . . . . . . . . . . 67

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.4.1 Methodological Improvements . . . . . . . . . . . . . . . . . . . . . . 67
8.4.2 Structural Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



8.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

Curriculum Vitae 73

vi



List of Figures

1.1 Hematite spherules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Variation in outcrop appearance . . . . . . . . . . . . . . . . . . . . . . . . . . 10
(a) An example of a visually simple outcrop . . . . . . . . . . . . . . . . . 10
(b) An example of a visually complex outcrop . . . . . . . . . . . . . . . . 10

3.2 Examples of shatter-cone completeness . . . . . . . . . . . . . . . . . . . . . 11
(a) An example of a nested shatter-cone. . . . . . . . . . . . . . . . . . . . 11
(b) An example of a partially developed shatter-cone . . . . . . . . . . . . . 11

3.3 Shatter Cones can range in size from millimetres to meters and come in a vari-
ety of orientations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(a) A 30m Shatter-Cone from the Sudbury impact site . . . . . . . . . . . . 12
(b) Hand Sized Inverted Shatter Cone from the Steinheim impact structure. . 12

3.4 Pressure-temperature Plot of Metamorphic Processes . . . . . . . . . . . . . . 13

4.1 Various views of pens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(a) A Bic Pen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(b) ...With Occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(c) ...Inversely Occluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(d) ...Colour Inverted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(e) ...Differently Orientated . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(f) Lollipop Pens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 A representation of a standard scale space where each dot represents an interval
image vo

s Where o is the image’s octave and s is the interval. The dots in red
represent the images covering the whole octave while the dots in grey are used
in extrema detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 A representation of the Difference of Gaussian(DoG) scale space where each
dot represents an interval image, wo

s Where, o is the image’s octave and s is the
interval. The dots in red represent the images covering the whole octave while
the dots in grey supplementary images used for the extraction of candidate key
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Extracting candidate keypoints by finding 3D Extrema. . . . . . . . . . . . . . 18
4.5 Viola and Jones’ integral image method for calculating the intensity of a region

using only the corner points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Examples of Haar like features . . . . . . . . . . . . . . . . . . . . . . . . . . 20

(a) An example of features used by Viola and Jones for face detection . . . . 20
(b) An extended feature set . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.7 Sobel Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



(a) Horizontal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(b) Vertical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(c) NW-SE Diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(d) NE-SW Diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(e) Non-Directional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.8 A modern Edge Orientation Gradient . . . . . . . . . . . . . . . . . . . . . . . 21
4.9 A visual representation of the HOG feature . . . . . . . . . . . . . . . . . . . . 22

(a) An image of a sports player . . . . . . . . . . . . . . . . . . . . . . . . 22
(b) Visualization of HOG features . . . . . . . . . . . . . . . . . . . . . . . 22
(c) HOG Features on image . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.10 Dalal,Triggs Process for image identification using HOG . . . . . . . . . . . . 23
4.11 A visual representation of a line in Rho Theta space . . . . . . . . . . . . . . . 24

(a) Rho Theta Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
(b) A Point described in Polar Space . . . . . . . . . . . . . . . . . . . . . . 24
(c) Points on a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.12 Weaknesses of Intensity Histograms . . . . . . . . . . . . . . . . . . . . . . . 26
(a) Identical Intensity Histograms for dissimilar images . . . . . . . . . . . 26
(b) Susceptibility of Intensity Histograms to Lighting Changes . . . . . . . . 26
(c) Rock VS. Regolith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 A visual representation of the AdaBoost algorithm . . . . . . . . . . . . . . . . 31
(a) initial distribution D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
(b) initial hypothesis h1(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
(c) distribution D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
(d) second hypothesis h2(n) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
(e) distribution D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
(f) third hypothesis h3(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
(g) Final Hypothesis Hfinal . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Underfitting vs. Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
(a) Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
(b) Underfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 A Simple Classification Tree example . . . . . . . . . . . . . . . . . . . . . . 33
5.4 CART and Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 CART Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

(a) Example DataSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
(b) CART Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
(c) CART Proper fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Field Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
(a) ROC6 Rover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
(b) GigaPan Camera Mount . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Examples of the Outcrop Data Set . . . . . . . . . . . . . . . . . . . . . . . . 37
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii



(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.3 Examples of the Shatter Cone Data Set . . . . . . . . . . . . . . . . . . . . . . 39
(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
(h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 The six Haar-like features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 The results of CART node size . . . . . . . . . . . . . . . . . . . . . . . . . . 44

(a) Training with a decision tree with 16 nodes . . . . . . . . . . . . . . . . 44
(b) Same Features as (a) but using 4 nodes . . . . . . . . . . . . . . . . . . 44

7.3 The results of various iterations of the same data . . . . . . . . . . . . . . . . . 45
(a) 8 Node Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(b) also an 8 node tree with the same features as (c) . . . . . . . . . . . . . . 45

7.4 Amplitude distribution of detection window values . . . . . . . . . . . . . . . 46
(a) Gentle AdaBoost Distribution . . . . . . . . . . . . . . . . . . . . . . . 46
(b) Modest AdaBoost Distribution . . . . . . . . . . . . . . . . . . . . . . . 46
(c) Real AdaBoost Distribution . . . . . . . . . . . . . . . . . . . . . . . . 46

7.5 Standard Score of the confidence distributions . . . . . . . . . . . . . . . . . . 46
(a) Gentle Standard Score . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
(b) Modest Standard Score . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
(c) Real Standard Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.6 Weakly and Strongly Differentiated Feature Distribution . . . . . . . . . . . . . 47
(a) Weakly differentiated features in an image . . . . . . . . . . . . . . . . . 47
(b) Strongly differentiated features in an image . . . . . . . . . . . . . . . . 47

7.7 Comparison of Test Error using different subsets of features . . . . . . . . . . . 48
(a) Training with all features . . . . . . . . . . . . . . . . . . . . . . . . . . 48
(b) Training with only Hough Transform Haar and RGB histograms . . . . . 48

7.8 A selection of results in positive identification of an Outcrop . . . . . . . . . . 49
(a) Test 1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
(b) Probability map of (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
(c) Test 2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
(d) Test 2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
(e) Test 3 Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
(f) Test 3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.9 A utter failure in the identification of Outcrops . . . . . . . . . . . . . . . . . . 50
(a) Test 3 Novel Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



(b) Test 3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.10 A comparison of our Probability Method, vs. a Committee voting method . . . 51

(a) Test 4 Using Proability . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
(b) Test 4 Using Committee Values . . . . . . . . . . . . . . . . . . . . . . 51

7.11 A comparison of off site outcrop locations . . . . . . . . . . . . . . . . . . . . 52
(a) Test 5 using a local rock structure . . . . . . . . . . . . . . . . . . . . . 52
(b) Test 5 using a random outcrop . . . . . . . . . . . . . . . . . . . . . . . 52

7.12 Training results using a full set of features with and without the RGB histogram 52
(a) Test Error All Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
(b) Test Error All but RGB . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.13 The same image run with initial training data base at different section window
sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
(a) Confidence values using 200px windows . . . . . . . . . . . . . . . . . 54
(b) Confidence values using 100px windows . . . . . . . . . . . . . . . . . 54

7.14 Typical test image used in our second Test round . . . . . . . . . . . . . . . . . 55
7.15 A typical test image used in test 2 of the shatter-cone images. This image

was selected for shading variations and oblique surfaces relative to the camera
plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
(a) Positively weighted windows at 100px . . . . . . . . . . . . . . . . . . . 56
(b) 100px probability map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
(c) Positively weighted windows at 200px . . . . . . . . . . . . . . . . . . . 56
(d) 200px probability map. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.16 From Left to Right: The original image. Windows labeled by our algorithm as
shatter-cones. A weighted distribution of probability that the encircled image
contains a shatter-cone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
(a) Shatter-cones in Sudbury Breccia . . . . . . . . . . . . . . . . . . . . . 58
(b) Identification of Shatter-cones . . . . . . . . . . . . . . . . . . . . . . . 58
(c) Labeled Shatter-cones . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.17 Shatter-cone Labelling based for various sub window sizes for the same image.
The smaller size windows show better resolution in identifying small as well as
large shatter-cones but comes at a cost of an exponential growth in processing
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
(a) Shatter-cone Probability at 24px . . . . . . . . . . . . . . . . . . . . . . 59
(b) Shatter-cone Probability at 100px . . . . . . . . . . . . . . . . . . . . . 59

7.18 Shatter-cone Labelling based for various sub window sizes for the same image.
The larger window size still detect larger scale shatter-cones, but as the window
size increases smaller features are lost and error creeps into textured regions
due to a loss of resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
(a) Shatter-cone Probability at 200px . . . . . . . . . . . . . . . . . . . . . 60
(b) Shatter-cone Probability at 400px . . . . . . . . . . . . . . . . . . . . . 60

7.19 A probability map of shatter-cones in novel landscape scale image . . . . . . . 61
(a) Vredefort Dome South Africa . . . . . . . . . . . . . . . . . . . . . . . 61
(b) Slate Islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
(c) Prince Albert Impact Crater, Victoria Island NWT . . . . . . . . . . . . 61

x



8.1 A comparison of areas of interest identified at different scales. . . . . . . . . . 64
(a) Results at 300px . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
(b) Results at 100px . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
(c) Close up of positive results . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



List of Tables

4.1 Sift descriptor Algorithm steps. (Adapted from Otero and Delbracio [50].) . . . 17

7.1 Overview of feature implementation . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Overview of feature effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Shatter-cone Test Image Distribution . . . . . . . . . . . . . . . . . . . . . . . 56

xii



Chapter 1

Introduction

1.1 Motivation

Since December 13th, 1972, when Apollo 17 Astronauts Eugene Cernan and Harrison Schmitt
took their last steps on the lunar surface, the exploration of extraterrestrial environments has
been the exclusive providence of robots. In recent years with the success of Pathnder/Sojourner
in 1997, the Mars Exploration Rovers (MER) Spirit and Opportunity in 2003, and Mars Sci-
ence Laboratory (MSL) Curiosity on August 6th 2012, the usefulness of robotic surface rovers
in extraterrestrial research has been rmly established. With a number of rover missions planned
for launches in the next 10 years by the space agencies of China, India, Russia, and the Eu-
ropean Union, the importance of these mechanized explorers cannot be understated. Current
protocols require human intervention in almost every step, but growing mission demands and
improving capabilities mean that rovers are covering more distance without the assistance of
humans. Pathnders rover, Sojourner, for example, traveled a total of 100 meters over the en-
tirety of its 3 month mission while Opportunity has traveled over 42.23 kilometres in its 12
years on the Martian surface (slightly more than the 42.195 kilometre distance of an Olympic
Marathon[40].) With the arrival of Curiosity, and an ever growing list of long duration or-
biters and deep space probes, combined with the costly equipment needed for increases in the
bandwidth available in the Deep Space Communication Array, autonomy for these rovers is
becoming a more apparent requirement.

The rst steps of this autonomy began with the MER rovers GESTALT navigation system
which helps the rover with the minutiae of driving. The next step was taken with the upload
of CalTech/JPL’s AEGIS Autonomous Science software package to Opportunity in 2009. The
foundation of any autonomous system rests in the ability of that system to correctly identify
and di?erentiate the objects around it. The rocks on the surface of an extraterrestrial world are
a rich source of information. Their location, chemical makeup, and physical structure can tell
the environmental history of the body on which they sit. This is especially true in the area
around craters where the violence of an impact can reveal clues otherwise hidden deep within
the bedrock of a planet.

One of the largest constraints faced in the development of algorithms for this kind of work,
lies in the limited computational power available to the rover. MER Opportunity has 20MHz
RAD6000 Processor with 128MB of RAM and 256MB flash memory. The AEGIS system

1
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regularly processes 1 MB images while having access to only 4MB of RAM [27]. This means
that an operation which takes mere seconds on a modern processor, will take many minutes or
hours on a rover. While the MSL Curiosity rover has a processor that is an order of magnitude
more powerful as the one which AEGIS runs on, it is still several orders of magnitude slower
than a modern laptop. While the scope of this work will not limit itself to currently available
rover processing power, it is essential that our solutions are informed by such limitations.

Despite the limitations of processing power, perhaps the most compelling argument to be
made, comes from the limitations in bandwidth. At the current time any spacecraft not in earth
orbit communicates with earth through NASA’s deep space communication network, which
consists of three sights located 120 degrees apart on the planet, with stations in Spain, Cali-
fornia, and Australia. As the capabilities of the instrumentation on each successive generation
of spacecraft grows more complex, so to does the amount of data they are able to generate.
Current craft such as the Lunar Reconnaissance Orbiter are expected to generate over 70 TB of
data over its serviceable lifetime, Which is an order of magnitude larger than the Mars Recon-
naissance Orbiter launched just a few years earlier. In order to save bandwidth current missions
send low resolution image thumbnails which allows mission planners to make decisions about
science targets and navigation. If mission control requires, the rover will send full resolution
copies of the data on subsequent communications.

While this system works well for current missions, it means that only a small fraction of
existing imagery is used. Some data, such as navigation and hazard avoidance imagery is
never seen by human eyes, and of the images returned, the resolution of thumbnail data may
be insufficient to capture key details contained within the rocks. Such an approach is also
very slow, with the rover moving mere feet per day, transmitting imagery back to earth and
then awaiting instructions on how to proceed. Ultimately it is the slow pace of this method of
exploration that presents its largest drawbacks.

In its planning documents NASA has identified sample return missions as a key goal in
the intermediate future. Such a mission would demand a much quicker timeline than current
operating procedures allow. To maximize the effectiveness of the science on a mission of this
type, a much larger area would have to be explored in greater detail more rapidly than current
methods would allow. A rover with the ability to detect objects of interest in its surrounding
environs would offer a great advantage in a mission such as this.

1.2 Scope of our investigation
In our investigation, we are looking at two proof of concept implementations of a method of
identifying a terrain of interest, that will demonstrate the feasibility of developing generalizable
feature descriptors to allow for a general image description language. Such a language would
allow for a flexible method of allowing a rover to perform an unsupervised classification of
specific terrain types of interest to ground based controllers. This work will incorporate a
variety of image feature types despite the current limitation is extraterrestrial processing power,
with the belief that such a system may be useful if the techniques investigated allow for such
a system to be incorporated into the data collection methods used in the field of Terrestrial
Geology.

We have decided to limit our investigation to macroscopic features as this does not require
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special equipment or close investigation by a rover. This would allow for a program to run
in conjunction with existing navigational and scientific operations, to increase the potential
of scientific discovery without changing primary mission perimeters. This work will focus
on two features at the scale of “Field Geophotography.” This is the scale of photos used by
field geologists in their work and limit its scope to images capable of being photographed by
a standard commercial point and shoot camera. For the purposes this work, this means image
frames representing a distance of 20cm-100m Large landscapes will not be included except
where they form the background of closer objects.

