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Summary

Summary

This thesis is concerned with the modelling of non-linear systems, identification of control 
strategies and designing fuzzy controllers for uncertain systems using fuzzy logic techniques 
assisted by other conventional methods. The application of the proposed approaches are tested 
and evaluated on an underwater vehicle, where limited knowledge of the vehicle's dynamic 
characteristics is available.

In particular the fuzzy and neuro-fuzzy techniques for modelling non-linear systems are 
reviewed. The combination of function approximation using neuro-fuzzy techniques and new 
approach to knowledge acquisition using a fuzzy supervised scheduling system is presented.

The identification and modelling of control strategies is also studied. Using fuzzy clustering 
techniques a systematic approach to identify and qualify the data in H-dimensional space that 
represents these strategies is presented and evaluated.

The design of robust and tuneable controllers for non-linear systems is also proposed and 
developed using a combination of the Taguchi design of experiments method and the fuzzy 
combined scheduling system approach.

The main contributions in this thesis are; the development of a hybrid fuzzy and neuro-fuzzy 
approach to model non-linear systems with the application to model the yaw dynamics of an 
underwater vehicle; an algorithmic methodology for identification and modelling of a complex 
system's control actions with application to construct control strategies for "avoid objects" task; 
an innovative contribution to the problem of determining the optimal parameters of fuzzy and 
fuzzy-like PD controllers in terms of robustness and tuning characteristics and the successful 
implementation of the fuzzy-like PD controller for course-changing and course-keeping in an 
underwater vehicle.
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1

Introduction to thesis

1.1 Introduction

In the first half of the third century B.C the first feedback control system was invented by the 

Greek engineer Ktesibios which was the float regulator mechanisms of the water clock 

(Drachmann, 1948) shown as in Figure 1.1. Since that time the development of the automatic 

control has been growing rapidly, playing a vital role in the advance of engineering and science. 

However, most of the control theories have been developed focussing on how to model and 

control linear or partly non-linear systems. A good methodology for solving control problems of 

non-linear systems is still an open problem. Nowadays, a large part of the research of the 

modern control technology is focused on techniques that are called Artificial Intelligent (AI) 

which includes mainly Neural Networks, Fuzzy Logic, Genetic Algorithms and their hybrid.
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Figure 1.1 Ktesibios water clock float regulator mechanisms

A large part of the control research community believes that Fuzzy Logic Control technique can 

solve control and modelling problems for non-linear systems. This technique started its 

development almost 30 to 40 years ago. Despite all the research that has been carried out in all 

these years, the fuzzy controller design theories are far from being completed and even not close 

to being used at industrial level. In 1990 Lee stated in his survey (Lee, 1990a) that "there is no 

systematic procedure for the design of fuzzy controller". During the last decades many 

approaches have been proposed, in most of the cases, even if the theoretical background are 

soundly based, the presented application results are mostly simulated using second or no more 

than third order systems. Therefore, it is unknown if these approaches are still able to be 

successful when applied to real systems. This is maybe one of the main reasons why many 

approaches that have been used in fuzzy logic control have not yet been developed in industry.

In this thesis the modelling and control of non-linear systems is proposed and developed using 

neuro-fuzzy, fuzzy clustering techniques and Taguchi design of experiments method combined
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with fuzzy set theory. The application of this work was an underwater vehicle. The modelling 

approaches that are proposed in this thesis use real experimental data resulting from the 

vehicle's underwater missions. Moreover, the proposed control techniques utilises real and 

simulated data and are tested in both a simulated and real environment.

The rest of this chapter is structured as follows: in Section § 1.2 a brief historical review of 

fuzzy system theory is presented. In Section § 1.3 the problems in fuzzy logic modelling and 

control are presented as well as how they have been approached in this Thesis. Finally Section § 

1.4 gives an overview of the thesis presenting briefly the rest of the chapters.

1.2 Historical review of fuzzy systems

Aristotle and the philosophers who preceded him established the precision of mathematics. In 

their work to devise a concise theory of logic they proposed the "Laws of Thought" (Korner, 

1967). One of these, the "Law of the Excluded Middle," states that every proposition must 

either be True or False. However, when Parminedes proposed the first version of this law 

(around 400 B.C.) there were strong and immediate objections: for example, Heraclitus 

proposed that things could be simultaneously True and not True.

It was Plato, in the fourth century B.C., that laid the foundation for what would become fuzzy 

logic, indicating that there was a third region (beyond True and False) where these opposites 

"tumbled about". Much later in the early 1900's Lukasiewicz proposed a systematic alternative 

to the bi-valued logic of Aristotle describing it as a three-valued logic, along with the 

mathematics to accompany it (Lejewski, 1967).

After more than half a century, in 1965 Prof. Lotfi A. Zadeh published his seminal work "Fuzzy 

Sets" (Zadeh, 1965); (Zadeh, 1968), which described the mathematics of fuzzy set theory and 

by extension fuzzy logic. He argued that more often than not, the classes of objects encountered 

in the real physical world do not have precisely defined criteria for membership. This proposed
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theory allows the membership function (or the values False and True) to operate over the range 

of real numbers [0.0, 1.0]. New operations for the calculus of logic were proposed and showed 

to be in principle at least a generalisation of classic logic.

Mamdani in 1974 (Mamdani, 1974) applied these theories in control systems with a number of 

successful applications (Mamdani and Assilian, 1975). Since then much research has been done 

in modelling and control of non-linear systems where their description is beyond this small 

historical review.

1.3 Problems in Fuzzy Logic Modelling and Control and how they have been 

approached in this Thesis

Fuzzy logic was developed for knowledge representation and symbolic/numeric interface, and 

its status is rather ambiguous in this respect. Fuzzy set theory has brought together researchers 

in AI (specially those that are dealing with NN), control engineers and experts who possessed 

little background in common and the temptation existed for each community to emphasise a 

narrow view of fuzzy logic that fits in with their own tradition.

This section discusses what are the main problems and drawbacks as well as where the new 

research tend to focus for solving modelling, identifying and controlling of non-linear systems 

using fuzzy logic techniques. The proposed approaches for these problems are also introduced.

1.3.1 Modelling

While modelling non-linear systems using fuzzy logic, it is mostly viewed as a problem of 

function approximation and not as a problem of knowledge acquisition. An approximate 

representation of functions should be general enough to capture a large class of functions, 

simple enough (especially the primitive objects, here the fuzzy rules) to achieve efficient
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computations and economical storage, and should be amenable to capabilities of learning from 

data. It is well known that a pure fuzzy system that is based only on expert's setting cannot 

always be successful in function approximation problems and thus it is very difficult for it to 

compete with the standard approximation methods such as Neural Nets, for example multi-layer 

perceptrons and radial basis functions.

However, to overcome the disability of fuzzy systems as function approximators, many 

approaches have considered the fuzzy rule base systems more as a standard, non-fuzzy universal 

approximator of functions (Buckley and Hayashi, 1993); (Castro, 1995); (Kosko, 1992a); 

(Wang, 1992) and less as a means of extracting control laws from heuristic knowledge. In some 

cases this approximator can be achieved by combining neural networks and fuzzy systems 

theory. As an example to approximate functions Jang, (1993) constructed adaptive networks 

that are functionally equivalent to fuzzy inference systems.

The above trend raises several observations in the majority of fuzzy logic approaches:

• If fuzzy logic competes with alternative methods in approximation theory, it faces a big 

challenge because approximation theory is a well-established field in which many successful 

results exist.

• In most cases, the number of fuzzy sets and rules becomes very large in universal 

approximation techniques using fuzzy systems. This number usually increases according to 

the complexity of the system under study.

• The modelling using fuzzy rule-base systems with neural nets or variants thereof (Kosko, 

1992b); (Berenji and Khedar, 1992); (Jang, 1993), has created a lot of confusion for the 

researchers and engineers with respect to the actual contribution of fuzzy logic. To some 

extent it is not very clear that fuzzy logic based approximation methods for modelling and 

control need fuzzy set theory any longer.
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• The knowledge representation of the fuzzy rules is meaningless using these (neuro-fuzzy) 

types of approximation techniques even if the initial settings of the rules may have some 

meaning. Therefore even if it is claimed that these types of approaches are "grey boxes", in 

most cases they are not.

In the early seventies Prof. Zadeh introduced fuzzy set theory as a tool to give ability to the 

experts to explore and use their knowledge (Zadeh, 1973). It is very surprising, however, that 

the incompatibility between high precision and linguistic meaningfulness drove the researchers 

far away from the initial purpose.

In this research, for the purpose of modelling non-linear systems, it is proposed to combine 

knowledge acquisition with function approximation approaches. The latter is used only to 

define the non-linear or linear parts of the system locally, whereas the former is used to define 

the linguistic interpretation in the rule base defined by the expert's knowledge together with 

some guidelines coming from fuzzy set theory. The proposed method is implemented to model 

an underwater vehicle, where experimental results that describe the vehicle's behaviour in a real 

environment are employed.

1.3.2 Identifying and modelling of control strategies

Identifying and Modelling Control Strategies is another important topic in fuzzy set theory and 

its applications. This is very useful in a real system where the operator is the main factor in the 

control loop. Control strategies can be considered as a fuzzy model system based on the 

operator's control experience and knowledge of a particular system. The problem in this 

research field is that the expert's control skills are difficult to be verbalised since the operators' 

control strategy is based on various control principles simultaneously and because the operator 

may not be able to explain why a particular control action is chosen. Different operators often
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contradict each other during the design of the rule base for knowledge acquisition (Babuska, 

1998a).

The research therefore is intended to find ways to extract information from experimental or 

simulation data resulting from the expert's control actions and then to define the rules that 

describe the control strategy. One of the most successful ways to achieve this approach is to use 

fuzzy clustering method technique.

Fuzzy set theory in cluster analysis were firstly proposed in the work of Bellman et al, (1966), 

and Ruspini, (1969). These papers opened the door for research in fuzzy clustering. Despite that 

initially this technique was mainly used in image processing and pattern recognition fields 

(Bezdek et al, 1999); (Chi and Pham, 1996), nowadays fuzzy clustering is widely studied and 

applied in a variety of substantive areas such as modelling and identification in control systems.

As mentioned earlier, the collection of fuzzy rules that describe the control strategy results from 

an input-output mapping of the operators' control behaviour data. Using the cluster analysis, the 

estimation of the parameters that define the antecedent and consequent part of the fuzzy rule 

templates as well as the number of If-Then rules that constructs the knowledge base are 

achieved. The main idea is that by defining the prototypes of the clusters the centres of hyper- 

planes as well as the number of fuzzy sets are defined. Moreover, the projections of these hyper- 

planes, into w-dimensional input-output data space axes, determines the parameters of the 

extracted membership functions together with the partition of the input/output space.

Even after many successful applications of fuzzy clustering techniques in the image processing 

and modelling identification problems (Bezdek and Dumm, 1975); (Gustafson and Kessel al, 

1979); (Yager and Filev, 1994a); (Bezdek et al, 1999); (Babuska, 1998a), problems with this 

techniques have been also identified. In this research after extensive review of fuzzy clustering 

algorithms it has been concluded that "the tools are there " but the appropriate way to use them 

is needed in terms of exploiting the advantages of each of them. Thus, in this thesis an
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algorithmic methodology to construct fuzzy control strategies based on the choice of different 

fuzzy clustering approaches to define initially the number and actual position of the prototypes 

and the variance of the clusters is proposed. Then the fuzzy sets are obtained by using 

projecting methods and by using merging techniques their number are reduced. As an optional 

step, some modification to the fuzzy system can be obtained to make some small improvements 

to the performance of the model identification. This can be achieved by applying techniques 

such as the gradient method.

An application for generating fuzzy rules for "avoid objects" control strategy using 3D 

input/output data space is used to investigate the capabilities of the proposed approach. The 

availability of the data stems from simulation results.

1.3.3 Control techniques using fuzzy logic

Whenever modelling is possible, classical control theory offers usually a safer approach, 

although a lot of work is sometimes necessary to bridge the gap for practical problems. 

However, fuzzy logic is very reasonable approach when modelling is difficult or costly, but 

knowledge is available in order to derive fuzzy rules. Thus, control engineering practice has 

benefited from the readability of fuzzy-rule base systems and fuzzy logic controllers have been 

one of the most successfully used controllers in a large number of complex and non-linear 

systems. Despite all the successful applications that has been reported using fuzzy logic 

controllers a systematic methodology of how to design their characteristic properties is still an 

open problem. This is because the method is highly dependent on expert's knowledge and 

sufficient knowledge of the operators), which may be problematic, since the human control 

skills can be difficult to verbalise or explain reasonably. Moreover, when the system is non­ 

linear the parameters of the fuzzy logic control need to be robust and "tuneable".
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In most approaches, trying to overcome the above difficulties has been to complement the 

benefits of fuzzy controllers and classical control theory. One of the most popular approaches is 

to combine fuzzy and conventional PID controllers. The fuzzy like P1D (as well as like-PD, 

like-PI) controllers developed in this thesis stems from this idea. The parameters of the 

membership functions and the scaling factors for this type of controller are mostly selected on 

the basis of their influence on the fuzzy logic control surface, and the rules are formulated 

considering the control trajectory. So, the problem actually shifts towards how to optimise and 

tune these parameters and/or factors. Although several approaches have been proposed in this 

field (Jantzen, 1998); (Yager and Filev, 1994b); (De Silva, 1995); (Zheng, 1992); (Mudi and 

Pal, 1999), the most successful results are based on the combination of good experimental 

understanding of the controlled system and the use of the analogies between the FLC and PID 

controllers. Dealing with real systems however, the limitation of the experimental trials may 

become an important drawback in this type of analysis, as the extracted information may be 

very poor. Moreover, the qualitative and quantitative analysis of the interaction between the 

tuning parameters and factors is usually not considered during the design of these types of FLCs 

due to their complexity. Finally, the robustness of the system under study is not considered, in 

most of the proposed approaches, even if it is a key aspect in fuzzy logic type controllers.

In this thesis an innovative approach to determine the optimal parameters of control systems in 

terms of robustness and tuning characteristics is proposed. The number of experiments is 

minimised using Taguchi Design of Experiment method. The method also analyses the results 

of each performance criterion, investigates the significance of the parameters/factors of a 

system together with their optimal levels with regards to their robustness and combining all the 

performance criteria that are defined by the designer. The qualitative and quantitative analysis 

of the interaction between the tuning parameters such as the scaling factors and peaks of 

membership functions is also investigated. Finally, the parameters and/or factors are tuned using 

a proposed method called a "fuzzy combined scheduling system".
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The proposed approach has been applied in the development of Fuzzy-like PD controllers to 

control the yaw and depth of an underwater vehicle. The design of these controllers was based 

on a minimum number of experimental trials. The information that was extracted from these 

trials was enough to optimise and tune the scaling factors of the controller resulting in very 

good performance.

1.3.4 A final Remark

Finally it must be noticed, that while in the beginning of fuzzy control, fuzzy rule-base systems 

were understood as relevant to artificial intelligence, it had been rejected as a non-orthodox 

approach that was not purely symbolic processing. To date, a big part of the fuzzy logic 

supporters tend to reject symbolic artificial intelligence as not capable of dealing with real 

complex systems analysis tasks. Recently soft computing has been proposed as an artificial 

intelligent approach to learning and machine intelligent. Mixing fuzzy rules/sets, neural 

networks and genetic algorithms may create some dangerous aspect in artificial intelligence 

research. First, the new steam of numerical modelling and controlling, while rejecting the 

methodology of symbolic AI and keeping the AI vocabulary result in a terminological 

confusion. Second, numerical methods and symbolic approaches are once again presented as 

competing while they are really complementary. It seems impossible to get rid of the language 

level when communicating with humans whilst overemphasising numerical modelling and 

control may result in cutting fuzzy logic from its roots.

This research attempts to keep fuzzy logic in its initial definition by proposing techniques to 

define the parameters of fuzzy sets and to assist the knowledge base definition and thus 

improving the performance of the fuzzy modelling and control. The main purpose of this 

research was to make bridges between fuzzy logic theory and other artificial intelligence 

techniques as well as other conventional techniques such as Taguchi design of experiments. It is 

believed, therefore, that fuzzy logic is an intelligent technique, that can perform independently

1-10



Chapter 1____________________________________Introduction to thesis

as well as together with other techniques, however, it is not an "artificial" one, since the 

knowledge comes from the human experts.

1.4 Overview of the thesis

The rest of the thesis is constructed as follows:

• Chapter two describes fuzzy and neuro-fuzzy modelling techniques as well as the structure 

of the Takagi-Sugeno fuzzy models, a fuzzy supervisory schedule system and neuro-fuzzy 

modelling methods to approximate local models. A proposed hybrid fuzzy and neuro-fuzzy 

method for defining global models is described and applied to model the yaw rotation of an 

underwater vehicle.

• Chapter three explains how fuzzy clustering methods can be used as a technique for 

identifying and modelling control strategies. The most wildly used fuzzy cluster methods are 

overviewed defining their advantage and disadvantages. A method to determine the number 

of clusters as well as to project the cluster centres and variances is presented. An approach to 

generate fuzzy rules from H-dimensional input/output clustering data is proposed and

developed.

• Chapter four describes the implementation of the proposed approach of chapter three to 

generate fuzzy rules for "avoid objects" control strategy of an underwater vehicle using 3-D 

input/output data space.

• Chapter five proposes an innovative approach for the design and tuning of robust control 

systems using Taguchi method and fuzzy logic. The steps of the proposed methodology are 

presented and discussed analytically. The proposed approach is developed and applied to the 

optimisation of the scaling factors and peaks of membership functions for tuning in fuzzy- 

like PD controllers as case studies.
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• Chapter six continues with implementation of the proposed approach in chapter five for the 

steering and depth control of an underwater vehicle. Real experimental results are presented 

in this chapter to demonstrate the capabilities of the approach.

• Chapter seven completes the thesis by giving conclusions and future work which follows 

from the work presented in each of the above chapters

Figure 1.2 depicts a schematic outline of how the thesis is organised where the chapters that 

include the application for the underwater vehicle named GARBI points to GARBI's picture.

Chapter 2

Fuzzy and 
Neuro-Fuzzy 

Modelling

Chapter 3

Clustering Methods as 
Techniques for 
Identifying A 

Modelling of Control 
Strategies

' ——— 5

Chapter 4

Seneration of fuzzy 
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Objects" Control 

Strategy using 3-D 
input/output data 

space

Chapter 5

The Design and 
Tuning of Robust 

Control Systems using 
Taguchi Method and 

Fuzzy Logic

, ————— '

t

Chapter 6

Steering A Depth 
Control of an 

Underwater Vehicle 
(6ARBI)

"y"
Chapter 7

Conclusions and 
future work

underwater vehicle
Figure 1.2 Schematic outline of the thesis
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2

Fuzzy & Neuro-Fuzzy
Modelling

2.1 Introduction

Developing mathematical or other type of dynamic models of real systems is a central topic in 

control system theory and important steps in the design of control, supervision and fault- 

detection systems. Some of the modelling approaches for non-linear systems that been 

researched the last three decades are based on techniques called artificial intelligence such as 

neural network, fuzzy logic, neuro-fuzzy and genetic algorithms.

Fuzzy modelling is the method of describing the characteristics of a system using fuzzy rules. 

Compared to other "intelligent" modelling techniques, such as neural networks (Haykin, 1994)
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or radial basis function networks (Chen et al, 1991), fuzzy systems provide a more transparent 

representation of the non-linear systems under study, and can also be given a linguistic 

interpretation in the form of rules. Moreover, fuzzy sets serve as a smooth interface between 

qualitative variables involved in the rules and numerical domains of the inputs and outputs of 

the model. The rule-base nature of fuzzy models allows the use of information expressed in the 

form of natural language statements, and makes the models transparent to interpretation and 

analysis. At the same time, at the computational level, fuzzy models can be regarded as flexible 

mathematical structures, similar to neural networks or radial basis function networks, that can 

approximate a large class of non-linear system to a desired degree of accuracy (Wang, 1992), 

(Kosko, 1992), (Zeng and Singh, 1994). This duality allows qualitative knowledge to be 

combined with quantitative data. Finally, it can be said that the use of linguistic qualitative 

terms in the rules can be regarded as a kind of information quantisation. Thus, depending on the 

number of qualitative values considered, models at different levels of abstraction and accuracy 

can be developed for a given system. Each of the models may serve a different purpose such as 

prediction, controller design, monitoring.

Modelling using fuzzy logic is a topic that has been studied extensively in recent years (Takagi 

and Sugeno, 1985) (Jang and Sun, 1995) mostly as a problem of function approximation instead 

of a problem of knowledge acquisition. A good fuzzy model, when is only based on expert's 

knowledge, is a trade off between accuracy and linguistic meaning. It is a well-known fact that 

if the accuracy is increased, the linguistic interpretation is reduced. If therefore the interest is to 

have a very accurate model some other techniques (like Neural Nets, multi-layer perceptrons 

and radial basis functions), are better because these techniques do not have the inconvenience 

that fuzzy systems have, which usually comes from its high dimensionality. However, fuzzy 

systems provide a more transparent representation of the non-linear systems under study, and 

can also be given a linguistic interpretation in the form of rules. In this way, systems data can be 

translated into a model and analysed in a manner of linguistic meanings.
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In this work fuzzy modelling is approached by combining the function approximation together 

with knowledge acquisition approaches. The latter can be achieved by using a proposed Fuzzy 

logic Supervised Scheduling System (FSSS) where the former is solved by using Neuro-Fuzzy 

approach. A main feature of the proposed hybrid fuzzy and neuro-fuzzy model approach is that 

it approximates a non-linear system by a set of local models within defined fuzzy regions that 

describe the system globally (Palman et al, 1997).

The proposed method is implemented in a model of an underwater vehicle that is inherently 

non-linear and only some experimental results describing its behaviour in a real environment 

are available. As the neuro-fuzzy part of the model needs good data, in terms of representation 

of the dynamics of the system, and the fuzzy part needs good linguistic reasoning interpretation, 

the experiments were planned regarding these requirements.

This Chapter is structured as follows: in Section § 2.2 different modelling techniques are 

introduced. In Section § 2.3 the three main types of fuzzy modelling are presented. As the 

Takagi-Sugeno fuzzy model is used in this work, the criteria of how to select its parameters are 

discussed in Section § 2.4. Section § 2.5 describes a proposed fuzzy supervisory scheduling 

system method. Moreover, in Section § 2.6 it is discussed how a neuro-fuzzy modelling method 

defines local models. A proposed hybrid fuzzy and neuro-fuzzy model method that defines a 

global model is described in Section § 2.7. The proposed method is applied to model the yaw 

rotation of an underwater vehicle in Section § 2.8. The hydrodynamic forces and moments 

acting on the vehicle are presented in Section § 2.8.1. The experimental design and the trials for 

the yaw rotation in a real environment are discussed in Section § 2.8.2. From these results the 

local models are defined as described in Section § 2.8.3. Then, fuzzy models are constructed to 

define the relationship between fuzzy inputs and the local models as discussed in Section § 

2.8.4. The global fuzzy model is designed as explained in Section § 2.8.5 and some simulation 

results are presented in Section § 2.8.6. The work presented in this chapter is discussed in 

Section § 2.9 and summarised in Section § 2.10.
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2.2 Different modelling techniques based on fuzzy systems theory, neural 

networks and neuro-fuzzy approaches

Traditionally, modelling is seen as a conjunction of a thorough understanding of the system's 

nature and behaviour, and a suitable mathematical treatment that leads to a usable model. This 

approach is usually termed "white box" (physical, mechanistic, first-principle) modelling. In 

practice, however, when complex and poorly understood systems are considered, the 

requirement for a good understanding of the physical background of the system proves to be a 

severe limiting factor. The difficulties that can arise in conventional "white-box" modelling 

approaches appear from poor understanding of the underlying phenomena, inaccurate values of 

various process parameters, or from the complexity of the resulting model. A complete 

understanding of the underling mechanisms is virtually impossible for a majority of real 

systems. However, gathering an acceptable degree of knowledge needed for physical modelling 

may be very difficult, time-consuming and an expensive task. Even if the structure of the model 

is determined, a major problem of obtaining accurate values for the parameters remains. It is the 

task of system identification to estimate the parameters from data measured. Identification 

methods have been developed to a mature level, mostly, for linear systems. Most real systems 

are, however, non-linear and can be approximated by local models.

The accuracy of mathematical models is based on how good are the approximation of the 

mathematical functions that are used to describe the system's characteristics under study. If the 

model is not accurate enough, the subsequent steps of analysis, prediction and controller 

synthesis, cannot be successful. However, there is an obvious trade-off between the necessary 

accuracy of the model and its complexity. Models should provide information at the most 

relevant level of precision (abstraction), suppressing unnecessary details when appropriate. If 

the model is too simple, it cannot properly represent the characteristics of the system and does
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not serve its propose. However, the model should not be too complex if it is to be practically 

useful.

An other approach to identify a model of non-linear systems is to use some sufficiently general 

"black-box" structures, such as, Artificial Neural Networks (ANN) (Patterson, 1996), used as a 

general function approximator. The modelling problem is then that of obtaining an appropriate 

structure of the approximator, in order to correctly capture the dynamics and the non-linearity of 

the system. In "black-box" modelling, the structure of the model is hardly related to the 

structure of the real system. The identification problem consists of estimating the parameters in 

the model. If representative system data is available, "black-box" models usually can be 

developed quite easily, without requiring system-specific knowledge. A severe drawback of this 

approach is that the structure and parameters of these types of models usually do not have any 

physical significance. Additionally such models cannot be used for analysing the system's 

behaviour otherwise than by numerical simulation. Finally, it is neither possible to use prior 

knowledge to initialise the network, nor can its final state be interpreted in terms of rules.

The drawback of the conventional "white-box" and "black-box" techniques in modelling non­ 

linear system is their trade-off between accuracy and knowledge acquisition as well as that they 

are based mostly on quantitative mathematical techniques. The weakness of the traditional 

quantitative techniques to adequately describe complex systems was summarised in the well- 

known principle of incompatibility, formulated by L. Zadeh, (1973). This principle states that 

"as the complexity of a system increases, our ability to make precise and yet significant 

statements about its behaviour diminishes, until a threshold is reached beyond which precision 

and significance (or relevance) become almost mutually exclusive characteristics ".

Fuzzy model identification is a technique that has been developed based on fuzzy set theory 

(Sugeno and Kang, 1988), (Yager and Filev, 1994b), (Harris et al, 1994), (Babuska, 1998a). 

Fuzzy models can be seen as logical models, which use "If-Then " rules and logical operators to
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establish qualitative relationships among the variables in the model. In many applications it is 

often desirable to combine qualitative information and numerical data with qualitative and 

heuristic knowledge. To achieve this, user-friendly methods are needed for efficient translation 

of the knowledge into a computer-manageable form, for interfacing qualitative information with 

numerical data and for appropriate validation of the models. The rule-base nature of fuzzy 

models allows the use of information expressed in the form of natural language statements, and 

makes the models transparent to interpretation and analysis. Modelling based on the use of 

fuzzy sets in combination with local regression techniques has a great potential to achieve these 

goals.

The specification of good linguistic rules depends on the knowledge of the expert, but the 

translation of these rules into fuzzy set theory depends on the choice of certain parameters, such 

as shape and degrees of membership functions, for which particular rules do not exist. Fuzzy 

models are unable to learn by their own experiences and unable to adapt to new conditions in 

cases of non-linear systems (of high order with uncertainties in parameter and structure).

The advantages of the fuzzy approach are mainly the disadvantages of the ANN approach, and 

vice versa. So the idea is naturally to combine neural networks and fuzzy systems to overcome 

their disadvantages, but to retain their advantages. The integration of these two fields has given 

birth to neuro-fuzzy systems. To develop a fuzzy neural structure, two ideas can be followed: 

the first is to "neuralise" existing fuzzy systems and the second one, is to "fuzzify" existing 

neural networks, that is to introduce either neural concepts into fuzzy systems or fuzzy concepts 

into neural networks.

Neuro-fuzzy systems or neuro-fuzzy models can be divided into co-operative and hybrid 

models. Co-operative approaches use neural networks to determine certain parameters (e.g. the 

fuzzy sets, or the fuzzy rules) of fuzzy controller which are then implemented without use of 

neural nets. Hybrid approaches create a new architecture using concepts from both paradigms
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and thus can be interpreted as a neural net and as a fuzzy controller. Besides this, there are 

concurrent neural/fuzzy models that use neural networks and fuzzy systems separately.

2.3 Fuzzy Modelling

Fuzzy If-Then rules are used not only to incorporate human knowledge in fuzzy expert systems 

and controllers, but also can be applied to modelling of non-linear dynamic systems. Thus, a 

fuzzy model describes the relationships between the system's input/output variables by means 

ofif-then rules, such as:

If the engine power is HIGH then the speed is FAST

These rules establish local relations between the system's variables by relating qualitative 

values of one variable (power is high) to qualitative values of another variable (speed of the 

vehicle will increase fast). The qualitative values typically have a clear linguistic interpretation 

and are called linguistic terms. The meaning of the linguistic terms with regard to the 

input/output variables which may be numerical (engine power, speed) is defined by appropriate 

fuzzy sets. In this sense, fuzzy sets (or more precisely their membership functions) provide an 

interface between the input and output numerical variables and the linguistic qualitative values 

in the rules.

Depending on the particular structure of the consequent part of the "If-then" rule, three types of 

models are distinguished:

• Linguistic fuzzy model (Zadeh, 1973); (Mamdani, 1977), where a fuzzy rule can be written 

as "ifx is A then y is B", with the premise and consequence expressed in the form of fuzzy 

sets.
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• Fuzzy Relational model (Pedrycz, 1984); (Yi and Chung, 1993), which can be regarded as a 

generalisation of the linguistic model, allowing one particular antecedent proposition to be 

associated with several different consequent propositions via fuzzy relation.

• Takagi-Sugeno's (T-S) fuzzy model (Takagi and Sugeno, 1985), where a fuzzy rule can be 

written as "if x is A then y = f(x) ". In this case, the premise is a classical fuzzy set 

expression which indicates a fuzzy subspace and the consequence is a functional relation, 

usually a linear function or a singleton which indicates the input-output relationship in this 

fuzzy subspace.

In this research, the last structure is considered. There are two reasons for this choice: firstly, 

this type of fuzzy model is more powerful for representing the input/output behaviour of non­ 

linear systems when dynamics depend on the operating conditions (Babuska and Verbruggen, 

1997); secondly, because the consequence part of a T-S fuzzy model rule is a linear equation 

rather than a fuzzy set. The fuzzy model can be viewed as a collection of linear sub-models and 

the existing linear control theory can be applied to analyse the stability and for designing a 

model-based set of linear controllers (Tanaka and Sugeno, 1990), (Sugeno and Kang, 1988). 

The construction, however, of a rule-based fuzzy model requires:

1. identification of the antecedent and consequent structure of the membership functions for 

different operating regions and

2. estimation of the consequent regression parameters.

The second task is solved using functional or singleton consequences, defined as local linear 

regression models. However, the construction of the membership functions in the first task is a 

non-linear optimisation problem.
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2.4 Structure of T-S fuzzy Model

The T-S fuzzy model is a special case of fuzzy systems and has been one of the most widely 

used structures in model identification techniques of non-linear systems. However, to construct 

this type of model is not an easy task due to the large number of degrees of freedom which 

include shape and number of membership functions and aggregation methods. This large 

number of degrees of freedom gives high flexibility to the fuzzy system but also demands more 

systematic criteria to choose these parameters. The following subsections outline the structure 

of the T-S model as well as the criteria to select some of its parameters.

2.4.1 The Fuzzy State Space

The Fuzzy State Space technique can express complex non-linear dynamic systems by linguistic 

if-then rules.

A typical Takagi-Sugeno fuzzy model has the form:

R js if s = AS' then x,=f,(x,u)

where s is the operating point vector s = {s,, s 2 ,..., sn }, / is a n x 1 non-linear vector function, 

x is the n x 1 state vector, and u is the n x 1 input vector. The vector consists, in general, of 

state, input and output variables (ns is its dimension). These variables comprise the premises of

implications. AS' is the /-th fuzzy state vector as in Equation 2.1

AS'=(ASl ,AS2 ,...,ASns f (2.1)

where ASn is the fuzzy values of s with appropriate membership function or the membership 

function of the fuzzy sets in the premises, known as premise parameters.
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For each fuzzy state vector AS" there is a set of crisp state vectors {s*}, each one satisfying the 

given fuzzy state vector to a certain degree. Thus for each fuzzy state vector AS' , it is possible 

to construct a fuzzy set defined on the domain of these crisp state vectors. This fuzzy set is such 

that the degree of membership of crisp state vector is equal to the degree of satisfaction of AS" 

by the particular crisp state vector. This fuzzy set is called a. fuzzy region and the number of 

fuzzy regions is equal to the number of fuzzy state vectors.

The centre of fuzzy region, AS" = (&S[,bS'2 ,...,&lS in )T , is defined as this crisp state vector 

s 1 = {s',,52,...,^ } e S T , where s'n are crisp values, such that

n ) = 1 (2.2) 

where /ULS is the degree of satisfaction of AS^ .

The then-part of this fuzzy rule defines a linear autonomous open loop model representing the 

system dynamics within the fuzzy region AS' specified in the impart of the same fuzzy rule. 

This model is of the form xt - ft (x,u) where _/] is a linear or non-linear function normally 

obtained via an identification procedure. The parameters of jc( are called consequence 

parameters.

2.4.2 Outline of the basic Structure of the Fuzzy Inference System and fuzzy rule's 

parameters

Fuzzy Inference Systems (FIS) for modelling and identification can be regarded as flexible 

mathematical structures that can approximate a large class of linear and non-linear systems, 

called "universal approximators". However the FIS may approximate the system dynamics in 

different ways but not always give the most appropriate ones. The meaning of "appropriate" in
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this case is referring to the linguistic meaning. The alternatives involved in the structure 

selection of the FIS are very wide: shapes of membership functions, and and or operations, 

implications, defuzziflcation method are some of them. Some choices therefore have to be made 

otherwise the problem becomes too complex. Some general rules of how these parameters can 

be defined is presented as follows:

Premise Variables

• The premise variables are chosen out of possible input variables under consideration. Given 

a set of possible candidates, it is possible to find a set of input variables, which affect the 

output of the system. In most applications, this operation is not difficult since the input 

variables, which affect the outputs are known to the designers.

Premise Parameters Identification

• The choice of the variables in the premises implies that its space is divided. A general 

theoretical approach to identify the number of these divisions or fuzzy subspaces described 

by membership functions does not seem to be available. A general rule can be that the 

number of membership functions in every universe of discourse for the antecedent should 

be 7 + 2. This number is related to the maximum number of linguistic quantifiers that a 

human being can handle. However, if the number of experiments that are held to collect 

data for identification purpose is limited, the number of the fuzzy sets should be chosen 

considering this number.

• The shape of the membership functions for the fuzzification process is triangular (Pedrycz, 

1994) with overlap 50%. Thus every point in the universe of discourse belongs to at least 

two fuzzy sets.
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Consequence Parameters Identification

• The consequences are singletons or linear/non-linear combinations of the inputs that 

represents local models as discussed in Section § 2.5.

Operational parameters of rules

• The operations "product" and the "bounded sum" are selected as and and or operations 

(Mendel, 1995).

Using the above suggestions a basic structure for modelling of non-linear systems is developed.

2.5 Fuzzy logic as a method to design a Fuzzy Supervised Scheduling System

(FSSS)

The reason for adopting the fuzzy model described above is that most systems are non-linear 

and therefore cannot be described by a single linear model. Instead of constructing complicated 

non-linear models based on physical laws, an alternative approach can be used constructing 

local models. In this case, each local model approximates the original non-linear system around 

different operating points and the FSSS determines which of the local models suits the 

particular operating conditions. In this case the FSSS uses a discriminant function, fd , of 

Equation 2.3.

w = /*(*) (2-3)

This function defines a weight vector w = {\v l ,w2 ,...,wk }, with w, e [0,1], for each particular 

value of the operating point vector. This definition can be applied using min or max operation. 

For example, for the particular crisp value s' = fs',,s'2 ,...,s'n } of the operating point vector, that is 

defined from and operation in the fuzzy rules, the weight vector is as in Equation 2.4.
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w = min(//LS| (*, lju/Si (s 2 ),.-.,/^ (S'HI )) (2.4) 

where fx LS is the degree of membership of the crisp value s'n of sn .

The overall output X of the composite model is calculated as the weighted mean of the outputs 

Xj of the local models, given as in Equation 2.5, that actually represents the non-linear 

expression for the global system.

(2-5)

where k is the number of local models.

2.6 Neuro-Fuzzy Modelling Methods to approximate local models

The combination of FIS and ANN is expected to sum the positive features of these two systems. 

From ANN, the powerful learning capabilities enable these systems to learn from a set of 

system measurements, whereas the fuzzy presentation enables the extraction of learnt 

information in a form easily understandable even to a less experienced user. As the former 

property reduces the time required to create the model, the latter increases the usefulness of the 

model since there now exists at least some kind of explanation for the model outcome. Several 

fuzzy-neural approaches have been introduced and can be found in the literature (Jang et al, 

1997), (Nauck and Kruse, 1996).

In this thesis a neuro-fuzzy architecture proposed by Jang, (1993) called the Adaptive Network- 

based Fuzzy Inference System (ANFIS) is applied. The architecture of this technique consists of 

adaptive networks that are functionally equivalent to fuzzy inference systems. The approach is 

widely used as it provides quite an efficient way to approximate non-linear systems with high
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accuracy. However, despite the fact that the method gives some transparency in the systems 

properties by investigating the parameters of the fuzzy sets, this does not always include the 

system's integrity. Moreover, even the initial setting of the fuzzy inference part of the ANFIS 

architecture is defined by a designer the ANFIS algorithm may change the architecture 

dramatically and thus the knowledge that is initially set by the expert may end up with minor or 

almost no significance. That is because the method inherently looks at the case as a function 

approximation. The explanation of how the architecture works is presented in Jang, (1993)

2.7 Design of a proposed Hybrid Fuzzy and Neuro-Fuzzy Model (HFNFM) 

architecture for defining the global model

The model identification method proposed in this thesis is a Hybrid between Fuzzy and Neuro- 

Fuzzy Model (HFNFM) architecture since it combines Fuzzy and Neuro-Fuzzy Model 

techniques as presented in this section.

