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1. Introduction 

A life science process is typically characterized by a large number of variables whose 
interrelations are uncertain and not completely known. The development of a 
computational paradigm, implementing an “intelligent” behavior in the sense of handling 
uncertainties related to the modeling of the interrelations among process variables, is an 
interesting research topic. A large number of studies apply computational intelligence 
techniques in the life science e.g. 

• in modeling the environmental behavior of chemicals (Eldred & Jurs, 1999; Kaiser & 

Niculescu, 1999; Gini et al., 1999; L. Sztandera et al., 2003; Sztandera et al., 2003; Vracko, 

1997; Benfenati & Gini, 1997; Gini, 2000; Mazzatorta et al., 2003), 

• in medicine (Wilson & Russell, 2003b; Fukuda et al., 2001; Wilson & Russell, 2003a; 

Mandryk & Atkins, 2007; Lin et al., 2006; Rani et al., 2002; Adlassnig, 1986; Adlassnig et 

al., 1985; Bellazzi et al., 2001; 1998; Belmonte et al., 1994; Binaghi et al., 1993; Brai et al., 

1994; Daniels et al., 1997; Fathitorbaghan & Meyer, 1994; Garibaldi & Ifeachor, 1999; 

Kuncheva & Steimann, 1999; Roy & Biswas, 1992; Steimann, 1996;Watanabe et al., 1994; 

Wong et al., 1990), 

• in chemistry and drug design, see e.g. (Manallack & Livingstone, 1999; Winkler, 2004; 

Duch et al., 2007) and references therein. 

The fuzzy systems based on fuzzy set theory (Zadeh, 1973; 1983) are considered suitable 

tools for dealing with the uncertainties. The use of fuzzy systems in data driven modeling is 

a topic that is widely studied by the researchers (Wang & Mendel, 1992; Nozaki et al., 1997; 

Shan & Fu, 1995; Nauck & Kruse, 1998; Jang, 1993; Thrift, 1991; Liska & Melsheimer, 1994; 

Herrera et al., 1994; González & Pérez, 1998; Babuška & Verbruggen, 1997; Babuška, 1998; 

Abonyi et al., 2002; Simon, 2000; 2002; Jang et al., 1997; Wang & Vrbanek, 2008; Lughofer, 

2008; Kumar, Stoll & Stoll, 2009b; Lin et al., 2008; Kumar, Stoll & Stoll, 2009a) due to the 

successful applications of fuzzy techniques in data mining, prediction, control, classification, 

simulation, and pattern recognition. 

It is assumed that input variables (x1, x2, … , xn) are related to the output variable y through 
a mapping: 

= ( )y f x  

Source: Fuzzy Systems, Book edited by: Ahmad Taher Azar,  
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where x = [x1 x2 … xn] ∈ Rn
 is the input vector and the modeling aim is to identify the 

unknown function f . The fuzzy modeling is based on the assumption that there exists an 
ideal set of model parameters w* such that model output M(x;w*) to input x is an 
approximation of the output value y. However, it may not be possible, for a given type and 
structure of the model M, to identify perfectly the inputs-output relationships. The part of 
the input-output mappings that can’t be modeled, for a given type and structure of the 
model, is what we refer to as the uncertainty. Mathematically, we have 

 *= ( ; ) ,y M x w n+  (1) 

where n is termed as disturbance or noise in system identification literature. However, we 
refer n, in context to real-world modeling applications, to as uncertainty to emphasize that 
the uncertainties regarding optimal choices of the model and errors in output data resulted 
in the additive disturbance in (1). For an illustration, the authors in (Kumar et al., 2008), in 
context to subjective workload score modeling, explain the reasons giving rise to the 
uncertainty. 
A robust (towards uncertainty n) identification of model parameters w* using available 

inputs-output data pairs { x(j),y(j) } j=0,1,… is obviously a straightforward approach to handle 

the uncertainty. Several robust methods of fuzzy identification have been developed (Chen 

& Jain, 1994; Wang et al., 1997; Burger et al., 2002; Yu & Li, 2004; Johansen, 1996; Hong et al., 

2004; Kim et al., 2006; Kumar et al., 2004b; 2003b; 2006c; 2004a; 2006a;b). It may be desired to 

estimate the parameters w* in an on-line scenario using an adaptive filtering algorithm 

aiming at the filtering of uncertainty n from y. A classical application of adaptive filters is to 

remove noise and artifacts from the biomedical signals (Philips, 1996; Lee & Lee, 2005; 

Plataniotis et al., 1999; Mastorocostas et al., 2000; Li et al., 2008). The adaptive filtering 

algorithms applications are not only limited to the engineering problems but also e.g. to 

medicinal chemistry where it is required to predict the biological activity of a chemical 

compound before its synthesis in the lab (Kumar et al., 2007b). Once a compound is 

synthesized and tested experimentally for its activity, the experimental data can be used for 

an improvement of the prediction performance (i.e. online learning of the adaptive system). 