The features chosen for investigation are outcrops and shatter-cones. Outcrops were se-
lected because of they represent the underlaying structure of a geological region, and may give
clues as to the conditions that existed during their formation. Such structures may also be of
interest in the identification of global phenomenon. And the presence of certain minerals, their
deposition and erosion can give clues as to the historical conditions over a broad timescale.
Such features exist with relative frequency and will almost certainly exist within the landing
zone of a rover. Besides the scientific interest provided by the make up of individual examples,
they are also useful as landmarks. A change in appearance of local outcrops can delineate
different geological zones, or their orientation and arrangement within a landscape can suggest
larger underlaying structures.

The second feature, shatter-cones, provide a unique opportunity of automated investiga-
tion for a number of reasons. A shatter-cone is unique to a specific range of impact events,
and present at the same time, quite unique and yet almost universal features in their appear-
ance. They are indicative of a specific, set of pressures present at the time of their creation,
and have been found in a variety of rock types in a number of locations on earth. As of yet
these structures have not been identified on other planets, and since most imagery is returned
to earth in a low resolution format that might obscure their characteristic features, they repre-
sent an ideal candidate for automated detection from a rover. Shatter-cones also represent a
tantalizing terrestrial application for locating impact craters here on earth. The Earth Impact
Database maintained at the University of New Brunswick identifies only 188 confirmed impact
sites, which is a fraction of the sites observed on other planets and moons.[52] The unique
and macroscopic nature of this feature makes it a good candidate for identification in existing
images and the mining of online photo repositories could offer clues of undiscovered impact
sites.

1.3 Approach
While object detection is one of the most active fields of study in computer vision, it cannot be
thought of as a routine or common place process. Very often the most successful algorithms
depend on applying situational heuristic tuning or on identifying descriptors that fit well with
specific features of the object being sought. An approach to face detection can be reasonably
certain that the overarching design and main structural features of a human face do not vary
greatly from person to person. Likewise, despite the variances in the design of cars, certain
operational requirements mean that similar looking structures can be found in predictable lo-
cations in an overwhelming number of the various iterations of cars.

One of the biggest difficulties in the autonomous detection of geological features, is that
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Credit: NASA

Figure 1.1: The existence of Hematite spherules found embedded in rock would illicit far less
comment on earth than it did when Opportunity found these spherules at Meridiani Planum
in 2004. Such structures are strong indicators of the presence of liquid water during their
formation.

most of the parameters which might be used to describe an object can vary to an extraordi-
nary degree. Objects with almost identical chemical makeups can vary widely in appearance.
Likewise completely dissimilar objects can appear almost identical to one another on all but
the microscopic level. While the morphology of a region can impose some structural simi-
larities in appearance between different rock features, there are can be large variations due to
the chemistry of the surrounding rocks. To complicate things further, the context of a feature
within or with respect to its environment or even within the context of similar structures else-
where on a planet, can change its scientific interest significantly. For example, similarities in
the fossils and minerals in rocks in Africa and South America suggested that these two distant
locations once touched, and an image of hematite spherules like the one in Figure 1.1 would
have elicited little interest were they to have been found on Earth rather than on Mars.

In light of the complexities of this problem, and with the expectation of the availability of
human expertise in the planning and execution of such missions, we have opted to develop a
system in which the objects of interest are known at least to some degree,and can be pre-trained
from a set of known examples. Or with the help of human expertise a training database can be
constructed with a modestly sized subset of gathered examples To this end we have chosen to
use the machine learning algorithm AdaBoost to train a classier from a set of feature vectors
created from weak descriptors in order to create a decision making committee that is able to
identify objects of interest. As we will see in our discussion in Chapter 5, a machine learning
approach o?ers a number of key advantages over other methods.

While both outcrops and shatter-cone features will involve the same approach and work
flow, the creation of our database will differ in the selection of source imagery used to construct
the training data. In the case of outcrops we will try to use a subset of images gathered over
a two week time period and apply our identification mechanisms to unique and novel images
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from the same geological region but taken of different structures or from different points of
view. With the shatter-cone training data we will use examples of shatter-cones from a single
geographic location and attempt to apply our detection mechanisms to similar structures in
widely different geological regions.

1.3.1 Program Workflow

Data Set preprocessing The process will begin by building a data set from our test images
isolating just those features which are to be identified by the algorithm, a roughly equal number
of negative examples from those same images will also be created. Each image in the data set
will be resized to 100x100 pixels to represent different resolutions, then a histogram normal-
ization algorithm is applied to the images and a greyscale version created. The appropriate
image is then passed to each of the feature extractors.

Feature Extraction For the purpose of our investigations 9 different features were isolated
from 7 different descriptor strategies we extracted from the image. The feature set consists of:

Scale Invariant Feature Transform(SIFT)[42]
Haar like features (Haar)[63]
Histogram of Oriented Gradients(HOG)[19]
Edge Orientation Gradients(EOG)[29]
Hough Transforms[23]
Intensity Histograms
Edge Density

Machine Learning Once the features are extracted a feature vector will be constructed and
labeled as either an interesting example or an uninteresting example at which point a boosting
algorithm[57] will be used to create a decision making committee to evaluate new images.

Object Identification To identify features within a novel object, a feature vector will be
created from sub-windows of the image we are analyzing and a probability map of the image
as a whole will be created by calculating the decision making committee’s evaluation of each
sub-window.

1.4 Outline

This thesis will be organized as follows: In Chapter 2 we will give an overview of approaches
used by researchers studying similar problems. In Chapter 3 we look at the specific geology
we have selected to test our method on while In Chapter 4 we will go over the image features
we have chosen to use, and how we constructed them. In Chapter 5 we will give an overview
of various machine learning techniques and examine the AdaBoost Algorithm in some detail.
Starting with Chapter 6 we will begin a look at the specifics of our work with the building
and refinement of our data sets. In Chapter 7 we will review the details of our features for the
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chosen geology, and discuss our results. In Chapter 8 we will conclude with a discussion of
the implications of our results.



Chapter 2

Previous Work

The use of computer vision algorithms in the field of Geology is a rapidly growing practice.
Starting in the defence and space industry for use with satellite imagery, and more recently
spurred on in large part by the resource extraction and processing industries who have bene-
fited from technologies developed for the military’s increasing use of unmanned aerial vehicles
(UAVs) automated surveying through a variety of optical and infrared techniques forms an
increasingly important part of field work. Traditionally however this work has focused on ei-
ther in work on large scale aerial imaging or in the realm of the microscopic for the purpose
of automated mineral identification. The reasons for this can be understood in the context of
the requirements of fieldwork. Terrestrial geological exploration often happens in locations
where power is limited, and access is difficult. This has meant that the logistics required to
insert and power a ground based system for the purpose of autonomous geology has proved
more unwieldy than useful to an individual geologist in the field. In such cases where a ter-
restrial location is unavailable to human exploration, the relative simplicity and reliability of
teleoperation has biased remote exploration systems towards those systems. Even in Extrater-
restrial environs as far away as the moon, human guided systems are much more capable than
autonomous system are. It is only with the development of robotic rovers for the exploration
of more distant locations such as Mars, that both the need, and operational ability have come
together.

While this has been the case in the past, it is certainly not true of the future. While the
rigours of space travel have demanded that computer processing power be adopted more slowly,
it is now reaching a stage where reasonably complex and powerful computer systems for con-
trolling autonomous identification systems are being launched. Likewise with the growth of
low power processors, and the growing efficiency of power systems it is reasonable to assume
that the trend will continue including the growth of more autonomous aspects of terrestrial
field work. Much of the previous work focuses on one of three broad categories, landscape
awareness for autonomous navigation, commonly referred to as “Simultaneous Localization
and Map Building” (SLAM), rock finding algorithms for identifying protruding objects, and
material identification algorithms for autonomous identification of rock composition.

7



8 Chapter 2. PreviousWork

2.1 SLAM

SLAM techniques can be quite comprehensive in scope, but can be subdivided into three gen-
eral areas, position identification, obstacle avoidance, and path finding. A lot of work has
been done in this area in recent years, with the most famous terrestrial examples of such
vehicles being “Stanley,” the winner of the “2005 DARPA Grand Challenge,” and Google’s
“Self-driving” Car [60, 61]. Both of these vehicles make use of point clouds created by an om-
nidirectional Light Detection and Ranging (LIDAR) system, and require massive amounts of
computational power due to the relative speed of the vehicles. While none of the current gen-
eration of rovers use LIDAR systems for navigation, the possibility is being investigated for
future Rovers [2, 54]. Position identification in the context of autonomous navigation is used
to locate the vehicle within its environment and to help provide more robust odometry data.
Obstacle avoidance is often a realtime endeavour whose goal is to identify immediate hazards
located along the direction of travel and within a relatively short range (relative to the vehicles
velocity.) Pathfinding on the other hand often requires a broader, more panoramic and longer
range view of the surrounding landscape and its hazards. Pathfinding can consist of both real-
time and pre-plotted components choosing a prospective path between two points, and in the
case of a system such as a rover, path corrections are selected as new information is provided
by obstacle avoidance routines. A number of different optical techniques have been developed
to this end, including land mark validation [64], Visual Odometry(VO) [44, 49], maximum
likelihood matching range maps [48], and rock modelling and matching [41]. The Mars Ex-
ploration Rovers (MER) Spirit and Opportunity and now The Mars Science Laboratory (MSL)
Curiosity are currently using some of these techniques to help them traverse dangerous terrain.
(See section 2.4.)

2.2 Rock Detection

Rock detection is an important part of operational and scientific awareness at a given loca-
tion. Depending on the required definition of what constitutes an interesting rock, or even what
constitutes a rock at all for that matter, will greatly influence the choice of rock identification
strategy employed. Lighting, positioning, occlusion, albedo, and contrast can all greatly influ-
ence the appearance of a scene. Some algorithms attempt to circumvent the variances by using
a simplifying assumption to classify rocks. Some make assumptions about relative lightness, or
limit the shape [18, 17]. While more sophisticated algorithms use a number of different image
segmentation techniques including edge detection [9, 10], mean shift [16], Hue Saturation and
Intensity variances [59], graphs [28], and more recently graph cuts and super pixel segmenta-
tion [34]. In cases where stereo imaging is available a number of different researchers have
taken advantage of that information for segmentation [35, 58, 46].

2.3 Material Identification

To someone who can understand the signs, any given rock is much more than just a lump
of coalesced minerals. Shaped by, impact volcanos, wind and water, the structures, colours,
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shapes, textures, albedo, wear, patterning all give some hint to how a rock came to be where it
was. Geologists have used these clues to extract the history of rocks, regions and planets from
these clues. It is no surprise then that computer scientists have sought to duplicate the human
Geologist’s methods with computer vision. Shape recognition strategies include, convexity
or outline comparison to a circle or ellipse [8, 53], the fractal dimension of a shape [36],
edge distance to a centroid and Fourier analyses thereof [4, 22]. Statistical analysis of models
describing forms [47] or edge curvature [25] have also been tried. Somewhat more complex
than shape analysis, is texture analysis. The exact definition of what constitutes a texture is
less obvious than it might seem. Some textures are structured, some are stochastic, some
are periodic, and some such as text on a page, are only evident through statistical analysis.
A number of different descriptors of what constitutes a texture have been tried. Chaudhuri
used a measure he called the fractal dimensionality [14], another technique is to use intensity
and create descriptors from a statistical analysis of a gray-level co-occurrence matrix[51, 65],
Given the similarities of structures in the eye to the outcome of Gabor filters, some researchers
have used, directionality histograms [37] and textons formed from responses of convolving the
image with a bank of these filters [11, 13, 33, 38, 39].

2.4 OASIS, AEGIS and GESTALT
Lastly there are the three autonomous decision making systems that are currently in use on the
NASA MER rovers. The first, used for assistance in navigation is known as the Grid-based Es-
timation of Surface Traversability Applied to Local Terrain (GESTALT) system. This system
uses the stereo imaging for hazard avoidance and to improve the accuracy of the odometry data
gathered from the drive system [3]. The Autonomous Exploration for Gathering Increased Sci-
ence (AEGIS) system uses a rock identification program known as “Rockster” [9] to identify
possibly interesting rocks or outcrops. The Rockster algorithms use edge detection to identify
an object of interest and then the system positions MER’s panoramic cameras to take a pic-
ture of the resulting selection. This system has been in operation on the MER rover(s) since
2009[27]. AEGIS forms one component of a larger autonomous science package known as The
Onboard Autonomous Science InvestigationSystem (OASIS), in addition to the capabilities of
AEGIS, OASIS segments sky from ground and looks for both geological and meteorological
phenomena which might be of interest [12].



Chapter 3

Geological Features

Rock, n. The solid mineral material forming much of the substance of the earth (or any
similar planetary body), whether exposed on the surface or overlain by soil, sand, mud,
etc.

-The Oxford English Dictionary[21]

Before discussing an algorithmic approach of identifying an object that might be labeled
as a “rock” on another planet, it is helpful to more clearly define the objects we propose to
identify. As the definition above suggests, the word rock is a nebulous and almost meaningless
word in any real descriptive sense, and yet there are a number of algorithms, and peer reviewed
authorship which speak purposefully of “rock-finding” algorithms and autonomous science.
So what then in this context do we mean by “a rock”? What do we mean by, “not a rock”? And
perhaps more importantly, what do we mean by, “a scientifically interesting rock”?

We know that a rock can refer to a wide variety of objects that come in an assortment
of shapes, textures, colours sizes and compositions. We know that these wide variations are
a result of differences in mineral content and chemical reactions, we know they have been
formed by a variety of pressures and temperatures and they may have been altered by still
other metamorphic processes which have altered them in some further way. We also know that
these rocks now formed are then worn down, weathered by environmental conditions. It might
seem then that there is no satisfactory answer to what makes a rock. But then it is in this very
variety of compositions and constant processes of remaking which allow for a useful answer to
our question.

A rock worth studying, a rock that might be called interesting is called that because of
the stories of its formation and reformation. A rock whose structure holds clues unique to
the region around it, or those which hold evidence of specific conditions are interesting. To
a trained eye many of the processes which have acted upon a rock leave telltale signs. These
signs hint at the origin, and subsequent evolution of that particular chunk of the universe. It is
then not the form itself which defines it as interesting, but rather the clues to the story of how
it came to be. Unfortunately for a visual analysis much of the evidence of this history requires
examination at a microscopic or molecular level. There are certain clues, certain geological
features that are visible on a larger scale, and thus lend themselves well to an examination at a
larger scale.

