236 research outputs found

    Adaptive Neuro-Fuzzy Systems

    Get PDF

    Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A Survey

    Get PDF
    Major assumptions in computational intelligence and machine learning consist of the availability of a historical dataset for model development, and that the resulting model will, to some extent, handle similar instances during its online operation. However, in many real world applications, these assumptions may not hold as the amount of previously available data may be insufficient to represent the underlying system, and the environment and the system may change over time. As the amount of data increases, it is no longer feasible to process data efficiently using iterative algorithms, which typically require multiple passes over the same portions of data. Evolving modeling from data streams has emerged as a framework to address these issues properly by self-adaptation, single-pass learning steps and evolution as well as contraction of model components on demand and on the fly. This survey focuses on evolving fuzzy rule-based models and neuro-fuzzy networks for clustering, classification and regression and system identification in online, real-time environments where learning and model development should be performed incrementally. (C) 2019 Published by Elsevier Inc.Igor Škrjanc, Jose Antonio Iglesias and Araceli Sanchis would like to thank to the Chair of Excellence of Universidad Carlos III de Madrid, and the Bank of Santander Program for their support. Igor Škrjanc is grateful to Slovenian Research Agency with the research program P2-0219, Modeling, simulation and control. Daniel Leite acknowledges the Minas Gerais Foundation for Research and Development (FAPEMIG), process APQ-03384-18. Igor Škrjanc and Edwin Lughofer acknowledges the support by the ”LCM — K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMET-K2 program. Fernando Gomide is grateful to the Brazilian National Council for Scientific and Technological Development (CNPq) for grant 305906/2014-3

    Neuro-fuzzy software for intelligent control and education

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Automação). Faculdade de Engenharia. Universidade do Porto. 200

    A Technique to Stock Market Prediction Using Fuzzy Clustering and Artificial Neural Networks

    Get PDF
    Stock market prediction is essential and of great interest because successful prediction of stock prices may promise smart benefits. These tasks are highly complicated and very difficult. Many researchers have made valiant attempts in data mining to devise an efficient system for stock market movement analysis. In this paper, we have developed an efficient approach to stock market prediction by employing fuzzy C-means clustering and artificial neural network. This research has been encouraged by the need of predicting the stock market to facilitate the investors about buy and hold strategy and to make profit. Firstly, the original stock market data are converted into interpreted historical (financial) data i.e. via technical indicators. Based on these technical indicators, datasets that are required for analysis are created. Subsequently, fuzzy-clustering technique is used to generate different training subsets. Subsequently, based on different training subsets, different ANN models are trained to formulate different base models. Finally, a meta-learner, fuzzy system module, is employed to predict the stock price. The results for the stock market prediction are validated through evaluation metrics, namely mean absolute deviation, mean square error, root mean square error, mean absolute percentage error used to estimate the forecasting accuracy in the stock market. Comparative analysis is carried out for single Neural Network (NN) and existing technique neural. The obtained results show that the proposed approach produces better results than the other techniques in terms of accuracy
    corecore