Adaptive filtering of uncertainties may be desired e.g. for an intelligent interpretation of 

medical data which are contaminated by the uncertainties arising from the individual 

variations due to a difference in age, gender and body conditions (Kumar et al., 2007). 

2. The fuzzy filter 

It is required to filter out the uncertainties from the data with applications to many real-

world modeling problems (Kumar et al., 2007; Kumar et al., 2007; Kumar et al., 2007a;b; 

2008; Kumar et al., 2009; Kumar et al., 2008). A filter, in the context of our study, simply 

maps an input vector x to the quantity y – n (called filtered output yf = y – n) and thus 

separates uncertainty n from the output value y. 

2.1 A Takagi-Sugeno fuzzy filter 

Consider a zero-order Takagi-Sugeno fuzzy model (Fs : X → Y) that maps n–dimensional 

input space (X = X1 × X2 × … × Xn) to one dimensional real line. A rule of the model is 

represented as 

www.intechopen.com
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1 1 = .n n fIf x is A and and x is A then y s"  

 

Here (x1, … , xn) are the model input variables, yf is the filtered output variable, (A1, … ,An) 

are the linguistic terms which are represented by fuzzy sets, and s is a real scalar. Given a 

universe of discourse Xj, a fuzzy subset Aj of Xj is characterized by a mapping: 

: [0,1],
jA jXμ →  

where for xj ∈ Xj, 
jAμ (xj) can be interpreted as the degree or grade to which xj belongs to Aj. 

This mapping is called as membership function of the fuzzy set. Let us define, for jth input, Pj 

non-empty fuzzy subsets of Xj (represented by A1j, A2j, … ,
jP jA ). Let the ith rule of the rule-

base is represented as 

1 1: = ,i i n i n f iR If x is A and and x is A then y s"  

 

where 
1 21 11 1 2 12 2{ , , }, { , , }i P i PA A A A A A∈ ∈" "  and so on. Now, the different choices of 

Ai1,Ai2, … ,Ain leads to the 
=1

=
n

jj
K P∏  number of fuzzy rules. For a given input x, the degree 

of fulfillment of the ith rule, by modelling the logic operator ‘and’ using product, is given by 

=1

( ) = ( ).
ij

n

i A j
j

g x xμ∏  

 

The output of the fuzzy model to input vector x ∈ X is computed by taking the weighted 

average of the output provided by each rule: 

 
=1 =1=1

=1 =1 =1

( )( )

= = .

( ) ( )

ij

ij

nKK

i A ji i
i ji

f K nK

i A j
i i j

s xs g x

y

g x x

μ

μ

∑ ∏∑

∑ ∑∏
 (2) 

 

Let us define a real vector θ such that the membership functions of any type (e.g. 

trapezoidal, triangular, etc) can be constructed from the elements of vector θ. To illustrate 

the construction of membership functions based on knot vector (θ), consider the following 

examples: 

2.1.1 Trapezoidal membership functions: 

Let 

12 2 2 21 1
1 1 11= ( , , , , , , , , , , )nP P

n n n na t t b a t t bθ − −" " "  

 

such that for ith input (xi ∈ [ai, bi]), 
2 21< < < <iP

i i iia t t b−"  holds ∀ i = 1, … ,n. Now, Pi 

trapezoidal membership functions for ith input (
1 2

, , ,
i

A A A
i i P i

μ μ μ" ) can be defined as: 
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1
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x if x t b

otherwise
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−
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−

⎪
⎪
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2.1.2 One-dimensional clustering criterion based membership functions: 

Let 

1 2 21 1
1 1 11= ( , , , , , , , , , , )nP P

n n n na t t b a t t bθ − −" " "  

such that for ith input, 21< < < <iP
i i iia t t b−"  holds for all i = 1, …,n. Now, consider the 

problem of assigning two different memberships (say 
1iAμ  and 

2 iAμ ) to a point xi such that 
1< <i i ia x t , based on following clustering criterion: 

1 2

2 2 2 1 2
1 2 1 2

[ , ]
1 2

[ ( ), ( )] = arg ( ) ( ) , = 1 .min
i iA i A i i i i i

u u
x x u x a u x t u uμ μ ⎡ ⎤− + − +⎣ ⎦  

This results in 

1 2

1 2 2

2 1 2 2 1 2

( ) ( )
( ) = , ( ) = .