10
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(a) An example of a visually simple outcrop (b) An example of a visually complex outcrop

Figure 3.1: While outcrops share some structural components they are quite varied in appear-
ance. This variation is a result of historical conditions which were present in the region

3.1 Outcrops

The first object to discuss are rock outcrops. Outcrops are macroscopic structures where foun-
dational bedrock has been exposed by some process. This exposure of the underlying planetary
composition offers the possibility to sample a section of history of the region over a larger ge-
ologic time period. They would be of particular interest in the case of a sample return mission
because of the clues they may hold to the historical conditions of a region. They are also con-
venient for obtaining samples since their exposure allows for easy access to normally buried
features.

Like the word “rock,” the word “outcrop” encompasses a variety of compositions and struc-
tures which have arisen from a variety of processes, and thus also have a large variation in
colour, size, and shape. Unlike rocks however, the term outcrop is applied only to a specific
occurrence of rock structure. Outcrops are prominences that have been exposed through some
process that removes the overlaying material most often through processes of erosion, or tec-
tonic activity.

While there can be many different types of erosion, the most vigorous and impressive ex-
amples on earth occur through the actions of water (the Grand Canyon for example.) On the
majority of examined extraterrestrial bodies, the lack of flowing water means that fluvial ero-
sion plays a much smaller role in the formation of outcrops meaning that the appearance of an
outcrop often suggest tectonic or impact events, both of which can be of interest to a planetary
geologist. Although it should be noted that some recent discoveries may suggest that there is
or was more water on other planets than we originally believed, in which case, the evidence of
fluvial erosion on an extraterrestrial body, can be a subject of interest as well.
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(a) An example of a nested shatter-cone. (b) An example of a partially developed shatter-cone

Figure 3.2: Shatter-cones typically will only partially form as seen in 3.2b, due to inhomo-
geneities in the rocks, but may form nested, “horse-tail” groupings in some types of rocks as
in 3.2a

3.2 Shatter-Cones

The second structure we will investigate is a shock metamorphic feature known as a shatter-
cone. This is a physical structure which is formed under a relatively small range of pressures,
and the formation of which is strongly associated with impact events [31]. To put it in plain
language, as far as we know, a meteorite impact is the only natural process by which a shatter-
cone will form. Shatter cones are almost entirely unique as a geologic object being the only
shock deformation feature which is both distinctive to shock morphology and easily visible
to an unaided eye. Ranging in size from a few centimetres to many metres [30, 55], these
structures share a number of visual elements that are useful for identifying them, visually.

Shatter-cones are fluted quasi-conical structures, consisting of a curved surface with stri-
ations (elongated traces with a preferred direction) which originate from a point along the
shatter-cone surface and radiate outwards at small angles, with the striations ranging from
10µm to a few millimetres depending on the grain size of the rock[56]. They form in all types
of rocks generally along pre-existing fracture planes, although the level of inhomogeneities
within the rock structure may affect the formation of shatter-cones and typically result in par-
tial cone formation aligned to the direction of impact. While typical, the underlying rock type
will cause the formation of complete cones, as well as “fractal like” multiple nested “horse
tail” structures and multi-directional shatter-cones where the cones are aligned 180 deg apart
in direction, next to one another. (See figure 3.3b)

Shatter-cones are created by the shockwaves generated from the deformation the rocks
within the crust due to a large extraterrestrial impact. Produced at lower pressures than other
shock metamorphic features, shatter-cones can generally be found beyond the “near impact”
region were melting and even rock evaporation occurs. Shatter cones are formed by shock-
waves with estimated pressures of between 2-20 GigaPascals(GPa) by a process whose precise
mechanism is not completely understood. The most unambiguous shatter cones form at pres-
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sures greater than 10 GPa while lower pressures 1-5GPa tend to produce features that are less
differentiable from features causes by tectonic or volcanic processes.[31] (See figure 3.4 for a
comparison of possible metamorphic processes.)

(a) A 30m Shatter-Cone from the Sud-
bury impact site

(b) Hand Sized Inverted Shatter Cone from the Steinheim impact
structure.

Figure 3.3: Shatter Cones can range in size from millimetres to meters and come in a variety
of orientations.
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Figure 3.4: This image is a comparison of the conditions for various metamorphic processes
in a pressure-temperature plot. In the lower middle of the plot we find the conditions for the
formation of shatter-cones.



Chapter 4

Feature Extraction

4.1 Teaching a Computer To “See”

For most humans the act of seeing is not something that requires self-understanding, analysis
or even conscious thought. To almost everyone seeing is such an intuitive an act that we are
rarely aware as to the mechanisms that allow us to see. Imagine a pen sitting on a desk.
Now ask yourself: “How do I know that this thing in my visual field is a pen?” What is its
quintessential pen-ness? Perhaps it is the long thin shape, or the blue colour, or a uniquely
recognizable feature such as it’s ball point nib. Perhaps it is a combination of features that
make it recognizable. All of these suppositions are entirely reasonable assumptions... but are
they correct?

If we examine the 6 different images of pens shown in Figure 4.1 we see that despite the
wide variation in the configuration and appearance of the various pens, our ability to recognize
each object as a pen is almost immediate. Figure 4.1a is the object as a whole, and yet, even
when we occlude alternative sections of the pen in figures 4.1b and 4.1c we are still able to
identify it as a pen despite no single piece of the image being duplicated. Likewise most
people have little difficulty when we change the colour information as in 4.1d or the effect
of foreshortening its shape by changing the pen’s orientation as in 4.1e. Finally if you look
at the pens in figure 4.1f you will find that to identify the object as a pen, most of the visual
information must be discarded in favour of a small portion (the ballpoint nibs on the end) in
order to identify the object as a pen.

This ability to identify objects is, in and of itself, a difficult challenge if we wish for a
computer to “see” an object, and yet even in the previous example, we have simplified a number
of details in the way our visual system operates . How do we know where in our visual field the
pen is? Is it large and far away? Is it small and close up? What delineates the end of the table
and the beginning of the pen? How do we identify the nib, the body and the cap of different
pens, even though they may look quite different from one pen to the next. Would you be able
to identify the nib of a pen if one were placed in front of you without any context? How is it
you know the size of the pen in figure 4.1a when you lack stereoscopic clues, and there are no
other visual cues to reference it against?

As you may begin to appreciate, the “simple” act of seeing something is quite far from sim-
ple. The human visual system is enormously sophisticated, and seeing is a complex, involved,

15



16 Chapter 4. Feature Extraction

(a) A Bic Pen (b) ...With Occlusions (c) ...Inversely Occluded

(d) ...Colour Inverted (e) ...Differently Orientated (f) Lollipop Pens

Figure 4.1: Despite a wide variation in visual information, humans are able to easily identify a
pen, despite the fact that much of the visual information might be conflicting as seen in Figure
4.1f

and multi-level process that is the product of a phenomenal amount of neural processing by the
human brain. It involves specialized neurological structures which have evolved to process and
make sense of a busy and constantly changing visual field. It sets before the field of computer
vision a complex model of what must be accomplished if a computer is to see. In order to
allow a computer to see it must either mimic human processes to a certain degree, or develop
computer specific ones that perform similar functions.

The first step in working with computer vision, is to establish a method by which various
elements within an image can be described, and identified in a useful way. An image stored on
a computer is in many ways analogous to a just seen image on the human eye. In the eye, the
stimulation of rods and cones changes the rate of fire of the attached neurons allowing for the
differentiation of colour and brightness at each location. In the computer an image is stored as
a matrix of values, which represents the intensities of colours at each pixel. While this format
is useful for the reproduction and display of an image, it does not provide context for what is
contained within the image.

In human vision from the very start, before the electrical signals have even left the retina,
the human brain finds ways of organizing data to help change visual information from a series
of individual points into meaningful groups of pixels. The receptors in the eyes are bound in
excitatory and inhibitory groupings comparing light intensity registered by each receptor to
those around them. These groupings allows the eye to identify strong changes in contrast and
colour and helps the visual system identify the edges of objects in our visual field. These edges,
colours and intensities are then combined to create visual words which more complex visual
processing mechanisms use to create a visual language our brains can access to identify the
objects we see.
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It is this ability to create a series of visual words that must be mimicked in order to allow
a computer to identify key objects within an image. In Computer Science these words are
referred to as image features. These image features range from representations of a single
pixel and its immediate neighbourhood, to a description of the image as a whole. They can
describe a collection of key points or key regions, or the relationships between those points
and regions. Each one will offer a description that can be analyzed, classified, and identified
by an algorithm. Each of these words allows for the creation of a bag of visual descriptions for
elements within an image.

Below is a brief overview of the features we used in our work.

4.2 SIFT
Scale-invariant feature transform(SIFT) features are a commonly used computer vision feature
first published by Professor David Lowe from the University of British Columbia in 1999
[42]. The SIFT feature has become popular in the field of computer vision as a robust and
useful feature. Part of the utility of the SIFT feature comes from the fact that it is formally
invariant to translation, rotation, and zoom of an image. It has proven to be resistant to noise,
blurring, and contrast changes, as well as having utility despite image deformations and affine
transformations.

Each SIFT keypoint is a description of a given point on the image and its immediate
neighbourhood. Each descriptor depends on 4 key variables: the horizontal position of the
neighbourhood centre (x), the vertical position of the neighbourhood centre (y), the keypoint’s
scale-space (σ), and the neighbourhood’s dominant gradient orientation (θ). These variables
constitute the SIFT frame which describes the keypoint’s location scale and orientation. The
feature’s descriptor encodes the surrounding neighbourhood gradient information (what Lowe
named the keypoint descriptor) into a 128-dimensional vector which can then be compared to
similarly described points [43].

In his description of his method, Lowe identifies a 4 stage approach to creating the SIFT
descriptor:

1. Scale-Space Extrema Detection
2. Accurate Keypoint Localization
3. Orientation Assignment
4. Keypoint Descriptor

This process can be further divided into 8 distinct algorithmic steps as seen in Table 4.1. Steps
1-3 correspond to Lowe’s scale-space extrema detection stage. Steps 4-6 correspond to the
accurate keypoint localization stage and steps 7 & 8 correspond to the orientation assignment
and keypoint descriptor stages respectively.

The first step to Lowe’s method is done to make the SIFT descriptor invariant to scale.
This is done with a cascade of increasingly blurred images created by convolving the original
image l(x, y) with a variable-scale Gaussian filter G(x, y, σ) where the scale space L(x, y, σ) is
described by the function:

L(x, y, σ) = G(x, y, σ) ∗ l(x, y)
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Stage Description
1 Compute the Gaussian scale space
2 Compute the Difference of Gaussians
3 Find candidate keypoints
4 Refine candidate keypoints with sub-pixel precision
5 Filter noise unstable keypoints
6 Filter edge unstable keypoints
7 Assign an Orientation to each keypoint
8 Build the keypoint descriptor

Table 4.1: Sift descriptor Algorithm steps. (Adapted from Otero and Delbracio [50].)

This cascade of images is divided into octaves where each octave represent a doubling of
the term σ and each octave is itself divided into s intervals such that k = 21/s.with s + 3 images
produced for each octave. For each octave the the sampling distance (δ) is also doubled. The
resultant scale-space can be seen in figure 4.2.

Figure 4.2: A representation of a standard scale space where each dot represents an interval
image vo

s Where o is the image’s octave and s is the interval. The dots in red represent the
images covering the whole octave while the dots in grey are used in extrema detection.

The second stage is the calculation of the Difference of Gaussian (DoG) scale-space. Lowe
suggests that this step is necessary for true scale invariance by approximating the normalized
Laplacian σ2∆ [43]. The Difference of Gaussian scale-space is calculated by subtracting adja-
cent blurred images in each octave. Thus the DoG image, D(x, y, σ) is calculated by:

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ l(x, y)
= G(x, y, kσ) ∗ l(x, y) −G(x, y, σ) ∗ l(x, y)
= L(x, y, kσ) − L(x, y, σ)

The resultant DoG scale-space consists of the same number of octaves with s+2 interval images
in each octave as seen in figure 4.3.
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Figure 4.3: A representation of the Difference of Gaussian(DoG) scale space where each dot
represents an interval image, wo

s Where, o is the image’s octave and s is the interval. The dots
in red represent the images covering the whole octave while the dots in grey supplementary
images used for the extraction of candidate key points.

After establishing a DoG scale-space, keypoints are extracted by finding the continuous 3D
extrema of the DoG scale-space. Practically speaking this must be done in two steps because
of the discrete nature of the DoG scale-space. The first step detects the discrete extrema by
comparing each pixel with its 26 neighbours, 8 neighbours within the image and the 9 corre-
sponding pixels in the interval image above and below (see figure 4.4.)

Using a discrete method of detecting extrema on a continuous function causes intrinsic inac-
curacy leads to unstable detections, and a susceptibility to noise. While Lowe’s original method
did not have an interpolation step, Mathew Brown suggested a method of obtaining sub-pixel
accuracy using a second order Taylor expansion to approximate the underlying function[5].

Figure 4.4: Extracting candidate keypoints by finding 3D Extrema.

The final step in determining accurate keypoint localization is to reject inherently unstable
keypoints. Two main classes of keypoints are rejected at this point. Keypoints in areas of low
contrast being inherently unstable, are eliminated using a threshold and keypoints along edges
which may be translation invariant along that edge are eliminated using a Hessian Matrix.

The SIFT descriptor achieves its rotation invariance because it aligns the keypoint descrip-
tor along the dominant gradient angle of the nearest Gaussian smoothed image. Once the
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Figure 4.5: The sum of the pixels within rectangle D(1,2,3,4) of the original image can be com-
puted using the four corner points within the integral image. Point 1 gives the area of A, Point
2 the area of A+B, Point 3 the area of A+C, Point 4 the area of A+B+C+D. This means we
can find the value for area D. (D = 1 + 4 − (2 + 3))

dominant gradient angle θ is found an keypoint descriptor is generated by using a 16x16 ma-
trix is normalized about θ. The dominant gradient of each element of this matrix is assigned to
one of 8 orientations which are grouped in 4x4 regions. This generates a 4x4x8 matrix which
forms a 128 dimension description vector for the keypoint.

4.3 Haar Like Features
Haar like features are a name given to an image feature first described by Paul Viola and
Michael Jones in their 2001 paper, Rapid Object Detection using a Boosted Cascade of Simple
Features [63]. Haar like features are an intensity based feature that utilize an additive method
for comparing adjacent rectangles. Viola and Jones’ method also adds a cascade of features,
which helps reduce the computational complexity while maximizing accuracy. The result of
this combination produced a comparatively accurate detection algorithm which was much more
efficient than previous work (Viola and Jones claimed their algorithm was 15 times faster than
previous work.)