The neuro-fuzzy (ANFIS) architecture is used to optimise the parameters of both antecedent and 

consequence parts of the fuzzy rules that define the local models of a non-linear system. This is 

a case where the definition of the local fuzzy models is referred to as a function approximation 

problem.

For the global model, the fuzzy model structure settings are defined by linguistic concepts from 

the experimental design that is used to extract information about the dynamics of the system 

under study. In this case the fuzzy model is considered as a problem of knowledge acquisition. 

This model operates as the FSSS of the local models as explained in Section § 2.5. Figure 2.1 

shows schematically the combination of the two types of models from which the HFNFM 

architecture arises.
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The approach is constructed by the following step procedure:

1. Define the dynamics that need to be modelled.

2. Define the input/output global "fuzzy" variables that excite the system's dynamics.

3. Construct the experiments for all combinations of the input/output variables.

4. Define the local models from the data and optimise their representative function by using 

neuro-fuzzy technique (ANFIS) as discussed in Section § 2.6.

5. Construct fuzzy models to describe the relationships between the fuzzy inputs defined in 

step 2 and the defined local models from step 4, as discussed in Section § 2.4.

6. Apply the FSSS (Section § 2.5) to combine the local models for each fuzzy region and thus 

define the global fuzzy model. Therefore, each local fuzzy model is weighted by the degree 

of satisfaction of the present operating fuzzy region and the degrees of satisfaction of its 

neighbouring fuzzy regions. In between the centres of neighbouring regions the overlapping 

of these fuzzy regions ensures the smoothness of trajectory between the local fuzzy models.

Fuzzy logic supervised scheduling 
system to define the global model

Inputs to
define the

Local

Fuzzy, Neuro-Fuzzy system to 
define the local models

Ddels

)

Fuzzifie

1 Ru e Base j Data Base

-

t k
1 r

Fuzzy Inference 
System

-*• D fuzzifier

Figure 2.1 Hybrid Fuzzy and Neuro-Fuzzy Model approach

2-15



Chapter 2_________________________________Fuzzy & Neuro-Fuzzv Modelling

hi the next section the HFNFM approach will be applied to model the yaw of an underwater 

vehicle.

2.8 Implementation of the HFNFM method to model the yaw of an underwater 

vehicle

This section presents the development of a yaw model of a low-cost Remotely Operate Vehicle 

(ROV) named GARBI developed at the Polytechnic of Barcelona and the University of Girona 

in Spain. The vehicle, which is illustrated in Figure 2.2, is used for underwater mission 

operations such as observations and inspections. An umbilical cable carries power and provides 

communication links to a surface ship or other operating platform (Amat et al, 1999). The 

length, width and height of the vehicle are 87cm, 72cm, 85cm respectively. The four propellers 

of the vehicle have 200W of power each performing at maximum speed of 3 knots.

Figure 2.2 GARBI underwater vehicle

2.8.1 The hydrodynamic Forces and Moments of GARBI

The motion study of marine vehicle involves six Degrees Of Freedom (DOF) (Table 2.1), since 

six independent co-ordinates are necessary to determine the position and orientation of a rigid 

body. The first three co-ordinates Surge, Sway and Heave and their time derivatives correspond 

to the position and translational motion along the x-, y-, and z-axes. The last three co-ordinates 

Roll, Pitch and Yaw (or heading angle) and their time derivatives are used to describe
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orientation and rotational motion. In GARBI the motions in* and z direction (Surge and Heave) 

are controlled by the horizontal propellers (Ti, T2) and vertical propellers (T3 , T4) respectively 

(Figure 2.3). Moreover, the horizontal propellers (Ti, T2) control the rotation in z-axis (Yaw).

Forces Linear Velocity Positions
M

CM CO

N
16

Motions in the x-direction (Surge)

Motions in the y-direction (Sway)

I Motions in the z-direction (Heave)

Rotation in the x-axis (roll)

Rotation in the y- axis (Pitch)

Rotation in the z- axis (Yaw)

X

Y

Z

Moments
K

M

N

u

V

w

Angular Velocity
P

Q

R

X

y
z

Euler angles
<P

V

e

Table 2.1 Relationship between the DOF with the forces, linear speed and Position

Stern surge

Prow

Figure 2.3 GARBI Body-fixed reference frames showing the six degrees of freedom.

The structure of GARBI is designed in such a way that Pitch and Roll cross-coupling is virtually 

non-existent. However, coupling appears between yaw control and surge in x-direction only 

when the vehicle has initial speed. Nevertheless, this coupling is expected and acceptable due to 

the navigation properties. No other major couplings are present.
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In this research the yaw is used for investigating the modelling that is implemented using the 

proposed HFNFM method. The limitation of the study allows only the yaw to be modelled and 

is based on experimental data that were available only for GARBI's rotation about the z-axis.

2.8.2 Experimental design and the trials for the rotation in z-axis (yaw) in a real 

environment

As discussed in the previous subsection the rotation yaw is affected by the power of the 

horizontal propellers TI and T2 . The input variables are the set point of the yaw and the applied 

power (or difference of power) in propellers T, and T2 to reach this point. The smallest voltage 

that can be applied to the propellers is 3V, whereas the maximum one is 10V. The output, 

therefore, is the actual yaw according to a sampling time t.

In October 1999 experimental trials in a real environment (Lake Banyolas, Spain) were held to 

test the yaw behaviour of the robot. Due to the limitation of the number of experiments (as they 

are time and money consuming), it was decided that three types of power and yaw angle should 

be applied with their values distributed equally in the universe of discourse that is defined by 

their minimum and maximum points. Hence, for the voltage the values that are applied are 3V,

6.66V and 10V. Moreover, for the yaw the set points of the angles are 30°, 60° and 90° for left 

and right turning. These are Zig-Zag type experiments and thus more types of turning can be 

investigated as will be explained in Section § 2.8.3.

The values of the above trials may be represented as fuzzy values with the peaks of the fuzzy 

sets equal to these actual values. Thus, for the three values of power and yaw angle the fuzzy 

sets can be labelled as Low Power, Medium Power, High Power and Low Angle, Medium 

Angle, High Angle respectively. The nine combinations of the power and the yaw angles are as 

illustrated in Table 2.2 and the results of these experiments are shown in Figure 2.4 to Figure 

2.8. Note that these responses do not follow the linear change of the input set points (voltage
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and angle) and thus the non-linear behaviour of GARBI's dynamics is illustrated 

experimentally.

\ Power 
Angle 6

Low 
Angle 9
Medium 
Angle 0

High 
Angle 9

Low 
Power

Exp. 1,1

Exp. 2,1

Exp. 3,1

Medium 
Power

Exp. 1,2

Exp. 2,2

Exp. 3,2

High 
Power

Exp. 1,3

Exp. 2,3

Exp. 3,3

Table 2.2 The experiments for the 9 combinations of the power and the yaw angles

Experimental data for yaw (L-30) Experimental data for yaw (M-30)

100 120 140

(a)

Figure 2.4 Zig-Zag trials when (a) Low Power and Low Angle is applied and (Exp. 1,1), and
(b) Medium Power and Low Angle is applied (Exp. 1,2)

Experimental data for yaw (H-30) Experimental data tor yaw (L-60)

0 5 10 15 20 25 30 35 40 45 100 120 140 160 180 200 
time

(a) (b)

Figure 2.5 Zig-Zag trials when (a) High Power and Low Angle is applied and (Exp. 1,3), and 
(b) Low Power and Medium Angle is applied (Exp. 2,1)
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Experimental data lor yaw (M-60) Experimental data for yaw (1+60)

40

20

0

-20

-40

-60

-60

-100

80 100 120 140 5 10 15 20 25 30 35 40 45 
time

(a) (b)

Figure 2.6 Zig-Zag trials when (a) Medium Power and Medium Angle is applied and (Exp. 
2,2), and (b) High Power and Medium Angle is applied (Exp. 2,3)

Experimental data for yaw (L-90) Experimental data tor yaw (M-90)

0 20 40 60 100 120 140

(a)
time

(b)

Figure 2.7 Zig-Zag trials when (a) Low power and High Angle is applied and (Exp. 3,1), and 
(b) Medium power and High Angle is applied (Exp. 3,2)

Experimental data for yaw (H-90)

I 20 40 60 80 100 120 140 
time

Figure 2.8 Zig-Zag trials when High Power and High Angle is applied (Exp. 3,3)
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2.8.3 Definition of the local models from the experimental data

In Table 2.2, nine experiments have been defined to measure the response of the vehicle's yaw 

rotation for the nine combinations of applied power and set angle 9. The modelling of these 

yaw responses is a non-linear optimisation problem. This modelling problem is simplified by 

breaking the model up into a series of local models. Thus, the responses of the yaw motion 

defined in Figure 2.4 through Figure 2.8 are classified as one of three different types as follows:

• firstly, when the vehicle changes course from straight ahead to left and for Low, Medium

and High Angle 9 i.e., 30°, 60° and 90°, (it is also assumed that the case is almost the 

same for straight ahead to right),

• secondly, when the vehicle changes course from left to right and for Low, Medium and 

High Angle 0 i.e., 60°, 120° and 180°.

• thirdly, when the vehicle changes course from right to left and for Low, Medium and High 

Angle 6 i.e., 60°, 120° and 180°.

Note that as discussed in Section § 2.8.2 in all cases the different levels of voltage that are 

applied to the vehicle's propellers is 3V, 6.66V and 10V.

As discussed in Section § 2.6 these cases can be described by a non-linear identification 

method. Here the ANFIS architecture is used to model these local non-linear subsystems.Figure 

A.I to Figure A.36 in Appendix A shows the training data used for ANFIS and the generated 

fuzzy local models that are defined as a funtion of time / and angle 0. Thus the rules that 

construct these models take the form:

Rule i: //time /, is PROPOSITION then angle e, = f(t,) + c, 

where i is the number of the rule and c, is a constant number.
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For the local model that represents the yaw of the vehicle when it turns from straight ahead to 

left or right and when it turns from left to right or right to left, the number of the membership 

functions that are used are two and three respectively. Different types of membership functions 

have been applied. However, using Gaussian membership functions, the approximation of these 

models has the most accuracy with less iterations of the back-propagation algorithm. Note that 

as the local models under approximation were not very complex, the maximum number of 

iterations in the ANFIS algorithm was not more than 100.

2.8.4 Constructing the Fuzzy Models to define the relationship between fuzzy inputs 

and the defined local models

As discussed in Section § 2.8.3 three types of yaw modelling have been defined and optimised 

according to time, power and angle 6 variables using the ANFIS optimisation algorithm. These 

can be considered as the local neuro fuzzy models of the yaw response. Therefore, Table 2.2 

can be redefined for each of the three different types of the yaw as shown in Table 2.3 to Table

2.5.
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\ Power 
Left/Right Angle
0

Low 
Angle 6 

(30)
Medium 
Angle 6 

(60)
High 

Angle 6 
(90)

Low 
Power

Neuro-Fuzzy 
Local Model 

HLR 1,1
Neuro-Fuzzy 
Local Model 

HLR 2,1
Neuro-Fuzzy 
Local Model 

HLR 3,1

Medium 
Power

Neuro-Fuzzy 
Local Model 

HLR 1,2
Neuro-Fuzzy 
Local Model 

HLR 2,2
Neuro-Fuzzy 
Local Model 

HLR 3,2

High 
Power

Neuro-Fuzzy 
Local Model 

HLR 1,3
Neuro-Fuzzy 
Local Model 

HLR 2,3
Neuro-Fuzzy 
Local Model 

HLR 3,3

Table 2.3 The local neuro fuzzy models where the course changed from straight ahead to
Left/Right

\ Power 
Right Angle 0

Low 
Angle 9 

(60)
Medium 
Angle 0 

(120)
High 

Angle 0 
(180)

Low 
Power

Neuro-Fuzzy 
Local Model 

LR1,1
Neuro-Fuzzy 
Local Model 

LR2,1
Neuro-Fuzzy 
Local Model 

LR3,1

Medium 
Power

Neuro-Fuzzy 
Local Model 

LR1,2
Neuro-Fuzzy 
Local Model 

LR2,2
Neuro-Fuzzy 
Local Model 

LR3,2

High 
Power

Neuro-Fuzzy 
Local Model 

LR1,3
Neuro-Fuzzy 
Local Model 

LR2,3
Neuro-Fuzzy 
Local Model 

LR3,3

Table 2.4 The local neuro fuzzy models where the vehicle changed course from left to right

\ Power 
Left Angle 0

Low 
Angle 0 

(60)
Medium 
Angle 6 

(120)
High 

Angle 0 
(180)

Low 
Power

Neuro-Fuzzy 
Local Model 

RLU
Neuro-Fuzzy 
Local Model 

RL2,1
Neuro-Fuzzy 
Local Model 

RL3,1

Medium 
Power

Neuro-Fuzzy 
Local Model 

RL1.2
Neuro-Fuzzy 
Local Model 

RL2,2
Neuro-Fuzzy 
Local Model 

RL3,2

High Power

Neuro-Fuzzy 
Local Model 

RL1,3
Neuro-Fuzzy 
Local Model 

RL2,3
Neuro-Fuzzy 
Local Model 

RL3,3

Table 2.5 The local neuro fuzzy models where the vehicle changed course from right to left
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2.8.5 Design the global fuzzy model

Table 2.3 to Table 2.5 define all the fuzzy rules that can be used to identify the global model of 

the vehicle in terms of yaw response. Applying the FSSS as described in Section § 2.5, all the 

local models for each defined fuzzy region are supervised and thus the global fuzzy model is 

determined. The fuzzy sets of these models are as illustrated in Figure 2.9 and Figure 2.10.

Angle e

7 8 
Horizontal Speed

Figure 2.9 Fuzzy sets for the Power and Angle 9 when the vehicle changes its course from
straight ahead to Left/Right direction

Angle 9

6 7 
Horizontal Speed

Figure 2.10 Fuzzy sets for the Power and Angle 9 when the vehicle changes its course from
Left to Right and Right to Left direction
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The triangular shape of the membership functions is chosen for the fuzzification process as 

discussed in Section § 2.4.2.

The rule base of the global fuzzy model is constructed from rules with the form:

(Low flow
Medium and Set Angle 9t is \Medium then Overall Angle is @
High [High

where / is the number of the rule.

As the "and" operation is used in the fuzzy rules the weights w (or degrees of the membership 

functions) are defined by using min operation (Zadeh, 1965).

The overall output of the composite model of the FSSS is calculated as the weighted mean of 

the outputs #, of the local neuro fuzzy models (defined in Appendix A), given as in Equation 

2.6, which actually represents the non-linear expression for the global model.

(2.6)

where k is the number of local models. 

Remark

• A decision about which of the groups of the local fuzzy model should be fired has to be 

done. This can be simply achieved by checking the previous and the new setting commands 

and/or positions in terms of 9. Note also that in the case of turning the vehicle in the same 

rotation i.e., from left to left or from right to right, the same group of rules are fired 

initialising only the time variable.
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2.8.6 Simulation results

The Hybrid Fuzzy and Neuro-Fuzzy model were developed, using MATLAB/SIMULINK 

computer program, to observe its capabilities. In Appendix B the basic SIMULINK block 

diagrams are presented. Two are the set points that are applied for the simulation studies. These 

are the desired yaw angle and the power of the propellers. Figure 2.11 illustrates some of the 

simulation results that come from the settings shown in Table 2.6.

No of 
Exp.
(•)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)

First Turn 
Left
30
30
60
80
30
45
15
20

Applied 
Power

5
5
4
5
8
7
6
10

Second Turn 
Left
90
90
90
120
90
30
45
70

Applied 
Power

5
7.5
4
4
10
5
8
10

Third Turn 
Left
60
60
60
40
60
45
30
50

Applied 
Power

5
7.5
4
4
5
6

7.5
5

Table 2.6 Navigation properties of simulation trials
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Yaw (HLeft 0 : 30, Left 0 : 90, Right 6 : 60). & 1st Power: 5,2nd Power: 5. 3rd Power: 5 Yaw (HLeft H : 30, Left 0 . 90, Right 0 : 60), & 1st Power: 5, 2nd Power: 7.5. 3rd Power: 7.5

0 5 10 15 20 25 30 35 40 45 50
time

0 5 10 15 20 25 30 35 40 45

(i)
Yaw (HLeft Q: 60. Left Q: 90, Right e : 60), & 1st Power; 4. 2nd Power: 4, 3rd Power; 4 Yaw (HLeft 0 : 80. Left Q: 120, Right Q: 40), & 1st Power: 5, 2nd Power: 4, 3rd Power: 480— ~~~

10 20 30 40 50 
time

(Hi)
Yaw (H_e« e : 30, Le« e : 90, Right e : 60). i 1st Power: e, 2nd Power: 10, 3rd Power: 5 Yaw(HLe« e : 45. Lell e : 30, Right (j: 45). & 1st Power: 7. 2nd Power 5. 3rd Power: 6

10 15 20 25 30

(vi)
Yaw(HLeft e 15 Left 9 45, Right g: 30), & 1st Power: 6. 2nd Power: 8, 3rd Power: 10 Yaw (HLeft e : 20, Left e : 70. Right e : 50), & 1st Power: 10, 2nd Power; 7.5. 3rd Power: 5 

30,.

n 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35

(viii)

Figure 2.11 Simulation results coming from MATLAB/SIMULINK program
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2.9 Discussion

As discussed in Section § 2.2, there are different ways to identify and model non-linear systems 

including fuzzy logic, neural networks and neuro fuzzy techniques. It is well known however 

that using fuzzy logic technique for modelling is an approach that mostly depends on good 

knowledge of the system. Neural network approaches are a very successful, well-known and 

widely used technique in modelling and identification problems of non-linear systems. 

Nevertheless, their "black box" structure is their main drawback. Moreover, neuro-fuzzy 

technique try to combine the above two techniques and to make the model more transparent (or 

grey). However, the problem in this case is approached as a function approximation instead of 

knowledge acquisition.

The aim, therefore, was to approach the problem of modelling non-linear systems combining 

the knowledge acquisition of fuzzy modelling technique with the function approximation of the 

neuro-fuzzy one. The fuzzy part defines the global model using the proposed FSSS approach to 

determine which of the defined models that describe the system locally suits the particular 

operating conditions. By using neuro-fuzzy technique these local models can be approximated. 

This is the main idea of the proposed HFNFM method that is outlined in Section § 2.7 and 

implemented for modelling an underwater vehicle in terms of its yaw behaviour as described in 

Section § 2.8.

The inputs that excite and thus operate the yaw of the vehicle have to be defined. These are the 

powers that are applied into two horizontal propellers of the vehicle. This definition comes from 

the design and dynamics properties of the system as discussed in Section § 2.8.1.

To define the vehicle's behaviour in terms of yaw, experiments have been held in a real 

environment according to the combination of the above two inputs as shown in Table 2.2 

(Section § 2.8.2). The results are shown in Figure 2.4 to Figure 2.8 and can be used individually 

to define the yaw behaviour of the vehicle. However the approximation of these types of
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manoeuvring is a very complicated task and thus approximation techniques with high degree of 

non-linearity have to be applied. Thus, it was decided that an approximation of each of the angle 

turning 0, defined in the trials, should be investigated individually considered as a local model. 

The ANFIS architecture was used to develop Neuro-Fuzzy models that describe these angles 

locally as discussed in Sections § 2.6 and 2.8.3. Note that as mentioned in Section § 2.8.3 these 

local models are defined as a function of time / and the angle 0 . Thus these are variables that 

construct the two dimensional space in the resulting figures i.e., Figure 2.4 to Figure 2.8. In 

Appendix A Figure A.I to Figure A.36 shows that its local yaw rotation is used as the training 

data for the ANFIS technique. The local neuro-fuzzy models are also illustrated. Also in these 

figures, it can be seen that the accuracy of the approximation is very high, as the outputs of the 

local models follow the training data. Note that, this accuracy is achieved using a small number 

of iterations (less than 100) of the ANFIS algorithmic operation.

The next step of the modelling analysis was to define the relationship between the fuzzy inputs 

i.e. power and angles, and the extracted local models as discussed in Section § 2.8.4. The local 

models were grouped according to vehicles course changing i.e., from straight ahead to left or 

right, from left to right, from right to left (see Table 2.3 to Table 2.5). With this grouping 

definition only one set of local models is fired in each of the course changing manoeuvre. Thus, 

the computation time during the modelling identification is minimised.

When all the local models are available the construction of the global fuzzy model can be 

defined as in Section § 2.8.5. In this case the FSSS defines the degree of belonging of the local 

models and thus determining which of these models suits the particular operating conditions. 

The fuzzy sets (see Figure 2.9 and Figure 2.10) that construct this global model are used to shift 

smoothly the modelling trajectory from one local model to the other. It is important to note also 

that if the number of the experimental trials increases the number of local models and fuzzy sets 

increase. Thus, the (global) model can be more accurate as the local space of the models is 

smaller and thus the trajectories between them smoother.
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The hybrid model method was implemented in MATLAB/SIMULINK. The program is 

available to the Computer Vision and Robotics Group1 for further testing and improvement 

using new experimental trials and data. Some simulation results are presented in Figure 2.11.

Note finally, that the identification of GARBI's model could be achieved based on conventional 

procedures by analysing the model structure of the vehicle, the type of available sensors and the 

actuator dynamics (Indiveri, 1998). Nevertheless, these types of approaches for model 

identification problem were beyond the scope of this research. In this research, the combination 

of fuzzy and neuro-fuzzy approaches was under investigation specifically how they can deal 

with model identification problems for non-linear systems.

2.10 Summary

In this chapter a brief introduction to fuzzy and neuro-fuzzy techniques is presented, discussing 

some of their advantages and disadvantages. The linguistic, fuzzy relational and Takagi-Sugeno 

fuzzy models are defined. The latter is emphasised since it is utilised in this work and thus the 

structure properties of this type of model are discussed. A proposed fuzzy supervisory 

scheduling system is also presented. How the neuro-fuzzy modelling method can approximate 

local models is also outlined. A hybrid fuzzy and neuro-fuzzy method is also proposed to define 

the global model of a non-linear system. The method is constructed using six main steps and is 

implemented to model the yaw rotation of an underwater vehicle. The hydrodynamic forces and 

moments of the vehicle are presented. Furthermore, the design of the experiments and the actual 

results of the trials in a real environment that are used to extract information for the modelling 

are presented. The local models are then defined using the ANFIS optimisation technique and 

the global model is finally constructed. Simulation results of the model are presented to show

1 Institute of Informatics and Applications Girona, SPAIN
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the capabilities of the proposed HFNFM method. The simulation program is also used for a 

series of trials of avoidance object action. The data have been collected and used for modelling 

control strategies in this term. In the next chapter an approach is proposed to solve this problem 

based on fuzzy clustering methods.
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3
Fuzzy Clustering

Methods as Techniques
for Identifying and

Modelling of Control
Strategies

3.1 Introduction

Identification and modelling of a complex non-linear system's control action can be viewed as 

determining a description between the input and the output of the controller under 

consideration. The task becomes much harder when there is only little a priori knowledge on 

the type of non-linearities present in the system. In this case, fuzzy reasoning provides an 

effective formalism through which large classes of non-linear systems can be represented 

without a precise mathematical description of the non-linear elements.
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As been discussed in chapter one, fuzzy control is an important topic in fuzzy set theory and 

applications. A fuzzy (behaviour) controller can be considered as a fuzzy model system based 

on the operator's control experience and knowledge for a particular system. The expert's control 

skills, however, are difficult to describe in words since the operators' control strategy is based 

on various control principles simultaneously, combining feedforward, feedback and predictive 

strategies in a complex, time-varying fashion, and because the operator may not be able to 

explain why a particular control action is chosen. Experience from knowledge acquisition also 

shows that the rules provided by different operators are often contradictory.

One way to solve these types of problems is based on the assumption that expert information is 

readily available. This information actually comes from experimental or simulation data 

resulting from the expert's control action according to the particular applied inputs. Thus, 

estimation of the parameters that define the antecedent and consequent templates is achieved as 

well as the number of If-Then rules that constructs the knowledge base. The premise and 

consequence, indicates structure identification and parameter estimation. The collection of 

rules for fuzzy sets comes from an input-output mapping of the operators' control behaviour 

data. These tasks cannot be performed separately. Usually, the case where the input variables 

have been selected a priori can be considered so that what remains to be done is (Sugeno and 

Yasukawa, 1993):

• to determine the number of fuzzy rules and the partition of the input/output space into fuzzy 

sets (structure identification);

• to estimate the best values for the parameters of the membership functions (parameter 

estimation).

The above can be achieved using fuzzy clustering methods, where the prototypes of the clusters 

are usually the centres of hyper-planes. Their numbers define the number of the fuzzy sets and
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their projections, into w-dimensional input-output data space axes, determines the parameters of 

the extracted membership functions together with the partition of the input/output space.

In this work an algorithmic methodology is proposed to construct fuzzy control strategies based 

on the choice of different fuzzy clustering algorithms to define the number and actual position 

of the prototypes and the variance of the clusters. Then the generation of the fuzzy sets is 

obtained by using projecting methods that are varied according to the chosen type of fuzzy 

system. Moreover, merging of membership functions methods are used to reduce the number of 

fuzzy sets and guidelines of when to do so are also proposed. Finally, improvements and small 

modification to the fuzzy system are introduced using techniques such as gradient method.

This chapter is organised as follows: Sections § 3.2 to 3.4 introduce the basic theory of cluster 

analysis. Sections § 3.5 to § 3.6 discusses some of the most commonly used fuzzy cluster 

algorithms that are applied in identification problems based on input/output mapping data 

discussing their advantages and disadvantages. Section § 3.7 shows techniques to determine the 

number of clusters. The problem of how and when the normalisation of data should be applied 

is discussed in Section § 3.8. The projection of cluster centres and variances is introduced in 

Section § 3.9. In Section § 3.10, methods that are used for merging the membership functions 

are reviewed as well as some guidelines of when to use them are proposed. A proposed 

methodology to construct fuzzy control strategies generating the fuzzy rules fromn-dimensional 

input/output clustering data is presented in Section § 3.11. Section § 3.12 discusses the 

proposed algorithm. A brief summary of this chapter is finally presented in Section § 3.13.

3.2 Cluster analysis

Cluster analysis is a technique that is used to seek out natural clusters corresponding to natural 

classes in the data, dividing all objects (samples) into smaller subgroups, classifying them 

according to the similarities among them. It therefore, reconstructs the probability of data
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density from the samples and thus extracts the information that the data are carrying by 

extrapolating class membership to unlabeled samples or simply to better understand the system 

and/or process from which the data arises.

Clustering analysis comprises of three main problems (Bezdek et al, 1999):

1. Investigation of a tendency of clustering data or in other words the substructure(s) in the 

data.

2. Choice of clustering method, which measures the mathematical similarity that captures 

a data structure in the sense that a human might perceive it.

3. Definition of the cluster's validity.

Clustering techniques belong to the class of unsupervised (learning) methods, since they do not 

use prior class identifiers. Most clustering algorithms also do not rely on assumptions common 

to conventional statistical methods, such as the underlying statistical distribution of data, and 

therefore they are useful in situations where little prior knowledge exists.

3.3 Definitions and Notations in Cluster Analysis

Before identifying the cluster methods that can be used in identification problems and control 

strategies, some definitions should be denoted.

3.3.1 The data used in clustering analysis

One of the important advantages of clustering techniques is that they can be applied to data that 

is quantitative (numerical), qualitative (categoric), or a mixture of both. In this work, the 

clustering of quantitative data is considered. The data are typically observations and/or records 

of some physical process of a real system and/or control action. Each observation and/or record
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consists of n measured variables, grouped into an n-dimensional Euclidean space 9T column 

vector Zj. = [zlk ,z2k ,...,znk ,] 1 , zk e9T. A set of N observations and/or records is denoted by 

Z = {i k | k = 1,2,.. .,N}, and is represented as an n x N matrix:

'•IN

(3.1)

_ Zn\ Zn2 •" ZnN _

In pattern recognition terminology, the columns of the matrix are called patterns or objects, the 

rows are called the features or attributes, and Z is called the pattern or cfcrta matrix. The 

meaning of the columns and rows of Z depends on the context of the classification problem.

3.3.2 Definition of clusters

Various definitions of a cluster can be formulated, depending of the objective of clustering. 

Bezdek, (1981) defined a cluster as a group of homogeneous classes or objects that are more 

similar to one another than to members of other clusters. The term "similarity measure" has an 

important effect on the clustering results since it indicates which mathematical properties of the 

data set, i.e. distance, connectivity, and intensity, should be used and in what way in order to 

identify the clusters. Distance can be measured among the data vectors themselves, or as a 

distance from a data vector to some prototypical object of the cluster. The prototypes (which are 

usually the centres of the clusters) or centroids are usually not known beforehand, and are 

sought by the clustering algorithms simultaneously with the partitioning of the data. The 

prototypes may be vectors of the same dimension as the data objects, but they can also be 

defined as "high level" geometrical objects, such as linear or non-linear subspaces or functions 

(Babuska, 1998a).
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3.4 Fuzzy clustering

The objective of clustering methods is to perform a partition of the collection of elements in 

Equation 3.1, into c data sets with respect to a given criterion, where c is defined (given) as the 

number of clusters. The criterion is usually to optimise an objective function that acts as a 

performance index of clustering.

In classical non-fuzzy "hard" clustering analysis, the data are distributed into partitions such that 

the degree of their association is strong within blocks of the partition and weak in different 

blocks. In other words, each data sample is assigned to only one cluster and all clusters are 

regarded as a disjoint gathering of the data set. In practice however, there are many cases in 

which the clusters are not completely disjointed and data could be classified as belonging to one 

cluster almost as well as to another. A crisp classification process cannot cater for such 

situations, therefore, the separation of the clusters becomes a fuzzy notion, and the 

representations of real data structures can then be more accurately handled by fuzzy clustering 

methods. In these cases, it is necessary to describe the data structure in terms of fuzzy clusters. 

Thus, the end result of the fuzzy clustering is the partition matrix t/as in Equation 3.2.

where nik is a numerical value in [0,1] i.e. nik e {0,1} , and expresses the degree to which the 

element zk belongs to the / cluster. However, there are two additional constraints on the value 

of 11^ . First, a total membership of the element z k e Z in all classes is equal to 1 .0 ; that is,

for all k = 1,2,..., N (3.3)

Second, every constructed cluster is non-empty and different from the entire set; that is,
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N

0 <!£/"'* <N forall/ = l,2,...,c (3.4)

A general form of the objective function is

),^].rf(z,,v,) (3.5)
(=1 k=l i=l

where w(zt ) is the a priori weight for each z k and d(zk ,\ i ) is the degree of dissimilarity 

between the data z k and the supplemental element v, , which can be considered the central 

vector of the /th cluster. The degree of dissimilarity is defined as a measure that satisfies two 

axioms:

rf(z,,v,)>0, d(zt ,v / ) = rf(v,,z t ) (3.6) 

and thus it is a weaker concept than distance measures.

With the above settings, fuzzy clustering can be precisely formulated as an optimisation 

problem:

Minimise ./(//^.Vj), / = l,2,...,c; k -\,1,...,N (3.7)

Figure 3.1 illustrates these types of clusters, with cluster centres V = [v,,v 2 ] and partition 

matrix f/as in Equation 3.8.

(3.8)

In the literature numerous clustering approaches have been developed on iterative minimisation 

of the criterion function (Equation 3.7). In this Chapter some of these approaches are introduced 

in terms of their significance for the identification and modelling control strategies problem
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(Babuska, 1998a) . One of the widely used clustering methods based on Equation 3.7 is the 

fuzzy c-means (FCM) algorithm developed by Bezdek, (1981) and is presented in the following 

Section § 3.5.

Figure 3.1 Fuzzy clustering representation

3.5 Fuzzy c-means clusterin g approach

The objective (or cost) function of the FCM algorithm takes the form of

c N
m>\ (3.9)

/=! k=\

where m is called the exponential weight which determines the fuzziness of the resulting 

cluster. To solve this minimisation problem, the objective function in Equation 3.9 is 

differentiated with respect to v, (for fixed //,*, i = l,2,...,c; k = \,2,...,N) and to pik (for fixed

Vj, / = 1,2,. ..,c ) and the condition of Equation 3.3 is applied
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(3.10)

(D IT)V^AA/^

where / is the number of repeats and

(3.11)

is a square inner product distance norm.

The algorithm of the FCM approach is simply an iteration through the preceding three steps 

which are summarised as follows:

Algorithm FCM:

Select the data set Z , allocate a number of clusters c (2<c<N), the exponential weight 

( 1 < m < oo ), the termination tolerance £ > 0 and the norm-inducting matrix A . Choose an

initial partition matrix U (0) . 

Repeat for 1 = 1,2,...

Step 1: Compute the fuzzy cluster prototypes -centres- (means) {v|° | i = l,2,...,c} by

using U' and Equation 3.10. 

Step 2: Compute the distance using Equation 3.12. 

Step 3: Update the partition matrix U /+1 by using {v<° | / = l,2,...,c} and Equation 3.11.
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The hard c-means (HCM) clustering algorithms can be considered as a special case of the fuzzy 

c-means clustering algorithms. In Equation 3.9, if julk is 1 for only one class and zero for all 

other classes, then the criterion function J(julk ,\ t ) used in the FCM is the same as in the hard 

c-means clustering algorithm. The use of membership values in the FCM method provides more 

flexibility and formulates the clustering results in a more useful form in practical applications. 

However, both algorithms are iterative, and therefore there are no guarantees that they will 

converge to an optimum solution. The performance depends on the selection of the initial 

positions of the cluster centres, thereby another fast algorithm can be use to determine the initial 

clusters or to run HCM/FCM algorithms several times, each starting with a different set of 

initial cluster centres. Moreover, an important parameter that has also to be selected in applying 

these algorithms is the number of clusters. The number of clusters should ideally correspond to 

the number of sub-structures naturally present in the data.

3.5.1 Inner-product Norms

The shape of the clusters is determined by the choice of the matrix A in the distance measured 

(Equation 3.12). One choice of A is A = I. This induces the standard Euclidean norm:

£>*=(Zi -v,)r (Zi -v,.) (3.13)

which actually stimulates hyperspherical clusters, i.e., clusters whose surfaces of constant 

membership are hyperspheres.

A n x n diagonal matrix that accounts for different variances in the directions of the co­ 

ordinate axes of Z can also be as another choice of A:
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A =

0 (1/CT2 ) 2

0

0

(3.14)

OK)2

This matrix induces a diagonal norm on 31".

Finally, A can be defined as the inverse of the «x« sample covariance matrix of Z : A = R"1 , 

where:

(3.15)
k=l

Here z denotes the sample mean of the data. In this case, A induces the Mahalanobis norm on 

91" (Bezdek, 1981).

Both the diagonal and Mahalanobis norms generate hyperellipsoidal clusters, the only 

difference is that with the diagonal norm, the axes of the hyperellipsoids are parallel to the co­ 

ordinate axes while with the Mahalanobis norm the orientation of the hyperellipsoid is arbitrary.

The choice of which norm is the most appropriate depends on the data themselves. Euclidean 

distance is the overwhelming favourite as it is considered to be closer to what human 

observations are like. Mahalanobis distance is useful when there are large disparities in the 

ranges of the measured features because it rotates the basis 91" so that the data are scaled 

equally and are pair-wise uncorrelated.

A common limitation of cluster algorithms based on a fixed distance norm is that such a norm 

induces a fixed topological structure on 3?" and forces the objective function to prefer clusters 

of that shape even if they are not present. However, a method using the norm-inducing matrix
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A can be adapted to the local topological structure of the data. This method can be used to 

estimate the dependence of the data in each cluster as presented in the next Section.

3.6 Extensions of the Fuzzy c-means algorithm using Fuzzy Covariance Matrix

Several algorithms can be derived from the basic FCM scheme by adapting the inner-product 

norm (Equation 3.12). The most used and successful clustering algorithms are the Gustafson 

and Kessel (G-K) proposed by Gustafson and Kessel, (1979) and Fuzzy Maximum Likelihood 

Estimates (FMLE) proposed by Bezdek and Dunn, (1975). Both algorithms recognise the fact 

that different clusters in the same data set Z may have different geometrical shapes and in order 

to detect them, the standard fuzzy c-mean algorithm is extended, by employing an adaptive 

distance norm. The analytical description of these algorithms is outside the scope of this thesis, 

however, some important aspects should be noted:

The fuzzy covariance matrix defined for the ith cluster is for the GK method as in Equation 3.16 

denoted as F,, whereas for the FMLE method as in Equation 3.17 denoted as £,.

(3.16)

k=\

(3-17)

Jt=l

The difference between the fuzzy covariance matrixes F, and L, is that the latter does not 

include the weighting exponent m . This is simply because the two weighted covariance
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matrices arise as generalisations of the classical covariance from two different concepts. Note 

that the choice of weighting exponent m is as in the case of FCM algorithm i.e. 1 < m < °o .

Each cluster has its own inner product distance norm. The first method is as in Equation 3.18 

and for the second as in Equation 3.19.

AL, = (z* -vydeKF,)""^1 ^ -v,.) (3.18)

(3.19)

In Equation 3.19 /*, is the prior probability of selecting cluster / where the membership degrees 

Hik are interpreted as the posterior probability as described in Equation 3.20. In Equation 3.18 

the cluster volumes pt are simply fixed at 1 for each cluster if no prior knowledge is available.