( ) ( ) ( ) ( )i i

i i i i
A i A i

i i i i i i i i

x t x a
x x

x a x t x a x t
μ μ− −

− + − − + −
 

Thus, for ith input, Pi membership functions can be defined as: 

1

1 2
1

2 1 2

1

( )
( , )

( ) ( )

0 otherwise

i

i i

i i
A i i i i

i i i i

x a

x t
x a x t

x a x t
μ θ

≤⎧
⎪

−⎪= ≤ ≤⎨
− + −⎪

⎪
⎩
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2
( , ) =

iA ixμ θ
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1

2 1 2
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( ) ( )

0 otherwise

i i
i i i

i i i i

j i
i i i

i i j i
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t x t

x t x t

−
≤ ≤

− + −

−
≤ ≤

− + −
 

                                                           #  

       ( , )
P ii

A ixμ θ =
2 2

2
2 2 2

1

( )

( ) ( )

0 otherwise

i

i

i

i i

P
Pi i

i iiP
i i ii

x b

x t
t x b

x t x b

−
−

−

≥⎧
⎪

−⎪ ≤ ≤⎨
− + −⎪

⎪
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For any choice of membership functions (which can be constructed from a vector θ), (2) can 

be rewritten as function of θ: 

=1
1 2 1 2

=1

=1 =1

( , )

= ( , , , , ), ( , , , , ) = .

( , )

ij

ij

n

A j
K

j
f i i n i n nK

i
A j

i j

x

y s G x x x G x x x

x

μ θ

θ θ
μ θ

∏
∑

∑∏
… …  

 

Let us introduce the following notation: 1= [ ]α ∈" K

Ks s R , 1= [ ]∈" n

nx x x R , 

1( , ) = [ ( , ) ( , )]θ θ θ ∈" K

KG x G x G x R . Now, (2) becomes  

= ( , ) .θ αT

fy G x  

In this expression, θ is not allowed to be any arbitrary vector, since the elements of θ must 
ensure 
1. in case of trapezoidal membership functions, 

 
2 21< < < < , = 1, , ,

Pi
i i i ia t t b i n

− ∀" "  (3) 

2. in case of one-dimensional clustering criterion based membership functions 

 
21< < < < , = 1, , ,

Pi
i i i ia t t b i n

− ∀" "  (4) 

to preserve the linguistic interpretation of fuzzy rule base (Lindskog, 1997). In other words, 

there must exists some εi >0 for all i = 1, . . . , n such that for trapezoidal membership functions, 

for all

1

1

2 2

,

, = 1,2, ,(2 3)

.i

i i i

j j
i ii i

P
i ii

t a

t t j P

b t

+

−

− ≥

− ≥ −

− ≥

…

ε

ε

ε

 

These inequalities and any other membership functions related constraints (designed for 
incorporating a priori knowledge) can be written in the form of a matrix inequality cθ ≥h 
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(Burger et al., 2002; Kumar et al., 2003b;a; 2004b;a; 2006c;a). Hence, a Sugeno type fuzzy 
filter can be represented as 

 = ( , ) , .T
fy G x c hθ α θ ≥  (5) 

2.2 A clustering based fuzzy filter 
The fuzzy filter of (Kumar et al., 2007; Kumar et al., 2007; Kumar et al., 2007a;b; 2008; Kumar 
et al., 2009; Kumar et al., 2008) has K number of fuzzy rules of following type: 

1 1f

K f K

If x belongs to a cluster having centre c then y = s

If x belongs to a cluster having centre c then y = s

#  

where ci ∈Rn
 is the centre of ith cluster, and the values s1, . . . , sK are real numbers. Based on a 

clustering criterion, it was shown in e.g. (Kumar et al., 2008) that 

1
=1

= ( , , , ),
K

f i i K
i

y s G x c c∑ "  