The Viola/Jones implementation of Haar like features begins with the creation of an image
representation the authors called an integral image. The integral image is a 2D vector where
the value at (x, y) in the integral image (ii) is a sum of all of the pixel intensities in the image
to be processed to the left and above the same point on the original image i(x′, y′).

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′)

The integral image is created in order to allow for the rapid summation of image intensities.
In figure 4.5 the sum of image intensities within a given rectangle (ii1, ii2, ii3, ii4) can be calcu-
lated using the values found at the four corners of that rectangle. Since the value of a point is
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the sum of the intensities of the area above and left, we see that:

the point = is the sum of intensities of the area represented by:
ii1 = A
ii2 = A + B
ii3 = A + C
ii4 = A + B + C + D

From this we can see that the area of D is equal to:

D = (ii1 + ii4) − (ii2 + ii3)

This ability to quickly compare the intensity of image areas allows for the creation of compu-
tationally cheap features. Viola and Jones used the differences in intensities between adjacent
squares within a 24x24 pixel subsection of an image in order to create weak classifiers (see
figure 4.6a.)

(a) An example of features used by
Viola and Jones for face detection

(b) An extended feature set

Figure 4.6: Haar like features created by difference combinations of additive and subtractive
non-overlapping intensity area summations.

4.4 EOG
Edge Orientation Gradients are one of the oldest histogram features and were first described
by William T. Freeman and Michal Roth in their 1994 paper, Orientation Histograms for Hand
Gesture Recognition [29]. Freeman and Roth found that localized pixel windows could be used
to determine the dominant gradients within a region of an image. In their work they used these
regions to produce a descriptor of hand positions. They found that localized gradients were far
more invariant to lighting and contrast changes than the larger image descriptors of the time.
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Freeman and Roth used derivative operators dx and dy to generate their gradients with
arctan(dx, dy) corresponding to the gradient direction and

√
dx2 + dy2 being the gradient con-

trast. They divided the gradients into one of 36 bins and then blurred and normalized the results
to create a descriptor.

In modern algorithmic implementations of EOGs a variety of 2D filters may be used such
as sobel operators to determine the gradient in a number of different directions. The histogram
bins have been simplified to 5 traditionally consisting of 4 directional gradients (N-S, E-W,
NE-SW, NW-SE) and one unidirectional gradient (see figure 4.7.) To make these histograms
a useful image feature, many implementations will calculate these localized gradients over a
variety of image window scales, to allow for a larger vocabulary of words.

-1 -2 -1
0 0 0
1 2 1

(a) Horizontal

-1 0 1
-2 0 2
-1 0 1
(b) Vertical

2 2 -1
2 -1 -1
-1 -1 -1

(c) NW-SE Diagonal

-1 2 2
-1 -1 -2
-1 -1 -1

(d) NE-SW Diagonal

-1 0 1
0 0 0
1 0 -1

(e) Non-Directional

Figure 4.7: 4 Directional Sobel operators and one non directional one too.

Figure 4.8: A modern Edge Orientation Gradient

4.5 HOG
Histogram of Oriented Gradients (HOG) was developed as a method of edge detection for the
purpose of detecting people in images. First devised in 2005 by Navneet Dalal and Bill Triggs,
HOG is similar to SIFT, but rather than focusing on key points, HOG is computed in dense
grids at a single scale without assigning an orientation[19]. Because it is calculated in a grid,
the HOG feature takes advantage of overlapping sub windows to normalize the local contrast
(unlike EOG.)

Dalal and Triggs, theorized that the distribution of these local intensity gradients could be
used to characterize structures within the image (in their case structures of the human body.)
To the human eye a visualization of the HOG features gives enough information to recognize
the underlying image as seen in figure 4.9.
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(a) An image of a sports player (b) Visualization of HOG features (c) HOG Features on image

Figure 4.9: Histogram of Oriented Gradients were first used to describe the positions of a body
for the purpose of identifying that it was a person. Image 4.9c above shows the corresponding
gradients from the HOG results in 4.9b of the sports player image in 4.9a

Dalal and Triggs outlined a 6 step process for their use of HOGs (See Figure 4.10.) The
Process begins by normalizing the gamma/colour space, Dalal and Triggs reported that they
were able to use this process on both grayscale and colour images with the colour information
providing slightly better results overall. The second step is it to calculate the gradient of the
image, using a gradient filter. In the case of colour images, each colour channel is calculated
separately. Dalal and Triggs list four variations of gradient filters they tried, Sobel operators, (as
seen in fig.4.7) in addition to three 1-D derivative filters: uncentered [−1, 1], centred [−1, 0, 1],
and cubic corrected [−1,−8, 0, 8, 1]. Dalal and Triggs reported that the best results came from
the 1-D centred filter and its transpose, but only marginally so and while they speculate on
reasons, it is not clear that this is universally true.

In the third step, Dalal and Triggs divide the image up into blocks of cells, each cell con-
taining a similar number of pixels, each of whom votes for an orientation bin based on the
gradient magnitude at its location. The orientation bins are evenly spaced over the whole rota-
tional range (0◦ − 180◦ for unsigned gradients and 0◦ − 360◦ for signed gradients.) These votes
are then interpolated bilinearly between neighbouring orientation and position bins. The cells
are made up of a block of pixels arranged spacially in either rectangular or a radial orientation.
Each of these cells is then assigned to a series of overlapping blocks such that each cell belongs
to a number of adjacent blocks. (i.e. a stride of 1

2 of the block size ensures that every non edge
cell belonged to 4 adjacent blocks. This overlapping nature is imperative for the Dalal and
Triggs next step.

The fourth step of the process is contrast normalization. Because lighting conditions change
fairly drastically in an image, the overall contrast variation in any given local sub-window can
be wildly different from surrounding sub-windows. Because Dalal and Triggs overlap their
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image blocks, they ensure that each region is normalized with a number of surrounding blocks.
Dalal and Triggs explored four different methods for block normalization.

Let h be the non-normalized vector of histograms in a given block.

‖h‖k is its k-norm for k = {1, 2}
and e = some small constant.

The normalization factors tried were the following:

L2-norm: f =
v√

‖v‖22 + e2

L2-hys: L2-norm with vmax limited to 0.2 and renormalized.

L1-norm: f =
v

(‖v‖1 + e)

L1-sqrt: f =

√
v

(‖v‖1 + e)

In their experiments, Dalal and Triggs found the L2-Hys, L2-norm, and L1-sqrt schemes
provide similar performance, while the L1-norm provides slightly less reliable performance;
however, all four methods showed very significant improvement over the non-normalized data.

After performing this normalization, the feature vector is created by collecting each cell
from each block of the detection window to create a feature vector.

Figure 4.10: Dalal and Triggs described a six step process in their 2005 paper.[19]

4.6 Hough Transforms
The Hough transform is a technique used to isolate features of a particular shape within an
image. The hough transform is generally implemented in two flavours, one which can be
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(a) Rho Theta Notation (b) A Point described in Polar Space (c) Points on a line

Figure 4.11: In 4.11a a point in space can be described by it’s distance from, and rotation about
the origin. 4.11b is that point as described in Polar Space. 4.11c shows the polar representation
along a straight line in Cartesian Space.

parametrized to find specific shapes, and a more general one that is more commonly used as
an image descriptor. Since the first incarnation of this algorithm requires a paramiterization
of the desired shape, it is generally reserved for, regular curves such as lines, circles, ellipses
etc. One of the key strengths of the Hough transform technique is that it is tolerant of gaps in
feature boundary descriptions and is relatively unaffected by image noise.

The Hough Transform takes its name from Paul Hough, who rst described the fundamental
principles in a 1960 patent for his work in bubble chambers at the U.S. Atomic Energy Com-
mission. [7]. Hough’s methods were improved upon and the algorithm optimized for image
detection by Duda and Hart in their 1971 paper, Use of the Hough Transformation to Detect
Lines and Curves in Pictures [23]. One of the key differences in the work of Duda and Hart, is
their use of rho-theta notation. Traditionally image notation is given in Cartesian Space, thus a
pixel will be denoted as the combination of the horizontal and vertical offset from the origin.
(x, y) and a line can be denoted as a function of a series of pixels (x1, y1), (x2, y2), ..., (xn, yn) if
the line is a regular curve, it can be described using two parameters, {m, b} where m is the slope
and b is an offset. Thus any regular curve can be written as:

y = mx + b (4.1)

The problem with the use of Cartesian Space was that m could be infinity. Duda and Hart’s use
of rho-theta notation prevents this from happening. Duda and Hart translated point descriptions
from Cartesian Space to Polar Space thus preventing m = ∞. In figure 4.11a we can see that a
pixel in Cartesian Space can also be described as a function of its distance from, and rotation
about, the origin. Thus we can write it as:

y =

(
−

cos θ
sin θ

)
x +

( r
sin θ

)
(4.2)

This can then be arranged into polar coordinates:

r = x cos θ + y sin θ (4.3)

this means that for any given pixel (x1, y1) a representation in polar space can be given as a
function of all of the lines passing through that point as:(see figure 4.11b for the curve produced
by x1 = 8 and y1 = 6)

r = x1 cos θ + y1 sin θ (4.4)
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If the same operation is performed for all the points in an image it will produce a series of
sinusoidal curves in polar space. If the curves of two different points intersect in the plane
θ − r, we can say those points are along the same cartesian line. For instance, following
expanding on the example above if by plotting two more points along a line: (x2 = 9, y2 = 4
and x3 = 12, y3 = 3, we get the result shown in figure 4.11c.

We can see from equation (4.2) and equation (4.1) that this intersection is comes from the
parameters m and b in cartesian space equate to a function of r and θ in polar space.

m =

(
−

cos θ
sin θ

)
(4.5)

and
b =

( r
sin θ

)
(4.6)

The fact that the curves of points on a line intersect allows for powerful tools of analysis. By
assigning a value to each pixel along the curves in Polar Space, a cumulative energy value
can be assigned to points and an energy map produced, whereby those points in r, θ space
with the highest values correspond to the most dominant linear feature. Likewise lines which
are not quite linear but fall near a line can be grouped by counting all values within a given
neighbourhood in Polar Space. Likewise since parallel lines in cartesian space have the same
slope(m) equation (4.5) suggests that parallel lines will be located at peaks same point along
the θ axis in polar space.

Since the Hough Transform is a translation between Cartesian and Polar Spaces, performing
a translation on an image would result in a curve for every pixel, rendering the results pretty
much meaningless. In order to maximize the value of the Hough transform, it is beneficial
to maximize the information contained in the pixels entered into the transform. Since edges
generally contain the largest amount of information, an edge detection algorithm (such as the
canny edge detector) is generally used to produce a binary value image,which is then passed
into the hough transform.

To use a Hough Transform as a general image descriptor for a machine learning program,
hough peaks are calculated and labeled biased on a threshold value. Those peaks are then
clustered either in two dimensions or one (keeping in mind that (4.5) suggest that clustering
along the θ access will give you an indication of parallel lines.) These clusters are then used to
create an image descriptor.

4.7 Intensity and Colour Histograms
Compared to other image features, intensity and colour histograms are rather simple. Simply
put, an intensity histogram is a count of the intensity values of the pixels within a given window
or in the case of colour histograms the intensity values of each channel over a given window.
The intensity value is assigned to one of a series of equally spaced bins, and the total number
of pixels assigned to each bin is returned as the image descriptor. Intensity histograms capture
no spacial information and so vastly different images may have similar histograms (see figure
4.12a.) In order to minimize this effect, it is often helpful to use smaller image sub-windows in
order to preserve some of the spacial information in the image. Intensity histograms are also
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(a) Identical Intensity Histograms for
dissimilar images

(b) Susceptibility of Intensity His-
tograms to Lighting Changes

(c) Rock VS. Regolith

Figure 4.12: With out careful application, intensity histograms can exhibit a number of different
weaknesses. Properly applied however they form a useful tool.

very susceptible to lighting changes, and so the same image taken with different lighting may
create vastly different histograms as well (see figure 4.12b.)

Despite these obvious weaknesses intensity histograms can still be useful within their in-
trinsic limitations. Histograms offer a computationally low cost method of describing an image
patch, and as can be seen in figure 4.12c, they seem to be useful in the case of our work in par-
ticular because of the relatively homogenous colouring of large parts of extraterrestrial regolith.
This same attribute also offers promise in its ability to help differentiate between different types
of rocks as well.

4.8 Edge Density
Edge Density is an image descriptor which as its name implies calculates the density of edge
pixels located within an image or image sub-window. The edge density is found by using
a binary edge detection algorithm such as a canny edge detector and then the density of the
edges is calculated using the formula:

f =
1
ar

x2∑
x=x1

y2∑
y=y1

e(x, y) (4.7)

where:
ar = (x2 − x1 + 1)(y2 − y1 + 1) (4.8)

Where e(x, y) is the detected edge image of a sub-window i(x, y) of the original image i. ar is
the area of the image patch and (x1, y1) is the top left, and (x2, y2) is the bottom right pixel.
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Machine Learning Algorithms

Once image features have been extracted from an image, there must be a way of giving those
features meaning. Image features are in essence a group of words which can be used to describ-
ing what an image contains, but as yet we do not have the vocabulary to describe the contents
of an image. For a human being, the development of linguistic context makes up a large part
of our early years. Through trial and error and experimentation a child learns to classify the
things they see into meaningful groupings based on contextual clues. The contextual and struc-
tural rules the child develops are associated with the signals arriving from sensory organs, and
through repeated experience allows for a system of comparison which allows a child to classify
novel objects from similarities to known things.

This process of learning through known examples is referred to as “concept learning” in
psychology [6]. In computer science this is known as “supervised learning” because an outside
expert is required to “supervise” the learning process by providing a training set for the com-
puter to learn on. It is this process of supervised learning that is used to create a language to
describe features within images.

5.1 What is Machine Learning?
In the most general sense, machine learning can be thought of as a computer learning from past
experience, or in the words of Tom Mitchell,“A computer program is said to learn from expe-
rience E with respect to some class of tasks T and performance measure P, if its performance
at tasks in T , as measured by P, improves with experience E[45].”

Machine learning differs from what might traditionally be thought of as programming,
because the computer is not given explicitly coded instructions of how to accomplish a task,
rather it is given a set of rules by which it can evaluate its performance(P in Tom’s words) and
a way of revising it’s method of performing a task (T ). There are a wide variety of learning
strategies, but they generally fall into three main categories.

Supervised Learning Supervised learning, as we alluded to above, is when an algorithm is
given a set of objects which have previously been identified, and are given to a learning algo-
rithm to evaluate. Once the algorithm has classified the images, the results are evaluated and
some form of refinement is applied, either from a weighting function based on the identified,
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“ground truth,” or from human input. This is then repeated until an acceptable accuracy is
achieved or no further improvement is gained.