(3-20)

Note that Equation 3.19 involves an exponential term and thus DfkA decreases faster for a

given change in distance measure than the inner product norm in Equation 3.18. Therefore the 

clusters are not constrained in volume as may happen when using the GK algorithm. Thus, the 

algorithm is able to detect clusters of varying shapes, sizes and distances. However, FMLE 

needs good initialisations i.e., close to the optimal, as due to the exponential distance norm, it 

tends to converge to a nearby local optimum.

3.6.1 Definition of the hyperellipsoids from the covariance matrix

Using Covariance Matrix algorithms, each cluster can be approximated as hyperellipsoid. The 

eigenstructure of the cluster covariance matrix provides information about the shape and
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3.6.1 Definition of the hyper ellipsoids from the covariance matrix

Using Covariance Matrix algorithms, each cluster can be approximated as hyperellipsoid. The 

eigenstructure of the cluster covariance matrix provides information about the shape and 

orientation of the clusters in the n-dimensional input-output state space (Strang, 1980). 

Therefore, the directions ^, of the axes are given by the eigenvectors of F, and S,. Moreover, 

the ratio of the square roots of the eigenvalues of F, and E, defines the ratio of the / lengths of

the cluster's hyperellipsoid axes Lt -aJAin , (/<«). For instance Figure 3.2 illustrates a 

covariance hyperellipsoid defined from the locus of all z that satisfy Equation 3.21.

Figure 3.2 The lengths

-> x,
and the directions fa , </>2 for the each axes of a 

hyperellipsoid
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3.7 Determination of the number of clusters

The main disadvantage of the algorithms described in Sections § 3.5 and § 3.6 is that the 

number c of clusters has to be known in advance. In many applications, this knowledge is not 

available. However, the determination of the number of "natural" groups in the data is important 

for the successful application of fuzzy clustering methods. A number of methods have been 

proposed to determine the relevant number of clusters in the clustering problem.

External cluster validity measures is one of the techniques that are used to determine the 

goodness and therefore the number of clusters (Xie and Beni, 1991). These methods assess the 

validity of a given partition with a specific number of clusters considering criteria like the 

compactness of the clusters and the distance between the clusters. A computational drawback of 

cluster validity methods is the need for reparative clustering of the data using different number 

of clusters each time.

Another approach, proposed by Krishnapuram and Freg, (1992), is called Compatible 

Clustering Merging. The method determines the number of clusters based on starting with a 

larger number of clusters than required, and then iterative merging of similar (compatible) 

clusters until some threshold is reached and no more clusters can be merged (Kaymak and 

Babuska, 1995). The key elements of this method are the criteria which measure the degree of 

compatibility between clusters. This degree is actually determined on the basis of the 

geometrical properties of the clusters, by analysing the eigenvalues and the unit eigenvectors of 

the cluster covariance matrix. This method offers a more automated and computationally less 

expensive way of determining the right partition by applying essentially a similarity measure 

between clusters. However, the method realistically can be applied only in two or maybe three- 

dimensional cluster space data, as it is hard to encounter geometrically similar clusters in a high 

dimensional data space.
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A method called Mountain clustering is used in the work described here. The method defines 

the number of clusters together with their relatively significance based on validity measures 

(density) of clusters. The prototypes are defined from the peaks of the mountains resulting from 

the mountain function. An analytical description of the method is discussed in the following 

Section §3.7.1.

3.7.1 Mountain clustering meth od

The mountain clustering method, proposed by Yager and Filev, (1994a); Yager and Filev, 

(1994b), is a relatively simple and effective approach to approximate estimation of cluster 

centres on the basis of density measure called the mountain function. The method is divided into 

four steps:

• The first step involves forming a grid on the data space, where the intersections (nodes) of 

the grid lines constitute the candidates for cluster centres, denoted as a set V .

• The second step uses the observed data to construct the mountain function. The height h of 

the mountain function at a node v € V is as in Equation 3.22.

ZK -*al
< 3 '22)

where zki is the z'th data point in Ath dimensional data space and a is an application- 

specific constant and determines the height as well as the smoothness of the resultant 

mountain function.

The closer a data point is to the node the more it contributes to the score at the node. The 

higher the mountain function value at a node, the higher is its potential to be a cluster
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centre. Therefore, the value of the mountain function is related to the potential ability of a 

grid point to be a cluster centre and it can be used as an indicator of the clusters.

• The third step is to use the mountain function to define the cluster centres. The first centre 

c{ is the node, of the candidate centres V, and has the greatest value for the mountain 

function i.e., c = max(m(v)). Obtaining the next cluster centre requires eliminating the 

effect of the just-identified centre, which is typically surrounded by a number of nodes that 

also have high-density scores. This can be done by revising the mountain function as in 

Equation 3.23.

9-1

UK
q>\ (3.23)

where q is the number of the cluster and ft is a positive constant similar to the parameter

a.

The subtracted exponential part of Equation 3.23 is a Gaussian function inversely 

proportional to the distance between v and cq , as well as being proportional to the height

h(c ) at the centre. Note that after subtraction, the new mountain function hq (v) reduces to 

zero at \ = c} .

After subtraction, the q cluster centre is again selected as the node in V that has the largest 

value for the new mountain function. This process of revising the mountain function and 

finding the next cluster continues until a sufficient number of cluster centres is attained.

The main advantage of the mountain function method is that it does not require a predefined 

number of clusters. It determines the number and the approximate position of the first c cluster
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centres that satisfy the stopping rule (the height of the mountain), starting from the highest ones, 

which is characterised with a maximal value of the mountain function at nodes V. It can 

therefore be used to obtain initial cluster centres that are required by more sophisticated and 

accurate cluster algorithms such as FCM, G-K, FMLE introduced in Sections §3.5 and § 3.6. It 

can also be used as a measurement method to define the importance of the subspace clusters. 

Moreover, the number of the most significant mountains can be used in decisions related to the 

cluster centres and/or membership functions merging as is discussed in Section § 3.10 and 

therefore to define the appropriate number of the generated rules.

Remarks

• A finer gridding increases the number of potential clustering centres, but it also increases 

the computations required. The gridding is generally evenly spaced, but it is not a 

requirement. If a priori knowledge of data distribution is available, an unevenly spaced 

gridding can be used.

• It is evident from the construction of the mountain function that its values are 

approximations of the density of the data points in the vicinity of each node.

• The method is actually based on what a human does in visual forming clusters of data set. 

High density in the subspace of a control action means high importance.

• The parameters a and /? are chosen by the operator on a trial-and-error basis. However, 

when the method is applied to high dimensional data space this may become a difficult task 

for the operator and as a result some approaches have been introduced to set these 

parameters (Yager and Filev, 1994a); (Lori and Costa Branco, 1995).

3-18



Chapter 3 Fuzzy clustering Methods as Techniques for Identifying and Modelling of Control Strategies

3.8 Data Normalisation

In the literature on pattern recognition, it is often suggested that the data should be appropriately 

normalised before clustering (Jain and Dubes, 1988). Thus, considering Equation 3.1, the Mi 

pattern is denoted by the column vector and the^'th feature value for the kth pattern is denoted 

by zjk . The simplest type of normalisation is the subtraction of the feature average Zj as in

Equation 3.24. This normalisation makes the feature values invariant to rigid displacements of 

the co-ordinates. The asterisk denotes the "raw" or unnormalised (unsealed) data. Another type 

of normalisation which is the most used, translates and scales the axes so that all the features 

have zero mean and unit variance as described in Equation 3.25.

zjk =z]k -zj (3.24)

(3.25)

The/th feature average, Zj , and they'th feature variance, crj , are defined as the sample mean 

and the sample variance for they'th feature (Equation 3.26 and Equation 3.27).

(3.26)

Normalisation, however, is not always desirable, as it may influence the result of clustering 

when the separation between clusters is altered. Distance norms are sensitive to variations in the 

numerical ranges of the different features. For instance, the Euclidean distance assigns more 

weighting to features with wide ranges than to those with narrow ranges. The result of 

clustering can thus be negatively influenced by, for instance, choosing different measurement
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units. Nevertheless, clustering algorithms that are based on adaptive distance measure are less 

sensitive to data scaling, since the adaptation of the distance measure automatically 

compensates for the distance in scale.

3.9 Projection of cluster centres and variances

The clusters that are defined using the methods discussed in the previous sections may 

incorporate linguistic meanings for the input/output relationships of a system. These clusters 

can actually be described as membership functions that are often assigned by linguistic labels 

and thus gives a transparency into a system's analysis, i.e. easy to read and interpreted by 

humans. In one-dimensional domains labels such as "low", "medium", "high" etc are frequently 

used. However, it is often difficult to specify meaningful labels for membership functions with 

higher ^-dimensional domains. The projection, therefore, of these memberships onto the n 

measurement variable axis can produce membership functions with corresponding linguistic 

terms. There are different types of projection that mainly depends on which clustering method is 

being used to identify the cluster centres and variances. The most used projecting methods 

recommended in literature are described in the following:

1. If only the c cluster centres are considered, i.e. using FCM method (Section § 3.5), their 

projections on each dimension n define the peak values pf {i = ],...,c,j = !,...,«} of the 

projected membership functions. Moreover, sorting these values on each dimension as in 

Equation 3.28, the membership functions such as triangular are constructed with 1/2 

overlap using Equation 3.29.

pi<.pJM V/ (3.28)

i (vj ) = max 0,min . _ ';' , j _Pl* (3.29)
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2. In cases where approximation of clusters are hyperellipsoids, as described in Section § 

3.6.1, their projections onto each domain axis will produce symmetric membership

functions with the peak point pf {i = l,...,c,j = !,...,«} being the corresponding component 

of each cluster centre. The left and right fraction of the membership functions defined from 

the eigenstructure of the cluster covariance matrix for each hyperellipsoid is as in Equation 

3.30 and Equation 3.31.

| + L2 |cos (3.30)

COS( —- + L- cos(— - (3.31)

Figure 3.3 illustrates schematically the projection of an ellipsoid on axes Xi and X2.

Note that in both cases it is recommended to add two modal values into the extremes of each 

universe of discourse to ensure full coverage of the input space. Thus,

pi = min u{
" k=\,...,N

(3.32)

(3.33)

where u{ is the kth cluster data in jth dimension space and the trapezoidal membership 

function at the extremes of each universe of discourse is as in Equation 3.34 and Equation 3.35.

0, min -^4,i (3-34)

0,min jn J _ f-tJ 
Pc+\ PC

} \ (3.35)
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u \left u \righ

Figure 3.3 Schematic demonstration of projection of an ellipsoid on axesXt andX2

3.10 Merging Membership Functions Method

By reducing the number of projected membership functions in the input/output domain, the 

number of fuzzy rules the are produced is reduced. One way to do this is to merge the 

neighbouring fuzzy sets with regards to the similarity between them. In this context, similarity 

between fuzzy sets is defined as the degree to which the fuzzy set are equal in terms of 

distinguishability or in terms of compatibility (Satnes et al, 1998). Therefore, the similarity 

measures for fuzzy sets are divided into two main groups (Zwick et al, 1987):

i) geometric similarity measures that are suited for measuring similarity (or dissimilarity) 

among distinct fuzzy sets,

ii) set-theoretic similarity measures that are most suitable for capturing similarity among 

overlapping fuzzy sets (a cross-point level) that describe almost the same region in the 

input/output domain variable.
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The geometric similarity measures represent similarity as proximity of fuzzy set and not as a 

measure of equality. The interpretation of similarity as "approximate equality" can be better 

represented by the set-theoretic similarity measures based on operations such as union and 

intersection. They also have the advantage above geometrical measures that scaling and 

ordering of domain does not influence them.

Several merging methods have been proposed in the literature using set-theoretic similarity 

measures preserving, however, the distinguishability and the justifiable number of elements on 

each input domain to guarantee the semantic integrity. Chi et al, (1996) merged triangular 

neighbouring membership functions that resulted in trapezoidal. Espinosa and Vandewalle, 

(1999) use a merging algorithm called FuZion that considers the closeness between the peaks of 

the membership functions.

In this work it is proposed that the merging between neighbour membership functions should be 

achieved according to:

a) their closeness,

b) the number of clusters that results from the "highest" mountain functions and

c) the linguistic interpretation of the generated fuzzy sets,

Close membership functions can be considered as those that have high degree of overlapping 

Y. Thus, if y > p then merge the modal values mc^ and mc^ (see Appendix C). where p is 

set by the designer and is 1>/?>0.5. Figure 3.4 illustrates a merging between membership 

function with high overlapping. The number of final fuzzy sets (after merging) should not be 

more than the number of the proposed cluster centres measured by using the height h of the 

mountain function (Equation 3.22, Equation 3.23) as mentioned in Section § 3.7.1. Finally, a
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group of fuzzy sets may imply the same linguistic interpretation and their merging is made 

according to this observation.

Figure 3.4 Membership functions before and after merging

3.11 Generate fuzzy rules from n-dimensional input/output clustering data

In this section a systematic methodology is proposed to identify a control strategy using data 

(experimental or not) resulting from multidimensional input/output space. The method uses a 

numerical data to approximate linguistic fuzzy rules to investigate the interpretation between 

input/output relationships. The main steps of the proposed method are as follows:

1. Define the multidimensional input/output space with £- input and y/- output variables. 

Thus, for the inputs

U = (3.36)

where U

For the outputs
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Y =

y\

(3.37)

where Y e W"

2. Collect the number of points of the observations N for each input variable

(3.38)

and for each output variable

(3.39)

For each output y^ and all input variables, the patterns or data matrix Z is constructed as 

in Equation 3.40.

Z/M ... U,

(3.40)

where Z^eM f+1

This matrix is actually a spatial representation of the data samples of the £ +1 dimensional 

space.

3. Clustering is the first step in the analysis of the data classification presented in Equation 

3.40. There are no specific rules about which cluster analysis method(s) to be used. 

Different algorithms produce different partitions of the data, and it is difficult to decide
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which is the most suitable. It mostly, depends on the "quality" and the "quantity" of the 

available data and what actually is the objective of the analysis. Table 3.1 presents the most 

used clustering algorithms highlighting some of their most important characteristics. 

Furthermore, a general guideline to which type of cluster algorithms and their analysis for 

identification and modelling of control strategies is proposed:

a) Using Mountain Clustering Method (Section § 3.7.1) the number of clusters and their 

approximate places of prototypes can be defined. These are two very important 

parameters that other more accurate and reliable cluster analysis algorithms need to start 

with. With this method the weight of each cluster is also defined and used in the cases 

of merging the cluster prototypes and/or membership functions as discussed in Section 

§3.10.

b) FCM clustering algorithm is employed to define the prototypes of the clusters as 

introduced in Section § 3.5. However, using Fuzzy Covariance Matrix such as 

Gustafson-Kessel's and/or FMLE, the centres Vc are detected together with the 

variance of clusters among different geometrical shapes as discussed in Section § 3.6. 

These centres and variances reflect the actual data distribution in the input/output 

space. The initialisation of the partition matrix and the number of clusters are defined 

from the resulting Mountain Clustering Method. Thus,

Vc = (3.41)

where \c e <R l+lxc

3-26



Chapter 3 Fuzzy clustering Methods as Techniques for Identifying and Modelling of Control Strategies

4. Projecting the cluster centres and variances, into the input/output spaces, the membership 

functions for each input are generated as discussed in Section § 3.9. The peak values pf are 

equal to the cluster centres in the input spaces as in Equation 3.42.

/7/=v/, i = \,...,c y = !,...,£ (3.42) 

and in to the output space as in Equation 3.43

pf=vj, i = l,...,c y=£ + l (3.43)

For the projections in the output dimensional spaces two different cases should be 

considered:

a) If the projections define membership functions, then their peaks are in Mamdani type 

fuzzy systems as in Equation 3.42, Equation 3.43 and in the antecedent part of the T-S 

fuzzy systems as in Equation 3.42.

b) If the projections define singleton values J/+1 , as in Takagi-Sugeno (T-S) fuzzy 

systems, then their values are as in Equation 3.43 and therefore J/+1 = pf+} .

5. Merging neighbouring membership functions method is used to reduce the number of 

membership functions and therefore the number of rules as described in Section § 3.10.

6. The resulting membership functions and/or singletons in all dimensional spaces associated 

by linguistic labels (i.e. SMALL, MEDIUM, BIG, etc).

7. The rule base is constructed using all the possible combinations between the input 

membership functions for the antecedent part. This guarantees the completeness of the rules 

and full coverage of the working space. Thus, the rules Rr take the form:
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Rr : Ifuyis /j] and u 2l is p] and... and u9 is juf then yr =\ '
C" '

where / is the observer point in the input/output variable £ and £ +1 respectively and r is 

the number of rules.

Note that //have been defined in Equation 3.29, Equation 3.34 and Equation 3.35.

The evaluation of antecedents of each rule can be expressed in terms of the min, max and 

product operation as in Equation 3.44, Equation 3.45 and Equation 3.46 correspondingly.

, / ),^/2 (i/2/ \...,nf (ii0)} (3.44) 

u}l ),tf(u2l ),...,iif(u0)} (3.45)

PI(«I) = C"/K)- A;2 ("a)'- W(«0) (3 - 46>

8. If the fuzzy system that is been considered in the construction of the fuzzy rules is defined 

by the Mamdani model, various denazification methods could be used depending mostly of 

the priori knowledge of the system (Passino and Yurkovich, 1998). However, if the fuzzy 

systems is defined by the T-S model, the singletons used in the consequence part of the 

rules and the output of the fuzzy system is calculated as in Equation 3.47.

(3-47)

where //,(«,) is defined in Equation 3.44 to Equation 3.46.
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9. (An optional step). The generated membership functions and/or singletons, using clustering 

methods, can be tuned to improve their performance by using the data Z^ in Equation 3.40 

as training data. The most widely used techniques in these types of problems are gradient 

methods where the position of the modal values are trying to be optimised (Driankov et al, 

1993), (Chi et al, 1996). Hence the gradient optimisation method tries to pick the 

parameters q> to construct the fuzzy system f(u, \ <p) that gives the best approximation (i.e. 

make f(u, \ (p) as close to ZA as possible).

Considering the error between the output of the fuzzy system f(u, \ <p) and m trained datay 

the gradient method seeks to minimise em (Equation 3.48) by choosing the parameters tp .

(3-48)

In a fuzzy system these parameters can be the singletons and/or the parameters of the 

membership functions. The update law for both membership functions and singletons are 

described analytically in Appendix D. Another approach would be to minimise the sum of 

such error values for a subset of the data Z^ or all the data in Z^ ; however, with this 

approach computational requirements increase and algorithm performance may not have 

significant improvement (Passino and Yurkovich, 1998).
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Algorithm

Hard c-means

Fuzzy c-means

Mountain 
Method

Gustafson- 
Kessel

Fuzzy 
Maximum 
Likelihood 
Estimates

Prototypes 
Initialisation
Unknown 
It can be 
random
Unknown 
It can be 
random

Not needed

Unknown 
It can be 
random

Unknown 
Needs to be 
good

Advantages

Data can be member of 
more than one cluster 
with different degree. 
More flexible than "hard" 
and more useful in 
practical applications
Detects cluster 
prototypes and their 
approximate position
Detects clusters of 
varying shapes and sizes. 
However, the size of the 
clusters is limited. 
Not sensitive to scaling 
of the data.

Detect clusters of varying 
shapes, sizes and 
densities (volumes/* )

Disadvantages

Unrealistic and thus 
inapplicable in real 
problems
Detects clusters of fix 
shapes

Not very accurate in 
definition of the cluster 
prototypes
Slow for a large data 
dimension n and large 
number of clusters, 
Not applicable to linear 
problems, 
Find clusters for 
approximately equal 
volumes
Generates almost crisp 
partitions, 
Sensitive to the initial 
conditions

Inventor(s)

Dunn (1974)

Defined by 
Dunn (1974) 
Generated by 
Bezdek 
(1981)

Yager & Fiver 
(1992)

Gustafson- 
Kessel (1979)

Bezdek £r 
Dunn (1975)

Table 3.1 Clustering Methods

3.12 Discussion

As in any optimisation method, the proposed algorithmic method depends of the availability of 

"good" data. "Good" data implies data that has been extracted from full "control excitation" of 

the observed system. Good data are also those that result from well distributed input data. Note 

that the clustering methods optimise the cluster prototypes and variances correctly in a linguistic 

sense only if the input data measurements are well distributed, otherwise the cluster algorithms 

may be biased into the subspace (cluster) constructed from the input data that are most 

frequently measured. It is a good idea therefore to collect as much data as possible from the 

expert's control action and then use them only after equal distribution. Data that are close to 

each other can be merged or only one can be considered.
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The mountain method is used in this proposed method as it gives the ability to observe the 

possible number of the prototypes using the graphical representation of the mountains. 

Moreover, the approximate position of the cluster centres is obtained. The accuracy of this is 

highly dependent on the density of the grid. It is however not critical as the Gustafson-Kessel 

and FCM algorithms can define the prototypes with high accuracy. Gustafson-Kessel and FCM 

algorithms are used, as they are well known and the most widely used clustering algorithm. 

Some approaches that improve the above algorithms can be found in literature and may be used 

instead for specific problems. However, the proposed method uses Gustafson-Kessel and FCM 

and so does not lose its generality.

The merging method as proposed is actually a combination of the mathematical/geometrical 

similarity of the fuzzy sets together with their linguistic interpretation. It is believed therefore 

that what should be considered most (mathematical/geometrical similarity or linguistic 

interpretation) is depended on what is available most. Note also that the merging method is one 

of the best ways to minimise the number of fuzzy sets, which results in the reduction of the 

number of the rules of the constructed fuzzy system, and thus its complexity.

The use of gradient descent methods guarantees convergence to a "local minimum" making the 

optimal solution close to the initial solution and hence there are no guarantees that will succeed 

in achieving the best approximation. This is the reason to indicate this step as optional, because 

the expected improvement in the solution will not be very significant for many applications, 

especially if there is more interest in the linguistic description of the rules.

Note finally that using optimisation methods such as gradient methods to define the modal 

values of the antecedents/ consequences means that the resulting model of the control system is 

highly dependent on the available training data.
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3.13 Summary

In this chapter a small introduction to the basic theory of cluster analysis is presented. 

Investigation of the most basic and widely used fuzzy cluster algorithms such as "hard" 

clustering, fuzzy c-means, Gustafson-Kessel and fuzzy maximum likelihood estimates is 

undertaken. Their advantages and disadvantages are discussed as well as their possible 

applications in identification problems based on input/output mapping data. The effect of 

normalisation to the clustering methods is also pointed out and therefore its use or not in 

different types of cluster analysis algorithms is discussed. A well-known method called 

"mountain" is briefly presented and proposed as the one to determine and define the number 

and the approximate positions of the cluster prototypes. The generation of the fuzzy sets out of 

the projection of the cluster centres and variance is also presented. Merging technique to 

minimise the number of generated membership functions is proposed. A systematic 

methodology to construct an identification method of fuzzy control strategies based on 

availability of input/output mapping data is also proposed. Some points about the proposed 

method are finally discussed. In the next chapter the proposed method is applied to identify an 

underwater vehicle's control strategy in terms of avoiding objects.
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4
Generation of fuzzy rules for 
"Avoiding Objects" Control

Strategy using 3-D 
input/output data space

4.1 Introduction

In Chapter 3 Section § 3.11 an algorithmic methodology is proposed to identify fuzzy control 

strategies using any n-dimensional input-output space. In this Chapter the proposed methodical 

steps, are applied to identify an underwater robots' (GARBI) control strategy to avoid objects 

(Figure 4.1). This application involves one of the most common cases in robot navigation 

problems. The objective, therefore, is to identify the fuzzy rules that the operator uses to 

construct the control surface.
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The chapter is constructed as follows: in Section § 4.2 the algorithm is applied. Analytically, in 

Section § 4.2.1 the data samples and construction of the control surface is defined. In Section § 

4.2.2 the mountain clustering method is applied to define the number and the positions of the 

cluster's prototypes. Both Gustafson-Kessel method and Fuzzy C-Means method are applied in 

Section § 4.2.3 and Section § 4.2.4 respectively. Two cases are investigated, in the first case the 

initial number of prototypes is considered as five, whereas in the second case the algorithm is 

applied for five and nine initial prototypes (Section §4.2.4.1 Section § 4.2.4.2). In Section § 4.3 

the results are discussed and finally a brief summary of the chapter is presented in Section § 4.4.

z-*

Y

Figure 4.1 Distance d0 and angle 6 as the input variables for obstacle avoidance

4.2 Identifying a control strategy for object avoidance

In this Section the identification of the control strategy for object avoidance of GARBI is 

presented. This case study considers only the XY surface of the robots navigation. The steps 

that are applied according to the algorithmic methodology discussed in Section §3.11 are as 

follows:
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4.2.1 Definition of data samples and construction of the control surface

The strategy of the output control action is based on two inputs: distance d0 and angle 0° 

between the robot and the objects. Therefore, the multidimensional input/output space is 

constructed by two-inputs and one-output variables. Thus from Equation 3.36, the input matrix 

is defined as in Equation 4.1

where C/E5R 2

and for Equation 3.37 and 3.39 the output vector is defined as in Equation 4.2

Y = [CtrlAction]=[y(3l) ,y(32) ,...,y(3400) \ (4.2)

For the distance d0 and angle 6° input variables, the vectors for 400 observations are 

constructed for Equation 3.38 as in Equation 4.3

0 = 10<2,,»0<2,2>,->0<2,400)J (4-3) 

and therefore the data matrix Z of Equation 3.40 is constructed as in Equation 4.4.

r d d
°(1,1) "(1.2) "(1.400)

= ^(2,1) ^(2,2) ' • ' ^(2,400)

(3,1) 7(3,2) • • ' 7(3,400)

(4.4)

Simulating the operator's control actions using the yaw model of GARBI, developed in Chapter 

2, generates the data. Therefore the data is distributed in 3-dimensional space as illustrated in 

Figure 4.2. The co-ordinates are defined by the distance d0 the angle 0° and the control action. 

The domain of the distance d0 is within 10m, for the port side of the robot the angle 9° is 

within [0°,-108°] and for the starboard side it is within [0°,108°] and the control action is a
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percentage of the power of the propellers within [-100%,100%]. Note that the minus sign for 

the power means that the propeller(s) is turning in reverse. Thus, the sign of the propellers T, 

and T2 is the same when the robot has to move forward or backwards, minus for TI and plus for 

T2 when the robot has to turn left, plus for T, and minus for T2 when the robot has to turn right. 

Using the generated data the control surface for the propeller T, is constructed as illustrated in 

Figure 4.3. The input co-ordinates are defined by equally distributing distance d0 and the angle 

6° axis in 20 points for each.

Data Distribution in 3-dimentional space Data Distribution in 3-dimentional space

Angle & Control Action Data Distribution
-&-

%*, • - •

f •*:

^uo ^120 ^Too 55 55 55 -20
Angle 9

Figure 4.2 Data distribution in 3 and 2 dimensional space
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Control Surface

Angle 6 Angle 6

Figure 4.3 Control surface of the control action according to distance d0 and angle 0°
measurements

4,2.2 Mountain Clustering method to define the number and the positions of 

prototypes

Applying the Mountain Clustering Method as explained in Section § 3.7.1, three groups of 

mountains (according to their height) can be observed from Figure 4.4 to Figure 4.6 i.e. very 

high mountains {119.40, 98.88}, high mountains {48.18, 42.50,40.87} and low mountains 

{28.05, 16.66, 14.92, 9.46}. Therefore, the proposed number of candidate prototypes could be 

either two (considering only the group with very high mountains) or five (considering both 

groups with very high and high mountains). As two clusters have been tested and found to be 

insufficient to describe the non-linear input-output mapping of the data, five cluster centres are 

selected to be used as the initial number for the Gustafson-Kessel and FCM algorithms. These 

are the two case studies described in Section § 4.2.3 and 4.2.4.1. The five prototypes resulting 

from the mountain method are illustrated in Figure 4.7 and are used as the initial ones for the 

FCM algorithm. Moreover, as another case study the third group of the mountains is considered 

and therefore the nine cluster centres illustrated in Figure 4.8 are used as the initial prototypes 

for the FCM algorithm as described in Section § 4.2.4.2. Note finally that the grid lines used in 

the mountain method appear every l/6th of each dimensional scale and therefore the number of 

intersections is 1.7 x 30x 33.4 = 1603 which means very high density.
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High 119.4098

Control Action
-50

-100 
150 

-100 -200 An9'e

High 98.8856

Control Action -50 -150
-100 -200

-100

Angle

-50

High 48.1882

Control Action
-100 -200 Angle

Figure 4.4 Graphical representation of first to third mountains (prototypes) together with their
Heights
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High 42 5018

Control Action
-50

-100

-100 -200
-150

Angle

High 40.8734

Control Action

Control Action .50 -150
-100 -200 Angle

Figure 4.5 Graphical representation of fourth to sixth mountains (prototypes) together with
their Heights
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High 16.6537

Control Action
Angle

Control Action .50
-100

-150
-100 -200 Angle

Figure 4.6 Graphical representation of seventh to ninth mountains (prototypes) together with
their Heights
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Cluster Centres after Mountain Method
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Figure 4.7 The five prototypes (marked by *) identification using the Mountain Cluster Method 
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Cluster Centres after Mountain Method
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4.2.3 Applying Gustafson-Kess el method and conducting the rest of the steps of the 

proposed algorithmic approach

The Gustafson-Kessel algorithm is applied to detect the cluster centres of the data as illustrated 

in Figure 4.9. The data have been normalised using Equation 3.25. The number of prototypes is 

defined as five as discussed in Section § 4.2.2. As explained in Section § 3.6.1 the covariance of 

the pattern classes in the data can define ellipsoidal patches. The eigenvectors and eigenvalues 

of the covariance matrix define the ellipsoids in the 3-dimensional input-output space as in 

Equation 3.21. These ellipsoids are shown in Figure 4.10 to Figure 4.12 in all combinations of 

2-dimensional planes i.e. d0 -9°, d0 -Ctrl action, 9°-Ctrl action respectively. The ellipsoidal 

are projected into the input (distance d0 and angle 0° ) and output (Ctrl action) axes to form the 

fuzzy sets. These projections create symmetric membership functions as explained in Section § 

3.9 and shown in Figure 4.13(7) and Figure 4.\4(i) with the peak point of the cluster centres and 

the left and right fractions defined as in Equation 3.30 and Equation 3.31. Note that to obtain 

full coverage of the input-output space, two modal values are added to the extremes of each 

universe of the discourse.

The membership functions in Figure 4.l3(i) are merged considering the closeness between 

them, regarding the number of the prototypes that are defined using the mountain clustering 

method and observing their linguistic interpretation. Thus inFigure 4.\3(a,ii) five fuzzy sets are 

generated which linguistically implies five different distances such as Very Far (VF), Far (F), 

Close (C), Near (N), Very Near (VN). In Figure 4.\3(b,ii) the generated fuzzy sets have four 

different angles zones i.e. Front Left Zonel (FL Zonel), Front Left Zone2 (FL Zone2), Left (L), 

Back Left (BL). Note that the two triangular membership functions that are applied for high 

values of the angle universe of discourse do not have very high degree of overlapping 

(approximately 70%). However, it was decided that they should be merged as in the Back Left
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zone the control action is not so significant for the controller to avoid objects as the vehicle 

mainly moves in the forward direction.

For the output control actions, singletons generated from the peak values of the membership 

functions were constructed after merging the initial fuzzy sets resulting from the projected 

cluster prototypes and ellipsoids as illustrated in Figure 4.14. It was decided that singletons 

would be used as it is recommended in fuzzy control systems producing faster processing time 

(Espinosa and Vandewalle, 1997), (Jantzen, 1998). Moreover, it makes it easier to improve the 

performance of the fuzzy system using optimisation methods such as Gradient method as 

introduced in Section §3.11.

Defining the linguistic meaning of the generated fuzzy sets, the rule table can be constructed as 

in Table 4.1. The singleton value -100 represent the control actions that drives the vehicle 

Very Fast Backwards (VFB) and Turning the vehicle Very Fast Right (TVFR). The next three 

singletons value -52.19 , -23.61 and -9.35 are used for Turning the vehicle Fast, Medium 

and Slightly Right (TFR), (TMR), (TSR) respectively. The positive values of the singletons i.e. 

50 and 9.27, define the action to Go Forward with Fast (GFF) and low (GF) speed 

respectively.

The diagonal equality of singletons is a standard way in design rule base table in fuzzy control 

systems. The table is constructed setting the linguistic labels in order. Thus, as can be observed 

from Table 4.1 the input referring to the distance is positioning from VN to VF and the input 

referring to angle is positioned in order from FL to BL.

To define the control action of the propellers, the Takagi-Sugeno (T-S) fuzzy system is used 

where the defuzzification obtained using Equation 3.47. Therefore the resulting control surface 

and control output data distribution (Figure 4.15) produced by the Fuzzy System uses the 

membership functions and singletons generated by the G-K method as well as the rule table
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(Table 4.1). The input values of the distance d0 and the angle 6° are the same as in Equation 

4.1.

The average percentage error (APE) is employed as a performance index (Jang et al, 1997) 

defined as in Equation 4.5.

- (4.5)

where P is the number of the input/output data, T(i) is the desired output data and O(i) is the 

predicted output data. The APE is therefore 0.0586% that means that the data of resulting fuzzy 

control action Figure 4.15 is very close to the original ones as defined in Equation 4.1 and 

illustrated in Figure 4.2.

To improve the performance of the constructed Fuzzy Control System the gradient method is 

applied to re-optimise the singletons and the parameters of the membership functions as 

explained in the 9th step of Section § 3.1 1 and Appendix D.

When the aim is to optimise only the singletons, the initial values of the singletons are those 

defined in Table 4.1. The final optimal values after 120 iterations are as in Table 4.2. The 

resulting control surface and control output data when the singletons are optimised are 

illustrated in Figure 4.16. The APE in this case is 0.0519% which means that some small 

improvement is obtained using gradient method.
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Data after Normalisation & Cluster Centres (+) from G-K algorithm
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Figure 4.9 The prototypes (marked with +) identification using Gustafson-Kessel clustering
algorithm in 3-dimensional space
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Ellipsoid Cluster Centers from GK algorithm (Norm Data in 3 plane - Ctrl Act)

1.5

1

0.5

0i«
§ .1

-1.5

-2

o|4 0
!ap«4& cTiKi O a 

.a.**-•-•fcW^NTS <*«> co . .-(, 
» iHS o i §"<» o4>, o a, A
0 | 7^*=C - 
a S\ ° ———— V*f*.o£ 

#op 09~fi-

O J ° '"Q4ood o 0 f.

%r.i ±

cfca 8

-2 -1.5 -1 -05 0 0.5 1 1.5 2 
Angle 8

Ellipsoid Cluster Centers from GK algorithm (Denorm Data in 0 plane - Ctrl Act) 
50 e————,————,————.————r-e——,————.————,————,——

Oik &8 o

%>": o
p o a> e ^

(B o £<

o .ft o
i° i

r'?'

-180 -160 -140 -120 -100 -80-60-40 -20 0 
Angle G

Figure 4.12 The prototypes together with their ellipsoids using G-K Method in angle-Ctrl
action plane

MFs coming from G-K cluster projection in d

1 2345678 

MFs coming from merging of GK clusters in d

123456789 10

MFs coming from G-K cluster projection in

(a)
Figure 4.13 Membership functions in the input 

of cluster prototypes and their ellipsoids,

160 -140 -120 -100

MFs coming from merging of GK clusters in

180 -160 -140 -120 -100 -80-60-40-20 0

0)

axes, generated initially (i)from the projection 
and finally after the merging method (ii)

4-15



Chapter 4 Generation of fuzzy rules for "Avoiding Objects" Control Strategy using 3-D data space

MFs coming from G-K cluster projection In Ctn action

(i)

Singletons coming from the merged GK cluster centers In Ctrl Action

(Hi)

Figure 4.14 The projected cluster prototypes and ellipsoids (i) that merged (ii) and generate
the singletons in the output axis (Hi)
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Table 4.1 The Rule Base of the generated FLC in tabular form
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Fuzzy GK Control Surface Data Distribution in 3-dimentional space (GK Method)

Fuzzy GK Control Surface Data Distribution in 3-dimentional space (GK Method)
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Control Surface (G-K & Gradient Descent Method) Data Distribution in 3-D space (G-K I Gradient Descent Method)
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\\ e
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Very 
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-82.81
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TMR 
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Back Left

TMR 
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TSR 
-15.22

GFF 
49.67

GF 
7.51

GF 
6.50

Table 4.2 Optimised Singletons using Gradient method

4.2.4 Applying Fuzzy C-Means method and conducting the rest of the steps of the 

proposed algorithmic approach

Two different cases are investigated in this section regarding the definition of the cluster's 

number and their initial values using the mountain method. The first case uses five prototypes 

and the second nine respectively. Note that in both cases the fuzzy sets are formed by projecting 

the cluster centres into the input (distance d0 and angle 6° ) and output (Ctrl action) spaces. 

The resulting membership functions are triangular with the peak point as the cluster centre and 

the left and right fraction defined from the neighbouring cluster centres as described in Section 

§ 3.9. The merging method for the membership functions is applied as discussed in Section § 

3.10 i.e. considering their proximity, the definition (using the mountain method) of the number 

of prototypes and the linguistic interpretation. The use of singletons and the design of the rule 

base construction are as discussed in Section § 4.2.3. The Takagi-Sugeno model as in Equation 

3.47 is also applied to define the control action of the propellers. The input data i.e. distances 

d0 and angles 6° are used as in Equation 4.1 in the application of the fuzzy system that 

generates the output of the control action and thus the control surface.
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The identification results are presented for the first case in Section §4.2.4.1 and for the second 

case in Section § 4.2.4.2.