1 1 2
1 1

1
=1

( , , , )
( , , , ) = , ( , , , ) = , > 1,

2 2
( , , , )

m
i K i i

i K i KK

i K
i

A x c c A A
G x c c A x c c m

A x c c

+

∑

�" �" "
"

 

where A1i, A2i are given as 

1 =iA

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

=1, ,1

2 1

2
=1

=1, ,

1
\{ } ,

1 = ,

0 { } \{ }

j j K

K m
i

j j

i

j j K i

x X c

x c

x c

x c

x c c

−

∈

⎛ ⎞−⎜ ⎟
⎜ ⎟−⎝ ⎠

∈

∑

"
�

"

E E
E E

 

2
2

2
,

= exp( ), = .min
i

i i j i
j j i

i

x c
A c cδ

δ ≠

−
− −
E E E E  

With the notations:  

1 1 1= [ ] , = [ ] , ( , ) = [ ( , ) ( , )] ,K T T T Kn K
K K Ks s R c c R G x G x G x Rα θ θ θ θ∈ ∈ ∈" " "  

the output of fuzzy filter for an input x can be expressed as  

 = ( , ) .T
fy G x θ α  (6) 

3. Estimation of fuzzy model parameters 

The fuzzy filter parameters (α, θ) need to be estimated using given inputs-output data pairs 
{x(j),y(j)}j=0,1,…,N. This section outlines some of our results on the topic. 
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Result 1 (The result of (Kumar et al., 2009b)) A class of algorithms for estimating the parameters 
of Takagi-Sugeno type fuzzy filter recursively using input-output data pairs {x(j),y(j)}j=0,1,… is given 
by the following recursions: 

 = arg ( ),minj j c h
θ

θ θ θ⎡ ⎤Ψ ≥⎣ ⎦   (7) 

 
1

1

( ( ), )[ ( ) ( ( ), ) ]
= ,

1 ( ( ), ) ( ( ), )

T
j j j j

j j T
j j j

P G x j y j G x j

G x j P G x j

θ θ α
α α

θ θ
−

−

−
+

+
  (8) 

 
2

1 1 2
1

| ( ) ( ( ), ) |
( ) =

1 ( ( ), ) ( ( ), )

T
j

j jT
j

y j G x j

G x j P G x j
θ

θ α
θ μ θ θ

θ θ
− −

−

−
Ψ + −

+
E E   (9) 

for all j = 0, 1, … with α–1 = 0, P0 = μI, and θ–1 is an initial guess about antecedents. The positive 

constants (μ,μθ) are the learning rates for (α, θ) respectively. Here, γ ≥ –1 is a scalar whose different 
choices solve the following different filtering problems: 

• γ = –1 solves a H∞-optimal like filtering problem, 

• –1 ≤ γ < 0 solves a risk-averse like filtering problem, 

• γ > 0 solves a risk-seeking like filtering problem. 

The positive constants μθ  in (9) is the learning rate for θ. The elements of vector θ, if 
assumed as random variables, may have different variances depending upon the 

distribution functions of different inputs. Therefore, estimating the elements of θ ∈ RL with 

different learning rates makes a sense. To do this, define a diagonal matrix Σ (with positive 
entries on its main diagonal): 
 

(1)

(2)

( )

0 0

0 0
= ,

0 L

θ

θ

θ

μ
μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥Σ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# % #
" "

 

to reformulate (9) as  

 
2

1 1/2 2
1

| ( ) ( ( ), ) |
( ) = ( ) .

1 ( ( ), ) ( ( ), )

T
j

j jT
j

y j G x j

G x j P G x j

θ α
θ θ θ

θ θ
− −

−

−
Ψ + Σ −

+
E E  (10) 

Result 2 (The result of (Kumar, Stoll & Stoll, 2009a)) The adaptive p–norm algorithms for 
estimating the parameters of Takagi-Sugeno type fuzzy filter recursively using input-output data 
pairs {x(j),y(j)}j=0,1,… take a general form of 

 l 1
, 1= arg [ ( ( ), ) ( , ); ]minj j j q jE d c hθ

θ
θ α θ θ μ θ θ θ−

−+ ≥  (11) 

 ( )( )1
1 1= ( ) ( ) ( ( ), ) ( ( ), )T

j j j j j jf f y j G x j G x jα α μ φ θ α θ−
− −+ −  (12) 