Unsupervised Learning Unsupervised learning is a process in which no a priori classifi-
cation is given, but rather, an algorithm uses some global weighting function to evaluate its
performance at a task. In contrast to supervised learning which attempts to differentiate a set
of data into a known structure, an unsupervised learner tries to identify an underlying structure
that best describes the data it has.

Reinforcement Learning Reinforcement learning in which a computer tries to maximize a
cumulative “reward” function over time, predicated on the value given for the correct outcome
being achieved. Unlike supervised learning, the algorithm is not given pre-evaluated data, but
unlike unsupervised learning the classification of the data is known. The algorithm is simply
rewarded for more optimal results.

Of these strategies of learning, we will focus on supervised learning since we are looking
for a specific class of objects and we are able to relatively easily provide labeled images. More
specifically we will utilize an algorithm known as AdaBoost as we will discuss in section 5.2

The idea of leaving a computer on its own to figure out how to classify objects, might seem
counter intuitive at first. A human is generally far more adept at classifying objects than a
computer, especially in the visual realm. It seems logical to hypothesize that a human could
devise a more accurate methodology for separating description vectors than could be done
algorithmically. So why not simply tell a computer what to look for?

There are two strong arguments to be made against such a strategy. First, humans are often
able to do things instinctually, without consciously understanding the cognitive methodology
used to arrive at a given solution. For an example, would you be able to describe the process by
which you recognize your grandmother’s face? Even if you were able to document the process,
how would those steps translate into a heuristic a computer might use? To go farther some have
argued, that there are perceptions that are literally indescribable. These perceptions are called
qualia by philosophers, and they represent a concept so familiar to a human’s understanding
that it cannot be described to someone who lacks that perception [20]. How do you describe
the colour you see when light with 650 nm wavelength is directed at you?

The second reason is that structural differences in the computational hardware of humans
and computers differs such that a computer and a human have different optimal strategies.
Computers have massive capacities for instantaneous memory recall and an extraordinarily
rapid mathematical processing speed, while human brains have structures that operate in par-
allel, and are exceedingly good at comparative analysis. A system that seems intuitive and
simple to a human may rely on complex underpinnings when attempted by a computer.

5.2 AdaBoost
Hypothesis boosting, or “boosting” is a machine learning technique that uses an iterative pro-
cess to generate a more accurate classification heuristic from a number of “weak hypotheses.”
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Stemming in large part from theoretical work by Leslie Valiant who first described a methodol-
ogy of autonomous learning which became known as Probably Approximately Correct (PAC)
theory[62], by using a number of these moderately accurate PAC learning strategies, boosting
is able to create a heuristic of arbitrarily high accuracy[57].

First described by Yoav Freund and Robert E. Schapire, in 1995, Adaptive Boosting, or
AdaBoost [32] is a derivation of boosting in which unlike prior algorithms, adjusts adaptively to
the errors of the PAC hypotheses. Beginning with equal weighting for all examples, incorrectly
classified examples are given more weight after each iteration, increasing their value which
forces the algorithm to give more weight to marginal or difficult cases.

5.2.1 The AdaBoost algorithm
The AdaBoost algorithm operates over a set of known training examples S . Each of these
examples is comprised of two parts. The first is the domain or instance space (N) which is
the descriptor given to the example. (In the example in figure 5.1, the instance space would
be the x and y co-ordinates.) The second part is comprised of a finite label space (L) which
correspond the different classification groups of the objects to be learned. In figure 5.1, the
label space is represented by the + and − signs and L = {+1,−1} to begin with. Our training set
of m training examples will consist of m objects, each with one instance descriptor, ni where
ni ∈ N, and one label descriptor, li where li ∈ L and li = {+1,−1}.

In addition to the training set, the AdaBoost algorithm requires a base learning algorithm.
This learning algorithm, must take as input the training examples, S and a distribution of
weights, D over the the training examples {1, . . . ,m}.

S = 〈(n1, l1) . . . (nm.lm)〉; ni ∈ N, li ∈ {−1,+1}
m∑

i=1

D(i) = 1

where the initial weighting of the hypothesis is the same across the distribution:

D(1) =
1
m

From this the learner computes a base hypothesis (h). This hypothesis takes the form of a
real value in the instance space,(h : N → R) where for each example in S the sign of h(n) is the
label predicted for each n and |h(n)| is the confidence in the prediction, where the farther h(n)
is from 0, the greater the confidence of the prediction. The weak hypothesis h(n) is calculated
to minimize the error function (ε) across the weighted distribution D.

ε =

m∑
i=1

D(i)I(li , h(ni))

(I is an indicator function)
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The AdaBoost algorithm will then iterate T times over the training set to arrive at a final
hypothesis which is a discriminant function H over the sum of weighted weak hypotheses (αihi)
of each iteration t, thus:

H(n) =

T∑
t=1

αtht(n)

Where αt ∈ R and is calculated based on εt, typically (as seen in the example in 5.1):

at =
1
2

ln
1 − εt

εt

The main advantage of AdaBoost, (and the reason it is named adaptive boosting) is that the
distribution D is recalculated after each iteration. This allows for multiple weak hypotheses to
be calculated across different distributions, with an emphasis on incorrectly identified training
examples.

Dt+1(i) =
Dt(i)exp(−αtliht(ni))

Zt

(Zt normalizes Dt+1 to a distribution.)

This process ultimately results in a final classifier which is the sign of our final hypothesis
H f inal(n) = sign[H(n)] as seen in figure 5.1g.

5.3 Training Errors and Cross-Validation
While machine learning algorithms have become popular and powerful tools in the field of
Computer Vision and pattern recognition, they are not without potential pitfalls. Ultimately,
the goal of these algorithms is to develop a model which can then be generalized so that when
a novel object of the same type is encountered it might be identified. All supervised learning
algorithms like AdaBoost take a set of labeled training data and use that to devise a model.
Since our training set consists of a finite set of objects, we run the risk of developing a model
that has errors introduced by the model we choose and the composition of our training set.
Within this model creation it is imperative to balance two factors, bias, and variance. These two
factors, collectively known as generalization errors, come from the almost infinite variability
of the real world and the finite size of our data set, and data description.

Bias errors arrive from those examples which fall outside the confines of the model do to
the limitations in the specificity of the model. These examples would be outside of our model
parameters even given very large training sets. They are those data which are not differentiated
by the model used. Variance errors on the other hand are those data points which are caused
by these poorly differentiated data points when they are included in the training set. This
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(a) initial distribution D1 (b) initial hypothesis h1(n)

(c) distribution D2 (d) second hypothesis h2(n)

(e) distribution D3 (f) third hypothesis h3(n)

(g) Final Hypothesis Hfinal

Figure 5.1: A simple example of the AdaBoost algorithm. In 5.1a we have an equal distri-
bution weight D(i) = 1

m represented by equally sized + and − symbols. 5.1b shows an initial
hypothesis separating the blue area and pink area. The circled symbols represent misclassified
examples. In 5.1c we see the updated distribution weights with larger symbols representing
a larger weighting in the distribution, and smaller symbols smaller weights. 5.1d represents
an updated weak hypothesis based on D2 5.1e and 5.1f are a third iteration of the algorithm.
5.1g shows the final hypothesis H(n) represented by a cumulative sum of the weighted weak
hypotheses.
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(a) Overfitting (b) Underfitting

Figure 5.2: A statistical model which is overfit to a specific data set represented by the green
line in 5.2a while the green line in 5.2b shows a model which is underfit due to an insufficient
data set.

inclusion can cause the model parameters to be shifted during training. Generally speaking
no sufficiently complex object can be perfectly separated without some of these outlying data
points. (Even the human visual system is prone to misidentification, which we often refer to as
“optical illusions”)

Variance and bias errors tend to negatively correlate to each other for a given complexity
of the data model used. The simpler the data model the more influential bias errors will be,
while the more complex the model the greater the effect of variance errors. Since by definition,
AdaBoost adds complexity for each iteration, we must use enough iterations to minimize the
bias of our model while not having too complex a model such that its variance makes it too
specific to our training set. One strategy to prevent this from happening, particularly in smaller
data sets, is to use a process called cross-validation. Cross-validation is a process in which the
data we use is divided up into some number of folds (n). Each of these folds is a discrete subset
of our training dataset, D where D = {D f 1,D f 2, . . . ,D f n}. We then run our training algorithm
n times using D f n as a test set and the remaining subsets as the training set. This allows for the
minimization of the influence of any given data point on the overall model as the average of
each fold is calculated and averaged. This allows for a more complex model to minimize bias
errors while mitigating the arising of variance errors.

Poorly trained models can be described as either overfit, or underfit. The overfitting of our
training data means that our model is too complex and has high variance. It will have problems
when applied to the general population. An example of an overfit model is represented by the
green line in figure 5.2a, while a good generalizable statistical model is represented by the
black line. By contrast, too simple of a model runs the risk of underfitting. An underfit model
will have problems because the model bias means it does not generalize to the distribution of
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real world examples.

5.4 Classification and Regression Trees

5.4.1 What are Classification and Regression Trees?

Figure 5.3: The use of Classification and Regression Trees (CART) allow for more complex
separations in data spaces as seen in (a). The tree does this by using a series of recursive binary
divisions to simplify the data description in each subspace (b)&(c). CART offer a low cost way
to create more useful simple classifiers for an AdaBoost Algorithm.

The term Classification and Regression Trees (CART) is an umbrella term, coined by Leo
Breiman in 1984 to describe two associated classes of prediction trees used in data mining.
While Classification and Regression trees are similar to each other in form, there usage differs
in that Classification trees, as the name suggests, are used to predict the general class of an
object, while regression trees are used to generate a real number outcome.

The use of CART in predictive modelling offers a number of advantages; it is fast, it offers a
low cost way to incorporate more complex divisions in a data space, and in contrast to strategies
like linear regression which require a single predictive formula over the entire data space,
CART allows for a non-smooth regression space. CART do this through a series of recursive
steps. Each step in this partitioning subdivides the data space into subsections which can be
described more accurately by a simple classification model.
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Figure 5.4: The shape of the decision tree used in partitioning affects the division the data
space. The Square in the centre of the top row represents a simple binary classifier or stump.

5.4.2 Classification and Regression Trees with AdaBoost
The use of CART in an AdaBoost algorithm can be used to produce more effective weak
classifiers. In our examination of the AdaBoost algorithm in section 5.2 we used simple binary
classifiers in a two dimentional space, with two possible data labels. As is shown in figure
5.3, even a simple Classification tree can be used to produce a significant improvement in
the accuracy of a simple classifier in a two label data space in comparison to a simple binary
separation.

In CART each leaf represents its own simple classifier that can be used by the Ada Boost
Algorithm, and in this sense it is possible to think of the example shown in section 5.2 as using
a specific kind of tree known as a “stump.” (A stump being a decision tree which does not
branch, but ends only in leaves.) In both of our AdaBoost example and the CART example
in figure 5.3, we are working in a two label space, but this method of labelling is not intrinsic
to either model. If we wished to label our data space with a larger number of classifications,
CART represents an easy way to construct simple classifiers for a larger number of labels.
Figure 5.4 also suggests that it would be possible to have CART classifiers which allow for
different subsets of labels within the same data space.
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(a) Example DataSpace (b) CART Overfitting

(c) CART Proper fit

Figure 5.5: Like all Predictive Models CART can be subject to overfitting. The Data space
as shown in 5.5a will readily fit into the separations defined in 5.5b and 5.5c, but 5.5b was
produced using a tree with over 400 leaves, as opposed to the 9 in 5.5c.
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Experimental Data Set and Test images

(a) ROC6 Rover (b) GigaPan Camera Mount

Figure 6.1: Images were gathered using a Gigapan Camera Mount attached to the ROC6 Rover.

6.1 Creation of Datasets
In order to properly investigate a machine learning algorithm, it is important to develop a
robust data set to be used for training purposes. The images used in the training procedure
should, as much as is possible, be representative of the images that will be encountered by
the classification committee without being too specific to the task at hand. In each of the
two data sets required, this proved to be a particularly difficult problem. In the case of an
extraterrestrial environment it is almost impossible to get a sufficiently large dataset from in situ
features because of the sparsity of the investigated terrain. While there is a growing dataset of
planetary images, the variety of instrumentation, the lack of feature indexing, and the relatively
specialized way such images are stored and classified make creating a database from existing
archives next to impossible. This limitation required the use of terrestrial analogues for this
project.
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6.2 Outcrop Dataset

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: Figures a-d show examples of geological features labeled as interesting, while e-h
were considered uninteresting.

The images in the Outcrop Dataset were collected in 2011 at the Ethier Sand & Gravel
Pit by members of the Centre for Planetary Science and Exploration (CPSX) for a science
simulation mission (SLAM ’11) funded by the Canadian Space Agency. All images used were
collected remotely using the ROC6 Rover built by the Autonomous Space Robotics Lab at the
University of Toronto.

All images used were taken as panoramas from the ROC6 Giga pan imaging mount. These
images were separated into two groups. One was for developing the training data set, and
the second was used for testing. The training images selected were then divided into three
separate groups. From the first group of images, 200, (n × n) image windows were manually
selected from larger images to be used as a training data set. Each image was then resized
to be 100 × 100 pixels large. Half of which contained the desired outcrops and were labeled
interesting, the second half were taken from a variety of non outcrop image elements and were
labeled uninteresting. These 200 images were then used to train a committee classifier from
the complete set of image features described in Chapter 4.

The resultant boosted committee was then tested on the complete images that the training
images were taken from. The results of that classification was analyzed and sub windows which
were categorized with false positive, and false negative labelling were collected and added to
the training database. At the same time those images which were correctly but weakly identi-
fied were also added and replaced training examples that were most strongly classified. This
step was performed to increase the number of edge cases, to help better define the separation
between our two labelings.

We then ran another iteration of the boosting algorithm. The resultant trained classification
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committee was then used on the second group of test images, and a selection of weakly cor-
rectly identified, positive and negative examples were added to our data set. We also added the
most weakly weighted misclassified false positive and false negative results. This resulted in
approximately 300 images which were used as a training set on which to run a third iteration
of our boosting algorithm.

With the third set of images, we tried a variety of combinations of reduced image features
based on the outcome of the previous boosting set. By selecting those image features with
the most influence we attempted to minimize the data space we had to traverse to differentiate
the data. After the reduced set was decided on, the resultant trained committee was used on a
selection of the training images, and any incorrect classifications were added to the training set
with appropriate labelling.

The final Outcrop Data Set consisted of 332 100×100 pixel images, 166 of the images were
classified as interesting and 166 were classified as uninteresting. An object was considered to
be interesting if it was sufficiently large, part of a homogenous structure, and contained a
cohesive structure. A large variety of uninteresting features were used as the uninteresting data
set.