4,2.4.1 Five prototypes

In this case the five prototypes resulting from the mountain method (seeFigure 4.7) are used as 

the initial ones for the FCM algorithm. The resulting cluster centres from this algorithm are as 

illustrated in Figure 4.17. Figure 4.18 (i), (ii) and (in) illustrate the projected clusters 

constructing the membership functions in distance d0 , angle d° and Ctrl action axis 

accordingly. After applying the merging method, the final membership functions are four for 

both inputs and five for the output (see Figure 4.18 (a), (b) and (c). Thus the linguistic 

interpretation of the input membership functions for the distance d0 are named as Far (F), 

Close (C), Near (N) and Very Near (VN) and for the angle 0° Front Left Zonel (FL Zonel), 

Front Left Zone2 (FL Zone2), Left (L), Back Left (BL). For the output, the resulting singletons 

come from the peaks of the output membership functions. Thus their linguistic meaning are set 

as Very Fast Backward (VFB) (value -100 ), Turn the vehicle Very Fast Right, Fast and 

Medium Right (TVFR), (TFR), (TMR) (values -64.671, -64.671, -22.52 respectively) and 

Go Forward Fast (OFF) and low (GF) speed (values 50 and 5). The rules therefore are 

constructed as in Table 4.3. Simulating the control action for the set inputs the control output 

data and the control surface of the (T-S) Fuzzy System is defined as illustrated in Figure 4.19. 

From Equation 4.5 the average percentage error (APE) is APE = 0.0789%. This APE is very 

small and implies that the data of the fuzzy control action (Figure 4.19) is very close to the 

original ones (Equation 4.1).
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\. e
d0\
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Far.,.-""
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' TMR
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TVFR ,
,„,-•" -64.67

TFR ,"
„, -64.67

TMR
..,.••"-22.52

GVFF .,,
.,,-••"""" 50

left
TFR ..„.-•"

-64.67
TMR ,„-•"•

,,--""-22.52
GVFF 

50

GF „,--" 
,-""""" 5

Back Left

TMR .„-"' 
,-•"•-22.52

GVFF „-"'
.,,--"'"" 50

GF ,--'
..„,-•""" 5
GF ,--" 
,-•""""'" 5

Table 4.3 The Rule Base of the generated FLC in tabular form

4.2.4.2 Nine prototypes

When all the groups of the candidate prototypes are considered, nine initial cluster centres (see 

Figure 4.8) are applied in FCM algorithm. Thus applying this algorithm the cluster centres are 

redefined as illustrated in Figure 4.20. The generated membership functions in distance d0 , 

angle 9° and Ctrl action axis are as illustrated in Figure 4.21 ft), (ii) and (Hi) respectively. 

Applying the merging method the resulting membership functions are five for the distance 

named as Very Far (VF), Far (F), Close (C), Near (N) and Very Near (VN) as shown in Figure 

4.21 (a). Moreover, for the angle B° there are four resulting membership functions named Front 

Left Zonel (FL Zonel), Front Left Zone2 (FL Zone2), Left (L), Back Left (BL) as depicted in 

Figure 4.21 (b). Note that in Figure 4.21 (ii) although the four membership functions do not 

have a very high degree of overlap they present the same linguistic meaning and thus were 

merged i.e. FL Zone2 (Figure 4.21 (b)). For the output the number of the resulting membership 

functions after merging are six (Figure 4.21 (c)) where their peaks define the singletons as 

illustrated in Figure 4.21 (d). Their linguistic meanings for the vehicle's control action, 

however, are set as: Very Fast Backward (VFB) (value -100 ), Turning the vehicle Very Fast, 

Fast, Medium and Slightly Right (TVFR), (TFR), (TMR), and (TSR) (values - 73.91, - 48.20, 

-20.78, -20.78 respectively) and Go Forward with Fast (OFF) and low (GF) speed (values 

50, 17.33). Thus the rules are constructed as in Table 4.4. The resulting control surface and
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control output data distribution resulting from this (T-S) Fuzzy System is as illustrated inFigure 

4.22. The average percentage error (APE) (defined in Equation 4.5) is APE = 0.0817% that 

means that the data of the obtained fuzzy system (Figure 4.22) is very close to the original ones 

(Equation 4.1).
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GVFF ....-•' 
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,•""17.33
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Table 4.4 The Rule Base of the generated FLC in tabular form

Note that the values of TVFR, TFR in Table 4.3 are the same and the values of TMR, TSR 

Table 4.4 are also the same. This is due to the limited number of generated singletons. However, 

the values of TFR (Table 4.3) and/or TMR (Table 4.4) could form another two choices a) equal 

to TMR and/or TFR b) a value between TVFR and TMR and/or TFR and TSR respectively. All 

options have been tested with the applied ones (Table 4.3 and Table 4.4) appearing as the most 

significant.
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MFs coming from FCM cluster projection in d
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Figure 4.18 Membership functions and Singletons generated initially from the projection of 
cluster prototypes and their ellipsoids, and finally after merging method
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Real data, Mountain Centres & FCM
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MFs coming from FCM cluster projection in d
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Figure 4.21 Membership functions and Singletons generated initially from the projection of 
cluster prototypes and their ellipsoids, and finally after merging method
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Figure 4.22 Surface and data distributio n generated by the Fuzzy System using FCM method
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4.3 Discussion

As mentioned in the introduction of this chapter (Section §4.1) the case study is to identify a 

control strategy to avoid objects for GARBI underwater vehicle based on the operator's control 

actions data. In other words the objective of this case study is to identify fuzzy rules that the 

operator could use to construct the control action as in Figure 4.2 using the proposed 

methodology as discussed in Section § 4.2. Discussion of some of the applied steps of the 

method as well as the results is presented in this Section.

The graphical representation of the mountains using the mountain function assists the designer 

to make decisions about how many clusters should be considered for further analysis. Thus, 

executing the algorithm, a large number of clusters were defined initially but only the first nine 

were considered as the rest of them had very small and thus insignificant heights.

The proposed method splits after the 3 rd (a) step, of the proposed methodology described in 

Section § 3.11, in three different cases i.e. applying a) Gustafson-Kessel method (Section § 

4.2.3), b) FCM considering five cluster prototypes (Section § 4.2.4.1) and c) nine cluster 

prototypes (Section § 4.2.4.2). The resulting control surfaces in the first (see Figure 4.15), 

second (see Figure 4.19) and third (see Figure 4.22) case are very satisfactory as they are very 

close to the original ones in Figure 4.3 with APE = 0.0586%, APE = 0.0789% and 

APE = 0.0817% respectively. The most satisfactory result is that which results from using the 

Gustafson-Kessel method, due to its ability to optimise clusters with non-fixed topological 

structure on «-dimensional space. Note that the representation of non-linear data distributed as 

in Figure 4.2 is closer to ellipsoid than spherical shapes. However, even when the FCM was 

used as the cluster method, the result was still satisfactory in both cases of 4x4 (Table 4.3) or 

5x4 (Table 4.4) rule tables. Therefore, some flexibility exists in terms of the choice of the used 

methods listed in the proposed methodology.
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By applying the gradient method in the output singletons, the performance is improved with 

APE = 0.0519%. However, this improvement it is not considered very high regarding the time 

consumed for running the algorithm as well as the risk of the singletons losing their linguistic 

meaning. Moreover, the gradient method algorithm was applied also to the input sets and to 

both input and output sets. In both cases the degree of modifications to some of the membership 

functions is very high losing therefore their initial linguistic meanings. Furthermore, the 

resulting control surface is not significantly improved.

From the above analysis of the results, therefore, it can be remarked that by using clustering 

methods the generated membership functions are close to the "original" ones that the system 

could originate from. Additional optimisation improvements such as gradient method should be 

applied only in the consequent part of the rules and only if the APE improvement is 

significantly big.

The data was normalised when the G-K algorithm was applied since it uses an adaptive distance 

measure method and thus does not influence the result of clustering. However, when applying 

the FCM algorithm the data was not normalised due to the drawback of using Euclidean 

distance as discussed in Section § 3.8.

Finally note that the control surface defined in Figure 4.3 is an approximate one as the input 

output data are not exactly distributed equally (see Figure 4.2). Positioning the input data into 

equal points and the output data accordingly therefore construct the surface (Figure 4.3). 

However, the only use of this surface is just to compare visually the generated surfaces (Figure 

4.15, Figure 4.16, Figure 4.19, Figure 4.22) with the initial one (Figure 4.3).
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4.4 Summary

In this chapter the proposed systematic methodology to construct an identification method of 

fuzzy control strategies based on availability of input/output mapping data is applied in the 

"avoid object" problem for an underwater vehicle. The steps of the method are consequently a) 

collection of the simulating data of the control action, b) definition of the number and the initial 

approximate positions of the cluster prototypes using mountain method, c) used of Gustafson- 

Kessel and FCM method to obtain the actual positions of the cluster prototypes as well as their 

variance using a case of five and nine clusters, d) projection and merging of the generated fuzzy 

sets, e) construction of the rule table and finally f) use of gradient method to improve the 

performance of the resulting fuzzy control system (only in the case of the singletons resulting 

from G-K method). The results are presented analytically and discussed analysing the success 

and applicability of the proposed method in modelling of non-linear operating control strategies.
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5
The Design & Tuning of

Control Systems using Fuzzy
Logic & Taguchi Method

5.1 Introduction

This chapter presents an innovative approach to determine the optimal parameters of control 

systems in terms of robustness and tuning characteristics. The approach is based on the Taguchi 

Design of Experiment method that uses the minimum number of experiments, analyses the 

results of each performance criterion, investigates the significance of the parameters/factors of a 

system as well as factor interactions and their optimal levels with regards to their robustness. A 

design method of how to construct the fuzzy rules to tune the factor levels is also proposed. A 

method called a FCSS is then used to define the weights of the factor levels, which are related 

to the performance characteristics of the system. As an example the proposed approach is 

applied to the optimisation of parameter tuning used in fuzzy-like PD controllers. The
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qualitative and quantitative analysis of the interaction between the tuning parameters is usually 

not considered during the design of FLCs due to their complexity. This chapter introduces 

methods to overcome this difficulty. The results are satisfactory in terms of improvement in 

IAE and ITAE performance indexes. The proposed synergetic approach can be used as a 

general approach for any parameters of the FLCs, which may be of interest to be studied as 

tuning factors.

Fuzzy logic controllers (FLCs) have been one of the most successfully used controllers in a 

large number of complex and non-linear systems (Sugeno, 1985). The design of FLCs is based 

on the idea of mimicking the control actions of the human operator, which are implemented as a 

collection oflf-Then control rules that are directly encoded into a control algorithm. In this case, 

a priori knowledge from experts is used and the final controller performs nearly as well as the 

operator. The performance of this type of controller is successful where the system is non­ 

linear, partly known and difficult to describe by a "white box" model. However, the method is 

highly dependent on expert knowledge and sufficient knowledge of the operators), which may 

be problematic, since the human control skills can be difficult to verbalise or explain 

reasonably. Moreover, when the system is non-linear the parameters of the FLC need to be 

robust and tuneable. Therefore, a systematic way to design and/or modify FLCs needs to be 

applied. An approach is proposed in this thesis based on design of experiments and their 

analysis, including studying the results of the set performance criteria. This analysis is used to 

assist an analytical methodology to optimise the tuning parameters of a FLC with respect to 

their significance, their interacting effects and their robustness characteristics.

Robustness is a key aspect in fuzzy logic type controllers. Realising that exact knowledge of 

non-linear systems is almost never available, robust control methods take into account the 

uncertainty and disturbances of the system, measured by the performance description and try to 

make the controller less sensitive to parametric variations. In a FLC system, robustness reflects 

the ability to resist disturbances or abrupt chances in a fuzzy input. A number of factors may
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affect this property, including the control resolution, the partition of the input space that is 

related to the Scaling Factors (SFs), the number of control rules, and the membership functions 

of the fuzzy sets. Since the control resolution and the number of control rules are often 

determined by other design objectives, they can be difficult to use for improvement in 

robustness. This leaves modification of the partition of the input space of the SFs and of the 

fuzzy membership functions' factor levels as the most readily accessible approaches (Van et al, 

1994).

Tuning a FLC system is a fundamental problem due to its design structure, which involves a 

large number of degrees of freedom. Fuzzy and/or non-fuzzy logic techniques can be used for 

the tuning of fuzzy controller's (He and Xu, 1993). Due to the difficulties in building a tuning 

controller for non-linear and/or high-order systems, a robust tuning scheme for FLC's is needed, 

which would be applicable irrespective of the nature of the processes and the structure of the 

FLCs. Its overall design may include two levels of controller tuning. The first level of tuning is 

the determination of the shape and the number of membership functions, T and S norms, 

aggregation methods. The second level is the tuning of equivalent gain parameters. This 

includes the input and output SF's and other gains used in building the structure. Therefore, 

FLCs have no fixed design structures like conventional PI, PD, and PID controllers. However, 

its large number of degrees of freedom gives high flexibility to choose the tuning factors for the 

fuzzy system, and also demands systematic criteria to define the most suitable tuning 

parameters.

The proposed approach presented in this thesis is based on the synergy between the Taguchi 

Design of Experiments method together with the Fuzzy Combined Scheduling System approach. 

The technique of laying out the design of experiments involving multiple factors/parameters 

was first proposed by Ronald (Fisher, 1935). The method is popularly known ^factorial design 

of experiments. A full factorial design will identify all possible combinations for a given set of 

factors. When a significant number of factors is used, a full factorial design results in a large
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number of experiments. This is a time consuming procedure and in order to reduce the number 

of experiments to a practical level, only a small set from all the possibilities is selected. The 

method of selecting a limited number of experiments, which produces the most information, is 

known as a fractional factorial experiment. Although this method is well known, there are no 

general guidelines for its application or the analysis of the results obtained by performing the 

experiments. Taguchi envisaged a new method of conducting the design of experiments, which 

are based on well-defined guidelines. This method uses a special set of arrays called orthogonal 

array. These standard arrays stipulate the way of conducting the minimal number of 

experiments, which will give information on the significance and interaction of inhomogeneous 

factor levels (or tuning parameters of a FLC) that affect the performance characteristics of the 

system. The importance of each factor can be evaluated and defined according to the measured 

responses of the system's performance characteristics. The crux of the orthogonal array method 

lies in choosing the level combinations of the input design parameters for each experiment. A 

fuzzy combined scheduling system is then used to define the weights of the factor levels in 

relation to the performance characteristics of the system.

An investigation of how to optimise and tune the factors/parameters of fuzzy-like PD 

controllers is used as a case study in this work. A large number of fuzzy-like PD controllers 

have been developed (Mann and Gosine, 1999). These controller designs are based on the 

combination of Fuzzy Logic flexible systems and the well-known conventional PD structure 

(Astrom and Hagglund, 1995). There are no general methods for optimising and tuning the 

parameters of Fuzzy-like PD controllers, although several approaches have been proposed. 

Jantzen, (1998) uses the idea of starting with a tuned conventional PD controller and replaces it 

with an equivalent linear fuzzy controller. Some proposals are based mainly on the conventional 

PD controllers tuning criteria (Yager and Filev, 1994b), (De Silva, 1995). (Zheng, 1992) 

introduces a practical guide to tune SF's, peak values, width values and rules. Mudi and Pal, 

(1999) uses only the output SF for tuning. There are some basic rules for tuning, derived by
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Procyk and Mamdani, (1979). The most successful results are based on the combination of good 

experimental understanding of the controlled system and the use of the analogies between the 

FLC and PID controllers.

The rest of the chapter is divided into four Sections. In Section § 5.2, the proposed design and 

analysis of the FLC's parameters is presented. Analytically, in Sections § 5.2.1 and 5.2.2 the 

performance criteria as well as the independent parameters/factors are defined respectively. In 

Section § 5.2.3 the selection of the interactions of the factors that may influence the 

performance characteristics of the systems under study is discussed. The possible tuning control 

factor levels are defined in Section § 5.2.4. The number of experiments and the selection of the 

appropriate orthogonal array are defined in Section § 5.2.5. Moreover, in Section § 5.2.6 how to 

assign the factors to columns of the orthogonal arrays and the locating interaction columns is 

discussed. In Sections § 5.2.7 and § 5.2.8 the conduction and analysis of the experimental 

results is reviewed. In Section § 5.2.9 the optimal factor levels are verified. The way to 

construct the fuzzy rules to tune the factor levels is proposed in Section § 5.2.10. The fuzzy 

combined scheduling system approach is discussed in Section § 5.2.11. In Section § 5.3 some 

simulation studies are used to define the application of the proposed method. The results are 

discussed analytically in Section § 5.4. Finally the summary of the chapter is presented in 

Section § 5.5.

5.2 Steps in the design and analysis of the FLC's parameters (Factors) 

identification

A proposed systematic methodology for the identification of the tuning parameters (factors) of a 

FLC system is presented in this section based on a systematic analysis of experimental results 

together with the Fuzzy Combined Scheduling System approach. The proposed method involves 

the following steps:
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1. Definition of the performance criteria

2. Definition of the independent parameters/factors

3. Selection of interactions that may influence the performance characteristics of the systems

4. Definition of the possible tuning control factor levels

5. Definition of number of experiments and selection of an orthogonal array

6. Assigning the factors to columns of the orthogonal arrays and locating interaction columns

7. Conducting the experiment - replications as described by the trials in the orthogonal arrays

8. Analysis of the resulting data to determine the optimal factor levels

9. Verification (confirmation) of the optimal factor levels

10. Constructing fuzzy rules to tune the factor levels

11.Applying the Fuzzy Combined Scheduling System approach to define the weights of the 

factor levels

The above steps are discussed in detail in the following sections:

5.2.7 Definition of the performance criteria

In order to apply robust and/or tuning controller, its control strategy should be able to assess its 

own performance. There are two ways to measure these performances based on either local or 

global criteria. Local criterion measures the performance over a small set of plant states whereas 

the global one measures the overall performance. The problem in using a global criterion is 

firstly to choose an appropriate figure of merit (criterion) and secondly to relate a change in this 

figure of merit to a set of control actions that caused it. To overcome this, local criteria are 

chosen which make the problem of assigning credit to individual control actions easier and in 

the hope that an improvement in the local performance will also improve some global criterion. 

Thus the way that the performance is measured is critical in producing a successful
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implementation. The performance state vector ps = {pSi ,pSi ,...,ps } may be defined by direct 

measurements or by indirectly estimating its value via other related measurements(Mudi & Pal, 

1999). Finally the designer may define the space or the boundaries of values that the optimal 

performance criteria vector p0 = {p0i ,p0^ ,.-,p0m } is required to be within.

5.2.2 Definition of the independent parameters/factors

Before conducting the experiments, knowledge of the system under investigation is of prime 

importance for identifying the factors' vector / = {/,,/2 ,...,/,} likely to influence the 

outcome. These are the controllable factors that excite the performance criteria and can be set 

by the expert. For example, the influence in terms of step response characteristics in FLCs 

comes mostly from the SFs gains and/or the peak values of Membership Functions (MFs) which 

are known as the tuning factors (Yager and Filev, 1994b). Moreover, uncontrollable (or noise) 

factors may occur, which are sources of variations often associated with the operational 

environment. Overall performance should, ideally, be insensitive to their variation. One of the 

objectives of Taguchi's approach is to identify these controllable factors that minimise the 

variation in systems response while keeping the mean response on target (see Sections § 5.2.7 

and § 5.2.8).

5.2.3 Selection of interactions that may influence the performance characteristics of 

the systems

When the effect of one factor depends on the effect of another factor an interaction is said to 

exist (Fowlkes, 1995). In other words, an interaction occurs when the collective effect of two 

(or more) factors taken together is different from the sum of each of the factors taken 

individually. When such an effect occurs, it becomes difficult to predict the effect of a factor 

(and its level) selection. However, using orthogonal arrays, the interactions can be dealt with.
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Moreover, if no decision can be made about which interaction to study, then all of them (in 

pairs of the factors) should ideally be investigated. However, including interactions in the 

design requires more experiments and makes the analysis more complicated.

5.2.4 Definition of the possible tuning control factor levels

Once the choice of the factors that may be used to tune the controller is made, the number of 

possible tuning levels for each of these factors has to be defined. The selection of this depends 

on how a performance parameter is affected due to those different level settings. If the 

performance parameter is a linear function of these Possible Tuning Factor Levels (PTFLs), 

then the number of levels should be two. However, if it is not linearly related, a higher number 

of the PTFLs is needed. The latter is the most common case in real systems due to inherent non- 

linearity. These level values form the vector lj ={lf } ,lj i2 ,—Jf „}, which is defined by a

collection of local PTFLs in a manner where each of the collected levels approximates locally 

the optimal levels around different performance states. The PTFLs are usually defined asmin, 

max and some intermediate values that excite the response of the system lf e[/min ,/maj. 

When the number of these local levels increases, the neighbouring levels are closer and the 

shifting trajectory between them is faster and smoother. The determinations of which PTFLs are 

the optimal ones to be tuned come from the analysis of the experimental data for different 

performance criteria using the Taguchi method as will be explained in Section §5.2.8. Note that 

with this analysis, the factor levels may not be defined in terms of their actual optimal values 

but their direction to the subspace that they belong.

The current factor level vector lfc = {//cl ,//c2 ,...,//cfl } is comprised of the present levels' values. 

Thefazzy combined scheduling system method defines the weights of the levels related to the 

performance criteria characteristics of the system. This will be explained extensively in Section 

§5.2.11.
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5.2.5 Definition of number of experiments and selection of an orthogonal array

Orthogonal arrays are used in the Taguchi Method for designing efficient experiments and 

analysing experimental data (Roy, 1990). A primary advantage of orthogonal arrays is that for 

each level of any one factor, all levels of the other factors occur an equal number of times. 

Another advantage of orthogonal arrays is their cost efficiency since the design of an orthogonal 

array does not require that all combinations of all factors be tested. So, the experimental matrix 

can be smaller without losing any vital information.

To design an experiment is to select the most suitable orthogonal array, assign the factors to the 

appropriate columns, and finally, describe the combinations of the individual experiments. To 

select the most appropriate orthogonal array the number of experiment has to be defined. This 

number has to be less than or equal to the number of experiments, set by one of the standard 

Taguchi orthogonal arrays (Roy, 1990). If no interaction between the factors need to be 

analysed, then the minimum number of experiments is calculated based on the formula in 

Equation 5.1.

where NExp is the number of experiments, j is the number of factors, and /; is the number of 

levels for each factor / . /, -1 measures the degree of freedom (DOF), which is the number of 

independent measurements available to estimate sources of information. The number of degrees 

of freedom indicates the number of independent comparisons that exists within a set of data.

However, if interaction between two or more factors need to be analysed, then the number of 

experiments may increase. If the number of columns are inappropriate, then a larger orthogonal 

array with more experiments (rows) and columns has to be chosen. It is not necessary to fill all 

the columns of the orthogonal array due to its balancing properties and orthogonality. Thus the
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product of the degrees of freedom gives the number of experiments for each of the interacting 

factors. Therefore Equation 5.1 is expanded to include the interactions as in Equation 5.2.

where /„ is the number of interaction that needs to be analysed, fin indicates how many factors 

are analysed for each interaction. Note finally that the unit in both formulas (Equation 5.1 and 

Equation 5.2) is the degree of freedom associated with the overall mean regardless of the 

number of control factors to be studied.

When the number of experiment has been defined, the appropriate orthogonal array, described 

by the symbol Lrm , can be obtained from experimental design textbooks (Phadke, 1989), 

(Fowlkes, 1995).

5.2.6 Assigning the factors to columns of the orthogonal arrays and locating 

interaction columns

As illustrated in Figure 5.1, the orthogonal array has r rows and c columns. Each row represents 

a trial condition with factor levels indicated by the numbers in the row. The columns correspond 

to the factors specified in the study. The maximum number of factors that can be studied in any 

one experiment is equal to the number of columns in the orthogonal array used. The order in 

which the factors are assigned to the column is very important (Taguchi, 1987).
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Column

Experiment No

1

1 u.
Replications

Figure 5.1 The layout of an orthogonal array

Table 5.1 summarises the most widely used orthogonal arrays and the maximum number of 

factors that can be used in each array compared to the full factorial design. For instance, an L27 

orthogonal array (27 experiments) has the capacity to accommodate 13 factors at 3 levels, 

whereas in a full factorial study, over 1.5 million (3 13) experiments need to be undertaken.

Orthogonal 
Array

L4
L8
L9
L«
Lie

Ll8

L27

Maximum Number 
of Factors

3x2 Level
7x2 Level
4x3 Level
11x2 Level
15x2 Level

1 x 2 Level & 
7x3 Level
13x3 Level

Number of Trials 
in Full Factorial 

Experiment
8

128
81

2,048
32,768
4,374

1,594,323

Table 5.1 Some examples of orthogonal arrays compared to the full factorial experimental
design
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5.2.7 Conducting the experiment - replications as described by the trials in the 

orthogonal arrays

Once the orthogonal array has been selected, the experiments are conducted as identified by the 

level combinations of the array. If noise is included then the optimum conditions, insensitive to 

the influence of the noise can be found. This results in an expansion of the design since during 

each trial, more than one observation may be estimated; these are then called replications or 

replicates. Replication is a primary tool in analytical methods for studying stability and 

robustness of factor effects and for increasing the degree of belief in the results. It also plays a 

primary role in providing a measure of the magnitude of variation in the experiments due to 

noise variables. Moreover, replication helps to minimise the impact of noise variables on factor 

effects by enabling noise effects to be averaged out. Replication of trials is constrained by time 

and cost. It is necessary that all the experiments of the chosen orthogonal array be conducted.

5.2.8 Analysis of the resulting data to determine the optimal factor levels

Analysing the data is a systematic straightforward procedure that allows determining the 

optimum values of the control factor levels (including the interacting ones), and predicting the 

performance under these levels. The optimal values are based on the performance 

characteristics, which is the object of interest of the system response. A performance 

characteristic can be classified according to its target value: nominal-the-best, smaller-the- 

better, larger-the-better.
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5.2.8.1 Analysis of means

An average response (Analysis of means) for each factor level is used when the variance of the 

results of the replication is small. This comes from the following formula:

(5.3)

where Ft is the average effect of factor F at level /, R is the result of each trial / while factor F 

is at level /, q is the number of trials and lNoE is the number of experiments for each factor level

However when variations exist, the level(s) of the control factors that may contribute to reduce 

this variation can be identified, by Taguchi's use of Signal to Noise (S/N) ratio which reflects 

the amount of variation present. The S/N ratio is an objective function that takes both the effects 

of the mean and the variation into account. The S/N ratio is treated as a response of the 

experiment, which measures the level of each factor against the level of noise factors. The S/N 

ratio is therefore, a very useful way to evaluate the robustness of the system under study. Better 

performance, as measured by a high S/N ratio implies a smaller loss. There are several S/N 

ratios (77) available depending on the type of performance characteristic chosen. The smaller- 

the-better S/N ratio is defined by the following formula (Roy, 1990):

= -101og]0 ^
/=i

The average response and/or S/N ratio of the level of each factor can be plotted for a visual 

interpretation and is explained in Section § 5.2.8.3. Analysing graphically the average response 

and taking into account the type of performance characteristic for a particular system, the
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optimal values of the factor level can be investigated accordingly (Phadke, 1989). However, 

lower deviation is always indicated by a higher S/N ratio value and is used to investigate the 

optimal factor levels despite the performance characteristic that has been chosen as the 

objective function for the particular system (Roy, 1990). This is because the goal of the

, which is accomplishedexperiment for a 'smaller the better' situation is to minimise 

by maximising rj in Equation 5.4.

5.2.8.2 Analysis of Variance (ANOVA)

Taguchi replaces the full factorial experiment with a lean, less expensive, partial factorial 

experiment. Taguchi's design for the partial factorial is based on specially developed orthogonal 

arrays. Since the partial experiment is only a sample of the full experiment, the analysis of the 

partial experiment must include an analysis of the confidence that can be placed in the results. 

Fortunately, there is a technique called Analysis of Variance (ANOVA) (Fowlkes, 1995), which 

is routinely used to provide a measure of significance of each factor and any interaction effect 

together with their percentage contribution. The method does not directly analyse the data, but 

rather determines the variability (variance) of data or variance ratio called theF-ratio. This ratio 

is used to measure the significance of the factor under investigation with respect to the variance 

of all the factors included in the error term. TheF-value obtained in the analysis is compared 

with a value from standard Fisher's tables (F-tables) for a given statistical level of significance. 

The tables for various significance levels and different degrees of freedom are available in most 

statistics textbooks (Chatfield, 1983), (Roy, 1990). A more detailed explanation of the 

mathematical formulas that are used to define theF-ratio and the percentage contribution may 

be found in (Chatfield, 1983). These analyses provide the variance of controllable and noise 

factors. By understanding the sources and magnitude of variance, robust operating conditions 

can be predicted. This is one of the benefits of the Taguchi methodology.
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5.2.8.3 Graphical representation to present the optimal levels and analyse the factor's 

interactions

The effects and the interactions of factors used in the experiments can be presented graphically, 

estimated from the average values of the response variable at the different levels of the factor. 

This is defined by using a two-dimensional table from the observed data. To plot, for instance, 

the interaction graph between two factors A x B the table shown in Table 5.2 is prepared.

Level of 
Factor A

A,

A2

Level of Factor B

B,

2

I>4«, 
1=1

2
2

Z>v,
r=l

2

B2

2

2>^ ;=i
2

2

Z>v,
;=1

2

Table 5.2 Two-dimensional (able used to calculate the average value of the response variable
at the different levels of each factor A, B

In Table 5.2 the rows correspond to the levels of factor^, the columns correspond to the levels 

of factor B, and entries correspond to the average or S/N ratio response for the particular 

responses of the combinations of levels Al, A2, Bl, B2 of the factors A and B. Finally, 2 is the 

number of levels. Using the results of Table 5.2, the co-ordinates used for the plots are defined 

(Phadke, 1989).

Using these plots, the detection of the interactions can also be defined. Detecting interaction can 

easily be accomplished by observing the parallelism of the plots as described in Figure 5.2 

(Roy, 1990). Note that parallel plots imply no interaction. The measurement of interaction may 

defined geometrically as described in (Lochner and Matar, 1990).
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(a) (c)

Figure 5.2 Examples of interactions: (a) No interaction, (b) some interaction, (c) high
interaction

Note, that during the graphical analysis of these plots, if two or more levels of the same factor 

have equivalent maximum response their optimal choice is derived according to the following 

rules:

if the levels belong only to one interaction plot then any one of them can be used

if more than one interaction plot suggest these levels, then the one that belongs to the 

interaction plot with the highest order of significance is chosen.

if these levels belong to the interaction plot with the highest significance order (ANOVA 

table) as well as to some other one(s) then the one that is in common should be chosen.

In the cases studies presented in Section § 5.3 it can be seen the applicability of these rules.

5.2.9 Verification (confirmation) of the optimal factor levels

In the analysis of the results described in Section § 5.2.8, for each performance criterion, all the 

PTFLs are analysed in terms of their performance, significance and robustness and ranked 

according to their importance. Therefore, the Optimal Tuning Factor Levels (OTFLs) are 

defined around different performance criteria status and the rules can be easily constructed 

based on these levels. However, a new experiment with the OTFLs should be conducted to 

verify their optimum performance. If the performance is drastically different from the predicted

5-16



Chapter 5_____________Design & tuning of control systems using Fuzzy Logic & Taguchi method

one then there is high interaction among the parameters that have not been considered and 

therefore interaction analysis should be reconsidered.

5.2.10 Constructing fuzzy rules to tune the factor levels

When the OTFLs of the systems parameters are defined their robustness in the performance is 

obtained (Phadke, 1989). However, if the system's parameter changes and/or the system's 

environment become non-linear, construction of fuzzy rules is required to tune the factor levels. 

This construction of the fuzzy rules is designed considering the performance criteria related to 

the tuning and current factor levels. However, during the design of the rules some important 

aspects that have to be considered are proposed:

• Consistency of the control rules

When performance criteria contradict each other an inconsistency may occur. In this case 

two rules may suggest diverse action and it is necessary to compromise between the rules 

by taking into account the importance of the criteria. However, if all of the tuning rules are 

equally important the resulting output will respect all of these rules.

• Homogeneity of the control rule

In some cases two or more different performance criteria implies almost the same state. 

This means that in the analysis of the results the same factor levels may be considered more 

than once. This may affect the tuning action as the product of the rules may be more biased 

in that particular state. Therefore in this situation only one performance criterion should be 

considered.
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• Priority of the tuning factor levels

If there are large number of factors, the tuning of factor levels should be arranged according 

to their significance ranking, which is determined in the analysis of data considering only the 

first k important factors and their corresponding levels at a given instant in each tuning 

cycle (De Silva, 1995). It is important to note however that in some cases, factor(s) may 

have low significance but high interaction with other highly important factor(s). In that case 

the factor with low significance should also be considered for further analysis.

The vector of the OTFLs that is used to tune the factors to optimise each of the performance 

criterion is defined by lj = {l^ ,, lf 2 >••• J/, j} > wnere m, j are the number of the performance

criteria and the number of the tuning factors respectively. However, different levels from the 

same factor may be used to determine the global optimal factor level for all performance 

characteristics. Using the combined scheduling method these levels are combined, respecting 

their weight characteristics as explained in Section § 5.2.11.

Considering the performance criteria the definition of rules to determine which of the factors 

that should be tuned are constructed and have the form:

/?,.- IF pSm * p0a THEN tune factor f\ AND tune factor f2 AND... AND tune factor fk

The antecedent part compares the performance state characteristics with the optimal one, 

whereas the consequence part defines the updated tuning control factors resulting from the 

fuzzy combined scheduling system approach.

5.2.77 Fuzzy Combined Scheduling System (FCSS)

The Fuzzy Combined Scheduling System uses a discriminant function w = /(Low^, High^ ). 

This function defines the weight vector w = {wti , wc> , w,2 , wCi ,..., w, ., wc ,} of both current and

5-18



Chapter 5 Design & tuning of control systems using Fuzzy Logic & Taguchi method

tuning factor levels constructed from the weight values of the fuzzy sets of the Performance 

States. Therefore the construction of the fuzzy rules that defines the relationship between the 

Performance State in the antecedent and the current or tuning factor levels in the consequence 

are as:

If Performance State is Low Then factor level is lf 

If Performance State is High Then factor level is lf

Thus, for each performance state output, the degree of the current and the tuning factor levels 

are related to the degree of the Low and High Membership Functions (MFs) therefore defining 

their weights, accordingly. The shapes of the MFs, as well as their linguistic labels may vary 

and depend mostly on the set criteria. The overlapping between them is 50% to ensure that both 

rules are excited for each performance state values. Figure 5.3 shows the setting of these two 

MFs based on the criterion to minimise the value of a performance state. Therefore, when the 

performance state increases, the weight of the current level should reduce, whereas the weight 

of the tuning factor level should increase accordingly and vice-versa.

"Pie Lew and High Membership Functior

Figure 5.3 The Low and High performance state membership Junctions where the shapes are Z
and S respectively with 50% overlap.

If the discriminant function is such that w e [0,1] and more than one w is different from 0, then 

the transition from one factor level to another will be smooth. Therefore, each of the overall
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factor levels will be optimal even for a non-linear control system, since the weights themselves 

are functions of the performance states.

The overall optimal factor level vector resulting from the composite current and tuning factor 

levels is as in Equation 5.5.

LoF ={LoF[ ,LoFi ,...,LoF> } (5.5)

where LoF _ is the optimal level for each factor j, calculated as the weighted mean (Equation 

5.6).

L^ = -^—J————— (5 - 6)
i=l

and m is the number of the performance states.

In Equation 5.6 multi-performance-criteria is used where more than one objective are 

maximised and/or minimised. The resulting solution in this case is a single criterion despite the 

fact that in most multiple criteria approaches a group of solutions is obtained (Ertas and Jones, 

1996).

All the performance criteria are assumed to be of equal importance. However, if the significance 

of each criterion is not weighted equally the fuzzy performance criteria approach can be used 

for defining the fuzzy multi-criteria decision making (Sousa et al, 1999).

The tuning method is based on the availability of both current and tuning gain values. Section § 

5.2.8, explained how to obtain the optimal tuning factor levels. However, the current gains 

could imply either the actual SFs values or the representative ones when the dynamics of the 

system changes.
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5.3 Simulation Studies

5.3.1 Structure of Fuzzy like PD Controller

In this section a brief description of the Fuzzy-like PD control is presented. The optimisation 

and tuning of the parameters of these types of FLC forms the case studies for the proposed 

approach. The overall structure of the fuzzy-like PD controller is illustrated in Figure 5.4. The 

inputs of the controller are the error e and the change-of-error Ae. The control output is the 

variable u. The SFs of the inputs are KEp, KEd, and for the output Ku. The output of the FLC is a 

non-linear function of the inputs e and Ae, and its own SFs.

KE

e

i —

.

d
dt

'

KEd

FLC
f(E,AE)

U
Ku

Figure 5.4 Fuzzy-like PD Controller

The MF's for the FLC inputs and output are defined by the common interval [-1 +1]. Thus in the 

input, triangular MFs are employed (except the ones that are at the extreme ends) with 50% 

overlap, whereas in the output seven singletons i.e. [-1,-0.66,-0.33,0,0.33,0.66,1] forNB, NM, 

NS, ZO, PS, PM, PB are applied respectively. When no prior knowledge of the system is 

available this is the most natural and unbiased choice for MF's since the degree of co-operation 

between the corresponding rules is equal (Berkan and Trubatch, 1997)

The rule base is presented in table format in Table 5.3 (Reznik, 1997); (Driankov et al, 1993). 

The cell defined by the intersection of the rows and the columns represents a rule such as:

//e is NB and Ae is NB then u is NB
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In the inference engine the product and is implemented as the min operation. More information 

about the design aspect of these types of FLCs can be found in Yager and Filev, (1994b).

e\Ae
NB
NM
NS
ZO
PS
PM
PB

NB
NB
NB
NB
NB
NM
NS
ZO

NM
NB
NB
NB
NM
NS
ZO
PS

NS
NB
NB
NM
NS
ZO
PS
PM

ZO
NB
NM
NS
ZO
PS
PM
PB

PS
NM
NS
ZO
PS
PM
PB
PB

PM
NS
ZO
PS
PM
PB
PB
PB

PB
ZO
PS
PM
PB
PB
PB
PB

Table 5.3 The Rule Base in tabular form

5.3.2 Simulation

The fuzzy-like PD control system, as with other fuzzy control systems, assumes no 

mathematical model of a controlled process. Without knowledge of the system the optimal 

tuning parameters are investigated. Limiters employed in the input-output of the FLC avoid 

saturation.