Here, 

1
1( , ) = ( , ) ( , ),j j j q jE L dα θ α θ μ α α−

−+  
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l ( )( )1
1 1( ) = ( ) ( ) ( ( ), ) ( ( ), ) ,T

j j jf f y j G x j G x jα θ α μ φ θ α θ−
− −+ −  

2 21 1
( , ) = ( ) ( ),

2 2
T

q q qd u w u w u w f w− − −E E E E  

where (μj,μθ,j) are the learning rates for (α, θ) respectively, f (a p indexing for f is understood), as 

defined in (Gentile, 2003), is the bijective mapping f : RK
 →RK

 such that 

1

1 2

( )| |
= [ ] , ( ) = ,

q
T i i

K i q

q

sign w w
f f f f w

w

−

−"
E E

 

where 1= [ ]T K
Kw w w R∈" , q is dual to p (i.e. 1 / 1 / = 1p q+ ), and q⋅E E  denotes the q-norm.  

The different choices of loss term Lj(α, θ) lead to the different functional form of φ and thus different 

types of fuzzy filtering algorithms for any p ( 2 p≤ ≤ ∞ ). A few examples of fuzzy filtering 

algorithms are listed in the following: 

• algorithm A1,p: 

      ( , ) = ln(cosh( ( ) ( ( ), ) ))T
jL y j G x jα θ θ α−  

                                                          ( ) = tanh( )e eφ  

                ( , ) = ln(cosh( )) ln(cosh( )) ( )tanh( )P y y y y y y yφ − − −  

• algorithm A2,p: 

21
( , ) = | ( ) ( ( ), ) |

2
T

jL y j G x jα θ θ α−  

                                                            ( ) =e eφ  

                                                      21
( , ) = | |

2
P y y y yφ −  

• algorithm A3,p: 

41
( , ) = | ( ) ( ( ), ) |

4
T

jL y j G x jα θ θ α−  

                                                           3( ) =φ e e  

                                                     
4 4

3( , ) = ( )
4 4

y y
P y y y y yφ − − −  

• algorithm A4,p: 

                                           2 4( , ) = | ( ) ( ( ), ) | | ( ) ( ( ), ) |
2 4

T T
j

a b
L y j G x j y j G x jα θ θ α θ α− + −  
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                                                           3( ) =e ae beφ +  

                   
4 4

2 3( , ) = | | ( )
2 4 4

y ya
P y y y y b y y yφ

⎡ ⎤
− + − − −⎢ ⎥

⎣ ⎦
 

• algorithm A5,p: 

( , ) = cosh( ( ) ( ( ), ) ))T
jL y j G x jα θ θ α−  

                                                         ( ) = sinh( )e eφ  

                                                   ( , ) = cosh( ) cosh( ) ( )sinh( )P y y y y y y yφ − − −  

The filtering algorithms, with a learning rate of 

 
( )12 ( ), ( ( ), )

= ,

T
j j

j

P y j G x j

den

φ θ α
μ −

 (13) 

( ) 2
1 1= ( ) ( ( ), ) ( 1)[ ( ( )) ( ( ( ), ) )] ( ( ), ) ,T T

j j j j j pden y j G x j p y j G x j G x jφ θ α φ φ θ α θ− −− − − E E  

( , ) = ( ( ) ( )) ,
y

P y y r y dr
yφ φ φ−∫  

achieves a stability and robustness against disturbances in some sense. 

For a standard algorithm for computing θj numerically based on (11), define 
 

1

12
1, 1

1

2 ( , )
,

=

1, =

q j

jq
j

j

j

d
if

k

if

θ θ

θ θ
θ θ

θ θ

θ θ

−
−

−
−

−

⎧
≠⎪ −⎨

⎪
⎩

E E  

to express (11) as  

 l
1
, , 1 2

1= arg [ ( ( ), ) ].min
2

q
j j

j j j

k
E

θ θ θ

θ

μ
θ α θ θ θ θ

−

−
−+ −E E  (14) 

Choosing a time-invariant learning rate for θ in (14), i.e. μθ,j = μθ , and estimating the 

elements of vector θ with different learning rates as in (10), (14) finally becomes 

 l , 1 1/2 2
1= arg [ ( ( ), ) ( ) ].min

2

q

j

j j j

k
E

θ θ

θ
θ α θ θ θ θ− −

−+ Σ −E E   (15) 