It is important to note, that in this kind of classification the number of uninteresting ex-
amples far exceeded the interesting ones by at least one or two orders of magnitude, and so at
each step we discarded approximately 10% of the training sub-images that were most strongly
classified as uninteresting for those which were relatively weakly correctly identified as un-
interesting, in an attempt to make the differentiation as robust as possible by increasing the
number of borderline cases.

6.3 Shatter Cone Dataset
Examples in the training database were collected from images taken by Dr. Gordon Osinski
from the department of Earth Sciences at the University of Western Ontario. The images them-
selves were taken predominantly from the Prince Albert Impact Crater on Victoria Island NWT.
From these original images 80 positive and 80 negative examples were chosen in sub-windows
of size x × x and then resized to be 100 × 100 pixels in size.

This training set was then used to train a committee classifier from the complete set of
image features described in Chapter 4. The results were then tested on the images the features
were taken from, and false positive, and false negative results were collected and added to the
training database, with weakly valued incorrect classifications replacing those images which
were most strongly correctly identified. This process was repeated in a similar manor to the
outcrop dataset described above.

A second round of training was done on three images obtained from a Google image search
showing complete outcrop structures from the Sudbury Impact Basin as well as some additional
examples from the Prince Albert impact crater. The process of adding misclassified images was
repeated this time without replacement to produce a larger training set. Lastly a reduced feature
vector set was tested against novel images of the Sudbury impact crater based on those image
features which performed best and the false classifications were added to the training database.

As with the Outcrop database, the variety and number of negative examples available is far
larger and more diverse than positive examples so similarly we replaced approximately 10%
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: Figures a-d show examples of geological features labeled as interesting, while e-h
were considered uninteresting.

of the most distinguishable negative examples with a number of more marginal ones at each
iteration. The Shatter Cone Dataset consists of 226 images, 110 labeled interesting and 116
labelled as uninteresting.
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Experimental Results

The composition and attainment of the two datasets drove a decision early on in our research
to focus on two slightly different objectives for each of the two classification targets. While
the feature set available to be used to begin with was the same, each objective was tested
separately with different combinations of those features to optimize the final feature set used
in the identification algorithms.

Because the Outcrop dataset was collected from a single locale, on a small number of
examples, the risk was that an overly specific training set would limit the generality of the
features selected. Based on this fact, the focus of identification was shifted slightly to examine
whether a limited dataset could be used to generalize within a region for specific common
elements within the landscape. This meant that only part of the landforms captured were
used to create the training database, such that other similar structures within the same general
site would serve as test examples to attempt to create an effective method of identifying a
key feature rather rapidly with limited variety in training examples. The hope was that in an
exploration mission a classification algorithm could be developed from relatively few images
to allow for autonomous identification as the region was explored.

The Shatter-cone dataset on the other hand while also collected largely from single loca-
tion had a much larger number of unique examples as well as an expectation of more universal
structures existing within examples of shatter-cones around the world. The “fractal like” struc-
ture meant that different scales were more flexible to analysis by consensus meaning that a
number of smaller regions could be clustered to identify larger structures. These factors make
it possible to design our identification algorithms for a more universal applicability.

7.1 Experimental Procedure

The work flow used in both cases can be broken down into 4 distinct and independent steps:
Feature Extraction, Training, Classification, and Analysis. While there were slight differences
between classification targets they both followed this general pattern. The program was imple-
mented in MATLAB to allow for the use of the VLFeat, and GML AdaBoost Matlab Toolbox
libraries.
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7.1.1 Feature Extraction

Feature Implimentation Used
SIFT vl dsift() from the VLFeat Library.
Haar Custom regions using MATLABs cumsum() function.
HOG vl hog() from the VLFeat Library
Edge Orientation Gradients(EOG) Custom algorithm.
Hough Transforms MATLABs hough(), houghpeaks(), and houghlines()
Intensity Histograms MATLABs imhist() function.
Edge Density Custom algorithm and feature.

Table 7.1: A number of available feature implementations were used to simplify coding. The
extracted features were then processed in order to form useful descriptors which could be
inserted into the feature vector

SIFT SIFT features are extracted using a dense SIFT algorithm with a spacial bin size of
3 pixels every 2 pixels. We then divide the image into 4 layers vertically, and 4 layers hor-
izontally, and combine those 16 regions into 27 different orientation combinations. These
combinations are then clustered into (k = 100) clusters, yielding a feature vector Fsi f t with a
dimensionality of 2700.

Haar-like features Haar features are collected by first creating an integral image of each
image. Each image is then divided up using patches of 50 × 12 pixel sub-windows in both a
horizontal and vertical direction in overlapping steps every 5 pixels. Each window computes
the sum of 6 different haar features (see figure 7.1.) For a 100 × 100 pixel image window this
generates a feature vector Fhaar of size 198 × 2 × 6 = 2376.

Figure 7.1: The six Haar-like features.

HOG For HOG features, five different bin sizes(B) were chosen where Bi = 2, 5, 10, 20, 25
Each histogram had 9 histogram orientations equally spaced between 0◦ and 180◦. For a 100×
100 pixel image this produces 5 x × y × 31 matrices(P) where x and y are the number of bins
required to traverse the image in non overlapping segments. In the case of our 100 × 100 pixel
images, the size of x and y are determined by xi = yi = 100 ÷ Bi. This results in 5 matrices, Pi

where xi = yi = {50, 20, 10, 5, 2}respectively. The results are concatenated to produce a feature
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space Pall where Pall is a 3041 × 31 matrix. We then cluster the matrix into 100 bins giving us
a feature vector Fhog of size 100.

Edge Orientation Gradients To calculate the Edge Orientation Gradients we use a sin-
gle band image i of the image. The image is divided into 4 × 4 non overlapping quadrants
({i1,1, i1,2, . . . , i4,4}), and in each region we calculate a 1× 5 histogram orientation vector hi con-
sisting of 5 orientation parameters (horizontal, vertical, 2 diagonals, and 1 non-directional.)
This gives us a feature vector FEOG of size 4 × 4 × 5 = 80

Hough Transforms Two different image features were extracted from the Hough transform,
Hough peaks and Hough lines. starting with the original image i, we perform a canny edge
detection to get ic. A Hough transform is performed on the edges, resulting in a hough Matrix
H of size θ × ρ where −90 ≤ θ ≤ 90 and −(ρmax) ≤ ρ ≤ ρmax where ρmax is determined by
ρmax =

√
ic2

length + ic2
width. Using H, up to 500 of the largest peaks are found with a minimum

amplitude of 0.7 × Hmax. The average energy of the euclidian distance between the points and
the distribution centre is calculated and as well as a histogram of the peak distribution over θ,
this produces feature vector FHoughPeaks of size 313. Lines longer than 7 pixels are then found,
and a 4 dimensional feature vector FHoughLines is calculated from: Maximum line length, sum
of all line lengths, the number of lines greater than 7 pixels, and the average length of the lines
longer than 7 pixels.

Intensity Histograms Two different intensity histogram features are used, the first feature,
Fhistintent converts the image i into and calculates a 32bin intensity histogram, the second feature,
Fhistrgb takes the r, g, and, b channels of i and calculates the histograms of each layer. individu-
ally. Further, i is divided into 4 non overlapping quadrants and a histogram of each quadrant is
calculated as well as combinations of these quadrants. This leaves us with Fhistrgb of size 1056,
and Fhistintent of size 352.

Edge Density Edge Density is calculated by using a Canny edge detector on the image to lo-
cate edge pixels. The Canny image (ic) is divided into nine rows and columns of and each edge
pixel is then summed giving icrow1 , icrow2 , . . . , icrow9 , iccol1 , iccol2 , . . . , iccol9 . 3×3 non-overlapping
squares of ic are also calculated (imagine a Sudoku board.) each area is summed and a his-
togram count is then made of rows, columns and patches to produce an edge density feature
FEdgeDensity of size 270.

7.1.2 Training
In order to train the decision committee after the feature vector created from the above image
features, we then add a label to signify that the image patch is considered either interesting
or uninteresting. This label is represented by a single digit (1 or 0) at the end of the feature
vector. Once the interesting and uninteresting feature vectors have been constructed they are
then passed to the AdaBoost training algorithm.

In our work we experimented with CART, using hypotheses consisting of a tree with node
size of 1, 2, 4, 8, and 16 nodes. In each case the data was divided into cross validation folds,
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(a number of different sizes of cross validation folds were tried, with 3 folds seeming to best
represent a balance between bias and variance errors.) Once separated, two folds were used for
training while the other was used for testing. This process is repeated for each fold. The train-
ing utilized three separate boosting algorithms in parallel, Real AdaBoost, Gentle AdaBoost,
and Modest AdaBoost. Each algorithm has its own advantages, and so we began using all
three as a way to compare the effectiveness of each, and found that as different combinations
of features were used, the performance of any given algorithm changed with respect to the
others. Ultimately all three algorithms were used to train separate committees to help form a
consensus as we will see in section 7.1.3. The number of iterations of the boosting algorithms
tried ranged from as few as 200 to as many as 2000 with 400 seeming to be sufficient to ensure
minimum test error without overfitting.

Feature vector Combined Vector Test Accuracy Fsize

Outcrops Shatter-cones Outcrop Shatter-cones
Fsi f t No Yes 68% 72% 2700
Fhaar Yes Yes 72% 60% 2376
FHOG No Yes 61% 58% 100
FEOG No Yes 75% 77% 80
FHoughPeaks Yes Yes 75% 68% 313
FHoughLines Yes Yes 62% 73% 4
Fhistinten No Yes 62% 53% 352
Fhistrgb Yes No 85% 83% 1056
FEdgeDensity No Yes 72% 71% 270

Table 7.2: Overview of feature effectiveness

7.1.3 Classification
The process of classifying an image begins by using an n×n detection window with a stride/offset
(o) of between 25 and 33%. depending on the window size. Various window sizes of n =

800, 600, 400, 300, 200, 100, 64, 24 were tried. Windows are then interpolated to 100 × 100
squares. From these squares a feature vector is extracted for each and then given a value based
on the discriminant function developed from the Boosting algorithms. This meant that each
detection window sub-image is given is then given three weightings. Since the stride was as
little as 25% each image patch could be given up to 48 weighted votes.

7.1.4 Analysis
Analyzing the outcome of image features is done through a statistical consensus of the val-
ues obtained from classification step, and consists of three individual components which are
combined to determine the likelihood of a desired feature existing in any given image.

Weighted Vote The results of the discriminant functions generated by each of the boosting
algorithms give both a label (+ or -) and a confidence weighting (represented as some real
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(a) Training with a decision tree with 16 nodes

(b) Same Features as (a) but using 4 nodes

Figure 7.2: We can see in figure 7.2a and 7.2b that the number of nodes had a dramatic effect
on the outcome of the training with Gentle AdaBoost, while Modest AdaBoost had very similar
results.
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(a) 8 Node Tree

(b) also an 8 node tree with the same features as (c)

Figure 7.3: In 7.3a and 7.3b we find that the same features produced different results during
different runs because of the variation in cross validation folds.
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(a) Gentle AdaBoost Distribution (b) Modest AdaBoost Distribution (c) Real AdaBoost Distribution

Figure 7.4: Each boosting algorithm produces different confidence amplitudes for the same
image. In order to produce a weighted vote these confidence ranges need to be normalized.
The distribution shapes are slightly different and so the standard scores of each are used.

number.) In cases where a single boosting algorithm is used, it would be possible to deter-
mine a weighted vote from from this confidence value alone. Unfortunately, as can be seen
in Figure 7.4, the confidence values assigned by each boosting algorithm vary widely. Since
the distributions are not identical and any outliers may skew amplitude normalization, we use
the standard score to produce a weighted vote as seen in Figure 7.5. In calculating the votes,
we only calculate those image windows with a positive label value, and we do not include any
negative standard scores.

(a) Gentle Standard Score (b) Modest Standard Score (c) Real Standard Score

Figure 7.5: The standard score of each distribution is used to generate a weighted vote.

Global Image Confidence In addition to a weighted vote for each region we include a con-
fidence weighting which is calculated by using the distribution of amplitude values boosted
discriminant function. This is done in order to wight the overall confidence of our data model
on a given image. The amplitude values in a poorly differentiated image will skew towards
lower amplitudes as in Figure 7.6a while strongly differentiated images will skew towards
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higher amplitude values as seen in Figure 7.6b. By using the number of standard deviations
zero is from the mean in each image we can produce a global confidence value for each image.

(a) Weakly differentiated features in an image (b) Strongly differentiated features in an image

Figure 7.6: A data model that produces poorly differentiated data will skew toward zero, while
strongly differentiated data will skew towards a higher amplitude values

Confidence Distribution Once each image region has been given a value based on the
weighted votes, we can generate a confidence likelihood of something of interest existing by
normalizing the votes with the global image weight we can produce a confidence distribution
across each image. The windows in Figure 7.8a shows those regions that have been given a
positive rating by the boosted committee’s discriminant function. Figure 7.8b shows the con-
fidence distribution of positively identified features with warmer colours representing patches
with the highest weighed values.

7.2 Outcome of Outcrop Classification

In the process of building the training database it was noted that a subset of features gave
results equivalent to, or perhaps slightly better than the full image feature Vector (See Figure
7.7.) Because of this our final testing used only a subset of the image features, specifically:
Haar-like features, RGB intensity histogram, and Hough transform (both Hough Peaks and
Hough Lines.) This reduced data set significantly improved the speed at which the image
vectors could be processed for each sub-window, as well as an improvement in the AdaBoost
algorithm training time which had a much smaller feature vector to iterate through.

To test the effectiveness of our algorithms, we devised 5 separate test scenarios. The first
test was to use the complete algorithm on one of the images used in the creation of the database.
This test was to test the success of the probability algorithm on a scene where we were confident
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(a) Training with all features (b) Training with only Hough Transform Haar and RGB
histograms

Figure 7.7: In 7.7a all features produced a test error of between 12-20% after 400 iterations. A
subset of features achieved a Test Error rate of 12-17% after the same number of iterations.

of correct sub-window identification (see Figures 7.8a and 7.8b.) It also offered an opportunity
to identify more challenging negative examples within the test set imagery

The second test scenario used rock features that were included in our training data set, but
on images that were taken from a different location, on a different date, with slightly differ-
ent lighting conditions. This test was designed to test the effectiveness of the classification
committees ability to classify known features (see Figures 7.8c and 7.8d.)