The performance of the system under study is measured before and after tuning. For a clear 

comparison between them several performance measures such as percentage overshoot ppo , 

rise time pRT , settling time pST , Integral Absolute-Error (IAE) and Integral-of-time-multiplied 

Absolute-Error (IATE) (Ogata, 1990) are used. The two integral criteria IAE and ITAE are 

considered because simple visual observations of response curves may not always be enough to 

make good comparison. In IAE large errors contribute heavily whereas in ITAE large initial 

errors are weighed lightly and errors occurring late in time are penalised heavily. In this way 

IAE reflects the transient response and IATE reflects the steady-state response.

Matlab's SIMULINK and Fuzzy Logic Toolbox (MATLAB, 1999) are some of the tools that 

have been used for the simulation studies. Noise is generated using SIMULINK's Band-Limited 

White Noise driven by MATLAB's random generator. In each of the examples, a unit step is 

applied to simulate set-point control due to white noise as well as load disturbances.
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5.3.3 Example: Second Order System

In this example a second order process given as:

(5.7)
5(5 + !)

which represents the position control of an ac motor (Dorf and Bishop, 1995). The saturation 

range is given as: M min = -5 and w max = 25 (Lee, 1993).

Fuzzy-like PD is the control that is applied to the system. Individual SFs, which may be 

considered equivalent to the control gains, together with the peaks of the MFs, are the two cases 

of the parameters that are chosen for optimisation and tuning of the FLC.

5.3.3.1 First case: optimising and tuning SFs

Changing the SFs, changes the universe of discourse and the domain of the membership 

functions of the fuzzy values of the input/output parameters of the FLC. It has been reported in 

the literature (Yager and Filev, 1994b) that the performance of the controller is affected 

dramatically by SF modification. Moreover, the scaling changes even the meaning of the rules 

in the rule-base of the FLC. Figure 5.5 illustrates the tuning schedule for this type of controller.

As mentioned in Section § 5.1, different approaches have been suggested to define rules for 

tuning the FLC by manipulating the SFs. Mostly, these rules result in different performance 

criteria such as percentage overshoot ppo , rise time pRT , settling time pST by changes in the 

SFs. Therefore, for the Fuzzy-like PD controller the factor's vector includes the 

KEp , KEd and Ku gains as defined in Equation 5.8.

f={KEp ,KEd ,Ku } (5.8)

5-23



Chapters Design & tuning of control systems using Fuzzy Logic & Taauchi method

Optimiser for the 
current SFs

(if unknown or the
system's dynamics have

been changed)

Figure 5.5 Tuning the input/output gain constants of a Fuzzy-like PD Controller

The performance state vector includes the performance state measurements as defined in 

Equation 5.9.

Ps = (Psfo >PsRT ' PS,* } (5 -9)

Three different levels are selected for each factor. Therefore, the level vector for the factors 

KEp , KEd and KEU is defined in Equation 5.10.

' lff,KE,

where l f VK J f „• J f *•*- are determined in Equation 5.11 to Equation 5.13.
Jpt K-t p Jpi^^d ' Ja^^a

(5.10)

(5.11)

} } = {0.1,0.5,1} (5.12)

(5.13)
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These are actually the PTFLs. Note that the proportional and derivative factor levels lf KE and 

hpKEp chosen assuming that no priory knowledge exist in terms of there between relationship 

but as the minimum, maximum and between values that could applied in their universe of 

discourse. However, the output factor levels lf<K are chosen respecting the saturation 

properties.

From Equation 5.2, the minimum number of experiments that is needed for the parameter 

optimisation and all two-factor interaction analysis is 19. Thus, the orthogonal array that fits this 

number of experiments is the L27 (Phadke, 1989). Table 5.4 illustrates the L27 orthogonal array. 

The 1 st, 2nd and 5* columns are used for the three factors KEp , KEd and Ku respectively. The

3 rd & 4th, 6* & 7th , 8th & 11* columns are used for the corresponding KEp x KEd , KEp x Ku

and KEd x Ku interaction analysis. Note that not all the columns are used in this case. This is 

because only three factors and three interactions are being studied whereas the L27 orthogonal 

array can analyse up to 13 factors including the interactions. Three replications are performed 

for each experiment using white noise (with bandwidth magnitude ± 0.025 ), which is added 

into the input of the FLC. The results for each performance output are listed in Table 5.5. In 

analysing the data, the calculation for the average (mean) and the S/N ratio response for each 

trial/experiment is evaluated by Equation 5.3 and Equation 5.4 respectively and listed in Table 

5.4. Only the S/N ratio response for each performance characteristic is considered for further 

analysis of the results since the robustness of the controller's factors needs to be investigated. 

Considering only the S/N ratio results, the ANOVA analysis is the next step. Thus, the 

significance of the three factors and the interaction between them are measured together with 

their percentage contribution as illustrated in the 7th column of ANOVA Table 5.6. From this 

table it can be seen that all SFs (main factors) are significant (more than 97.5%) for all 

performance criteria and therefore all of them are used in the tuning rules. However, only the 

interaction between KEp xKEd is significant (90% to 99%) for both Psr and ppo<
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performance criteria. For a full explanation of how to obtain the ANOVA table refer to (Roy, 

1990).

Run
1
2
3
4
5
6
1
8
9
10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27

KEp
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
1
1
1
1

KEd
0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

3
1
1
1
2
2
2
3
3
3
2
2
2
3
3
3
1
1
1
3
3
3
1
1
1
2
2
2

4
1
1
1
2
2
2
3
3
3
3
3
3
1
1
1
2
2
2
2
2
2
3
3
3
1
1
1

Ku
1
3
15
1
3
15
1
3
15
1
3
15
1
3

15
1
3
15
1
3
15
1
3
15
1
3
15

6
1
2
3
1
2
3
1
2
3
2
3
1
2
3
1
2
3
1
3
1
2
3
1
2
3
1
2

7
1
2
3
1
2
3
1
2
3
3
1
2
3
1
2
3
1
2
2
3
1
2
3
1
2
3
1

8
1
2
3
2
3
1
3
1
2
1
2
3
2
3
1
3
1
2
1
2
3
2
3
1
3
1
2

9
1
2
3
2
3
1
3
1
2
2
3
1
3
1
2
1
2
3
3
1
2
1
2
3
2
3
1

10
1
2
3
2
3
1
3
1
2
3
1
2
1
2
3
2
3
1
2
3
1
3
1
2
1
2
3

11
1
2
3
3
1
2
2
3
1
1
2
3
3
1
2
2
3
1
1
2
3
3
1
2
2
3
1

12
1
2
3
3
1
2
2
3
1
2
3
1
1
2
3
3
1
2
3
1
2
2
3
1
1
2
3

13
1
2
3
3
1
2
2
3
1
3
1
2
2
3
1
1
2
3
2
3
1
1
2
3
3
1
2

PO
resp ave

0.29
0,45
0.91
0.15
0.43
046
0.22
0.24
0.25
2.09
14.23
1848
0.5

0.83
1.01
0.39
0.67
0.82
1237
28.23
3526
2.78
2.92
1.19
0.51
0.92
0.75

PO
resp S/N

10.72
685
0.71
1643
7.18
6,80
1251
12.20
11.77
-6.44
-23.07
-25.35
5.74
1.64
-0.19
8.10
3.39
1.67

-21.86
-29.01
-30.95
-889
-933
-156
5.79
068
242

Rise Time 
resp ave

21.4
7.6
3.2

30.35
16.8
11.8
41.3
27.8
22.5
3.4
1.4

052
5

3.2
23
7.5
52
4.4
1.6
0.9
1.47
23
1.2
1.1
3.3
24
223

Rise Time 
resp S/N
-26.61
-17,62
-10.10
-29.64
-24.51
-21.44
-32.32
-2888
-2704
-10.63
-292
568

-13.98
-10.10
-7.23
-17.50
-14.32
-12.87
-4.08
0.92
-3.35
-7.23
-1.58
-0.83
-10.37
-7.60
-6.97

Sel Time 
resp ave

40.4
14.4
5.1
569
31.6
22

77.1
51.7
41.8
5.1
4.8
3

9.3
5.1
4.2
14.1
98
8.3
5.9
6.1
29
5.7
3.3
2
6

4.5
4.1

Set Tims 
resp S/N
-32.13
-23.17
-14.15
-35.10
-29.99
-2685
-37.74
-34,27
-32.42
-14.15
-13.62
-9.54
-19.37
-14.15
-12.46
-22.98
-19.82
-18.38
-15.42
-15.71
-9.25
-15.12
-10.37
-602

-15.56
-13.06
-12.26

KEpiKEd KCpxKEd

Table 5.4 The L^ orthogonal array that is used to design the experiments together with the
response results

Run
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

KEp
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
1
1
1
1

KEd
0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

Ku
1
3
15
1
3
15
1
3
15

1
3

15
1
3
15

1
3
15
1
3

15
1
3
15
1
3
15

PO* (%) 
Trial 1
0.34
0.47
1.13
0.17
0.33
0.46
0.33
0.28
0.29
2.36
14.54
17.49
0.36
0.9

0.83
0.4
0.7

0.85
12.63
28.1
36.01
2.76
2.71
1.28
0.49
0.88
0.85

PO' (%) 
Trial 2
0.22
0.41
0.86
0.13
0.43
0.43
0.2

0.25
0.31
2.1

13.59
18.1
0.67
0.79
1.11
0.4

0.74
0.7

11.43
28.34
36.43
2.78
3.27
1.24
0.59
0.98
0.72

PO' (%) 
Trials

0.3
0.48
0.73
0.15
0.53
0.48
0.14
0.2

0.14
1.8

14.55
19.84
0.47
0.79
1.1

0.38
0.58
0.91
13.04
28.25
33.35
2.81
2.77
1.06
0.45
0.91
0.69

Rise time 
Triall
21.2
7.8

3.02
30.45
16.8
12

41.4
27.8
22.8
3.3
1.3

0.62
5.4

30.2
2.2
7.5
5.2

4.52
1.6
0.9
1.48
2.3
1.31
1.06
33
2.4

2.25

Rise time 
Trial 2
21.5
7.7

2.92
3022
16.8
11.8
41.3
27.8
22.5
3.3
1.4

0.52
5

2.92
2.3
7.4
5.1

4.51
1.65
0.92
1.5
2.3

1.31
1.06
3.3
2.4

2.15

Rise time 
Trial 3
21.2
7.5

2.91
30.35
16.6
11.7
41.2
27.7
22.5
3.3
1.3

0.51
5.3

2.92
2.2
7.5
5.2

4.31
1.7

0.91
1.5
2.3
1.31
1.05
3.3
2.4

2.16

Set time 
Trial 1

40
14

5.18
56.4
30.3
21.8
78.4
52

42.06
8.5
4.7
3.1
9.7
5.4
4.2
14.3
9.6
8.9
7.8
6.4
2.8
6

3.3
2.1
6.4
4.4

4.16

Set time 
Trial 2
39.9
14.4
5.1
55.7
31.4
21.8
78

52.4
42.8
7.8
4.8
3

9.6
5
4

14.5
9.3
8.4
5.7
7.8
2.9
6

3.5
2.3
6

4.8
3.8

Set time 
Trials
40.8

14
5.3

58.2
30.7
21

77.9
52.2
43.1

5
4.7
3

9.5
5.2
4

13.8
9.3
8.4
5.8
4.9
3.7
5.6
3.6
1.8
6.1
4.5
3.9

Table 5.5 Results for each performanc e after three replicates

5-26



Chapter 5 Design & tuning of control systems using Fuzzy Logic & Taguchi method

Factor Sum Square (SS) dof meansq(MSS) F-Ratio Significance % Contribution Rank
KEd

KEp

KEp x KEd

Ku

KEd x Ku

KEp x Ku

Error

ST

Factor

KEp

KEd

Ku

KEp x KEd

KEp x Ku
KEd x Ku

Error
ST

Factor

Kep

Ku

Ked

KEp x KEd

KEd x Ku

KEpxKu
Error
ST

1907.98

1827.38

518.61

180.93

94.26

64.55

132.34

4726.05

Sum Square (SS)

1785.38

469.00

189.15

97.86

70.20

58.14
117.34

2787.08

Sum Square (SS)

1384.25

273.06

186.62

112.63

49.98

43.49
60.21

2110.24

2

2

4

2

4

4

8.00

26.00

dof

2

2

2

4

4

4
8.00

26.00

dof

2

2

2

4

4

4
8.00

26.00

953.99

913.69

129.65

90.47

23.57

16.14

16.54

(a)

mean sq (MSS)

892.69

234.50

94,58

24.47

17.55

14.54
14.67

(b)

mean sq (MSS)

692.13

136.53

93.31

28.16

12.50

10.87
7.53

57.67

55.23

7.84

5.47

1.42

0.98

1.00

F-Ratio

60.86

15.99

6.45

1.67

1.20

0.99
1.00

F-Ratio

91.96

18.14

12.40

3.74

1.66

1.44
1.00

99%

99%

99%

95%

Significance

99%

99%

97.5%

Significance

99%

99%

99%

90%

40.37

38.67

10.97

3.83

1.99

1.37

2.80

100.00

% Contribution

64.06

16.83

6.79

3.51

2.52

2.09
4.21

100.00

% Contribution

65.60

12.94

8.84

5.34

2.37

2.06
2.85

1

2

3

4

6

7

5

Rank

1

2

3

5

6

7
4

Rank

1
2

3

4

6

7

5

(c) 

Table 5.6ANOVA tables corresponding to (a) PO, (b) rise-time, (c) settling-time responses.

The interaction plots are illustrated in Figure 5.6. After analysing these plots, the OTFLs for 

each performance criterion are defined and listed in Table 5.7. This is obtained by considering 

in the interaction plots the factor level's co-ordinates where the maximum response occurs. As 

can be observed from Figure 5.6 some of the factor levels have almost equal responses (shown 

by dashed circle in Figure 5.6) and therefore all of them are considered as the OTFLs. As 

mentioned in Section § 5.2.9 when more than two factor levels have equivalent maximum 

response, the one that is a member in the most significant interaction plots is chosen as the
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OTFLs. Moreover, if their significance ranking is the same then the one that is common 

between the interaction plots is chosen. For instance, in Table 5.7 (PO interactions) for factor 

KEd by looking at the most significant interaction KEp x KEd it can be deducted that both 

KE^ and KEd^ can be chosen as possible OTFLs. However, factor level KEdi is chosen as the 

OTFL since it is common between KEp x KEd and KEp x Ktt interactions.
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F/gwre 5.6 Interaction plots between factors KEd X Ku, KEP X KEd and KEP X Ka. (a), (b) & (c) 
resulting from PO S/N ratio analysis, (d), (e), & (f), resulting from rise time S/N ratio 

analysis, (g), (k) & (I) resulting from settling time S/N ratio analysis.

KEP ,
KEB2
KEpj
KEdl
KEjj
KE.3
Ku,
Ku2
Ku3

Co-ordinates where the maximum response appears and the significance order of
PO interaction

2
KEoxK,

*
*

1
KE,xKEa

*

*
*

3lOt
3

KE.XK.

«

*

OTFL

s

J
•/

Rise time interaction plot
3

KEaXK,

*

#

1
KEjXKE.

«
«
*
*

K&xK,

*

*
•

OTFL

^

^

Settling time interaction plot

*

*

1

1r

*

3
KE.XK.

*
*

r *

OTFL

^
•f

Table 5.7 The factor level co-ordinate s defined from interaction plot. Symbol # represent the
intersection between the studied interactions (columns) and their factor levels with the highest

response (rows). Symbol ̂ represents the OTFLs for each of the performance criteria.
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Thus, for the above analysis the vectors of the tuning factor levels for the first (PO), second 

(rise time) and third (settling time) performance criteria, PO, are as in Equation 5.14 to Equation 

5.16

?*/,,*/,,} = {0.1,1,1} (5-14)

?*,,**,} = {1,0.1,15} (5.15)

,AT,I/3 } = {1,0.1,15} (5.16)

and the resulting tuning rules are:

R,: IF pSpo >0 THEN tune factor KEd AND factor KEp AND factor Ku

R2: IF pSRT >0 THEN tune factor KEd AND factor KEp AND factor Ku 

R3: IF pSsr >0 THEN tome factor KEd AND factor KEp AND factor Ku

The performance states for each criterion ppo , pRr anApST is measured and the FCSS method 

is used to optimise the overall tuning factor level vector, that is LoF = {L,,,,^ , LOI;KE , L0pK } .

From Equation 5.6 the LOFKE ,LoF/;^ , LoF^ are defined by:

,a. 3 )
(5.19)
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The weight values come from the DOF of the S and Z MFs as described in Section § 5.2.11, 

Figure 5.3.

The results of the tuning performance are illustrated in Figure 5.7 and Table 5.8.

(c)

(e)

20 30 40 50 
time

(ft

Figure 5.7 Response (of Equation 5.7) resulting from the fuzzy PD controller. - Before Tuning,
- After tuning
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No 
Ex

a

b

c

d

e

f

Performance

Before Tuning

After Tuning

Before Tuning

After Tuning

Before Tuning

After Tuning

Before Tuning

After Tuning

Before Tuning

After Tuning

Before Tuning

After Tuning

Gain 
KEP

0.9

0.87

0.6

0.73

0.9

0.7

0.4

0.74

0.85

0.93

0.06

0.67

Gain 
KEd

0.01

0.18

0.05

0.32

0.02

0.4

0.2

0.28

0.9

0.37

0.04

0.36

Gain 
KEU

12

14.34

7

14.38

0.7

14.85

5

13.86

13

14.37

5

14.49

PfO

58.6

12.9

33.6

1.16

7.8

0.8

4.7

1.39

0.81

1.12

0.18

1.31

PRT

0.4

0.5

0.71

0.84

2.6

1.2

1.5

0.78

2.12

0.73

6.8

1.1

Psr

7.1

1.7

5.4

1.4

7.9

2.1

4.2

1.2

4.5

1.3

12.5

2

IAE

1.92

0.72

1.76

0.91

3.1

1.08

1.77

0.89

1.83

0.82

6.06

1.17

ITAE

15.45

4.68

12.57

6

22.01

6.93

11.33

5.79

12.36

5.41

81.08

16.73

Table 5.8 Tuning results of a fuzzy PD controller

5.3.3.2 Second case: optimising and tuning the input SFs together with the peaks of the 

MFs

The use of SFs for the tuning of the Fuzzy-like PD controllers is bounded, as their effectiveness 

is sometimes contradictory by the different performance criteria. For instance, the increase of 

the SF KEp decreases the steady-state error and the rise time but usually leads to a large 

overshoot. Tuning the peaks of the MFs can be a solution to the above problem. Zheng, (1992) 

suggests a simple and effective way of improving the stability of the system without affecting 

the responsiveness through shifting the peaks of the MFs. Moreover, by changing a peak value, 

the definition of only one fuzzy label is changed and hence it can only affect the rules that use 

this changed fuzzy label. However, the tuning of the peaks of the MFs does not always affect 

the response satisfactorily for instance in the case of tuning only the peak values of the change- 

of-error Ae labels. Using therefore both SFs and MFs as the tuning factors could be one of the 

solutions. The large number of combinations between the tuning factors as well as the analysis 

of the correlation between them are the key issues that need further investigation.
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In this study for the two inputs, error and change-of-error, the corresponding SFs and MFs' 

positions of the FLC are chosen as the four tuning factors to be investigated. Moreover, both 

IAE and ITAE are the performance criteria used to define the resulting effect of the tuning 

factors. Therefore the tuning factor vector is:

(5.20), Le\, Le2 , Lcel , Lce2 , Re,, Re 2 , Rce^, Rce

where KEp , KEd are the input gains of the error and change-of-error respectively and the Let , 

Le2 , Lce} , Lce2 , Re,, Re 2 , Rce} , Rce2 are the peak values of the four MFs (labelled as NM, 

NS, PS, PM) on the Left and Right side of the error and change-of-error universe of discourses. 

Note that the left and the right peak values are symmetrical. Thus, Re, k = -Le\ k ,

Re 2 k = -Le2 k , Rce} k = -Lce} k , Rce21 = -Lce2 k . Additionally, the performance state vector 

p = {ps ,ps } includes the performance state measurements of IAE and ITAE. Figure 5.8 

illustrates the SFs gain as well as the peaks of MFs tuning schedule type of controller.

Optimiser for the 
current SFs

(if unknown or the
system's dynamics have

been changed)

Figure 5.8 Tuning the input gain constants and the peak values of the Fuzzy-like PD Controller
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Three levels have been selected for each factor. Thus, the level vector for the tuning factors is 

defined as in Equation 5.21.

For the gains of the SFs three levels are defined as in Equation 5.22 and Equation 5.23.

lfpiKEp = [KEpi , KEP2 , KEp^} = {0.1,0.5,1} (5.22)

/ w = {KEdi ,KEdi , KEd} } = {0.1,0.5,1} (5.23)

For the peaks of the MFs three main cases are defined in terms of how they shift in the universe 

of discourse. The first one is when the peaks of the MFs are shifting close to the symmetric axis 

of the universe of discourse, the second one is when the peaks of the MFs are distributed 

symmetrically and equally in the universe of discourse and the third one is when the peaks of 

the MFs are shifting close to the min and/or max point of the universe of discourse. Thus, where 

the universe of discourse is between [-1,1] the actual set values of the MFs tuning factors are as 

defined in Equation 5.24 to Equation 5.31:

lfiLe = {Z<?,,,Ie, >2 ,Ze,>3 ,} = {-0.1,-0.33,-0.6} (5.24)

= {-0.26,-0.66,-0.86} (5.25)

3 ,} = {-0.1,-0.33,-0.6} (5.26)

23 ,} = {-0.26,-0.66,-0.86} (5.27)

>/,,Re, = {Re,,,,Re,,2,Re,,3,} = {0.1,0.33,0.6} (5.28)

If** = {Re2,,,Re 2,2 ,Re 2,3 ,} = {0.26,0.66,0.86} (5-29)
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'/„**> = {Rceu ,Rcel2 ,Rce^,} = {0.1,0.33,0.6} (5.30) 

'/,,to, = {Rce2l ,Rce22 ,Rce2 ,,} = {0.26,0.66,0.86} (5.31)

For convenience in the definitions, the two input MFs (error and change-of-error) are defined 

as MFe , MFce respectively. Moreover, their three positions are called as inner (In) MFei &MFcet ,

symmetrical (Sim) MFti & MF^ and outer (Out) MFei & MFCCi . Thus the PTFLs for the MFs can 

be defined as in Equation 5.32 and Equation 5.33 and shown in Figure 5.9.

MFe = {MFe< ,MFei ,MFei } (5.32) 

MFce = {MFcei ,MFcei ,MFcei } (5.33)

From Equation 5.24 to Equation 5.31 the factor levels MFe ,MFe ,MFe ,MFce ,MFce ,MFce are 

defined as in Equation 5.34 to Equation 5.39

> ={I*u ,Ze2>1 ,Reu ,Re 2il } = {-0.1,-0.26,0.1,0.26} (5.34)

i = {Le, 2 ,Le22 ,Rei 2 ,Re 2 2 } = {-0.33-0.66,0.33,0.66} (5.35)

j ={Zelj3 ,Ze2-3,Re li3,Rfi 2>3 }={-0.6,-0.86,0.6,0.86} (5.36)

MFcei = [Lceu , Lce^ , Rceu , Rce2 , } = {-0.3-0.4,0.3,0.4} (5.37)

MFCS2 = {Lce^,Lce2a ,Rce^Rce22 } = {-0.33-0.66,0.33,0.66} (5.38)

MFce3 = {Lce^,Lce2j,Rcel3 ,Rce2j} - {-0.6-0.86,0.6,0.86} (5.39)
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» fl
I 0.8 

| 0.6 

I 0.4 

S 0.2 

I 0

-1 -0.8 -0.6 -0.4 -0.2 0.2 04 0.6 0.8

-0.8 -0.6

Figure 5.9 Inner, Symmetrical and Outer membership functions

For the four tuning factors (two factors for each input parameter optimisation as well as their 

interaction analysis) the minimum number of experiments that is needed, including main factors 

and their interactions is 21 (evaluated by Equation 5.2) and hence L27 is thus the orthogonal 

array that fits this number of experiments. Table 5.9 and Table 5.10 illustrates this orthogonal 

array. In Table 5.9 the 1 st, 2nd, 5* and 9th columns are used for the four factors KEp , KEd , 

MFe and MFce respectively. Furthermore, the 4th, 7th , 10th , 11 th , 12th and 13 th columns are used 

for the interactions between KEp x KEd , KEp x MFe , KEp x MFa , KEd x MFt , KEd x MFce , 

MFe x MFce respectively. However, due to confounding in 3rd, 6th and 8th column only three 

interactions can be studied. (Confounding occurs when inability to determine which sets of 

interactions KEp xKEd & MFe xMFce , KEp xMFce & KEd xMFce and KEp xMFce & 

KEd x MFe may be affecting the response variable (Fowlkes, 1995)). The interactions that may 

be the most significant are the selected ones for further investigation. It was suspected from
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experimental trials that for both IAE and ITAE, the interaction between KEp xMFe , 

KEP x KEd and KEP x MFce are the most important. Moreover, these are confirmed by the 

ANOVA Table 5.12 and Table 5.13. Figure 5.10 illustrates the interaction plots between these 

factors in pairs. In the analysis of these plots the co-ordinates where the maximum response of 

the factor levels occurs are defined as the OTFLs and listed in Table 5.11.

Response (sin)

Interaction Kep x MFe (SIN)

-5.00 
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Kp1 Kp2 Kp3
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Figure 5.10 Interaction plots between factors KEp xMFe , KEp xKEd and KEp xMFce 
resulting from IAE (a, b, c) & ITAE (d, e,f) S/N ratio analysis
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Run
1
2
3
4
5
6
7
B
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

KEo KEd
0.1 0.1
0.1 0.1
0.1 0.1
0.1 0.5
0.1 0.5
01 05
0.1 1
0.1 1
0.1 1
0.5 0.1
0.5 0.1
0.5 0.1
0.5 0.5
0.5 0.5
0.5 0.5
0.5 1
0.5 1
0.5 1

1 0.1
1 0.1
1 0.1
1 0.5
1 0.5
1 05
1 1
1 1
1 1

3
1
1
1
2
2
2
3
3
3
2
2
2
3
3
3
1
1
1
3
3
3
1
1
1
2
2
2

KEpiKd

HFvtHfat

4
1
1
1
2
2
2
3
3
3
3
3
3
1
1
1
2
2
2
2
2
2
3
3
3
1
1
1

KEeuKd

MFe 6 7
In 1 1

Out 2 2
Sim 3 3
In 1 1

Out 2 2
Sim 3 3

In 1 1
Out 2 2
Sim 3 3
In 2 3

Out 3 1
Sim 1 2
In 2 3

Out 3 1
Sim 1 2
In 2 3

Out 3 1
Sim 1 2
In 3 2

Out 1 3
Sim 2 1
In 3 2

Out 1 3
Sim 2 1
In 3 2

Out 1 3
Sim 2 1

8 MFce 10
1
2
3
2
3
1
3
1
2
1
2
3
2
3
1
3
1
2
1
2
3
2
3
1
3
1
2

KEpxMF* KEpxMF* KEpxMFM

KEdiMFc* KEdiMF*

In 1
Out 2
Sim 3
Out 2
Sim 3

In 1
Sim 3
In 1

Out 2
Out 3
Sim 1
In 2

Sim 1
In 2

Out 3
In 2

Out 3
Sim 1
Sim 2

In 3
Out 1
In 3

Out 1
Sim 2
Out 1
Sim 2
In 3

KEpxMFe*

11 12
1 1
2 2
3 3
3 3
1 1
2 2
2 2
3 3
1 1
1 2
2 3
3 1
3 1
1 2
2 3
2 3
3 1
1 2
1 3
2 1
3 2
3 2
1 3
2 1
2 1
3 2
1 3

KEdiMFB KEcbMFc*

IAE IAE
1 3 reso ave reso S/N
1 3.9
2 18.93
3 10.92
3 3.76
1 26.94
2 26.66
2 593
3 7792
1 15,52
3 2.47
1 3.88
2 2.61
2 1.92
3 9.51
1 2.54
1 3.33
2 552
3 3.93
2 4.93
3 1.83
1 2.14
1 1.78
2 1.83
3 1.7
3 3.69
1 2.83
2 3.76

MF«(MF<»

-11.62
-25.54
-2076
-11.50
-28.61
-2852
-15.46
-3783
-23.82
-7.85

-11.78
-8.33
-5.67

-19.56
-8.10

-10.45
-14.84
-11.89
-1386
-5.25
-6.61
-5.01
-5.25
-4.61

-11.34
-9.04
-11.50

Table 5.9 The L& orthogonal array used to design the experiments together with

Run
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

KEo
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
1
1
1
1

KEd
0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

0.1
0.1
0.1
0.5
0.5
0.5

1
1
1

MFe
In

Out
Sim

In
Out
Sim

In
Out
Sim

In
Out
Sim

In
Out
Sim

In
Out
Sim
In

Out
Sim

In
Out
Sim

In
Out
Sim

response

MFce L=0
In 4

Out 19
Sim 11
Out 3.83
Sim 27.02
In 26.73

Sim 6
In 77.9

Out 15.59
Out 1.76
Sim 3.96

In 2.67
Sim 1.73
In 9.6

Out 2.56
In 3.43

Out 5.6
Sim 4
Sim 1.57
In 1.9

Out 167
In 1.77

Out 1.84
Sim 1.62
Out 1.51
Sim 3
In 3.99

ITAE
resp ave

11.88
337.16
107.99

10.6
704.49
699.27
24.33

602925
228.86

8.07
10.83
4.54
28

86.91
425
8.74
2637
13.19
91.44
2.42
5.06
2.06
254
2.06

176.95
7.67
14.42

ITAE
reso S/N
-21.50
-50.56
-40.67
-20.51
-56.96
-56.89
-27.72
-75.61
-47.19
-18.14
-20.69
-13.14
-8.94

-38.78
-12.57
-18.83
-28.42
-22.40
-3922
-7.68
-14.08
-6.28
-8.10
-6.28

-44.96
-17.70
-23.18

the dead time
results from the second case study

L=0.1
3.9

18.96
10.9
3.78

26.97
26.68
5.95

77.98
15.54
2.05
3.91
2.62
1.81
9.5

2.53
3.37
5.55
3.95
2.01
1.8

1.89
1.75
1.77
1.63
1.65
2.9
3.9

IAE
L=0.2

3.9
18.91
10.92
3.73

26.92
26.63

5.9
77.93
15.49
2.54
3.86
2.58
1.95
9.5

2.52
3.32
5.5
3.9
3.9
1.76
2.24
1.75
1.78
1.7

1.99
2.78
3.7

L=0.3
3.8

18.86
10.87
3.68

26.87
26.58
5.85

77.88
15.44
3.52
3.81
2.56
2.19
9.45
2.53
3.18
5.45
3.85
12.22
1.84
2.78
1.86
1.91
1.84
9.6

2.63
3.46

L=0
12.8

342.6
111

11.55
710.4
703.3
3.2.8
6001

232.67
2.67
11.92
5.02
2.05

88.35
4.52
9.25

27.56
13.91
2.17
2.62
2.61
1.97
2.45
1.83
1.59
8.7

15.67

ITAE
L=0.1
12.22

338.96
109

10.92
706.54
700.7
32.14
6045

229.83
4.02
11.19
4.64
2.28

87.44
4.25
8.96

26.79
13.44
4.69
2.27
3.55
1.86
2.28
1.87
2.1

8.12
15.18

L=0.2
11.58

335.35
107

10.29
702.5

697.94
31.39
6039

227.58
7.37
10.45
4.34
2.81
86.43

4.1
8.66

25.97
12.95
38.9
2.22
5.32
1.86
2.42

2
4.1
7.35
14.19

L=0.3
10.9

331.72
104.97
9.65

698.52
695.15

30.6
6032

225.36
18.22
9.76
4.16
4.05
85.43
4.11
8.08

25.17
12.46
320
2.59
8.77
2.56

3
2.54
700
6.5

12.64

Table 5.10 Results for each performance using different dead times L = Q, 0.1, 0.2, and 0.3
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KEd1
KEd2
KEd3
KED1
KEP2
KEP3
MF9 1
MFe2
MFe3
MFcel
MFM2
MF^

Co-orinates where the maximum S/N response appears
IAE Interaction Plots

KEP x MFe

*

*

KEP x KEd

#

*

KE P x MFce

*

*

ITAE Interaction Plots
KEP x MFe

*

#

KEp x KEd

*

*

KEP x MFce

*

*

OTFL

•

^

•/

/

Table 5.11 The factor level co-ordinates defined from a) IAE, b) ITAE interaction plots.
Symbol # represent the intersection between the studied interactions (columns) and their factor

level's with the highest response (rows). Symbol ̂ represents the OTFLsfor each of the
performance criteria

Four different dead times (i.e. 1 = 0, 0.1, 0.2, and 0.3 ) are used to investigate the controller's 

robustness in this matter. For these dead times the results for each performance output are listed 

in Table 5.10. As explained in Section § 5.2.8, analysis of data is evaluated using Equation 5.3 

and Equation 5.4 to calculate the average (mean) and S/N ratio response respectively for each 

trial/experiment and are listed in Table 5.9. However, only the S/N ratio response for both IAE 

and ITAE response characteristics are considered for further analysis of the results since the 

robustness of the controller's factors need to be investigated. ANOVA is the next step of the 

analysis of the S/N ratio results where the significance of the four factors and their interactions 

are measured and ranked together with their percentage contribution as depicted in Table 5.12 

and Table 5.13. From these tables it can be observed that the most significant factors for both 

IAE and ITAE performance criteria are KEp (55.96% and 42.11% contribution respectively) as 

well as KEd and MFe . However, from the above analysis results the factor MFce is not very 

significant, which means it could be avoided in consideration as a tuning factor. Nevertheless, it 

is included in the tuning rules as the number of the factors is very small and therefore all of 

them can contribute in the tuning rules without causing complication in terms of constructing
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them and computation time. Consequently if a large number of factors were under 

investigation, only the most significant ones would be included in the controller.

Factor Sum Square (SS) dof mean sq (MSS) F-Ratio Significance % Contribution Rank

KEp

KEp x MFe

MFe

KEd
KEp x Kd

KEp x MFce

Error

ST

1076.1

364.33

232.93

76.56
47.46

44.09

81.48

1922.95

2

4

2

2

4

4

8.00

26.00

538.05

91.08

116.47

38.28
11.87

11.02

10.19

52.83 99%

8.94

11.43 99%

3.76
1.16

1.08

1.00

55.96

18.95

12.11

3.98
2.47

2.29

4.24

100.00

1

2

3

5
6

7

4

Table 5.12 ANOVA table for IAE

Factor Sum Square (SS) dof mean sq (MSS) F-Ratio Significance % Contribution Rank

KEp

KEpxMFe

MFe

Ked

KEp x KEd

KEp x MFce

Error
ST

3692.05

2642.42

564.24

547.76

465.63

446.9

407.82
8766.81

2

4

2

2

4

4

8.00
26.00

1846.03

660.61

282.12

273.88

116.41

111.73

50.98

36.21 99%

12.96

5.53 95%

5.37 95%

2.28

2.19

1.00

42.11

30.14

6.44

6.25

5.31

5.10

4.65
100.00

1

2

3

4

5

6

7

Table 5.13 ANOVA table for ITAE

The evaluation of the above analysis is the vectors of the optimal tuning factor levels for the 

performance criteria under consideration. Thus, for the IAE and ITAE the OTFLs vectors are as 

defined in Equation 5.40 and Equation 5.41 respectively:

'/„ = ,S2 , MFKei (5.40)

(5.41)

where ££,„. =KEn,,KEld =KE,

and the resulting tuning rules are:

= MFtj , = MF
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R':IF Ps^ >0 THEN tune factor KEd AND factor KEp AND factor MFe AND factor MFce 

RI: IF pSaa >0 THEN tune factor KEd AND factor KEp AND factor MFe AND factor MFce

The performance states for each criterion pm , pKr and pST is measured and the FCSS method 

is used to optimise the overall tuning factor level vector, which defines the Equation 5.42.

L°r=^>L°^> Lo^^J (5.42)

From Equation 5.6 thel^ ,Z0/,^ ,LoFsilF >L0F,IF are defined by Equation 5.43 to Equation 

5.46.

(w. ,-KE,a + wc ,-
_ V <KEf ' _______ 'f) CK£p l

" KE
, , + Wr i ) + (W, , + W,, , ) IKK. ' c *-p I 7 v 'A-F. 2 L KR 2'

=
> + W • > + 2 + *ea 2 )

_ (545)

The weight values come from the DOF of the S and Z MFs as described in Section § 5.2.11, 

Figure 5.3.