Define vectors r(θ) and rq(θ) as 

 

1/2
2

1

1

1/2
1

[ ( ) ( ( ), ) ]

( ) = ,1 ( ( ), ) ( ( ), )

( )

T
j

LT
j

j

y j G x j

r RG x j P G x j

θ α
θ θ θ

θ θ

−
+

−
−
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  (16) 
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so that (7) and (11) can be formulated as 
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θ θ
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⎨

⎡ ⎤≥⎪ ⎣ ⎦⎩

E E

E E
  (18) 

Algorithm 1 presents an algorithm to estimate fuzzy filter parameters based on the filtering 
criteria of either result 1 or result 2. The constrained linear least-squares problem is solved 
by transforming first it to a least distance programming (Lawson & Hanson, 1995). 
Remark 1 Algorithm 1 estimates the parameters of the fuzzy filter of type (5). In the case of fuzzy 
filter of type (6), there are no matrix inequality constraints and thus linear least-squares problem will 
be solved at step 13 or 17 of algorithm 1. 

4. Applications in life science 

The efforts have been made by the authors to develop fuzzy filtering based methods for a 

proper handling of the uncertainties involved in applications related to the life science 

(Kumar et al., 2007; Kumar et al., 2008; Kumar et al., 2007; Kumar et al., 2009; Kumar et al., 

2007a; Kumar et al., 2007; Kumar et al., 2008; 2007b). This section provides a brief summary 

of some of the studies. 

4.1 Quantitative Structure-Activity Relationship (QSAR) 
4.1.1 Background 

The QSAR methods developed by Hansch and Fujita (Hansch & Fujita, 1964) identify 

relationship between chemical structure of compounds and their activity and have been 

applied to chemistry and drug design (Guo, 1995; Kaiser, 1999; Jackson, 1995). The QSAR 

modeling is based on the principle that molecular properties like lipophilicity, shape, 

electronic properties modulate the biological activity of the molecule. Mathematically, 

biological activity is a function of molecular properties descriptors: 

1 2= ( , , ),BA f d d "  

where BA is a biological response (e.g. IC50, ED50, LD50) and d1,d2, … are mathematical 

descriptors of molecular properties. During the last years, the applications of neural 

networks in chemistry and drug design has dramatically increased. A review of the field can 

be found e.g. in (Manallack & Livingstone, 1999; Winkler, 2004). While developing a QSAR 

model for the design and discovery of bioactive agents, we may come across the situation 

that descriptors don’t accurately capture the molecular properties relevant to the biological 

activity or the chosen model structure (i.e. number of adjustable model parameters) is not 

optimal. In such situations, there exist modeling errors. The common problems associated 

with QSAR modeling can be summarized as follows: 
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1. For the chosen structure of the model and descriptors, there may exist modeling errors. 
The commonly used nonlinear model training algorithms (e.g. gradient-descent based 
backpropagation techniques) are not robust toward modeling errors. 

2. The model identification process may result in the overtraining. This leads to a loss of 
ability of the identified model to generalize. Although overtraining can be avoided by 
using validation data sets, but the computation effort to cross-validate identified 
models can result in large validation times for a large and diverse training data set. 

4.1.2 A fuzzy filtering based method 

An important issue in QSAR modeling is of robustness, i.e., model should not undergo 

overtraining and model performance should be least sensitive to the modeling errors 

associated with the chosen descriptors and structure of the model. The fuzzy filtering based 

method of (Kumar et al., 2007b) establishes a robust input-output mappings for QSAR 

studies based on fuzzy “if-then” rules. The identification of these mappings (i.e. the 

construction of fuzzy rules) is based on a robust criterion being referred to as “energy-gain 

bounding approach” (Kumar et al., 2006a). The method minimize the maximum possible 

value of energy-gain from modeling errors to the identification errors. The maximum value 

of energygain (that will be minimized) is calculated over all possible finite disturbances 

without making any statistical assumptions about the nature of signals. The authors in 

(Kumar et al., 2007b) compare their method with Bayesian regularized neural networks 

through the QSAR modeling examples of 1) carboquinones data set, 2) benzodiazepine data 

set, and 3) predicting the rate constant for hydroxyl radical tropospheric degradation of 460 

heterogeneous organic compounds. 