The third test was a completely novel image taken with a separate camera that did not
correspond to the geometry of the original images in order to test how instrument specific
our model was. In order to test how applicable our sample of uninteresting training examples
were, it also introduced some unique ”uninteresting features,” by way of using images which
included human beings, tents, trucks, a toy sword, and the ROC-6 rover, which had not been
included in the training set at all (see figure 7.8e.)

The fourth test was to test our statistical method against an image with an unusually large
number of positive features or an unusually low number of positive features, such that it should
present a difficulty to our statistical likelihood algorithm by having a skewed distribution of
sub-windows which gave a positive or negative result. We did this to test if a significantly
unusual probability spectrum would introduce false identifications, or miss significant regions
(see figure 7.10a.)

The fifth test was to apply our decision committee to completely separate outcrops outside
of the test site to see if our algorithms translated at all, and if so how well and how consistently
they did. Ultimately this test was outside of our initial goals, but was undertaken to try and
probe the limits of our method. We conducted this test with little expectation of success,
however we feel the results were interesting enough to merit a discussion.

Our ability to detect known regions in the first series of tests was quite successful, which
was expected as these features were part of our training data set. For all of the images from
which we pulled image features, we were able to reasonably detect the outcrops. Because we
did not focus on the exact dimensions of an outcrop we considered it a success if probability
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(a) Test 1 Result (b) Probability map of (a)

(c) Test 2 Result (d) Test 2 Result

(e) Test 3 Success (f) Test 3 Result

Figure 7.8: Successful Identifications of Outcrops
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peaks existed within the confines of the outcrop in the image.
It was noted during this first test that the size of the sub-window used had a significant

impact on the identification rates. Despite this fact, the probability analysis was able to ignore
isolated positive identifications (such as can be seen at the left side of Figure 7.8a) It may
also mean that distant features which only show at the smallest scale might be missed. The
implications of this will be discussed further in Chapter 8.

The second set of tests also performed to our expectations with all images having correct la-
belling as was seen with the first test. All four images used resulted in the correct identification
of the outcrop with the highest probability.

The third test produced mixed results; Most of the novel images produced successful or
largely successful results. However one notable exception was a photograph from a ledge
which contained no immediate foreground (figure 7.9a.) As a result of either a failure in the
training dataset or a failure in our algorithm, an inordinately large number of false positives
were generated which overwhelmed our attempt to smooth it with our probability function.

While the desired outcrops on the middle right hand side of the picture were identified, two
key failures were noted. First at the bottom of the image, a rock pile is given the strongest
probability of being an outcrop, while in the far background at the upper and middle right,
sand piles were falsely identified as being outcrops. This we believe is due in part because
of the resolution of the features detected. The sand piles at the rear of the image are so far
away that they appear as homogenous structures without the foreknowledge of their extreme
distance, while the rocks in the pile at the bottom of the image may appear to be homogenous to
larger window sizes which skewed our image voting mechanism. This issue may present some
difficulty in the translation of this work to extraterrestrial environments, and we will discuss
this possibility in Chapter 8.

(a) Test 3 Novel Image (b) Test 3 Result

Figure 7.9: When applied to a distant perspective, the algorithm or possibly the training
database failed to produce a useful result.

The fourth test used images which contained either no relevant features, or were dominated
by relevant features. Originally we designed this test to test whether the statistical model we
designed would significantly change the outcome if the distribution of expected objects was
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skewed one way or the other. While we were fairly confident that large amounts of uninterest-
ing sub-windows would not be problematic because we use a minimum value threshold in our
voting procedure, we did worry that a large number of positive sub windows would skew the
distribution such that it would significantly alter our voting procedure. As we can see from the
comparison of probability maps in figure 7.10, the use of an simple yes/no heuristic produced
a very similar result to our statistical distribution method, while our method seems to produce
much better results in areas of localized features.

(a) Test 4 Using Proability (b) Test 4 Using Committee Values

Figure 7.10: Above we see a comparison of our Probability Method of voting compared to
using the boosted committee to generate a probability map. 7.10a shows the probability map
of our method, while 7.10b was generated by giving a vote to any sub-window which gave a
positive identification.

Our fifth and final test was to apply our results to completely novel outcrops, and situations
to see if the resultant classifications were comparable. The results we had were somewhat
surprising in that our algorithm performed better than we originally expected, but also seemed
to translate relatively well to surrounding rock structures fairly consistently. It should be cau-
tioned that we did not exhaustively test the reasons for this difference, those outcrops we could
find which were located in the same impact structure seemed to give better results than those
of completely separate structures (see figure 7.11.) While there a fairly significant degradation
in accuracy from leaving the immediate area, it does suggest that the classifiers may be robust
enough to enable an iterative generation of a training set during the course of a mission that
traverses relatively large distances as is the case with the MER rovers.

7.3 Outcome of Shatter-cone Classification

7.3.1 Training and Control Error
Our approach to the classification of shatter-cones parallels the methodology used for the clas-
sification of outcrops with some adaption for the differences in structure and usefulness. To
begin with the building of the shatter-cone training database showed the usefulness of the in-
clusion of all of the features we explored previously with the exception of the RGB histogram.
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(a) Test 5 using a local rock structure (b) Test 5 using a random outcrop

Figure 7.11: Above we see a comparison of the trained committee applied to completely novel
outcrops. 7.10a shows an outcrop at a different location within the Sudbury Impact structure,
while 7.10b shows the result of our classifiers on an geographically unrelated outcrop. While
we did not extensively test this phenomena, there seems to be a better transition of our features
to structurally similar outcrops in comparison to outcrops which are simply visually similar.

While the inclusion of the RGB histogram did produce lower error rates for shatter-cones
within a given training data set, the difference was not significantly large (see figures 7.12a and
7.12b.) The inclusion of the histogram gave on average a lower relative weighting of shatter-
cones contained in different impact craters located in different rock types, particularly when a
variety of materials were present in the image. We will discuss this decision in greater detail in
Chapter 8.

(a) Test Error All Features (b) Test Error All but RGB

Figure 7.12: Training results using a full set of features with and without the RGB histogram

To test the classification of our Shatter-cone images, we needed to tackle a number of
requirements to prove the applicability of a boosted training dataset across as broad a set of
conditions as possible. The first requirement is that the trained committee, which was trained
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from both complete shatter-cones and small subsets of larger shatter-cones, should scale to
identify the entire cone clusters within the same image when at different scale. The second
requirement is that a the committee should be able to identify shatter-cone formations that
had affine translations to the image plane as well as shatter-cones interspersed within different
formations. The third requirement is that the committee should be able to identify shatter-cones
found in other rock types, with differing compositions. In order to test these requirements we
devised four scenarios under which we would test our algorithm.

The first test consisted of identifying shatter-cones located in the images used in the training
data base but utilizing the entire image rather than only a subset of regions. This rst test was to
designed to show the both the scalability of the feature set and to rene the training data base.
The second test was conducted using images of shatter-cones gathered from the same location
but not used in the training data set and was designed to ensure that the features selected would
be effective in a variety of imaging conditions. Including shadow, scaling and focus biases. In
the third test we used shatter-cones in a variety of locations, conditions and rock types found
in images gathered from impact craters from around the world. Our final test was to test the
trained committee on landscape scale images to determine how effective our algorithm would
be in differentiating the appearance of shatter-cones in novel situations.

7.3.2 Test 1 Familiar Images Different Scales

The only images used in this test were those images which contained the best examples of
shatter-cones, and thus were chosen to form part of our training database. This type of test
is generally not helpful in identifying the accuracy of our training committees because our
committee was based on the same images we are testing it on and thus subject to over fitting.
It was determined that this test would be useful for two reasons, first it allowed for a better
refinement of the negative examples, allowing removal those negative examples which were
most obvious,substituting examples which were closer to the borderline of the two groups,
and secondly it allowed us to incorporate as many different positive examples as we could
find again emphasizing those closest to the edges of the dividing line so as to best define our
models. After performing this first test, false positives and false negatives were swapped into
the training data set while strongly weighted true negatives were swapped out in an attempt to
better isolate the structural components of shatter-cones in the training database, while at the
same time reducing the weighting given to incidental factors.

The results showed a predictably high accuracy in identifying the most prominent shatter-
cones in these images. It was found that varying the size of the detection window had a sig-
nificant influence on the detection of shatter-cones with a strong bias towards those which
completely filled the detection window. This meant that often shatter-cones clusters which ei-
ther changed direction or were partially occluded would not be detected as can be seen in figure
7.13a and 7.13b. Overall detection rates were between 70%-90% with 100x100 pixel detection
windows and 50%-80% with 200x200 pixel detection windows. A corresponding increase in
false positives was also noted with smaller detection window sizes.
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(a) Confidence values using 200px windows (b) Confidence values using 100px windows

Figure 7.13: The same image run with initial training data base at different section window
sizes.

7.3.3 Test 2: Familiar Geology, Novel Images

Test 2 was designed to test how well our trained features performed in more challenging photo-
graphic circumstances while attempting to not introduce changes within the actual geological
composition of the rocks. Image were selected from the original group collected in Prince
Albert Impact Structure which contained more challenging conditions such as those seen in
figure 7.14. The images selected contained a variety of lighting conditions and surfaces on an
oblique angle to the camera plane.

In addition to the inclusion of more difficult features, a variety of imaging sizes were cho-
sen, with the windowing sizes ranging from 10% of total image size to 3%. (i.e. 200px, and
100px windows were used for figure 7.14 which is a 2400 × 2000 pixel image.)

The results of our second test showed three informative results. The first is that the boosted
decision making committee used was able to identify Shatter-cones in a while variety of ori-
entations and angles relative to the camera plane. The success rates of labelling those features
which were not parallel to the image plane were similar to the first test. The caveat here is that
this pertains only to well lit features which leads us to our second informative result.

Features in shadowed regions of the image faired far worse than those that were well lit.
Although some image sub windows did identify the shadowed feature, (see bottom left of
centre in figures 7.15a and 7.15c) the weighting given was significantly lower. While this may
have negative implications in applications that require high levels of accuracy, the detrimental
effects might easily be mitigated through a number of strategies for our purposes that we will
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Figure 7.14: Typical test image used in our second Test round

discuss in more chapter 8.
The third result which proved informative was the effect of sub-window size on feature

identification. As can be seen in figure 7.15b, the smaller window size allows for the labelling
of higher probability of smaller features (see the blue square to the right of the GPS unit)
compared to the larger window size (figure 7.15b.) the highest probabilities of both window
sizes was centred around the same features.

This result suggests that the smaller window size would provide a more accurate identifi-
cation of shatter-cones, or at least reduce the number of false negative results of smaller cone
structures. Although this is problematic in its own right because the window size has an inverse
square relationship with the algorithm running time, which as we will discuss in chapter 8 is
one of the most challenging issues of our algorithm. While this is an undesirable result, a com-
parison of figure 7.15c and figure 7.15a shows that an overwhelming majority of regions with a
positive weighting in figure 7.15a are also covered by the positive regions in figure 7.15c. This
suggests that it may be beneficial to utilize an iterative pyramid approach with increasingly
smaller sub-windows to maximize feature resolution while minimizing processing power.

This result was intriguing enough that on Test 3 we chose to expand the range of window
sizes we used to see if the observed trend held true for larger windows.

7.3.4 Image Test Set for use inTests 3 & 4

The images for our third and fourth test were selected from a variety of locations from around
the world. In total 30 images were selected from 8 di?erent impact sites. (See table 7.3.)
20 images were selected for use in Test 3, and ten wider angle landscape style shots were
chosen for Test 4. For the purposes of this test, images which contained prominent examples
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(a) Positively weighted windows at 100px (b) 100px probability map.

(c) Positively weighted windows at 200px (d) 200px probability map.

Figure 7.15: A typical test image used in test 2 of the shatter-cone images. This image was
selected for shading variations and oblique surfaces relative to the camera plane.

Country Impact Site Co-ordinates Images Used
Canada Sudbury Impact Basin 46.6000◦ N, 81.1833◦ W 6

Prince Albert Impact Crater 72.4667◦ N, 113.9333◦ W 2
France Rochechouart Impact Structure 45.8242◦ N, 0.7817◦ E 4
Germany Ries Impact Structure 48.8833◦ N, 0.5667◦ E 3

Steinheim Impact Structure 48.6867◦ N, 10.0650◦ E 3
S. Africa Vredefort Dome 27.0000◦ S, 27.5000◦ E 6
USA Crooked Creek Impact Structure 37.8355◦ N, 91.3950◦ W 3

Santa Fe Impact Structure 35.7500◦ N, 105.9333◦ W 3

Table 7.3: This table lists the composition of novel images used in testing from a variety of
sources. All of the images of Prince Albert Impact Crater were courtesy of Dr. Gordon Osinski,
while the images of Vriedfort Dome are courtesy of Professor Pierre Thomas of Laboratoire
de Geologie de Lyon. Images from the Sudbury impact basin come from the Western Earth
Sciences 200a website [15]. The rest of the images were found on the Shatter-cone Page of Dr.
Kord Ernstson and Fernando Claudin [26].



58 Chapter 7. Experimental Results

of shatter-cones were chosen in order to identify how universally applicable our method was.
Images were chosen to provide a variety of rock types and colours. An attempt was also made
to find a variety of sizes and formation completeness while eschewing both artificially lit and
physically isolated specimens . Wherever possible the images chosen contained only mineral
material although this proved next to impossible for the landscape scale images chosen for Test
4.

7.3.5 Test 3 Novel Geography, Limited Scope
The results from Test 2 meant that Test 3 was broken down into two separate but connected
avenues of exploration. The first was a determination of the efficacy of our methodology in
identifying shatter-cones that differ in appearance and composition from our training group.
The procedure for this test was identical to our previous two, and a representative result can
be seen in Figure 7.16. The results we obtained showed identification rates similar to those
found with the novel images from the Prince Albert Impact Crater which were used in the
previous test. This suggests that the features we chose translate well to different rock types. The
introduction of cracks debris lead to some false identification, but much of this was eliminated
by weighting introduced by the probability map.

The second avenue of exploration was an examination of the effects of window size on
the localization of shatter-cones. To test this the range of window sizes that were tried ranged
from 24-400 pixel squares. The results from this test showed that as expected the smaller
window sizes were better at detecting smaller shatter-cones while still being able to partially
identify parts of larger structures due to the “fractal” nature of shatter-cones. At larger sizes,
the windows were able to identify large features, while missing out on finer features. The
number of false positives also increased. As can be seen in figures 7.18 . While this suggests
that there is some merit in a multiple pass pyramiding approach of windowing, it raises some
concerns as well which we will discuss in Chapter 8.