The results of the tuning performance are illustrated in Figure 5.11 to Figure 5.15 and in the 

Table 5.14.
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A A! A /p^

(a)

(c)

(b)

(d)

Figure 5.11 Response (of Equation 5.7) resulting before and after tuning the fuzzy PD 
controller using different values of dead time (L) a)L = 0.3, b) L = 0.05, c) L = 0.15 and 

d) L= 0.25. — Before Tuning, —After tuning

L

0.30

0.05

0.15

0.25

Performance

Before Tuning

After Tuning

Before Tuning

After Tuning

Before Tuning

After Tuning

Before Tuning

After Tuning

Gain 
KEp

0.43

0.71

0.35

0.73

0.35

0.72

0.35

0.71

Gain 
KEd

0.05

0.45

0.75

0.60

0.75

061

0.75

0.60

Le,. 
Re,

0.06

0.09

0.265

0.17

0.265

0.175

0.265

0.165

L62, 

R62

0.2

0.27

0.6

0.4

0.6

0.41

0.6

0.41

Lee,, 
Rce,

0.36

0.12

0.4

0.22

0.4

0.23

0.4

0.226

Lce2,
RC62

0.6

0.31

0.73

0.46

0.73

0.45

0.73

0.47

PO

40.9

6.17

0

1.1

0

1.7

0

2.7

Rise 
Time

1.5

2.1

6.55

2.55

6.55

2.35

6.55

2.15

Set 
Time

49.3

6.1

12.4

3.95

124

3.7

12.4

3.2

IAE

5.05

1.91

3.74

1.83

3.74

1.84

3.74

1.86

FTAE

57.52

2.44

11.33

2.12

11.33

2

11.33

2.1

Table 5.14 Factor setting ofju==y PD controller before and after their timing
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Figure 5.12 a) MFs of the two inputs: error E and change-of-error CE with their peaks as set 
before tuning (see Table 5.14, 2"d row) and b) the control surface of the fuzzy PD

controller

1,

Figure 5.13 a) MFs after tuning with the ir peaks set as in Table 5.14, 3d row, and b) the 
corresponding control surface of the tuned fuzzy PD controller with L = 0.3

I..
X

(a) (b)

Figure 5.14 a) MFs of the two inputs: error E and change-of-error CE with their peaks as set 
before tuning (see Table 5.14) b) the control surface of the fuzzy PD controller set by the

input from the MFs of (a)
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(b)

(c)

I".

(d)

(e) (f)

Figure 5.15 a), c), e) MFs after tuning with their peaks set as in Table 5.14 andb) d)j) the 
corresponding control surface of the tuned fuzzy PD controller with L = 0.05, 0.15, 0.25.
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5.4 Discussion

The analysis described on this chapter involves eleven major steps, which can be grouped as: 

defining the performance criteria and factors together with their levels and interactions (step 1 

through to 4), planning a matrix experiment to determine the effects of the control factors (step 

5 through to 6), conducting the matrix experiment (step 7), analysing and verifying the results to 

determine the OTFLs (step 8), verification of the optimal factor levels (step 9), constructing the 

fuzzy rules to tune the factor levels (step 10) and finally developing the tuning engine using the 

FCSS(stepll).

The steps of the Taguchi methods can be easily processed using one of the available software 

packages. In this study the WinRobust ® program was used (WinRobust, 1995).

Taguchi Design of Experiments method is used as it:

• Provides a more efficient way of designing experiments using a minimum number of 

experiment using its Orthogonal Arrays,

• Provides a strategy that analyses and prioritises the significant factors, the factor levels and 

the inter acting factors,

• Provides a technique for sensible decision-making to define the tuning rules,

• Provides analysis of robustness of the factors,

• Gives a process that will provide a better understanding of the controller and the system.
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5.4.1 Performance analysis for thefuzzy-PD controller

5.4.1.1 First Case

Before the analysis of the results some clarification is needed. The fact that all the SFs are 

significant for all of the performance criteria means that all of them must be included in the 

structure of the controller as well as in the tuning rules. The interaction between KEp x KEd is 

significant for both ppo , and pST . This means that construction of the rules referring to these 

criteria needs to be applied in a way that both factors KEp and KEd should be change.

The performance of the tuning controller has been demonstrated by way of a long series of 

experiments whose results helped to establish some of its characteristics. Figure 5.7 shows the 

response of Equation 5.7 in different performance states. The order of Figure 5.7 (a) to (j) is 

based on high overshoot and low rise/settling time to low overshoot and high rise/settling time. 

The dashed line is the response before tuning and the solid line represents the response after 

tuning. Table 5.8, columns 3 to 5, show the SFs and columns 6 to 8, show the performance 

characteristics. The odd numbered rows refer to gain settings and response performances before 

the tuning method is applied, whereas the even numbered rows represent performance after 

tuning. Examining the 9th & 10th columns of the Table 5.8 it can be seen that the improvements 

in IAE and ITAE are at least 50% for all of the cases and confirms the suitability of the tuning 

method. Note that all of the tuning is done by a one-step procedure.

Observe that even in real systems such as the applied ac motor there is a trade off between 

overshoot and rise time in the results in experiment (c) & (d) in Table 5.8 both decreased 

simultaneously. Moreover, in example (a) & (b) the rise time increased a little which may be 

considered negligible.
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5.4.1.2 Second Case

In this case different values of the dead times (L) have been used to identify the controller 

performance. These values are different to the initial ones that have been used for the analysis to 

optimise and tune the input SFs. As a result the applicability of the method for tuning the factor 

levels having any initial values is demonstrated. Figure 5.11 shows the response of Equation 5.7 

before (dash line) and after (solid line) tuning the fuzzy PD controller.

Figure 5.11 (a) illustrates the performance results before and after tuning the fuzzy PD 

controller and the setting of the peaks of the MFs as well as the values of the SFs which are 

shown in the 2nd row of Table 5.14. The value of the dead time (L) is set as L = 0.3. Figure 5.12 

(a) and Figure 5.13 (a) illustrates the MFs before and after tuning respectively. Considering the 

results in Figure 5.11 and Table 5.14, 12* & 13 th columns, the performance of the controller has 

been improved more than 50% for the IAE and 80% for the ITAE.

In Figure 5.11 experiments (b) to (d) indicate the response when L = 0.05 in (b), L = 0.15 in (c) 

and L = 0.25 in (d). The initial (before tuning) settings for all dead times are identical for both 

input SFs and the peaks of the MFs as illustrated in the 4th , 6th and 8th row of the Table 5.14. For 

the setting of the MFs it can be seen from Figure 5.14 that they are almost symmetrically 

distributed on the universe of discourse and therefore the control surface is almost linear. After 

tuning both SFs and peaks of the MFs factors their values are defined as illustrated in Table 

5.14 rows 5, 7 and 9. Figure 5.15 shows the tuned MFs for all dead times together with their 

corresponding control surface. Note that in the case of L = 0.25 Table 5.14, 9th to 11 th columns 

and 8* to 9th rows, the improvement of both rise and settling time is very high where only small 

overshoot appears as can also be seen in Figure 5.11 (d). Finally, it should be noted that the
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control surface in Figure 5.15 (b), (d) & (f) are different to the steep1 surface in Figure 5.13 (b) 

which proves that the parameters of the MFs, thus the control action, change according to 

Equation 5.6 of the FCSS method.

5.5 Summary

This chapter presents a proposed systematic design and analysis of the FLC's parameters 

defined by eleven steps. The performance criteria as well as the independent parameters/factors 

are determined in the first two steps respectively. The selection of the interactions of the factors 

that may influence the performance characteristics of the systems under study is the third step of 

the procedure. The definition of possible tuning control factor levels, the number of experiments 

and the selection of the appropriate orthogonal array are the fourth and fifth steps respectively. 

The assignation of the factors to the columns of the orthogonal arrays and locating interaction 

columns are described in the sixth step. The experimental procedure and analysis of the 

experimental results is defined in the seventh step. The optimal factor levels are verified and a 

proposed way to construct the fuzzy rules to tune the factor levels is defined in the eight and 

ninth steps respectively. The construction of the fuzzy rules to tune the factor levels by using a 

proposed fuzzy combined scheduling system approach are the final two steps of the proposed 

systematic methodology. Two case studies are used for the application of the proposed method 

and the results are discussed analytically. In the next chapter the proposed approach is applied 

to optimise and rune the scaling factors for a fuzzy-like PD controller used in an underwater 

vehicle.

1 The surface has a steeper slope, or higher gain, near the centre of the table compared to the linear 

surface, but they have the same values pair-wise in the four corners (Jantzen, 1997)

5-47



Chapter 5_____________Design & tuning of control systems using Fuzzy Logic & Taguchi method

5.6 Reference

Astrom, J. K., and Hagglund, T. 1995. PID Controllers. 2nd end. Instrument Society of 
America.

Berkan, R. C., and Trubatch, S. L. 1997. Fuzzy systems design principles building Fuzzy IF- 
THENrule bases. New York: IEEE Press. 0780311515.

Chatfield, C. 1983. Statistics for Technology. 3rd end. 0-412-25340-2.

De Silva, C. W. 1995. Intelligent Control: Fuzzy Logic Applications.

Derimiggio, J WinRobust 1995.

Dorf, R. C., and Bishop, R. H. 1995. Modern Control System. 7th end. Addison-Wesley.

Driankov, D.,Hellendoorn, H., and Reinfrank, M. \993.An introduction to fuzzy control. Berlin, 
New York: Springer-Verlag. 3540563628 (Berlin). 0387563628 (New York).

Ertas, A., and Jones, J. 1996. The Engineering Design Process. 2nd end. NY: John Wiley & 

Sons, Inc.

Fisher, R. A. 1935. The Design of Experiments. Oliver and Boyd.

Fowlkes, Y. W. 1995. Engineering Methods for Robust Product Design Using Taguchi Methods 

in Technology and Product Development. 0-201-63367-1.

He, S-Z.,Tan, S., and Xu, F-L. 1993. Fuzzy Self-tuning of PID Controllers. Fuzzy Sets and 

Systems, 56, pp. 37-46.

Jantzen, J. 1997. A Robustness Study of Fuzzy Control Rules. Proceeding Fifth European 

Congress on Fuzzy and Intelligent Technologies, pp. 1222-1227,

5-48



Chapter 5_____________Design & tuning of control systems using Fuzzy Logic & Taguchi method

Jantzen, J., 15 May 1998. "Design of Fuzzy Controllers." Denmark: Technical University of 
Denmark.

Lee, J. Nov. 1993. On Methods for Improving Performance of Pi-type Fuzzy Logic Controllers. 
IEEE Transactions on Fuzzy Systems, 1, pp. 298-301.

Lochner, R., and Matar, J. E. Design for Quality, An introduction to the best of Taguchi and 
western methods of statistical experimental design. 1990. 0412400200.

Mann, G.,Hu, B-G, and Gosine, R. G. 1999. Analysis of Direct Action Fuzzy PID Controller 
Structures. IEEE Trans. on Systems, Man and Cybernetics, 29 (3), pp. 371-388.

Math Works MATLAB 1999.

Mudi, K P., and Pal, R. N. 1999. A Robust Self-Tuning Scheme for PI- and PD - Type Fuzzy 
Controllers. IEEE Trans. on Fuzzy Systems, 7(1), pp. 2-16.

Ogata, K. 1990. Modern Control Engineering. 2nd end. Prentice Hall Int. 0135987318.

Phadke, M. S. 1989. Quality Engineering using Robust Design. USA: Prentice-Hall 
International Inc. 0-13-745167-9.

Procyk, T. J., and Mamdani, E. H. 1979. A Linguistic Self-Organising Process Controller. 
Automatica, 15, pp. 15-30.

Reznik, L. 1997. Fuzzy Controllers. UK: Reed Elsevier pic. 0-7506-3429-4.

Roy, R. 1990. A primer on the Taguchi Method. USA: Society of Manufacturing Engineers. 0-

442-23729-4.

Sousa, J. M.,Kaymak, U., and Verbruggen, H. B. 1999. Performance Criteria: classical and 
Fuzzy Design. In: Verbruggen, H. B,Zimmermann, H.-J, and Babuska, Robert ed. Fuzzy

5-49



Chapter 5_____________Design & tuning of control systems using Fuzzy Logic & Taguchi method

algorithms for control. Boston: Kluwer Academic Publishers, pp. 159-183.

Sugeno, M. 1985. Industrial Applications of Fuzzy Control. New York: Elsevier Science Pub. 

Co.0444878297.

Taguchi, G. 1987. System of Experimental Design. New York: Kraus Int. Publications.

Yager, R. R., and Filev, D. P. 1994b. Essentials of Fuzzy Modelling and Control. New York: 

John Wiley. 0471017612 (acid-free).

Yan, J.,Ryan, M., and Power, J. 1994. Using Fuzzy Logic. UK: Prentice Hall International (UK) 

Limited. 0-13-102732-8.

Zheng, L. 1992. A Practical Guide to Tune of Proportional and Integral (PI) Like Fuzzy 

Controllers. Proc. FUZZ IEEE, pp. 633-641.

5-50



Chapter 6 ______________________Steering & Depth Control of an Underwater Vehicle

6
Steering & Depth Control of 

an Underwater Vehicle
(GARBI)

6.1 Introduction

This chapter presents the development of Fuzzy-like Proportional Derivative Controller (Fuzzy- 

like PD Controller) to control the yaw 9 and the depth z of GARBI underwater vehicle 

(Figure 6.1) in terms of keeping the path of the navigation to the desired one, and/or changing 

the path according to set point changes. This makes the navigation smoother and safer, the 

propulsion more economical and more accurate path-keeping.

Fuzzy-like PD Controller is a type of controller that is based on the combination of Fuzzy Logic 

and conventional Proportional-Derivative (PD) control techniques as discussed in Chapter 5. 

The main advantage of this type of controller is that they can be applied to systems that are non­ 

linear and where it is difficult to obtain a mathematical or other type of model. Note that the 

model developed in Chapter 2 describes the dynamics only in terms of rotation about the z-axis,
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fuzzy controllers, used in the structure of the Fuzzy-like PD Controller, is that they can be 

designed to apply heuristic rules that reflect the experiences of human experts. Moreover PD 

controllers can reduce overshoot and permit the use of larger gain by adding damping to the 

system. The derivative term can help to improve the stability of the system and makes it 

possible to increase the range of the other tuning parameters of the controller (Santos et al, 

1996). Fuzzy-like PD Controller is therefore employed, because it performs well in reducing 

disturbances and keeping the set point to the desired one as will be presented in the 

experimental results in Section § 6.9.

Figure 6.1 Photo ofGARBI underwater robot

Structure and parameter designs are important tasks during the building of FLCs. Structure 

design means to determine the architecture of a controller, the input/output variables of a 

controller, the format of the fuzzy control rules, and the number of rules. Parameter design 

means determining the optimal parameters for a fuzzy controller.

For the successful design of FLCs, there is a need to properly select the optimal input and output 

Scaling Factors (SFs), which scale up or down the entire universe of discourse. Due to their 

global effect on the control performance and robustness, input and output SF's play a critical 

role in the Fuzzy-like PD controller and they have the highest priority in terms of tuning and 

optimisation (Mudi and Pal, 1999).

6-2



Chapter 6________________________Steering & Depth Control of an Underwater Vehicle

The rest of the chapter is organised as follows: Section § 6.2 presents the tasks that the 

controller of GARBI underwater vehicle has to undertake. In Section § 6.3 the procedure of how 

to design a Fuzzy-like PD controller are described extensively based on the approach proposed 

in Chapter 5. Analytically, in Section § 6.3.1 the design aspects of the "FLC" part of the Fuzzy- 

like PD controller are discussed i.e., input/output universe of discourse and linguistic variables - 

MFs, construction of the rule base, operators and defuzzification method. In Section §6.3.2 the 

design aspects of the SFs of the controller are also discussed. The design of experiments to 

obtain the optimum and tuning values of the parameters of the Fuzzy-like PD Controller for 

GARBI is presented in Section § 6.4. Moreover, the definition of the performance criteria, of 

the parameters/factors (f), the possible tuning control factor levels (I) and the selection of the 

appropriate orthogonal array are defined in Sections § 6.4.1 § 6.4.2 § 6.4.3. In Section § 6.5 the 

results of the experiments conducted in a real environment are presented. Section §6.6 analyses 

the results to define the optimal parameters of the Fuzzy-like PD controller using analysis of 

means (Section § 6.6.1) and analysis of variance (Section § 6.6.2). The way to construct 

GARBI's Fuzzy-like PD controller's tuning fuzzy rules is described in Section § 6.7. In Section 

§ 6.8 the Fuzzy Combined Scheduling System (FCSS) approach is applied. The verification and 

tuning of both yaw and depth Fuzzy-like PD controllers' parameters based on new experimental 

trials is discussed in Section § 6.9. Finally, a Summary of the chapter is presented in Section § 

6.10.

6.2 Control tasks of GARBI underwater vehicle

As in any underwater vehicle, the dynamics of GARBI are coupled and highly non-linear. When 

designing GARBI's controller it is necessary to compensate for its non-linear dynamics and 

kinematics, non-linearities due to thrusters and pressure hysteresis, barometer dead-zones, and 

the noise in yaw and depth measurements. Therefore, robust controllers that reliably perform 

complex tasks in the face of the above uncertainties should be used. Fuzzy-like PD Controller is
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designed to make the vehicle follow the commands from the pilot in terms of course-changing 

and course-keeping of both yaw angle and depth of the robot.

Controllers for course-keeping and/or course-changing are normally based on feedback from a 

gyrocompass measuring the heading for the yaw and air pressure-sensors measuring the 

difference of the pressure inside and outside of the robot for depth.

The control objective for a course-keeping controller can be expressed as 9,z = constant. For 

course-changing, the objective is to follow the changes of the pilot commands with the best 

control performance in terms of small overshoot, settling time and steady state error.

Figure 6.2 shows a simplified scheme of course-keeping/course-changing control configuration. 

The structure uses independent FLCs for each controlled variable (Yaw and Depth), greatly 

simplifying the design at the cost of some decrease in performance. The corresponding inputs of 

these controllers are the error ee between the real and the desired yaw angle and the error ez 

between the real and the desired heave position as well as the corresponding change of the 

above errors Aeg and Aez (see Figure 6.3 and Figure 6.4)

ee (nT> = esp -e(nT} (6.1)

(6.2)

l) (6.3) 

) (6.4)

where e(nT), Ae(nT) and 0,z(nT) designate crisp error rate and process output at sampling 

time nT respectively. The computed rate (Ae) may not be the actual one due to delays and 

noise of the measurements. To overcome this problem a rate gyro should be used. 

Unfortunately, in the GARBI underwater vehicle the above device was not available.

6-4



Chapter 6 Steering & Depth Control of an Underwater Vehicle

The corresponding outputs of the controllers are; for the first controller the moment N around 

the z-axis and for the second controller the force Z of the two propellers in the z-direction. As 

can be seen in Figure 2.3, the rotation TV is related to the difference of power between the 

propellers TI and T2 in the x-direction. The force Z in the z-direction relates to the power of the 

propellers T3 and T4> which is always equal and of the same polarity. As a convention, signals 

are written in lower case before gains/SFs and upper case after gains/SFs, for instance

E = Se *e.

Commanded 
Heading

F-like PD 
ntr oiler
jflh
urface

N

Commanded 
Depth

Controller GARBI

Figure 6.2 Control loop for GARBI

e

N

Limiter

O Limiteree

Figure 6.3 Yaw Fuzzy-like PD controller

PSB -»•
^

/-
————— > 

Motion
Limiter

Figure 6.4 Depth Fuzzy-like PD controller
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6.3 Designing the Fuzzy-like PD controller for GARBI

In studying the dynamic properties of the fuzzy controller, the model of the process is needed so 

that the impact of the successive control actions may be monitored. Since a model of GARBI is 

not available, the dynamic properties of the closed loop structure have to be derived intuitively 

and experimentally. This is one of the important features of the idea of fuzzy controllers. 

However, the tuning of Fuzzy-like PD Control systems is a fundamental problem, especially for 

optimum performance and therefore, more sophisticated procedures than the tuning of 

conventional controllers is needed. The reason for this is that FLC is an extremely flexible 

system, whose behaviour is determined by a large number of parameters. There are two 

different levels of tuning during the design of Fuzzy-like PD controllers. The first level includes 

the structure, the rule base, the antecedent and consequent MFs together with their distribution, 

the inference mechanism and the defuzzification strategy. The second level is the tuning of gain 

parameters. This includes the SFs and other gains used in building the structure. As described in 

Chapter 5 the dynamic properties of the controller can be adjusted by a series of carefully 

designed experiments. As the experiments for an underwater vehicle in a real environment are 

expensive and time consuming, the minimum number of experiments must be executed. 

However, the risk of losing vital information that can result from large amount of data can be 

overcome if the experiments are designed using the appropriate orthogonal array of the Taguchi 

Design of Experiment Method (Fowlkes, 1995) to find the set of optimum input/output 

parameters. This is explained in detail in Sections § 6.4 to § 6.5.

6.3.1 Design aspects of the "FLC" part of the Fuzzy-like PD controller (first level)

The design aspects of the FLC is a unified approach to determine both its parameters (linguistic 

labels and reference fuzzy sets) and its structure (rule-base) (Yager and Filev, 1994b).
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Specifically the criteria to set the design procedure for the FLC part of the Fuzzy-like PD 

controller for both yaw and depth control are presented as follows:

6.3.1.1 Input/output universe of discourse.

Each universe is restricted to an interval that is related to the maximal and minimal possible 

values of the respective variable, that is, to the operating range of the variable. Both inputs of 

yaw i.e. E& , AE^and depth i.e. E,, A£, controllers are operated in the whole range of their 

universe. Therefore, for the universe of the yaw and depth controllers the maximal limits are as 

in Equation 6.5 to Equation 6.8 and the minimal limits are as in Equation 6.9 to Equation 6.12 

respectively

Eo- = e^ * S*. = Y<MUniversemm (6.5)

A^ = keBma *S06f = YawUniverse^ (6.6)

E. = e.mix *S,f =DepthUniversemax (6.7)

^E7 = Ae7 *S7 = DepthUniversemm (6.8)zma\ zmax ZA*

£«U = e** * S*. = YowVniverx^ (6.9)

AE0mm = Aeffiajn * Sê  = YowUniversem(n (6.10)

E. =e. *S7 = Depth Universe^ (6.11)
•^miri -*min ~«

A£z =A<?Z *SZ = DepthUniversem[n (6.12)
'mm zmin zAe

For the yaw controller two different universes are applied. The first is within the range of -90° 

to + 90° degrees and the second is within the range -180° to +180° degrees in the cases where
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"Small" or "Big" changes occur in GARBI's navigation path respectively. Moreover for the 

depth controller the universe is in a range of 10 meters. Thus the depth Fuzzy-like PD controller 

rules are fired only within this range.

For simplification and unification of the design of the FLC and its computer implementation, 

however, it is more convenient to operate with normalised universes of discourse of the 

input/output variables of the FLC. The normalised universes are well-defined domains; the 

fuzzy values of the input/output variables are fuzzy subsets of these domains. In general, the 

normalised universes can be identical to the real operating ranges of the variables, however, in 

this application both input error and change-of-error of both yaw and depth fuzzy controllers 

coincide with the closed interval [-1,1].

In the output of both controllers, the minimum and maximum values ( Fmjn , Fmax ) of voltage

that can be applied for all of GARBI's propellers are 3V and 10V respectively. However these 

upper and lower voltage limits may change due to the hardware modifications. Therefore, it 

could be practically more efficient to normalise between 3 to 10 V. As a result the output of 

each controller is:

—— (6-13)*- '

z^ =Fm.n+ _^L- (6.14)
'max

Ug and Uz are the output voltages from both yaw and depth FLCs respectively where

Uff =ue -SUe (6.15) 

U^u-S,, (6.16)
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The above normalisation procedure is fitted into a Power Scaling Block (PSB) as can be seen in 

Figure 6.3 and Figure 6.4. As can also be seen in those figures, limiters are set before the inputs 

of GARBI's FLC to ensure that the rules will not be fired in case saturation exists due to 

possible noise disturbances of yaw and depth measurements. Moreover, limiters also exist in the 

output part of both controllers. That is to ensure that the output commands to the propellers are 

within their specification properties in case for instance of improper design of the controller's 

parameters.

6.3.1.2 Input/output linguistic variables - MFs.

The choice of the shape of the antecedent MFs is triangular (^(jc),^(*),...,//„(*)) with a 

specific overlap of 0.5. This means that the height of the intersection of the two successive 

fuzzy sets is:

-

The overlapping of 50% ensures that each value of the universe is a member of at least two sets, 

except possibly for elements at the extreme ends. Note that if there is a gap between two sets no 

rules fire for values in the gap and therefore, the control function is not defined (Jantzen, 1998).

The descriptions of these MFs used in the control algorithm are either in functional form or are 

defined numerically. Thus, in this case the functional form is used due to their simplicity in 

calculating the degree of freedom of the rules. Additionally, due to normalisation of the universe 

of discourse procedure, the functional-type MFs changes their parameters subsequently (Yager 

and Filev, 1994b). The mathematical construction of these triangular MFs with overlap of 0.5 is 

as in Table 6.1.
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Left 

Centre

Right

Triangular MF

„'(«-<

//(«) = •

maX [ ' ' O.Sft/j 

I u ~ c \
mXC l ' Q.5co L \ 

max] 0,1+ C ~ U \
[ 0.5co L J 

maJ01| «-^l
maX [ ' ' 0.5ft/ I 

I

otherwise 

if u<c 

otherwise

otherwise

Table 6.1 Mathematical Characterisation of Triangular MFs

Notice that c is the centre of the triangular MF and a> is the base-width, c1 specifies the 

"saturation point" and CO L specifies the slope of the non-unity and non-zero part of //. The 

selection of MF has two important characteristics: one is its optimal interface design and the 

other is its semantic integrity (Pedrycz, 1994). The concept of these characteristics described in 

the following:

• Optimal interface design.

Error free Reconstruction: In a fuzzy system a numerical value is converted into a 

linguistic value by means of fuzzification. A defuzzification method should guarantee 

that this linguistic value can be reconstructed in the same numerical value as in 

Equation 6.18.

b}: f' } [f(x)] = x (6.18)
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• Semantic integrity.

Justify the labels and number of Elements: The number of sets defined is seven. As also 

mentioned in Chapter 2, this number comes from the recommendation that the number 

of the sets should be compatible with the number of "quantifiers" that humans being can 

handle which actually is within the limit of 7±2 distinct terms (Espinosa and 

Vandewalle, 1997). The input/output variables of GARBI's FLC are quantified into sets 

of classes defined by linguistic labels such as "Positive Big" (PB), "Positive Medium" 

(PM), "Positive Small" (PS), "Zero" (ZO), "Negative Small" (NS), "Negative Medium" 

(NM) and "Negative Big" (NB). Linguistic labels (terms) and their associated fuzzy sets 

form a fuzzy partitioning of the (normalised) universe of discourse. Thus, both the error 

and change of error term in Figure 6.5 determine a fuzzy partitioning of the universe [- 

1,1] into seven fuzzy sets. The number of linguistic labels in one set, determines the 

cardinality of the fuzzy partitioning of that universe of discourse. Cardinalities of the 

sets associated with the inputs of the FLC define the maximum number of rules 

contained in its rule-base. Therefore, for GARBI's FLC, the partitioning of the universe 

of discourse for both the error and change of error into seven fuzzy sets each, results in 

the maximal number of 49 rules.

Distinguishability. Each of the linguistic labels should have semantic meaning and the 

fuzzy sets should clearly define a range in the universe of discourse. So, the MFs should 

be clearly different. The assumption of the overlap equal to 0.5 assures that the support 

of each fuzzy set will be different. The distance between the modal values of the MFs is 

also very important to make sure that the MFs can be distinguished. The modal value of 

the used MFs is defined as the a-cut with a = 1

/-i(*)> i = l2,...,N (6.19)
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Completeness is an important characteristic of the fuzzy sets (Lee, 1990a), (Pedrycz, 

1993). It expresses the ability of the fuzzy control algorithm to infer a control action 

with confidence not less than a minimal level £, for which the threshold s-cuts of all 

terms cover the interval universe. Decreasing this parameter decreases the fuzziness of 

the partitioning of the input space of the FLC. Based on heuristic considerations some 

authors suggest minimal completeness level e = 0.25 (Kosko, 1992); (Berkan and 

Trubatch, 1997). As can be seen from Figure 6.5 for both antecedents' MFs the universe 

of discourse for each variable is uniformly partitioned and the MFs are placed with 50% 

overlap and therefore the level of completeness is e = 0.5. This actually is a fixed 

structure for initial setting of most FLCs.

Normalisation. Due to the fact that each linguistic label has semantic meaning, at least 

one of the values in the universe of discourse should have a membership degree equal to 

one. In this particular FLC design all of them do so and therefore all the fuzzy sets are 

"normal".

The MFs of the consequences are singletons £, with seven linguistic labels: "Positive Big" 

(PB), "Positive Medium" (PM), "Positive Small" (PS), "Zero" (ZO), "Negative Small" (NS), 

"Negative Medium" (NM) and "Negative Big" (NB) equally distributed between -1 to +1 

values (see Figure 6.6).
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Figure 6.5 Input MFsfor GARBI's FLC
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Figure 6.6 Singleton Output sets for the FLCs

By using MFs in the input and singletons in the output of GARBI's control system, the actual 

Takagi-Sugeno fuzzy system approach (Takagi and Sugeno, 1985) is utilised. Mamdani control 

approach (Mamdani and Assilian, 1975) is not used due to its computational complexity during 

the defuzzification procedure which is time consuming. It is well know, however, that fuzzy
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rules with singletons can be use without losing the performance of the control (Sugeno et al, 

1993).

Finally it is important to remark that the use of singletons gives more linguistic meaning to the 

rules, whereas the Takagi-Sugeno model can improve the approximation properties of the 

controller (Passino et al, 1998). It is therefore advisable for real time fuzzy control applications 

to use singletons £, in the output. This results in simpler and faster control action (Jantzen, 

1998); (Nguyen et al, 1999).

6.3.L3 Construction of the Rule (knowledge) Base

The construction of the rule-base is the crucial and the most difficult aspect of the FLC design 

(Lee, 1990a). It is also one reason for criticism of fuzzy logic control because, in general, there 

are no systematic tools for forming the rule-base of the FLC. However there are two main 

notable methods (Yager and Filev, 1994b) based on:

• Intuitive knowledge and experience

• Use of the concept of a template rule-base

In the first method, the FLC is designed as a simple expert system and therefore, different 

sources of knowledge, resulting in formulation of alternative rule bases, can be considered. One 

reasonable source is the knowledge, based on the experience of an operator, controlling a given 

system. This allows introduction of "rule of thumb" experience in the control strategy. Usually it 

is difficult to extract control skills from the operator in a form that can be useful for construction 

of the rule-base of FLCs. Moreover, there is no reason to believe that these rules are the best 

control strategies. Most FLC's combine an approach based on the operator's experience with a 

good understanding of systems and control theory and this has proved satisfactory during the
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70's and 80's in industrial applications of fuzzy control (Bernard, 1988); (Sugeno, 1985); (Tong, 

1985).

In the second method the template rule-base is regarded as a basic tool uniting the common 

engineering sense and experience in fuzzy logic control. MacVicar-Whelan (MacVicar-Whelan, 

1977) developed this type of rule-base template which was introduced in the first FLC, 

(Mamdani and Assilian, 1975); (King and Mamdani, 1977). The MacVicar-Whelan rule-base 

summarises the rules used in the rule-bases of these FLCs, and in addition includes situations 

(combinations of linguistic labels of input and output variables of the FLC) that were not 

defined. The expansion of the original rule-bases is established on the following three metarules 

(Tang and Mulholland, 1987):

1. Ifbothe(k) &e(k) are zero, then maintain present control setting

2. If conditions are such that e(k) will go to zero at a satisfactory rate, then maintain present 

control setting

3. If e(k) is not self-correcting, then control action &e(k) is not zero and depends on the sign 

and magnitude (small, medium, large, etc.) of e(k) and Ae(k).

As operators' expert knowledge for GARBI's dynamic properties are not available, the 

MacVicar-Whelan rule-base template is used in the FLC part of GARBI's Fuzzy-like PD 

Controller. As mentioned in Section § 6.3.1.2, each of the FLC blocks contains 49 rules. The 

cell defined by the intersection of the first row and the first column represents a rule such as,

ife(nT)is NB and Ae(nT) is NB then u(nT} isNB 

The rule base is presented in the table format shown in Table 6.2:
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e\ Ae
NB
NM
NS
ZO
PS
PM
PB

Table 6.2 The

NB
NB
NB
NB
NB
NM
NS
ZO 

Rule

NM
NB
NB
NB
NM
NS
ZO
PS 

Base

NS
NB
NB
NM
NS
ZO
PS
PM

ofaF

ZO
NB
NM
NS
ZO
PS
PM
PB

uzzy-l

PS
NM
NS
ZO
PS
PM
PB
PB 

ike Pi

PM
NS
ZO
PS
PM
PB
PB
PB

D in t

PB
ZO
PS
PM
PB
PB
PB
PB 

ibularform.

Analytical explanation of how the above rule base table is designed can be found in Reznik, 

(1997).

6.3.1.4 Operators

Using the min operation for the aggregation AND (outer product) of the fuzzy rules, the output 

fuzzy set is given by //„ = min(//e ,/*A(,). Thus, the Fuzzy-like PD controller is a controller 

where the output is a non-linear function of the error, e and its derivative de/dt 

(u = F(e,de/dt)), where F is a non-linear function of two variables.

6.3.1.5 Defuzzification

The control signal results from the defuzzification method that uses the degree of membership 

functions of the antecedent and the singleton of the consequences of the MFs obtained by:

u-- (6.20)

where //, is the degree of MF defined in Table 6.1, & is the singleton's value and R is the 

number of rules.
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6.3.2 Design aspects of the SFs of the controller (second level)

One way of improving the dynamic properties of the Fuzzy-like PD control systems is to 

optimise and adjust (tune) the constructing parameters. However, there is no general method for 

tuning them. Most successful results reported are based on the combination of expert 

understanding about the controlled object and the use of the analogies between the FL and PID 

controllers (Zheng, 1992).

As discussed in Chapter 5, SFs are the main parameters used for tuning the FLC. SFs play an 

important role in the formation of the dynamics of the close-loop structure leading to the desired 

response of the controlled system (Zheng, 1992). The importance of an optimal choice of input 

SFs is evidently shown by the fact that inappropriate scaling results is either shifting the 

operating area to the boundaries or utilising only a small area of the normalised universe of 

discourse. Additionally, the adjustments of the output SF affects the close-loop gain, which has, 

direct influence on stability and oscillation tendency.

For the Fuzzy-like PD controller, the corresponding SFs are, for the inputs Se ,S^ and for the 

output Su respectively. These factors influence the dynamics of the system as:

• if both Se and S^. increase, the control becomes more sensitive around the set point until 

oscillations are observed,

where Se and 5Ae decrease, a tolerance band exists around the set point and a large steady- 

state error is quite common. So if the SFs are too small, the system gives a poor response,

Su affects the proportional gain, so it is desirable to have them as large as possible without 

creating too much overshoot. If too small, the system will be too slow, and if too large the 

system might become unstable,
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In addition as discussed by (Procyk and Mamdani, 1979):

• High values of Se results in good responsiveness of the system (low steady-state error, and 

rise time), but they lead to poor stability (large overshoot). Analogously low values of Se 

lead to a poor response.

• Faster convergence is bounded by high values of Sf and S^, and relatively low values of 

Sm .

Despite the above general directions to optimise and adjust (tune) the SFs, their effectiveness is 

bounded by the contradictory requirements resulting from different performance measures. 

Additionally, the interactions and the significance of the SFs vary according to the system. 

However, a systematic approach (proposed in Chapter 5) to overcome the above drawbacks and 

determine the parameters together with their tuning and robust performance of GARBI's Fuzzy- 

like PD controller is applied as described in Section § 6.4.

6.3.3 Sampling time

The sampling time is set to 1 second. This is actually the smallest sampling time that could be 

used due to GARBI's communication line specifications. However, its sensitivity to the input 

parameters is investigated during the design of the experiments as explained in Section §6.4.2. 

Note that if the sampling time is too small the computation of Ae may become too sensitive to 

noise. This normally shows up as a "restless" control signal.

6.3.4 Software implementation of the Fuzzy-Hke PD controller's ofGARBI

Where the design properties of the Fuzzy-like PD controller's ofGARBI is defined, its software 

was developed at the Mechatronics Research Centre and tested in the Computer Vision and 

Robotics Lab at the University of Girona. The software routines were implemented in Borland
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C++ ver 5.2 and LabWindows CVI ver 5 under Windows 95/98/NT operating system. The main 

source code of the control software is illustrated by the flow diagram shown in Figure 6.7. The 

communication protocol block is to check the communication properties between the surface 

computer and GARBI's local unit computer; the mission setting block is developed to set the 

yaw and depth mission properties and the two controllers are working independently to 

command the propeller power settings. The run time for both controllers' routines was less than 

9ms using PENTIUM II 333 MHz processor. This was less that the smallest sampling time 

(Isec) that can be used. The software was tested in terms of the communication abilities of the 

robot with the host computer in the Laboratory.

Communication
Protocol with

GARBI

Fuzzy-like PD
controller for

depth

Fuzzy-like PD
controller for

yaw

PROPELLERS

Figure 6.7 Flow diagram of the source code developed for GARBI's controller
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6.4 Design of Experiments to obtain the optimum and tuning values of the 

parameters of the Fuzzy-like PD Controller for GARBI

Optimising a control system's design means determining the best architecture, levels of control 

factors, and tolerance. In Chapter 5, a systematic methodology of how to identify the optimum 

values of Fuzzy-like PD controllers in terms of control performance and robustness was 

developed. This includes defining the relationships between control parameters and 

performance, investigating which parameters are more important and which are not, and by how 

much. The proposed method is based on experiments using Taguchi technique of 

experimentation. The method is applied to GARBI's Fuzzy-like PD Controller to optimise and 

tune the SFs.