4.2 Fuzzy filtering for environmental behavior of chemicals 
4.2.1 Toxicity modeling 

A fundamental concern in the Quantitative Structure-Activity Relationship approach to 

toxicity evaluation is the generalization of the model over a wide range of compounds. The 

data driven modeling of toxicity, due to the complex and ill-defined nature of eco-

toxicological systems, is an uncertain process. The development of a toxicity predicting 

model without considering uncertainties may produce a model with a low generalization 

performance. The work of (Kumar et al., 2007) presents a novel approach to toxicity 

modeling that handles the involved uncertainties using a fuzzy filter, and thus improves the 

generalization capability of the model. The method is illustrated by considering a data set 

built up by U.S. Environmental Protection Agency referring to acute toxicity 96-h LC50 in the 

fathead minnow fish (Pimephales promelas) (Russom et al., 1997; Pintore et al., 2003; 

Mazzatorta et al., 2003; Gini et al., 2004). The data set contains 568 compounds representing 

several chemical classes and modes of action. 

4.2.2 Bioconcentration factor modeling 

This work of (Kumar et al., 2009) presents a fuzzy filtering based technique for rendering 
robustness to the modeling methods. A case study, dealing with the development of a 
model for predicting the bioconcentration factor (BCF) of chemicals, was considered. The 
conventional neural/fuzzy BCF models, due to the involved uncertainties, may have a poor 
generalization performance (i.e. poor prediction performance for new chemicals). The 
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approach of (Kumar et al., 2009) to improve the generalization performance of neural/fuzzy 
BCF models consists of 
1. exploiting a fuzzy filter to filter out the uncertainties from the modeling problem, 
2. utilizing the information about uncertainties, being provided by the fuzzy filter, for the 

identification of robust BCF models with an increased generalization performance. 
The approach was illustrated with a data set of 511 chemicals (Dimitrov et al., 2005) taking 
different types of neural/fuzzy modeling techniques. 

4.3 Mental stress assessment 

The work presented in (Kumar et al., 2007) used fuzzy filtering for mental stress assessment 
via evaluating the heart rate signals. The approach consists of 
1. online monitoring of heart rate signal, 
2. signal processing (e.g. using the continuous wavelet transform to extract the local 

features of heart rate variability in time-frequency domain), 
3. exploiting fuzzy clustering and fuzzy identification techniques to render robustness in 

heart rate variability analysis against uncertainties due to individual variations, 
4. monitoring the functioning of autonomic nervous system under different stress 

conditions. 
The experiments involved 38 physically fit subjects (26 male, 12 female, aged 18-29 years) in 
air traffic control task simulations. 

4.4 Subjective workload score modeling 

A fuzzy filtering based tool was developed in (Kumar et al., 2008) to predict the subjective 
workload score of the operators working in the chemistry laboratories with different levels 
of automation. The work proposed a fuzzy-based modeling technique that first filters out 
the uncertainties from the modeling problem, analyzes the uncertainties statistically using 
finite-mixture modeling, and, finally, utilizes the information about uncertainties for 
adapting the workload model to an individual’s physiological conditions. The method of 
(Kumar et al., 2008) was demonstrated with the real-world medical data of 11 subjects who 
conducted an enzymatic inhibition assay in the chemistry laboratories under different 
workload situations. 
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While several books are available today that address the mathematical and philosophical foundations of fuzzy

logic, none, unfortunately, provides the practicing knowledge engineer, system analyst, and project manager

with specific, practical information about fuzzy system modeling. Those few books that include applications and
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backeruppers, cement kilns, antilock braking systems, image pattern recognition, and digital signal processing.

Yet the application of fuzzy logic to engineering problems represents only a fraction of its real potential. As a

method of encoding and using human knowledge in a form that is very close to the way experts think about

difficult, complex problems, fuzzy systems provide the facilities necessary to break through the computational

bottlenecks associated with traditional decision support and expert systems. Additionally, fuzzy systems

provide a rich and robust method of building systems that include multiple conflicting, cooperating, and

collaborating experts (a capability that generally eludes not only symbolic expert system users but analysts

who have turned to such related technologies as neural networks and genetic algorithms). Yet the application

of fuzzy logic in the areas of decision support, medical systems, database analysis and mining has been

largely ignored by both the commercial vendors of decision support products and the knowledge engineers

who use them.
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