7.3.6 Test 4: Landscape images
The construction of test imagery for the last test proved unexpectedly difficult as in general
images which are labeled as shatter-cones consist largely of framed images of the shatter-
cones themselves, and those which might contain shatter-cones as part of a larger image tend
to be rarely labeled as having shatter-cones. The images in figure 7.19 are representative of
the types of images used in this test. These images contain confounding factors not expected
in an extraterrestrial setting, which proved to cause some difficulty for our algorithm. In figure
7.19a for example the strands and cone like shape of the grass tufts confused the algorithm. In
figures 7.19b and 7.19c the presence of people gave the program pause. Despite this fact the
algorithm did put the highest probability on shatter-cones in the image.
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(a) Shatter-cones in Sudbury Breccia (b) Identification of Shatter-cones (c) Labeled Shatter-cones

Figure 7.16: From Left to Right: The original image. Windows labeled by our algorithm
as shatter-cones. A weighted distribution of probability that the encircled image contains a
shatter-cone.
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(a) Shatter-cone Probability at 24px

(b) Shatter-cone Probability at 100px

Figure 7.17: Shatter-cone Labelling based for various sub window sizes for the same image.
The smaller size windows show better resolution in identifying small as well as large shatter-
cones but comes at a cost of an exponential growth in processing times.
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(a) Shatter-cone Probability at 200px

(b) Shatter-cone Probability at 400px

Figure 7.18: Shatter-cone Labelling based for various sub window sizes for the same image.
The larger window size still detect larger scale shatter-cones, but as the window size increases
smaller features are lost and error creeps into textured regions due to a loss of resolution.



62 Chapter 7. Experimental Results

(a) Vredefort Dome South Africa (b) Slate Islands

(c) Prince Albert Impact Crater, Victoria Island NWT

Figure 7.19: A probability map of shatter-cones in novel landscape scale image



Chapter 8

Discussion, Conclusions and Future Work

The original conception of our work is predicated on three realities of robotic space exploration:
First, that due to power, logistic, and temporal considerations the amount of data transferred
between a spacecraft and earth is limited to a fraction of what a robotic system operationally
might, and in fact does collect for situational awareness. Second, that there may exist in the
moment to moment imaging of a robotic rover’s images scientifically relevant information that
is currently unexamined and not kept for later retrieval. And third, that there is an intrinsic
value to a trainable subsystem which would be able to detect, with a reasonable certainty,
features which may be interesting to a terrestrial researcher.

These realities mean that a discussion of the validity of our methods will be different from
those of a vision system operating within the purview of a human operator, or those designed to
replace a human operator for some purpose such as navigation. While most vision systems seek
to maximize their accuracy and completeness while finding a balance between the occurrence
of false positive and false negative labelling errors in order to remove a human decision maker
from the process, our system is different in that we are seeking to bring a human decision
maker into what otherwise would not be part of the data set available. This means that while
accuracy is an important function of our work, completeness is less of a focus, and our system
must minimize false positives if it is not to present an undue burden on the robot.

8.1 Outcrops

The identification of outcrops presents us with a unique set of challenges. The human identifi-
cation of an outcrop is one that is very often context dependant. While we can make some gen-
eralities about the structure, makeup and location of an outcrop, a globally applicable method
to identify all such features is almost certainly an unfeasibly hard problem given computing
power required to achieve such a feat. The International Mineral Association has Identified
4985 different minerals [1]. Any given outcrop can be made up of an almost limitless com-
bination of these minerals in varying amounts, differences that will alter the texture, colour,
albedo and shape of that outcrop. Outcrops themselves can range from homogeneous cliffs, to
an amalgam of rocks suspended within a binding material, to layer upon layer of material laid
down over centuries. It is with this in mind that we must examine the success of our system.
We never set out to create one monolithic system, but rather one that could function within the
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operational area of a rover, and one that could be updated as the features changed.

8.1.1 Conclusions
The tests we have performed show that a boosted decision committee can be an effective way to
identify outcrops given a relatively small training set. We also believe that an iterative building
of test sets would allow for a continual updating of search software as a device moves through
an environment. Since the imagery and rover traversal through an environment happens regard-
less, a probabilistic algorithm could be integrated to help increase the likelihood of identifying
regions of interest without interfering with existing exploration methodologies. Likewise by
refining the uninteresting training database to be as close to marginal decision making we be-
lieve that a novel item could be identified so long as they are sufficiently differentiable from
the makeup of uninteresting image patches.

While most of our testing showed favourable outcomes there were a few specific cases
which failed to offer useful information, and in fact offered completely erroneous results. The
image identified in figure 7.9 did not simply over or under value the scene, but rather it identi-
fied a region which did not fit the intended parameters with a greater confidence than those re-
gions which were manually identified as interesting. This failure however may not be systemic,
but instead may be an artifact of the methodology we used to train our classifier, likewise, it is
possible that such misidentifications could be minimized with a future iteration of our training
data set. We will discuss this possibility in 8.1.2, along with an artifact of window size we
noticed during our initial testing because we believe the two outcomes may be related.

Despite the relative success of our algorithms, it must also be noted that the methodology
used is simply too computationally intensive for the processing and energy limitations of cur-
rent spacecraft. Even terrestrial use of such algorithms would require a significantly powerful
system to adequately identify objects of interests which would make realtime, or field use of
this software more difficult. This does not mean that our approach is without merit. We also
believe that there are many readily available ways to improve the computational requirements
of this type of approach and we will discuss some of these in 8.1.2 and 8.4.

8.1.2 Discussion
Detection Window Size

When we were performing our initial testing we noticed that image window size had a sig-
nificant impact of the regions of interest identified by the decision making algorithm. As can
be seen in the isolated positive classifications on the same image at different scales, the 100px
window size in Figure 8.1b and the 300px window size in Figure 8.1a returned significantly
different results. At first glance it appears that the 100px windows failed to pick up the obvious
salient features, but upon closer examination in Figure 8.1c we find that at least some of the
positive results, are genuinely correct positive results, or at least are reasonably indistinguish-
able from a positive result. While the probability map that was generated (seen in figure 7.8e)
successfully identifies the foreground structures, the top two magnified squares in Figure 8.1c
are outcrop structures located at distances which make them appear small enough such that at
larger window sizes these features are overlooked.
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(a) Results at 300px (b) Results at 100px

(c) Close up of positive results

Figure 8.1: A comparison of areas of interest identified at different scales.

Likewise, if we compare the bottom magnified square in Figure 8.1c with a positive exam-
ple from the training set such as the one in Figure 6.2a, we can see why our algorithm might
conflate this sub window with a positive result. One possibility of reducing this error would
be to isolate the examples in our positive training set to only include images of the outcrop
itself, and not the surrounding materials. It is possible that this strategy would reduce some
of the false positives we saw in Figure 7.9, but there are a few arguments to be made against
this strategy. If we examine the positive identifications in larger scale windows, such as those
seen in Figure 7.8f and Figure 8.1a we can see that most of those positive identifications also
include some of the surrounding material. Lacking some form of image segmentation, it is
unlikely that an image window would only contain exclusively rock from an outcrop. Such
a strategy would also reduce the number of positive training examples that could be gathered
from available photographs, meaning that a larger number of unique examples would be re-
quired to build a sufficiently large training database. To compensate, we could arguably use
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a smaller sub-window, but this too is problematic because it would cause the number of sub-
windows which needed to be processed to be processed to grow at an exponential rate over the
same image resolution.

Portability of Outcrop Features

As we have discussed at the beginning of this section, it would be next to impossible to make
a universal training set to cover all possible combinations of rock. Thankfully, there is no need
to do so since the conditions which create rock formations on any large enough scale generally
cover a large enough geographical area to allow for transitions from one rock type to the next.
In those cases where this does not happen, there are often other such markers which would
suggest a priori that such a radical shift might occur. The question for further work is: how
much can a rock formation change before our descriptors become unreliable. While we did not
go into great detail regarding this work, we do have a suggestion that some variability in rock
constituency does not preclude detection.

8.2 Shatter-Cones
Shatter-cones are a unique geological feature, which tell a very specific tale of a very specific
event in the history of a geological region. While they are not common, their identification
would present a calling card of a transformative event to scientists exploring an alien landscape.
To find such an object is to take a giant leap in the understanding of an impact event. So useful
an indicator would a shatter-cone be that there is a value in having a rover ”keeping an eye”
out for one as it traverses an alien crater or impact basin.

8.2.1 Conclusions
Over the course of our four tests we have shown that our method offers a reasonable way
of detecting shatter-cones within an image. Within all images that contained shatter-cones,
we were able to identify at least one instance of a shatter-cone, and while our method is not
comprehensive in its detection of all shatter-cone features, we found that in each image we
tested containing shatter-cones, we were able to identify with a useful certainty at least part of
a shatter-cone structure. Moreover by weighing the probability of a given region within a larger
image to contain a shatter-cone we have shown that it is possible for an autonomous system
to select a small subset of an image for conformation by secondary systems, either human or
autonomous.

8.2.2 Discussion
Any discussion of results of classification must begin by noting that the variability found within
the appearance of existing shatter-cones is quite large, with terrestrial examples ranging from
the obvious to those which require an expert eye to detect. The positive examples contained
within our training set only included those which most clearly demonstrated the features asso-
ciated with shatter-cones. This means that our method has been designed from the beginning



8.3. Boosting as a Strategy in Extraterrestrial Environments 67

to identify and label a partial, but not insignificant subset of shatter-cones. Over the course
of testing it was found that the ability to identify shatter-cones extended beyond the examples
used for our training data base as we will discuss below.

One final limitation to the experimental results obtained should be brought up before pro-
ceeding. In the course of identifying images for testing it became immediately clear, that there
is an under representation of shatter-cones in situ where the shatter-cones do not make up a
large portion of the image. Most of the imagery identified as containing shatter-cones are pho-
tos taken in the field that were taken to highlight the cones themselves. This meant that in most
test images, shatter-cones either make up a substantial percentage of the rocks in the image or
are not present at all. While in theory the methodology we used should be able to successfully
identify shatter-cones in relatively small regions of an overall image we were unable to test
this with enough examples to be completely confident in our results despite the success we
experienced.

8.3 Boosting as a Strategy in Extraterrestrial Environments

While we were able to achieve mostly positive outcomes with this work, ultimately the question
that must be addressed is: Does it make sense to use this approach in the robotic exploration of
extraterrestrial environments? If the answer to this question is yes, then the question becomes:
What are the practical considerations required to make it happen?

8.3.1 Validity of this Approach

As the results of our work has shown, there is reason to believe that a system designed for
the environment in which the rover is exploring offers a reasonable chance of being able to
distinguish an object of scientific interest from uninteresting ones using the boosted committee
approach. Since much of what we are looking for is currently either offloaded to human con-
trollers or is not examined at all even a modest ability represents a positive step in the abilities
of an autonomous system. Likewise such a system offers a great potential for shifting informa-
tion processing loads away from systemic bottle necks when it achieves a high enough level of
accuracy and computational efficiency.

Methodological Benefits

The approach chosen was specifically selected for the purpose of minimizing the data load,
on the more tenuous elements of the deep space network and rover capabilities and offers a
number of compelling advantages to its use by an extraterrestrial rover.

Terestrial Training The most computationally complex part of the process the development
of the decision making committee can be handled by terrestrial computers and decision making
committees can be constantly improved in an iterative fashion as data sets and methodologies
improve.



68 Chapter 8. Discussion, Conclusions and FutureWork

Object Type Scalability Most if not all of the image features that make up image descriptors
are universal enough to be applied to a number of geological or meteorological features that
might be of interest. Once a vocabulary of image features is created from an image the ability
to identify different features using different combinations of them means that they could be
used on many different targets.

Data Availability Since vision systems make up the most significant portion of current rovers
navigation system, much of the imagery is a byproduct of robot traversal and does not require
the addition of complex instrumentation or a cessation of travel in order to perform it’s primary
identification.

Multi-instrument Collaboration The ability to train a feature set need not be limited to
simply a single instrument. Since boosted comities work on a data vector of descriptors, that
data can come from more than a single visible spectrum camera. Once calibrated to account for
image registration, stereo image features could be added to a data vector, as well as different
spectra such as IR and UV, Likewise the byproducts of other navigational techniques such as
LIDAR point clouds could also be incorporated.

Methodological Limitations

While conceptually the method used has a number of benefits, it is also not without drawbacks.
There are a number of factors which might limit the use of such an approach in the real world.

Computational Complexity As features are added the size of the data vector increases,
which means that the time to create the feature vector increases. With the vector size and
features we chose, the creation of a feature vector of a 100× 100px sub-window created a vec-
tor F where Fsize = 7281 (see table 7.2.) This required a processing time of about 1 second for
a relatively modern dual core intel processor. While this is untenable for existing processing
power, it is not inherent to the methodology, and with different feature methodology it is within
the forecasted processing abilities of upcoming rovers.

Resolution vs. Image Size As our experiments showed the larger window size we used
limited the resolution we were able to achieve in detection, while the smaller the size the greater
the number of sub-windows needed, and this number grew at an exponential rate. To achieve
the resolution achieved in the image shown in figure 7.17a almost 100,000 sub-windows were
analyzed.

8.4 Future Work

8.4.1 Methodological Improvements
Expanded Detection Vocabulary While we selected a number of useful features for ex-
traction, our list is far from comprehensive. Similar work performed by others, has identified
a number of comparable methods of creating a vocabulary of image features which may in
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combination improve the overall efficiency of our approach. (See [24] and others) a more
systematic approach to this problem may be of some benefit.

Programmatic Efficiencies In order to improve the resolution of detection while minimiz-
ing the computational complexity a number of strategies might be employed such as image
pyramids, segmentation etc. Likewise the code we utilized was written in a high level lan-
guage(MATLAB) and could benefit from a more efficient language, as well as more efficient
methods to eliminate reduplication.

8.4.2 Structural Improvements
Data Set Creation One of the most challenging aspects of this work is finding a dataset
of labeled images for training and testing. NASA image databases are generally organized
geographically and temporally and not well labeled by features or geography (there are some
rare exceptions) The classification of geological images is generally not standardized and to a
certain degree dependant on subjective measures and descriptions.

Application Specific Hardware Cameras are designed for the human eye, and as such deal
with and store data in a fashion that is conducive to human vision. The use of software for im-
age filters has some inherent inefficiencies which, while almost unnoticeable to modern com-
puters, could be problematic for the limited resources of a rover. Some of the more common
filtering could be performed through hardware filters such as FPGAs or specifically designed
parallel processors.

8.5 Final Remarks
The algorithms developed here have been shown to perform their work well. Properly de-
signed and implemented, a version of this work can offer flexibility to autonomous systems in
performing science in the absence of a human presence. While this method currently requires
a computational power that is not available on the present generations of rovers, the refinement
of these techniques combined with increased computational power and efficiency will allow
these kinds of techniques to be utilized by a future generation of robotic explorers.
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