This method includes the following steps:

• Definition of the performance criteria

• Definition of the parameters/factors (f) and the possible tuning control factor levels (I)

• Selecting and assigning factors to the columns of the appropriate Orthogonal Array

• Conducting the Experiments (in a real environment)

• Analysis of the results to define the optimal parameters of the Fuzzy-like PD controller

• Constructing GARBI's Fuzzy-like PD controller's tuning fuzzy rules

• Applying the Fuzzy Combined Scheduling System (FCSS) approach

• Verification and tuning of both yaw and depth Fuzzy-like PD controllers 'parameters based

on new experimental trials 

Description of the above steps is presented in the following sections.
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6.4.1 Definition of the performance criteria

The performance criteria of the system has been chosen as the Integral Absolute-Error (IAE) 

and Integral-of-time-multiplied Absolute-Error (ITAE) (Ogata, 1990). Large errors are 

penalised heavily using IAE, however, using ITAE, the contribution of large initial errors is 

reduced whereas errors occurring late in time are penalised heavily. Therefore, IAE reflects the 

transient response and ITAE reflects the steady-state response. The optimal controller in this 

case is the one that minimises these integrals. Thus, the performance criteria vector p0 includes 

the above performance measurements:

Po = (PIAE^, > PITAE^ » PIAE^,. > /'ITAE,,.„,, } (6.21)

where p/AEym , PIAE^, h and PITAE 'P ITAE ,,,.,„ are tne IAE and ITAE for yaw and depth 

performance respectively.

6.4.2 Definition of the parameters/factors (f) and the possible tuning control factor 

levels (I)

The SFs are the parameters/factors of both yaw and depth Fuzzy-like PD controllers of GARBI 

have been defined. When a SF is changed, it is assumed that the definition of each membership 

function will be changed by the same ratio. Hence changing of any SF can change the meaning 

of one part, the IF-part or THEN-part, in any rule. Therefore, it can be said that the change of 

SFs may affect all of the control rules in rule Table 6.2.

For both yaw and depth controller, the SFs are applied in their corresponding input (i.e. 

S S S SA ) and outputs (i.e. Su , Su ) as illustrated in Figure 6.3, Figure 6.4 and
e& ' Ae# ' ez * A?z ' Q z

therefore the factor's vectors are / = {Se<> , S&eg , SUf> } and / = {Sei , S^, SU! } respectively.
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Three factorial levels are chosen for all SF of both yaw and depth controllers. The choice of 

their values is based on min, max and an intermediate value that excites the response of the 

system. Their values are for:

Input SFs:

S<r kv = (Scn ,Stn A,3 } = {0.5,0.75,1} (6.22) 

Se, Is., = {S^e,2 ,Se!3 } = {0.5,0.75,1} (6.23) 

S*, ^ = {S*n ,8^ ,S^} = {0.5,1,2} (6.24)

S*, ls^={S^,S^2 ,S^} = {0.5,1,2} (6.25) 

Output SF:

5<v ls.. = tf.,, > s*n >$.„ > = f3'7 ' 1 °) (6 - 26> 

S», **., = to,, > s*a >S»a } = {3,7,10} (6.27) 

which are the possible optimal tuning factor levels as defined in Chapter 5 (Section § 5.2.4).

The minimum value of all SFs i.e. Sggi , Se^ , S^, $&„, SUn , ^az , have been derived 

experimentally as the lowest ones which excites the systems' response when the input/output 

signals have the smallest values.

For the SFs 5" , Se the error e input signal is shifting in the universe of discourse from the 

initial values i.e. where 5^,5^=1 to smaller ones i.e. where ^,5^=0.75 and 

Se ,Se = 0.5. As a result, investigating the set of rules, in the rule Table 6.2, their excitement
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in this case is shifted to the labels with small values. Moreover for the SFs 5Ae ,8^ the 

change-of-error Ae input signal is shifting in the universe of discourse from the initial values 

i.e. where 8^,8^ = 1 to a smaller one i.e. where 8^ ,8^ = 0.5 and/or to a bigger one i.e. 

where 8^,8^ =2. Therefore, the rules that are fired are shifting to the ones with labels 

corresponding to small and/or big values. Note that the SFs S^, 8^ the level's value is chosen

as 2 so that it may assist the response of these factors in case Ae becomes very small and thus 

meaningless. Hence if the final optimal level's value is 2, this implies that the sampling time 

should be increased.

The output of the controller is a value that is multiplied by the output SF's, to give the voltage 

that is be applied to the robot's propellers.

6.4.3 Selecting and assigning factors to the columns of the appropriate Orthogonal 

Array

The orthogonal array of the Taguchi Method was used to plan the experimentation for the 

underwater robot. Three factors (Se ,SAe ,Su ) at three levels each are defined as explained in

Section § 6.4.2. With a full factorial, this would result in 33 (27) different experiments. 

However, using Equation 5.1 for a three factor three level experiment, six degrees of freedom 

exist, so an orthogonal array with nine experimental runs can be employed instead. Table 6.3 

shows the orthogonal array (Phadke, 1989) for both Yaw and Depth experiments that is 

sufficient for this study.
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No 
Exp

1
2
3
4
5
6
7
8
9

se
0.5
0.5
0.5

1
1
1

0.75
0.75
0.75

s&e
0.5

1
2

0.5
1
2

0.5
1
2

su
3
7
10
7
10
3
10
3
7

Table 6.3 The Orthogonal array with nine experiments (Phadke, 1989)

6.5 Conducting the Experiments (in a real environment)

Experimental trials in a real environment (Lake Banyolas, Spain) were held in Oct 1999 to test 

both depth and yaw Fuzzy-like PD controller. Before the trials into the lake the gyrocompass 

was calibrated to set its zero degree state with the horizon. Note that as the device is 

electromagnetic, its calibration is important before the experimental trials.

As mentioned in Section § 6.3.1.1 the voltage used is in the range of 3 to 10 Volts (V). For 

heading control the opposite voltage between the horizontal propellers (T,, T2) was used i.e.

-t-Vt, -V2 . So, if the heading angle is turned to 9° clockwise for instance, the voltage in the right 

propeller T, is reduced and the voltage in the left propeller T2 is increased by the same amount.

Using Table 6.3, the experiments to investigate both yaw and depth control performance were 

undertaken. The navigation plan for the yaw experiments was:

• initial voltage of the horizontal and vertical propellers is set to 3V for a period of 60 

seconds to make sure that the vehicle goes straight ahead. Equal power to the horizontal 

propellers are employed the vehicle is moving away from the platform in the water
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• manoeuvring with set point of 90° for experiments 1, 5, 6, 7, 9 and 180° for the 

experiments 2, 3, 4, 8. After the manoeuvring, the task is to keep the vehicle moving in the 

same direction.

and for the depth experiments was:

• changing the depth course from 0 meters to 10m and then to 5m and then keeping it at this 

depth.

Figure 6.8 to Figure 6.16 and Figure 6.17 to Figure 6.25 illustrates the yaw and depth response 

together with the control output, the error e and the change-of-error t±e respectively.

It should be noted that due to the failure of one of the power cards for the vertical propeller 

during the experiments it was decided to switch off the vertical propellers and add more weights 

to keep the vehicle in the equilibrium position a few meters under the water. For the depth 

experiments however, the power cards were swapped from horizontal to vertical.
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Figure 6.8 Yaw experimental results for the 1s' trial (Se = 0.5, S^ = 0.5 and Sa = 3)
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Figure 6.9 Yaw experimental results for the 2nd trial. (Seg = 0.5, S^ = 1 and SUg =l)
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Figure 6. JO Yaw experimental results for 3rd trial (Se/> = 0.5 ,5^=2 and Su/> =10)
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Figure 6.11 Yaw experimental results for the 4lh trial (Seg = 1, S^ = 0.5 and SUg = 1)
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Figure 6.12 Yaw experimental results for the 5th trial (Se =\, SAe = 1 and SUg = \0)
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Figure 6.13 Yaw experimental results for the 6lh trial (Se/> = 1, S^ = 2 and SUa = 3)
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Figure 6.15 Yaw experimental results for the 8th trial (Seo = 0.75,5^=1 and SUg = 3)
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Figure 6.16 Yaw experimental results for the 9th trial (Se = 0.75, S^ = 2 and Su = 7)
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Figure 6.19 Depth experimentalresults for the 3rd trial (Sfz =0.5, S^ =2 and SUz = \Q)
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Figure 6.21 Depth experimental results for the 5lh trial (Sez = 1, S^ = 1 and SUz = 10;
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Figure 6.23 Depth experimental results for the 7th trial (Sez -0.7, S^ =0.5 and S.t =10)
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Figure 6.24 Depth experimental results for the 8th trial (Sez = 0.75, S^ = 1 and Saz = 3)
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Figure 6.25 Depth experimental results for the 9>h trial (Sez = 0.75, S^ = 2 and SUf =l)
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6.5.1 Experimental results in a tabular form

In this section the results of yaw and depth trials are presented in tabular form. Table 6.4 depicts 

the results of yaw and Table 6.5 depicts the results in terms of both IAE and ITAE considering 

the performances vector pa in Equation 6.21. However from these tables it is very difficult to 

extract enough information, to identify the optimal parameters of the control system, due to the 

limited number of experiments. Moreover, the complexity that appears in studying more than 

one parameter at the same time is another drawback in this type of analysis. Antipodal, a 

systematic way to investigate and tune these optimal parameters of GARBI's Fuzzy-like PD 

controller using only the small number of experiments is applied as discussed in Chapter 5 

(Section § 5.2.8) and presented in the next Section.

SCALING FACTORS YAW 
PERFORMANCE

No
Pvnofi C <T <T n n txperi ,iej O Af,o d ug PlAEyn PlTAF.rm

ment
1
2
3
4
5
6
7
8
9

0.5
0.5
0.5

1
1
1

0.75
0.75
0.75

0.5
1
2

0.5
1
2

0.5
1
2

3
7

10
7

10
3

10
3
7

11.38
9.06

8.914
7.9

9.87
14.32
14.4

16.95
10.92

547.33
556.41
290.28
141.2
277.8
645.37
670.55

729
464.5

Table 6.4 Yaw performance in terms of IAE and ITAE from the real experiments. Graphically
illustrated in Figure 6.8 to Figure 6.16
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SCALING FACTORS

No 
Experi­ 
ment

1
2
3
4
5
6
7
8
9

S;

0.5
0.5
0.5

1
1
1

0.75
0.75
0.75

V
0.5

1
2

0.5
1
2

0.5
1
2

',
3
7

10
7

10
3

10
3
7

DEPTH 
PERFORMANCE

^
29.92
8.515
9.36

20.86
22.32
80.62
14.89
84.17
21.68

*«.
633.25
137.58
64.64

294.22
1265.25
4190.8
1118.72
5111.58

314.2

Table 6.5 Depth performance in terms oflAE and ITAE out from the real experiments. 
Graphically illustrated in Figure 6.17 to Figure 6.25

6.6 Analysis of the results to define the optimal parameters of the Fuzzy-like PD 

controller

Analysing the data is a systematic straightforward procedure as introduced in Chapter 5 and is 

applied in this chapter for the real experimental results as follows:

6.6.1 Analysis of means

The analysis of means for each SF level is applied for the investigation of the OTFLs using the 

results presented in the previous Section in Table 6.4 and Table 6.5. Thus, following the steps 

presented in Section § 5.2.8 the OTFLs are defined as follows:

• for each factor level, the average responses are obtained using Equation 5.3

• these responses together with the levels are the co-ordinates that construct the plots used in 

the analysis of the graphical representation of factor levels.

Thus Figure 6.26, Figure 6.27, Figure 6.28 and Figure 6.29 shows both yaw and depth responses 

for the plot of IAE and ITAE means respectively. As the aim of the controller is to minimise
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both IAE and ITAE, the objective characteristic of these target values is "smaller-the-better" as 

discussed in Section § 5.2.8.1. Therefore, for iheyaw response:

Figure 6.26 shows the "IAE mean response plot" where the smallest yaw mean (average) 

responses are the 9.79, 11.25 and 9.31 (circled values) for Seg , S^ and SUg respectively and 

therefore, the OTFLs are:

'/„ = {Stt,, S^, SUn } = {0.5,0.5,7} (6.28)

Figure 6.27 shows the "ITAE mean response plot" where the smallest yaw mean responses for 

See , SAee and SUg are 354.79, 453.03 and 387.37 (circled values) respectively and therefore 

the OTFLs are:

'/,,={^.^.^} = 0,0.5,7} (6.29)

For the depth response the corresponding IAE means plot is shown in Figure 6.28 where the 

smallest "depth average responses" for Se , S&e and Su are 15.93, 21.89 and 15.52 (circled

values) respectively. Thus the OTFLs are:

lfa = to,,, V, > s*» > = {0-5,0.5,10} (6.30)

Note here that these OTFLs are not defined as a combination in the experiment (Table 6.3), 

however, using the Taguchi method it is able to be identified. This is one of the most important 

features on the above approach as discussed in Chapter 5. That is, it is able to identify 

experimental combinations that were not originally specified in the orthogonal array.

For the ITAE means plot shown in Figure 6.29 the smallest "depth average responses" for Se , 

S and Su are 278.49, 682.07 and 248.67 (circled values) respectively. Thus the OTFLs

are:
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lflt ={^,,,5^,5^} = {0.5,0.5,7} (6.31)

Moreover, from the above analysis of figures it can also be observed that more combinations of 

the SF levels than those in Equation 6.28 to Equation 6.31 could also be used as optimal ones. 

That is because some of the levels have values that are close the optimal level's values. Table 

6.6 and Table 6.7 illustrates the combinations of the SF levels that are Optimal, Close to the 

Optimal and Not Optimal observed from the IAE and ITAE average yaw and depth responses 

respectively.

Note that all optimal SFs for the change of error Ae input are 0.5. That means that the 

sampling time that is chosen for the experiments do not cause sensitivity problems discussed in 

Section §6.3.3.

In the above study neither the S/N ratio nor the interaction analysis was under investigation as 

neither replication nor enough experiments are available respectively.
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IAE Means Plot
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Figure 6.26 Plot used in analysis of means to investigate the optimal levels that minimise the 
IAE value for the Yaw Response. Investigating for the smallest average response for Seg , S^

and SUg the OTFLs are lfn ={0.5,0.5,7}
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Figure 6.27 Plot used in analysis of means to investigate the optimal levels that minimise the
ITAE value for the Yaw Response. Investigating for the smallest average response for See ,

SA and SUo the OTFLs are lfa = {1,0.5,7}
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IAE Means Plot
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Figure 6.28 Plot used in analysis of means to investigate the optimal levels that minimise the 
IAE value for the Depth Response. Investigating for the smallest average response for Se , S^

and SUi the OTFLs are lfn = {0.5,0.5,10}
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Figure 6.29 Plot used in analysis of means to investigate the optimal levels that minimise the
ITAE value for the Depth Response. Investigating for the smallest average response for Se ,

S^ and SUf the OTFLs are ///4 = {0.5,0.5,7}
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COMBINATIONS OF 
THE SCALING 

FACTOR LEVELS

Optimal

Close to the 
Optimal

Not Optimal

IAE AVERAGE YAW RESPONSE 
OF THE SCALING FACTOR 

LEVELS

Ses Stee $„„

9.79 11.25 9.31

11.39 
10.72 & — 

11.96
14.22 

14.09 — & 
11.06

ITAE AVERAGE YAW 
RESPONSE OF THE 

SCALING FACTOR LEVELS

S,e SAeg S,,f

354.79 453.03 387.37

— 466.72 412.88

464.68 
& 521.07 640.57 

621.35

Table 6.6 Combinations of the SF levels that are Optimal, Close to the Optimal and Not 
Optimal, observed from the IAE and ITAE average yaw responses

COMBINATIONS OF 
THE SCALING 

FACTOR LEVELS

Optimal

Close to the 
Optimal

Not Optimal

IAE AVERAGE DEPTH 
RESPONSE OF THE SCALING 

FACTOR LEVELS

se= s^: s,,:
15.93 21.89 15.52

- — 17.02

40.25 38.33 
& & 64.90 

41.27 3722

ITAE AVERAGE DEPTH 
RESPONSE OF THE 

SCALING FACTOR LEVELS

S<, S^ S;

278.49 682.07 248.67

— — —

2181.5 2171.4 3311.8 
& & & 

1916.76 1523.2 816.2

Table 6.7 Combinations of the SF levels that are Optimal, Close to the Optimal and Not 
Optimal, observed from the IAE and ITAE average depth responses
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6.6.2 Analysis of Variance

Analysis of Variance is a method, which investigates the significance of each SF as described in 

Section § 5.2.8.2. From Table 6.8 and Table 6.9 it can be observed that both SFs 5 and SU0 e&

have high significance, with 49.96% and 41.39% contribution corresponding to the IAE yaw 

response and 35.56% and 32.83% contribution corresponding to the ITAE yaw response 

respectively. However, SF S^ has low significance with only 1.16% and 2.37% contribution. 

Moreover, from Table 6.10 and Table 6.11 the SF Su has the highest significance with 

69.93% and 56.91% contribution corresponding to the IAE and ITAE depth response 

respectively whereas the SFs Se , S^ have lower significance.

From the above observations it can be seen that only some of the SFs for both the yaw and 

depth controllers have very high significance in the system responses. Nevertheless it was 

decided that the SF that are not significant should also be included in the structure of yaw and 

depth controllers. That is because the number of SFs is very small and therefore all of them can 

contribute to the tuning rules without causing complication in terms of constructing them and 

computation time.
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Factor
Se 
Sde 
Su

Error 
ST

Sum Square (SS)
30.74 
0.86 

37.11

5.56 
74.27

dof
2 
2 
2

2.00 
8.00

mean sq (MSS)
15.37 
0.43 
18.55

2.78

F-Ratio
5.52 
0.16 
6.67

1.00

% contribution
41.39 
1.16 

49.96

7.49

Rank
2
4 
1

3

Table 6.8 ANOVA table for factors Se<> , S^ and SUg corresponding to IAE Yaw Response

Factor
Se 

Sde 
Su

Error 
ST

Sum Square (SS)
107674.87 
7771.79 

116602.89

95885.51 
327935.06

dof
2 
2 
2

2.00 
8.00

mean sq (MSS)
53837.43 
3885.90 

58301 .44

47942.75

F-Ratio
1.12 
0.08 
1.22

1.00

% contribution
32.83 
2.37 

35.56

29.24

Rank
2
4 
1

3

Table 6.9 ANOVA table for factors Se , S&e and Sa corresponding to ITAE Yaw Response

Factor Sum Square (SS) dof mean sq (MSS) F-Ratio % contribution Rank
Se
Sde
Su

Error
ST

1233.96
506.75
4733.44

294.64
6768.78

2
2
2

2.00
8.00

616.98
253.37
2366.72

147.32

4.19
1.72
16.07

1.00

18.23
7.49
69.93

4.35

2
3
1

4

Table 6.10 ANOVA table for factors Sei , corresponding to IAE Depth Response

Factor
Se

Sde

Error 
ST

Sum Square (SS)
6375468.22 
3346086.71 
15933725.90
2341646.92 

27996927.75

dof
2 
2 
2

2.00 
8.00

mean sq (MSS)
3187734.11 
1673043.36 
7966862.95

1170823.46

F-Ratio
2.72 
1.43 
6.80

1.00

% contribution
22.77 
11.95 
56.91

8.36

Rank
2 
3
1
4

Table 6.11 ANOVA table for factors Sti , S^ and SUi corresponding to ITAE Depth
Response
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6.7 Constructing GARBI's Fuzzy-like PD controller's tuning fuzzy rules

The construction of the fuzzy rules used to tune the factorial levels (when the system may 

change) considering the performance states and the factor level's characteristics has been 

explained in Section § 5.2.10. Therefore the resulting tuning rules used to tune both yaw and 

depth of GARBI's Fuzzy-like PD controllers' parameters are:

for the yaw controller

RI: IF plAEm > 0 THEN tune factor Stg AND factor S^g AND factor Sa<;

R2 : IF PJTAE^ > ° THEN tune factor Se/> AND factor S^ AND factor SUg 

for the depth controller

R3 : IF p,AEikih >0 THEN tune factor Sej AND factor S^ AND factor SUi

R4. IF p,TAEdt th >0 THEN time factor Se^ AND factor S^ AND factor Sttt

These four rules are actually the ones that are responsible for tuning the SFs resulting in 

minimising the IAE and ITAE performance characteristics.

6.8 Applying the Fuzzy Combined Scheduling System (FCSS) approach

As explained in Section § 5.2.11, the FCSS approach is applied to optimise the overall tuning 

factor levels for both yaw and depth Fuzzy-like PD controllers. Therefore, using Equation 5.6 

the yaw and depth vectors LSym ={LSeg ,Ls^,LsJ and Ls^h ={LS^,LS^,LSJ of the 

updated factorial levels are defined as follows:
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for the yaw controller

(6 '32)

_ K.l-^2+^c5> 1 ' SUaCurrenl ) + (W 2 ' \2 + WCs. 2 • 5ttsn(rre>,, )
s — ——————————"———————~————————~—————— (6 34)

ybr //re dlep/A controller

(w. ,^ 's '

(6.35)

(O.JO)

(6.37)

where the weights w. ,, w, ,, w, ,, w. 2 , w, ,, wt 2 are defined for the degree of
Sg $e $Ae Sfa, Su Su

freedom of the "Z" (low) MF and wc ,, wc 2 , w ,, w 2 , w ,, w 2 are defined for the
Sg ^e ^At -*4? A« A»

degree of freedom of the "5" (high) MF as shown in Figure 6.30. These shapes for the MFs are 

used, because small errors should not affect the tuning parameters of the FLCs as they are 

inherently robust to them (Pok and Xu, 1994). Moreover, when the IAE and/or ITAE 

performance characteristics are getting bigger the parameters should change rapidly close to the 

OTFLs.

The universe of discourse has been normalised between [0,1] according to
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_
Pma* ~ Pn

(6.38)

were p is the current value, /?min is the smallest value that the error can have (in this case zero) 

ancl Pmax tne largest value in the series of measurements.

The Low and High Membership Functions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Performance State

Figure 6.30 The Low and High Performance State Membership Functions

6.9 Verification and tuning of both yaw and depth Fuzzy-like PD controllers' 

parameters based on new experimental trials

New trials in the lake were undertaken to verify and/or retune the parameters for GARBI's 

Fuzzy-like PD controller in Oct 1999. Both yaw and depth controllers were working in parallel 

during these experiments. It was decided to use slightly different values for the optimal SFs to 

identify firstly, their robustness performance and secondly the FCSS ability to tune themselves 

according to the system's performance. Thus, the SFs for the yaw controller were set at 

S =0.5, S =0.6 and Su = 7.5 whereas for the depth controller they were set at 

S = 0.65, S = 0.45 and Su - 6.3. The mission plan for this experiment was for the heading
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to change the course from 135° to 0° and keep this direction and for the depth task it was to 

reach the level of 10 meters.

Figure 6.31 and Figure 6.32 shows the results for the above trial. From Figure 6.31 it can be 

seen that the yaw controller is responding fast however its performance for the course keeping is 

rather unsatisfactory as it saturates between 10 to 15 degrees magnitude. Additionally, the 

calculated performance in terms of IAE and ITAE are p,AE =5.79 and p,TAE =155.67

respectively. In Figure 6.32 the depth controller performs smoothly but not very fast. It took 47 

seconds to reach the set point i.e. 10 meters (Note that in the time of 20 seconds a rapid 

bumping appears in depth. It is believed that this was caused by a sudden overpressure from the 

air pressure bottle). The calculated depth performance in this case are pIAE =34.35 and

PITAE =698.66 in terms of IAE and ITAE correspondingly.

Using Equation 6.32, Equation 6.33 and Equation 6.34 the yaw controller SFs are updated. 

Thus, the resulting SFs' gains are Se = 0.5, S^ = 0.5 and SUg = 1. Moreover, from Equation 

6.35, Equation 6.36 and Equation 6.37, the SFs for the depth controller are updated to 

Sti =0.51, S^ =0.48 and £„ =8.05.

The above values for the SFs are actually the overall evaluation gains considering the new 

conditions that affect the performance of the system under study. In this particular case these 

were the hardware modifications and the environmental changes (note that during these 

experiments the weather conditions were windy and caused some small waves in the lake).

Setting the new SFs the final experiment was performed as follows:

• initial voltage of the horizontal propellers is 3V for a period of 60 seconds.
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• change the heading course from 270° degrees to 135° and then to 225° and then keep it in 

this direction,

• and at the same time change the depth course from 0 to 10 meters and then to 5 meters and 

then keep it at this depth.

Figure 6.33 illustrates the Yaw performance together with the controller's output power of the 

horizontal propellers (Ti, T2) (notice that as mentioned before they have opposite signs), the 

error ee and the change of error &eg between the desired and actual yaw. Additionally, Figure 

6.34 shows the depth performance as well as the controller's output power of the vertical 

propellers (T3, T4), the error ez and the change of error Aez between the desired and the actual 

depth.

The performance of the yaw controller in changing the course (heading/depth) is satisfactory, as 

both overshoot and rise time are small. Due to buoyancy effects the depth control dynamics vary 

i.e. the vehicle rises faster than it descends. From Figure 6.34 it can be seen that the controller 

has accommodated this variation producing very acceptable rise times with very a small 

overshoot when ascending. In course-keeping control both controllers perform quite well 

(Figure 6.33 and Figure 6.34). Finally, Figure 6.35 and Figure 6.36 show the pitch and the roll 

of GARBI measured during the experiments. They mostly result from the heading/depth

changes. However, they are very small, no more than 2.5° for the pitch and 5° for the roll, and 

therefore are considered as fractional and thus negligible and do not need to be considered as a 

controller variable.

Unfortunately for these experiments the time and therefore the number of trials were very 

limited due to weather conditions together with some problems that occurred with GARBI's air 

valve.
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Ctrl Output
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Figure 6.31 Yaw experimental results for trial after optimising the SFs. This figure shows the
depth response together with the control output, the error and change of error. The SFs in this

experiment are Se/> = 0.5, 5Ae = 0.6 and SUg = 7.5

Depth

20 30 40 50 
time

10 20 30 40 50

Change Of Error

Figure 6.32 Depth experimental results for trial after optimising the SFs. This figure shows the
depth response together with the control output, the error and change of error. The SFs in this

experiment are Sgi = 0.65, S^ = 0.45 and SK = 6.3
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Ctrl Output
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time (sec)

Change Of Error

Figure 6.33 Yaw experimental results for trial after optimising the SFs. This figure shows the
depth response together with the control output, the error and change of error. The SFs in this

experiment are Se =0.5,5^ =0.5 and Su =1
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Figure 6.34 Depth experimental results for trial after optimising the SFs. This figure shows the
depth response together with the control output, the error and change of error. The SFs in this

experiment are Stf =0.51, S^ =0.48 and ^ =8.05
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Figure 6.35 The roll due to the final experiment is not more that 5° degrees

Figure 6.36 The pitch due to the final experiment is not more that 2.5° degrees

6.10 Summary

In this chapter the development of a controller for an underwater vehicle is presented based on 

the approach proposed in Chapter 5. Two independent Fuzzy-like PD Controllers are used to 

control the yaw and the depth of the vehicle respectively. The design aspects of these controllers 

are the input/output scaling factors and the parameters of the fuzzy logic controllers. The design 

properties of the latter are based on standard techniques coming from fuzzy set theory. General 

rules of how to design fuzzy logic controllers are proposed. Moreover, the former were chosen 

due to the global effect on the controller's performance and robustness. The optimisation and 

tuning of these scaling factors are based on the analysis presented in the previous chapter. 

Therefore, in the implementation of the designed controller for the underwater vehicle the 

performance criteria were defined as well as the parameters/factors and the possible tuning 

control factor levels and the appropriate orthogonal array was selected. Moreover, experiments 

(in a real environment) were conducted and their analysis after applying the Fuzzy Combined
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Scheduling System (FCSS) approach defined the (possible) optimal parameters of the Fuzzy- 

like PD controller. Finally, new experimental trials were applied to verify and tune both yaw 

and depth Fuzzy-like PD controllers' parameters. Analysing the results of the final experiments 

the satisfactory performance of the controller in terms of keeping the path of the navigation to 

the desired one, and/or changing the path according to set point changes is presented.
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7

Review, Conclusions and 
Future Work of the thesis

7.1 Introduction

In this chapter the work presented in this thesis is reviewed highlighting the approaches that 

have been proposed to solve modelling and control problems for non-linear systems. The 

implementation of these proposed approaches has been achieved by applying them to the 

modelling the yaw dynamics, the control strategy of object avoidance and developing a 

controller for an underwater vehicle. Some suggestions for future work are also proposed.
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7.2 Approaching the modelling problem of non-linear systems

Chapter 2 addressed the modelling of complex, non-linear, or partially known systems, where 

very limited experimental data and little knowledge about the systems behaviour are available.

It has been shown that modelling techniques based on fuzzy sets attempt to combine numerical 

and symbolic processing into one framework. Fuzzy systems are knowledge-based systems 

consisting of linguistic If-Then rules that can be constructed using the knowledge of an expert 

and/or the design properties of the experiments implemented to collect data from a given field 

of interest. Moreover, fuzzy systems are universal approximators that can approximate non­ 

linear mappings using a number of available data. This duality allows qualitative knowledge to 

be combined with quantitative data in a complementary way. The drawback of this type of 

modelling, however, is its trade-off between accuracy and linguistic meaning. It is well known 

that with this type of modelling, when the accuracy is increased the linguistic interpretation is 

reduced.

Using neuro-fuzzy techniques the modelling is based mostly on adaptive neural networks that 

are functional equivalent to fuzzy inference systems. This type of approach has a high degree of 

accuracy and they can also be initialised based on some linguistic knowledge. However, often 

the structure of the fuzzy inference system changes dramatically according to the complexity or 

non-linearity of the system and thus the resulting modified linguistic meanings may have no 

practical significance.

By considering the problems of the two modelling approximation techniques described above 

(fuzzy and neuro-fuzzy) it is concluded that:

• fuzzy modelling provides a more transparent representation of the non-linear systems under 

study using a linguistic interpretation in the form of rules, but its accuracy depends on good 

extraction and definition of the knowledge of the system.
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• neuro-fuzzy modelling can identify non-linear systems with high accuracy based on 

function approximation techniques, but its transparency is very low resulting in no 

significant information.

In chapter 2 the combination of the above two techniques was proposed. The main idea of this 

hybrid approach is to describe highly non-linear systems globally, using local models with small 

degrees of non-linearity. The latter can be approximated with high accuracy using neuro-fuzzy 

modelling techniques, whereas the former defines, using a proposed^wzzy supervised scheduling 

system approach, which of the local models are the representative ones and to which degree. 

The proposed hybrid approach uses the advantages of the function approximation as well as 

linguistic acquisition techniques using neuro-fuzzy and fuzzy modelling technique respectively.

It was suggested that the approximation of the local models can be achieved by using the 

Adaptive Network-based Fuzzy Inference System (ANFIS) architecture. It has been shown that 

this type of neuro-fuzzy modelling has very high accuracy in approximating non-linear sub­ 

systems utilising only a very small number of training data and algorithmic iterations. The 

properties of the fuzzy supervised scheduling system are defined based on knowledge 

interpretation techniques, experimental design properties and fuzzy set theory as discussed in 

chapter 2.

The implementation of the proposed hybrid fuzzy and neuro-fuzzy method was employed for 

the modelling of the yaw motion of an underwater vehicle. The experimental design properties 

that were set to extract information in terms of the dynamics of the vehicle's yaw motion, the 

power of the vertical propellers and the desired yaw angle determined the fuzzy variables that 

construct thefazzy supervised scheduling system that defines the global model. Using a small 

number (only nine) of experiments in a real environment, three different groups of local models 

were defined according to the course-changing action and then approximated using the ANFIS 

neuro-fuzzy modelling method.
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It is appreciated that with only nine experiments it was difficult to have a model with high 

accuracy. Additional trials/experiments providing new data would be a means of improving the 

model. However, for this work only the yaw mode was considered. Further work should 

consider modelling of the depth dynamics.

7.3 The Identification and Modelling of Control Strategies using Fuzzy Clustering 

Methods

7.3.1 The proposed algorithmic approach

In Chapter 3 it was shown how fuzzy clustering methods can be used as techniques for 

identifying and modelling of control strategies based on availability of input/output mapping 

data. The information that these data may contain can be extracted based on similarities 

between them that actually define the clusters to which they belong. These similarities can be 

identified using "hard" or fuzzy clustering methods. In non-fuzzy "hard" clustering, the 

boundary between different clusters is crisp, such that one pattern is assigned to exactly one 

cluster. On the contrary, fuzzy clustering provides partitioning results with additional 

information supplied by the cluster membership values indicating different degrees of 

belonging. The "hard" clustering method is unrealistic to be used for the investigation of 

similarities of the data set that represents real systems, as the data cannot always belong to only 

one cluster, thus a. fuzzy clustering method is more suitable.

Fuzzy clustering methods are based on algorithms that aim to minimise a cost function 

regarding the degree to which the data belongs to the clusters and the degree of dissimilarity 

between them. Fuzzy c-meon is one of the first and fundamental algorithms used in clustering 

analysis. This algorithm provides information on the location of the cluster's centres. However, 

the shapes of the identifying clusters using this method are usually hyperspheres based on a 

fixed distance norm. It may therefore force the objective function to prefer clusters of that shape
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even if they are not present. As a result of this drawback some extensions to the fuzzy c-mean 

algorithm have been made with the most widely used Gustafson-Kessel algorithm. These types 

of algorithms have the ability to adapt the distance norm and therefore can define the shape of 

the cluster, which is approximated as hyperellipsoid, according to the data distribution using 

fuzzy covariance matrix. The eigenstructure of this matrix provides information about the 

cluster's shape and the orientation in anyn-dimensional input-output space. The size and shape 

of the ellipsoid show how the inputs and outputs relate to each other in some region of the state 

space.

The main disadvantage of the above algorithms is that they cannot define the number of 

possible clusters that the data belongs to. Several approaches have been proposed in the 

literature and in this thesis a method called mountain clustering is used as a method to 

determine the number of clusters as well as the approximate position of their centres. These are 

the initial setting for more sophisticated and accurate clustering algorithms, such as fuzzy c- 

means and Gustafson-Kessel, to define the actual positions of prototypes and the variances of 

the clusters.

One of the most satisfying ways to extract the linguistic meaning of the defined clusters in a 

multi-dimensional space is to project their centres and variances into each dimensional axis. 

These projections define the set properties of the input/output membership functions assigned 

by linguistic labels regarding the universe of discourse, which gives a transparency to the 

system's analysis. Moreover, merging some of them can reduce the number of generated 

membership function sets in the system under consideration and makes it linguistically more 

tractable. It was proposed that the merging between neighbouring fuzzy sets should be applied 

according to: a) their closeness removing therefore highly overlapping fuzzy sets, b) numbers of 

clusters recommended from the mountain method, and c) observing their linguistic meaning.
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It has been shown that the resulting membership functions can construct the rule table with the 

minimum number of rules. Using these rules the simplified rule base makes it easier to assign 

qualitatively meaningful linguistic terms to the fuzzy sets, and it reduces the number of terms 

needed. Thus, it becomes easier for experts to validate the model and users can understand 

better and more quickly the operation of the system. A model with fewer fuzzy sets and fewer 

rules is also better suited for the design and implementation of a non-linear controller, or for 

simulation purposes, and it has lower computation demands.

The main contribution of the work presented in this chapter was an algorithmic methodology 

based on choices of different fuzzy clustering algorithms, projection of clusters and merging 

techniques. The idea of the proposed methodology was to combine the best features of well- 

known clustering methods such as the mountain method, fuzzy c-means and Gustafson-Kessel 

to produce a strong algorithm. The projection of the prototypes and variables of the clusters is 

also a recognised approach to infer the information that is included in the data clusters into 

fuzzy sets. Merging these fuzzy sets based on the proposed guidelines can minimise the number 

of rules and make the identifying control strategy more transparent. Finally, some improvement 

of the resulting fuzzy system can be achieved by using optimisation methods such as gradient 

method. Furthermore, it was shown that these optimisation methods should be applied only in 

the output singletons and only if their resulting modifications do not lose their linguistic 

meanings.

Since the number of methods that combine to construct the proposed methodology is high, it 

gives high flexibility to the designer in terms of what and how the methods (tools) should be 

used. The proposed methodology is based on the right choice of the right tools. The proposed 

algorithmic method can be described as universal approximation in terms of identifying and 

modelling non-linear control strategies.
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7.3.2 The generation of fuzzy rules for "Avoiding Objects" Control Strategy based on the 

proposed approach

The proposed algorithm is a systematic straightforward method and it has been applied to 

optimise the control action of an underwater vehicle in terms of avoiding objects to show its 

capabilities as discussed in Chapter 4. The applied inputs are the distance and the angle between 

the vehicle and the objects. The resulting control surface is very close to the original one and 

thus the algorithm works very satisfactorily i.e. Average Percentage Error (APE) between 

0.0817% and 0.0519%.

7.4 Control Systems using Fuzzy Logic & the Taguchi Method

7.4.1 The Design of controllers fo r non-linear systems and tuning approaches

Chapter 5 described an innovative systematic and synergistic approach to optimise the 

factor/parameter levels of a Fuzzy-like PD controller aided by a design of experiment method, 

namely the Taguchi method and their tuning using a proposed method named Fuzzy Combined 

Scheduling System. The design structure of a Fuzzy-like PD controller involves a large number 

of degrees of freedom. Such control systems are inherently non-linear and robust and their 

performance depend mainly on the appropriate selection of the tuning factor levels. Appropriate 

selection of levels implies analysis of the most significant factor levels in terms of their 

performance and interaction characteristics. One way to do this analysis is to apply the Taguchi 

robust design of experiment method. Robust design is a methodology for finding the optimum 

setting of control factors to make the system insensitive to noise factors. The important features 

of this approach is that a minimum number of experiments need to be conducted, which were 

enough to investigate the significance and robustness of the factors together with their 

interactions even when these factors are inhomogeneous. For instance, in the second case study
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shown in chapter 5, although a full factorial would require 81 experiments 27 experiments were 

enough for the analysis.

The scheme requires the designer to decide initially which factors will be used for tuning and 

what are their possible levels. For the first decision however, even if an inappropriate choice of 

factor(s) is made their verification can be done during the Taguchi analysis, where their 

significance is measured and ranked. This is a very important task especially when large 

numbers of candidate factors are introduced. For the second decision, the Taguchi method 

investigates and defines which are the optimal combinations of the set factor levels, and 

therefore only the significant levels are considered for further use. After extended simulation 

studies on a Fuzzy-like PD control system that uses more than three levels for each factor, it 

was observed that no significant differences existed in terms of performance output whereas the 

analysis become more complicated when more levels are considered. Therefore, in the case 

studies outlined in chapter 5 only three levels for each factor were used. In this study the factors 

of Fuzzy-like PD controllers that were chosen to be the tuned ones, were the Scaling Factors 

(SFs) and the peaks of the fuzzy logic Membership Functions (MF's). Additionally the 

significance of the interactions between the factors was investigated. When a significant 

interaction between an important factor and an unimportant factor exist, the unimportant factor 

has also to be considered due to its interacting effect. It is important to note that, with this 

approach an interaction between a SF and a peak of MF that is inhomogeneous can be studied. 

This investigation is usually too complex for other approaches and is usually avoided even 

when it could be very critical. Thus, the ranking of the significance in terms of robustness 

characteristics of the factors, levels and interactions can give precise information for the 

designer to make the right decisions in terms of which factor levels should be used to set the 

initial optimal factors and design the tuning rules.

In relation to the performance aspects of the factor levels a fuzzy tuning inference mechanism 

approach was proposed. The antecedent of the rules included the examination of the
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performance state, whereas the consequence part is constructed by the tuning aggregations that 

took into account the analysis of the factor levels. However, some consideration should be taken 

during construction of these rules in terms of (i) consistency of the rules, (ii) equivalence of the 

factor levels, (iii) homogeneity of the control rules and (iv) priority of the tuning factor levels.

The overall output of the tuning factor levels results from the proposed fuzzy combined 

scheduling system method. The contribution of this method was that for each performance state 

measurement, both current and tuning factor levels were considered, defined as two overlapping 

MFs, where their degrees of membership defined their actual weights.

The performance criteria were used independently and for each of them the setting of two MFs 

together with the universe of discourse may vary according to the particular criterion. The 

identification of the current SFs (if unknown or the system's dynamics change) is a challenge 

for this optimisation problem. In this case the SF's value could be optimised using another fuzzy 

scheduling system that constructs its rule based on the interaction plots resulting from the 

analysis of mean in the Taguchi method. The rules resulting from this analysis could be used to 

model the controllers' parameters (e.g. gains) and therefore used as the current parameter 

values.

Another important aspect of the proposed approach was that it does not depend on the 

performance index characteristics. It was therefore able to deal with any performance criteria 

and any number of them. However, increasing this number complicates the analysis.

In this approach, the philosophy was that if data, even from a small number of experiments is 

available, a systematic analysis of the results can give enough information to optimise the 

factor's/parameter's levels for the performance criteria defined by the designer. This can be 

achieved using orthogonal arrays to design the experiments that excite all dynamics/parameters 

of the system. This is a very important issue in the analysis of non-linear systems. Taguchi 

method analyses the experimental results, which provide information about the significance of
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each of the chosen control factors as well as the interactions between them. Using this 

information the detection of the subspace to which the optimal factor levels belong that 

warranties the robustness of the system was investigated. Then measuring the different 

performance states and using a fuzzy tuning inference mechanism the overall values of the 

factor levels were defined regarding the tuning and the current factor levels at a particular time.

The approach therefore, can be very useful in developing control systems where no 

mathematical model of the system exists and/or it is difficult to undertake large number of 

experiments. Moreover, the approach can also be used when a good mathematical model and/or 

a real system is available and simulations or real experiments can be undertaken, extracting 

information about the design aspects of a required control system.

In chapter 5 the SFs and peaks of MFs of a Fuzzy-like PD controller for a second-order system 

were used as a case study to test the proposed method and the results are very satisfactory 

showing a minimum of 50% improvement in IAE and ITAE performance indexes. However, 

the proposed synergetic approach can easily be adapted as a general approach where other 

parameters of the FLCs may be studied as tuning factors. The analysis of interactions between 

inhomogeneous factors is an interesting task using the Taguchi method, where more 

investigation of different FLC's factors could be useful to identify their inter relationship. 

Moreover, the performance criteria, which are chosen by the designer, play a critical role in the 

analysis of the results. Their significance could be defined using the same proposed approach, 

but in this case the results may by considered as the performance of the tuning factors. Finally, 

in using the fuzzy combined scheduling system approach, the response investigation of the 

tuning factor levels, that facilitates the extraction of the tuning fuzzy rules, stems from the 

combined evaluation of all the performance criteria. This is a very important aspect especially 

when a large number of performance criteria are used and thus their analysis in a global manner 

is very complicated.
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7.4.2 The implementation of the proposed approach to design a controller for an underwater 

vehicle

The proposed approaches presented in chapter 5 were applied to define Fuzzy-like PD 

controllers for an underwater robot named GARBI as described in Chapter 6. The design of 

GARBI's controller involves course-changing and course-keeping for both steering and depth 

control performances. The architecture of the controller was based on two independent Fuzzy- 

like PD controllers for each controlled variable, yaw and depth. The design aspects of the FLC 

as well as the "PD" part for these types of controllers was presented. It was shown that the 

flexible structure of the FLC leaves the designer to decide about the input/output universe of 

discourse and linguistic variables in terms of their shape, number and meaning, the construction 

of the rule base and the meaning of their operators and the defuzzification method. The above 

decisions were guided from particular design aspects coming from the fuzzy system theory as 

well as from the expert's knowledge in terms of system's dynamics and behaviour identification. 

Moreover, the gains of the input/output SFs of the PD part of the controller were defined 

according to their global effect on the dynamics of the close-loop control system. Although the 

SFs were defined based on some general instruction mostly from the classical PID design theory 

in chapter 6, a more systematic procedure to investigate and optimise its controller's parameters 

was introduced. This optimisation was based on experiments in a real environment and were 

planned using the Taguchi method for design of experiments.

It was shown that the Taguchi Design of experimental method could help to minimise the 

number of experiments, using only nine experiments in the orthogonal array, without the risk of 

losing vital information. This was very important as the experiments were held in a real 

environment, where time and money is an issue. However, the work that had to be undertaken 

before and during these real experiments was a very challenging task and required not only the 

facilities availability (such as hardware/software), but also team working skills.
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The preparation before the trials can be summarised as hardware (calibration and possible 

modifications/improvements) as well as software (developing and testing). During the 

experiments, moreover, the schedule of the planned experiments was followed. Any change in 

the conditions such as weather, hardware problems etc. were be recorded and accounted for 

accordingly.

The results of the experiments were presented and analysed extensively. Using analysis of 

means and the average response plot resulting from the performance criteria measurements, it 

was shown that the optimal tuning factor levels could be defined. The construction of the tuning 

fuzzy rules was defined respecting the performance criteria defined for the IAE and ITAE. 

Finally, the optimal tuning factor levels of both yaw and depth controllers' SFs were verified 

and tuned whilst applying the fuzzy combined scheduling system approach in the final trials.

It has, therefore been shown that from the approach presented in chapter 5, successful 

controllers can be implemented for non-linear systems. Furthermore, using the proposed 

systematic method, GARBI acquired a Fuzzy-like PD controller, that performs satisfactorily 

since both course-changing and course-keeping performance is within the desired response with 

minimal error. It has been shown therefore, that Fuzzy-like PD controllers designed, optimised 

and tuned by the proposed approach possesses features that are attractive in navigation control 

problems posed by underwater vehicles. Both the developed yaw and depth controllers are now 

in operation in GARBI's navigation control system.

In this research it has been shown, also, how a fuzzy controller combined with conventional PD 

control techniques can help to design a robust controller, dealing with the uncertainties and non- 

linearities of an underwater vehicle.
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7.5 Summary

The purpose of this research was to propose approaches for modelling and control of non-linear 

systems using fuzzy logic technique. In this thesis it has been shown that bridges have been 

made between fuzzy logic and other "intelligent" or conventional techniques such as neural 

networks, Clustering methods, PID controllers and Taguchi method to achieve the main 

purpose. The main contributions that have been proposed and developed during this research 

are:

, Modelling non-linear system using a Hybrid Fuzzy and Neuro Fuzzy approach based on the 

fuzzy supervised scheduling system and neuro-fuzzy modelling techniques with the 

application to model the yaw dynamics of an underwater vehicle.

• An algorithmic methodology for identification and modelling of a complex system's control 

actions using fuzzy clustering methods.

• Application of the algorithmic fuzzy clustering approach to construct control strategies for 

"avoid objects".

• An innovative approach to determine the optimal parameters of fuzzy and fuzzy-like PD 

controllers in terms of robustness and tuning characteristics based on the Taguchi design of 

experiments method, the construction of fuzzy rules to tune the factor levels approach and 

the fuzzy combining scheduling system approach.

. The successful implementation of the Fuzzy-like PD controller for course-changing and 

course-keeping in an underwater vehicle.
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In this appendix the training data that are used to define the local model that represents the yaw 

of GARBI underwater vehicle are presented in figures as defined in Table A 2.1 when the 

power and the angle are as in the 4th, 5* columns.

turning

30° to 60°

60° to 90°

90° to 180°

Training data for

Figure A.1

Figure A. 5

Figure A. 9

Figure A. 13

Figure A. 17

Figure A.21

Figure A.25

Figure A.29

Figure A.33

Angle

Low

Low

Low

Medium

Medium

Medium

High

High

High

Power

Low

Medium

High

Low

Medium

High

Low

Medium

High

Table A 2.1 Figures that shows the training data for turning 3(f, 6(f' 9(f and I8(f
degrees left and right

The membership functions, the rules and the resulting FIS approximation output of the ANFIS 

algorithm are presented in figures as defined in Table A 2.2 when the power and the angle are 

as in the 2nd, 3rd, 5th, 6th, 8* and 9* columns.

Yaw of GARBI underwater vehicle when turns from

straight ahead to 
left or right

Figure A.2

Figure A.6

Figure A 10

Figure A. 14

Figure A.18

Figure A. 22

Figure A.26

Figure A.30

Figure A.34

Angle

Low

Low

Low

Medium

Medium

Medium

High

High

High

Power

Low

Medium

High

Low

Medium

High

Low

Medium

High

left to right

Figure A3

Figure A. 7

Figure A. 11

Figure A. 15

Figure A. 19

Figure A.23

Figure A.27

Figure A.31

Figure A. 35

Angle

Low

Low

Low

Medium

Medium

Medium

High

High

High

Power

Low

Medium

High

Low

Medium

High

Low

Medium

High

right to left

Figure A.4

Figure A.8

Figure A12

Figure A. 16

Figure A.20

Figure A24

Figure A28

Figure A. 32

Figure A. 36

Angle

Low

Low

Low

Medium

Medium

Medium

High

High

High

Power

Low

Medium

High

Low

Medium

High

Low

Medium

High

Table A 2.2 Figures that shows the Ne uro-fozzy local model defined by ANFIS
algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

Training data for the yaw (30 & 60 degrees and Low Power) Training data for turning of 30 degrees
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Figure A. 1 Training data for turning 30°, 60° left and right (Low Power-Low Angle)

MF before ANFIS

Training data (o) & FIS output {-) for turning ot30 degrees & Low Power

Rulel:
/Aime is SHORT
Then angle is 0 = 1.762? -1.601

Rule 2:
/Aime is LONG
Then angle is 9 = 3.07 U +1.907

Figure A.2 Neuro-fuzzy local model HLR 1,1 defined by ANFIS algorithm

A-3



Appendix A Local models using Neuro-Fuzzv ANFIS architecture

MF before ANFIS Rule 1:

If time is SHORT Then angle is 
9 = 1.403? -7.103

Rule 2:

If time is MEDIUM Then angle is 
0 = -3.592? -30.41

Rule 3:

//"time is LONG Then angle is 
0 = -4.345? -44.93

Training data (o) & FIS output (-) for turning Right 60 degrees & Low Power

0 5 10 15 20 25 30

Figure A.3 Neuro-fuzzy local model LR 1,1 defined by ANFIS algorithm

Rule 1:MF before ANFIS

//'time is SHORT
Then angle is 0 = -5.365? +1.275

Rule 2:
If time is MEDIUM
Then angle is 0 = 1.889? +2.587

Rule 3:
If time is LONG
Then angle is 0 = 3.948? -41.52

Training data (o) & FIS output (-) for turning Left 60 degrees & Low Power

Figure A. 4 Neuro-fuzzy local model RL1,1 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

Training data for the yaw (30 & 60 degrees and Medium Power) 
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Training data for turning of 30 degrees

"IBS——

0 10 20 30 40 50 60 70 
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Training data for turning of 60 degrees Right
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Figure A.5 Training data for turning 30°, 60° left and right (Medium Power-Low
Angle)

MF before ANFIS

Training data (o) & FIS output (-) for turning of 30 degrees & Medium Power

Rule 1:
//"time is SHORT Then angle is 
0 = 1.284? -1.506

Rule 2:
//"time is LONG Then angle is 
8 = 6.345? +4.282

0 0.5 1 1-5

Figure A. 6 Neuro-fuzzy local model HLR 1,2 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

MF before ANFIS Rulel:

//time is SHORT Then angle is 
0 = 0.1795?-6.041

Rule 2:

//time is MEDIUM Then angle is 
(9 =-9.326? +67.44

Rule 3:

//time is LONG Then angle is 
9 = -9.942? + 83.32

Training data (o) & FIS output (-) for turning Right 60 degrees & Medium Pmver 
20

Figure A. 7 Neuro-fuzzy local model LR 1,2 defined by ANFIS algorithm

Rulel:MF before ANFIS

//time is SHORT Then angle is 
9 = -16.48? -8.972

Rule 2:
//time is MEDIUM Then angle is 
9 = 5.773? +20.95

Rule 3:
//time is LONG 77ze« angle is 
6 = 13.58? -96.2

Training data (o) & FIS output (-) for turning Left 60 degrees & Medium Power

2 4 6 8 10 12

Figure A.8 Neuro-fuzzy local model RL 1,2 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

Training data for the yaw (30 & 60 degrees and High Power) Training data for turning of 30 degrees
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Figure A. 9 Training data for turning 30°, 60° left and right (High Power-Low Angle)

MF before ANFIS

Training data (o) & FIS output (-) for turning of 30 degrees & Ugh Power

0.5 1 1-5 2 2.5 3 3.5 4 4.5

Rulel:
I/time is SHORT Then angle is 
6» = 3.598?-2.232

Rule 2:
If time is LONG Then angle is 

= 5.121? +9.628

Figure A. 10 Neuro-fuzzy local model HLR 1,3 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

MF before ANFIS

Training data (o) & FIS output (-) for turning Right 60 degrees

Rule 1:
//"time is SHORT Then angle is 
9 = 14.63? + 2.919
Rule 2:

//time is MEDIUM 77/e« angle is 
= 6.522? -11.95

/Aime is LONG Then angle is 
=-3.7921 -33.91

Figure A 77 Neuro-fuzzy local model LR 1,3 defined by ANFIS algorithm

Rule 1:MF before ANFIS

//"time is SHORT Then angle is 
6 = -19.67? -1.789
Rule 2:
/Aime is MEDIUM Then angle is 

= 8.23 If -4.45

//"time is LONG TTzen angle is 
= 8.34f -23.94

72 Neuro-fuzzy local model RL 1,3 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

Training data for the yaw (60 & 120 degrees and Low Power) Training data for turning of 60 degrees
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Figure A. 13 Training data for turning 60°, 90° left and right (Low Power-Medium
Angle)

MF before ANFIS

2 4 6 8 10 12 14 16 
time

Rule 1:

If time is SHORT Then angle is 
<9 = 1.144?-3.815

Rule 2:

//'time is LONG Then angle is 
0 = 2.048? +35.91

Training data (of & FIS output (-) for turning of 60 degrees & Low Power

2 4 6 8 10 12 14 16 1

Figure A. 14 Neuro-fuzzy local model HLR 2,1 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

MF before ANFIS

10 15 20 25 30

Training data (o) & FIS output (-) for turning Right 120 degrees & Low Power

Rulel:

//"time is SHORT Then angle is 
0 = 2.595? -1.839

Rule 2:

/Aime is MEDIUM Then angle is 
6 = -1.736? -10.88

Rule 3:

/ftime is LONG Then angle is 
6 = -0.01506? -119

Figure A. 15 Neuro-fuzzy local model LR 2,1 defined by ANFIS algorithm

Rulel:MF before ANFIS

n 5 10 15 20 25 30 35 40

//"time is SHORT Then angle is 
6 = -8.851? -9.805

Rule 2:
//"time is MEDIUM Then angle is 

= 0.1736? +28.14

/Aime is LONG Then angle is 
9 = 1.889? +62.4

16 Neuro-fuzzy local model RL 2,1 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

Training data for the yaw (60 & 120 degrees and Medium Power) Training data for turning of 60 degrees
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Figure A. 17 Training data for turning 60", 90" left and right (Medium Power-Medium
Angle)

MF before ANFIS

Training data (o) & FIS output (-) fortuning of 60 degrees & Medium Power

012345678

Rule 1:
/Aime is SHORT Then angle is 
9 = 9.736^-0.7143

Rule 2:
/Aime is LONG Then angle is 

= l2.69t -38.05

Figure A. 18 Neuro-fuzzy local model HLR 2,2 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

MF before ANFIS

Training data (o) S.FIS output (.) tar turning Right 120 degrees S. Medium Power

Rulel:

//"time is SHORT Then angle is 
9 = 4.374? + !. 817

Rule 2:

//"time is MEDIUM Then angle is 
6> =-6.698? -78.45

Rule 3:

//'time is LONG Then angle is 
6 = -5.803? +27.93

Figure A. 19 Neuro-fuzzy local model LR 2,2 defined by ANFIS algorithm

Rule 1:MF before ANFIS

Training data (o) & FIS output (-) for turning Left 120 degrees 4 Medium Power

/Aime is SHORT Then angle is 
6 = -10.63? -7. 109
Rule 2:
.//"time is MEDIUM Then angle is 

= 4.973? -15.48

If time is LONG Then angle is 
= 7.573? -54.04

F/gwre A 20 Neuro-fuzzy local model RL 2,3 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

Training data tor the yaw (60 & 120 degrees and High Power) Training data for turning of 60 degrees
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Figure A.21 Training data for turning 60°, 90" left and right (High Power-Medium
Angle)

Wf before ANFIS

0 0.5 1 1.5 2 2.5 3 3.5 4

Training data (o) S FIS output (-) tor turning of 60 degrees 8 High P

Rule 1:
//time is SHORT Then angle is 
B = 1.808^-0.1103

Rule 2:
//time is LONG Then angle is 

= 1.848? +4.037

0 0.5 1 1.5

Figure A.22 Neuro-fuzzy local model HLR 2,3 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzy ANFIS architecture

MF before ANFIS Rule 1:

//time is SHORT Then angle is 
6> = 20.6?-13.17

Rule 2:

//time is MEDIUM 
6> = -16.58? +61.89
Rule 3:

angle is

//time is LONG 77ze« angle is 
6 = -27.45? +234.1

Training data (o) & FIS output (-) for turning Right 120 degrees

024 8 10 12 14

Figure A. 2 3 Neuro-fuzzy local model LR 2,3 defined byANFIS algorithm

MF before ANFIS Rule 1:
I/time is SHORT Then angle is 
6 = -32.97 6? + -6.9 12

Rule 2:
If time is MEDIUM Then angle is 

= 114.75? -14.63

//'time is LONG Then angle is 
9 = 30.94? -283.6

Figure A.24 Neuro-fuzzy local model RL 2,3 defined byANFIS algorithm

A-14



Appendix A J_ocal models using Neuro-Fuzzv ANFIS architecture

Training data for the yaw (90 & 180 degrees and Low Power) Training data for turning of 90 degrees
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Figure A. 25 Training data for turning 90°, 180° left and right (Low Power-High
Angle)

MF ochre ANFIS

Training data (o) S FIS output (-) tor turning of 90 degrees & Low Power

Rulel:
//"time is SHORT Then angle is 
0 = 1.793?- 6.404

Rule 2:
//"time is LONG Then angle is 

= -0.2111f +111.8

————2————^ i 8 10 12 14 16 18

Figure A.26Neuro-fuzzy local model HLR 3,1 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

MF before ANFIS Rulel:

//time is SHORT Then angle is 
0 = 4.908*+ 0.1903

Rule 2:

//time is MEDIUM Then angle is 
0 =-4.213* -10.85

Rule 3:

//time is LONG Then angle is 
0 = -5.115* +7.078

Training data (o) & FIS output (•) tor turning Right 1BO degrees & Low Power

0 5 10 15 20 25 30 35 40

Figure A.27 Neuro-fuzzy local model LR 3,1 defined by ANFIS algorithm

MF before ANFIS

Training data (o) & FIS output {-) tor turning Left 180 degrees & Low Power

Rule 1:
//time is SHORT Then angle is 
9 = -6.21 It + 1.965

Rule 2:
//time is MEDIUM Then angle is 

= 2.115? +14.99

//time is LONG Then angle is 
0 = -1.167* +225.7

P 0—— 5 10 15 20 25 30 35 40 45

Figure A. 28 Neuro-fuzzy local model RL 3,1 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

Training data for the yaw (90 & 180 degrees and Medium Power) Training data for turning of 90 degrees
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Figure A. 29 Training data for turning 90°, 180° left and right (Medium Power-High
Angle)

MF before ANFtS

Training data (o) & FIS output {-) for turning of 90 degrees 4 Medium Power

Rule 1:

/Aime is SHORT Then angle is 
0 = 5.636? -3.252

Rule 2:
/Aime is LONG Then angle is 
0 = 6.694? -16.65

' 0 2 4

Figure A. 30 Neuro-fuzzy local model HLR 3,2 defined by ANFIS algorithm
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MF befcre ANFIS Rule 1:

//"time is SHORT Then angle is 
9 = 4.339? + 1.584

Rule 2:

If time is MEDIUM Then angle is 
6 = -6.047? + 67.48

Rule 3:

//time is LONG Then angle is 
6 = -8.644? + 159.5

Training data (o) 1 FIS output (-) hi turning Right 180 degrees & Medium Power

0 5 10 15 20 25 30 35 40

Figure A.31 Neuro-fuzzy local model LR 3,2 defined by ANFIS algorithm

Rule 1:MF before ANFIS

Training data (o) & FIS output (-) tor turning Left ISO degrees & Medium power 
200

10 20 30 40 50 60 70

I/time is SHORT Then angle is 
0 = -10.83?+ 4.353
Rule 2:

//"time is MEDIUM Then angle is 
0 = 0.026731 +31.4

Rule 3:

If time is LONG Then angle is 
0 = -2.483? +357.6

Figure A. 32 Neuro-fuzzy local model RL 3,2 defined by ANFIS algorithm
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Figure A. 33 Training data for turning 90°, 180° left and right (High Power-High
Angle)

MF before ANFIS

0123456789

,3456789 10

Rule 1:
/Aime is SHORT Then angle is 
0 = 6.053? + 1.015

Rule 2:
If time is LONG Then angle is 

= 6.165? +13.82

Figure A.34 Neuro-fuzzy local model HLR 3,3 defined by ANFIS algorithm
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Appendix A Local models using Neuro-Fuzzv ANFIS architecture

MF before ANFIS

Training data (o) i, FIS output (-) for turning Right 180 degrees

Rule 1:

//"time is SHORT Then angle is 
0 = 10.04? -22.07

Rule 2:

//'time is MEDIUM Then angle is 
= -9.3 16? +93.63

//time is LONG Then angle is 
6 = -4.464? -61.65

Figure A.35 Neuro-fuzzy local model LR 3,3 defined by ANFIS algorithm

Rule 1:
//time is SHORT TTzew angle is 
6 = -31.46? -79.05

Rule 2:
//time is MEDIUM 77/e« angle is 

= -6.712/ -305

//time is LONG Then angle is 
6> = 5.351? -39.35

10 15 20 25 30

Figure A. 36 Neuro-fuzzy local model RL 3,3 defined by ANFIS algorithm
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SIMULINK Block Diagrams

Appendix B contains the main block diagrams that were designed in SIMULINK for the 

modelling simulation defined in Chapter 2.

Figure B. 1 Main block diagram

Figure B.2 Timer block diagram I to 3

Constant
Sum .

Product
In2

Qut2

Unit Delay

Figure B.3 Timer block diagram
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Figure B. 4 Fuzzy Model for turns block diagram

o
Angle

MATLAB Fen 
SetMFsOO

-KZT:
AngleSO

-KT:
Angle 60

Angle 90
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Figure B. 5 Degrees of membership functions block diagram
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Angle 60

AngiTlSO

(Z>

«ini,5

4

^
••czn

Figure B. 6 Fuzzy Rules block diagram

Figure B. 7 Monitor block diagram
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Appendix c.__________________________________________Merging method

C.I Merging method

The merging process considering only the closeness of the peak values A of triangular 

membership function works as follows:

1. Take the modal values for the membership functions //,(v),//2 (v),...,//c (v) (where cn is

the number of clusters in n-dimension) with more than \L overlap

™*=/V=i)(z) k = \,2,...,cn (C.I) 

with

m} <m2 <...<mCn (C.2)

2. Define the threshold A of the distance dm , acceptable between the modal values

3. Calculate the difference between successive modal values as:

dnij -mj+l -nij where dmj > A. j -\,2,...,N-l (C.3)

4. Find all the difference smaller or equal than A , i.e. dm} < A .

5. If there is no difference smaller or equal than A go to 7.

6. Merge all the modal values corresponding to consecutive difference smaller than A using 

Equation C.4

mmv =^~ (C.4)

D = b-a + \ (C.5) 

7. Update N and Go to 3
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Appendix D
Update Law for input-output

membership function- 
singletons
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Appendix D Update Law for input-output membership function-singletons

D.I Update Law for input-output membership function-singletons

Considering the error between the output of the fuzzy system f(u, \ <p) and m trained data>>

(D.I)

where

I"
(D.2)

and

(D.3)

the gradient method seek to minimise em by choosing the parameters <p, that can be for the 
fuzzy system the output singletons and/or the parameters of the input membership functions as 
follows:

D.2 Input Membership Func tion Update Law

In this case is considering to adjust y, ft, S in Figure D.I so minimise em .

r
Figure D.I Triangular membership function

For Y the update law is:

U(/- y) so that
dy dy

8e _ df dp 
dy dfj dy

df _g-f and

D-2

(D.4) 

(D.5) 

(D.6)
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For P the update law is:

For 5 the update law is:

$L_ 
an £

dS d8{6-p) (S-PY

v,i=i

D-3

(D7)

(D.8)

(D.9)

dp "dp dp d/jdp ' 

~ = ^f^- and (D.ll)

CD.")

S(k + l) = S(k)-2s -— (D.14) 
dS

2L = (f -y)2L sothat § = £^|f (°- 15 )

(D.I 6)

(D.I 7)
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D.3 Output Singletons Update Law

In this case is considering to adjust a so minimise em . The update law is

(D.19) da

that =Hrir (D-20>
da dg da

df u , dg d(a-s .) -- = -- and JL = _^1 = S 
da da

D-4

(D.22)
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NAVIGATION CONTROL OF AN UNDERWATER ROBOT USING FUZZY-LIKE PD CONTROLLER

I. S. Akkizidis, G. N. Roberts

University of Wales College, Newport, UK
e-mail: ioannis.akkizidis@newport.ac.uk

ABSTRACT

Underwater vehicles are commonly classified as being 
highly non-linear uncertain systems and are 
consequently difficult to control effectively using 
model-based control methods. Application of a Fuzzy- 
like Proportional Derivative Controller (Fuzzy-like PD 
Control) for both steering and depth control of an 
underwater vehicle is described in this paper. The 
design of these types of controllers is of interest from 
the point of view of the course-changing, course- 
keeping and mission and motion control. The 
architecture of the controller is based on two 
independent Fuzzy-like PD controllers for each 
controlled variable, yaw and depth. Control 
performance and robustness are the most important 
issues of the above controllers and their optimum values 
need to be identified. These parameters may be the 
scaling factors that are applied in the input/output of the 
PD part of the controller as well as the fuzzy sets of the 
fuzzy part of the controller. The parameters of the fuzzy 
sets are optimised based mostly on the expert's 
knowledge in terms of systems' dynamics and 
uncertainty analysis. The values of input/output scaling 
factors are optimised since they play an important role 
in the formation of the dynamics of the close-loop 
structure leading to the desired response of the control 
system. This optimisation is based on experiments in a 
real environment and were planned using the Taguchi 
method for the Design of Experiments. Results are 
presented and analysed extensively to investigate the 
capabilities of the controller.

Keywords: Fuzzy like-PD Controller, Yaw and Depth 
Control, Taguchi Method.

1. INTRODUCTION

Manoeuvring and depth control of an Underwater 
Vehicle (UV) is discussed in this paper. The difficulty 
that stems from this type of controller is that they have 
to be robust. UVs are classified as systems possessing 
highly non-linear dynamics as well as the environment 
in which they operate has a lot of disturbances, these 
give rise to special problems that may be solved using 
intelligent control techniques.

This paper presents the development of an optimal 
fuzzy control strategy to control steering and depth of a 
low-cost Remote Operate Vehicle (ROV) named

GARBI developed at the Polytechnic of Barcelona and 
the University of Girona in Spain. The vehicle, which is 
illustrated in Figure 1, is used for underwater mission 
operations such as observations and inspections. An 
umbilical cable carrying power and providing a 
communication link, links GARBI to a surface ship or 
other operating platform. The objective of the Fuzzy 
Logic Controller (FLC) is to control the yaw ^ and the 
depth z of the vehicle in terms of keeping the path of 
the navigation to the desired one, and/or changing the 
path according to a set point. This makes the navigation 
smoother and safer, the propulsion more economical 
and more accurate path-keeping.

Figure 1. Photo of GARBI underwater robot

Structure and parameter designs are important tasks 
during the building of PCs. Structure design means to 
determine the architecture of a controller, the 
input/output variables of a controller, the format of the 
fuzzy control rules, and the number of rules. Parameter 
design means determining the optimal parameters for a 
fuzzy controller.

The objective of this paper is to describe how to design 
and apply non-linear Fuzzy-like Proportional Derivative 
Controller (F-like PD Controller) in an underwater 
vehicle. This controller's strategy is based on the 
combination of Fuzzy Logic and conventional 
proportional-derivative control techniques. The main 
advantage of the FLC is that it can be applied to systems 
that are non-linear where their mathematical model are 
difficult to obtain. Another advantage is that the 
controller can be designed to apply heuristic rules that 
reflect experiences of the human experts. F-like PD 
controller has a fixed set of control rules, usually 
derived from experts' knowledge. The Membership 
Functions (MFs) of the associated input and output
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linguistic variables are generally predefined according 
to non-linearities of the system. Conventional 
Proportional Derivative (PD) controllers provide high 
sensitivity and tend to increase the stability of the 
overall feedback control systems. Additionally, PD 
controllers can reduce overshoot and permit the use of 
larger gain by adding damping to the system. The 
derivative action is employed because it performs well 
in reducing disturbances and keeping the set point to the 
desired one.

For the successful design of FLC's, proper selection of 
the optimal input and output Scaling Factors (SFs) is 
required which scale up or down the entire universe of 
discourse. Due to their global effect on the control 
performance and robustness, input and output SF's play 
a critical role in the F-like PD controller and they have 
the highest priority in terms of tuning and optimisation, 
Mudi and Pal (2). Analysis of how to investigate their 
optimal values is presented in this paper. Experimental 
results of the F-like PD controller are presented and 
discussed extensively in the following sections.

2. THE HYDRODYNAMIC FORCES AND 
MOMENTS OF GARBI

The motion study of marine vehicle involves six 
Degrees Of Freedom (DOF), since six independent co­ 
ordinates are necessary to determine the position and 
orientation of a rigid body. The first three co-ordinates 
Surge, Sway and Heave and their time derivatives 
correspond to the position and translational motion 
along the x-, y-, and z-axes. The last three co-ordinates 
Roll, Pitch and Yaw (or heading angle) and their time 
derivatives are used to describe orientation and 
rotational motion. In GARBI the motions in the x and z 
direction (Surge and Heave) are controlled by the 
horizontal propellers (T,, T2) and vertical propellers (T3 , 
T4) respectively (Figure 2). However, no correction in y 
direction (Sway) is applied.

The structure of GARBI is designed in such a way that 
Pitch and Roll cross-coupling is virtually non-existent. 
However, coupling appears between yaw and surge only 
when the vehicle has initial speed. Nevertheless, this 
coupling is expected and acceptable due to the 
navigation properties. Because of feedback control, the 
longitudinal control that is coupled with pitch and 
therefore depth are minor and to some extent 
compensated. No other major couplings are present.

3. CONTROL TASKS OF GARBI UNDERWATER 
VEHICLE

As in any underwater vehicle the dynamics of GARBI 
are coupled and highly non-linear. When designing 
GARBI's controller it is necessary to compensate its 
non-linear dynamics and kinematics, non-linearities due

to thrusters and pressure hysteresis, barometer dead- 
zones, and the noise in yaw and depth measurements. 
Therefore, robust controllers that reliably perform 
complex task in the face of the above uncertainties 
should be used. Non-linear F-like PD Controller is 
designed to make the vehicle follow the commands 
from the pilot in terms of course-changing and the 
course-keeping of both yaw angle and depth of the 
robot.

Starboard

Figure 2. GARBI Body-fixed reference frames

Controllers for course-keeping and/or course-changing 
are normally based on feedback from a gyrocompass 
measuring the heading for the yaw and ah- press-sensors 
measuring the difference of the pressure inside and 
outside the robot for depth.

The control objective for a course-keeping controller 
can be expressed as: (//, z = constant. For the course- 
changing the objective is to follow the changes of the 
pilot commands with the best control performance in 
terms of small overshoot, settling time and steady state 
error.

Figure 3 shows a simplified scheme of course- 
keeping/course-changing. The structure uses two 
independent FLCs for each controlled variable (Yaw 
and Depth), greatly simplifying the design at the cost of 
some decrease in performance. The corresponding 
inputs of these controllers are the error 
e (nT) = ysp - >ff(nT) between the real and the desired
yaw angle and the error ez (nT) = zsp -z(nT) between
the real and the desired heave position as well as the 
change of the above errors (see Figure 4 & Figure 5) 
tur (nT) = ev (nT)-ev (nT-\), Ae2 (nT) = ez (nT)-ez (nT-T) 
where e(nT), Ae(nT) and y/, z(nT) designate, crisp 
error, rate and process output at sampling time nT 
respectively. Limiters are used to avoid saturation of 
inputs in the universe of discourse. As a convention, 
signals are written in lower case before gains/SFs and 
upper case after gains/SFs, for instance E = Se * e. The 
corresponding outputs of these controllers are; for the 
first controller the moment N around the z-axis, and for 
the second controller the force Z of the two propellers in 
the z-direction. The rotation N is related to the
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difference of power between propellers T, & T2 in the x- 
direction. The equation that describes this relation is 
given by N- f(dX ). The force Z in the z-direction
relates to the power of the propellers T3 & T4, which is 
always equal and of the same polarity.

Figure 3. Control loop for GARBI
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Figure 4. Yaw Fuzzy-like PD controller
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Figure 5. Depth Fuzzy-like PD controller

4. DESIGN THE FUZZY-LIKE PD CONTROLLER 
FOR GARBI

In studying the dynamic properties of the fuzzy 
controller, the model of the process is needed so that the 
impact of the successive control actions may be 
monitored. Since a model of GARBI is not available, 
the dynamic properties of the close loop structure have 
to be derived intuitively and experimentally. This is 
simply a cornerstone feature of the idea of fuzzy 
controllers. However, the tuning of F-like PD Control 
systems is a fundamental problem, specially, for 
optimum performance. There are two different levels of 
tuning during the design of F-like PD controllers. The 
first level includes the structure (as described in Section 
3), the rule base, the antecedent and consequent 
membership functions together with their distribution, 
the inference mechanism and the defuzzification 
strategy. The second level is the tuning of gain 
parameters. This includes the scaling factors and other 
gains used in building the structure. As mentioned 
before, the dynamic properties of the controller can be 
adjusted by a series of carefully designed experiments. 
As the experiments of GARBI in a real environment are 
expensive and time consuming the minimum number of

experiments must be executed. However, the risk of 
loosing vital information that can result from large 
amount of data can be overcome if the experiments are 
designed using orthogonal array of the Taguchi Method, 
Fowlkes (1), to find the set of optimum input/output. 
This is explained in section 5.

The settings in the design procedure for the Fuzzy-like 
PD controller for both yaw and depth control are as 
follows:

• Sampling time of 1 sec. If shorter, the computation 
of Ae may become too sensitive to noise. This 
normally shows up as a restless control signal.

• Each of the FLC blocks contains 49 rules. The rule 
base is presented in the table format shown in Table 
1. The cell defined by the intersection of the first 
row and the first column represents a rule such as, 
// e(nT) is NB and &e(nT) is NB then u(nT) is NB

e\Ae
NB
MM
NS
ZO
PS
PM
PB

NB
NB
NB
NB
NB
NM
NS
ZO

NM
NB
NB
NB
NM
NS
ZO
PS

NS
NB
NB
NM
NS
ZO
PS
PM

ZO
NB
NM
NS
ZO
PS
PM
PB

PS
NM
NS
ZO
PS
PM
PB
PB

PM
NS
ZO
PS
PM
PB
PB
PB

PB
ZO
PS
PM
PB
PB
PB
PB

Table 1. The Rule Base of a F-like PD in tabular
form.

• The linguistic variables such as PB (positive big), PS 
(positive small), ZO (zero) in the premise parts are 
fuzzy variables, while those in the consequence part 
are singleton value between 0 and 1 .

It is well known that generally fuzzy variables in the 
consequent parts are not needed, Nguyen and Prasad, 
(3). Additionally singletons make defuzzification 
simpler and faster. The universe of discourse for each 
variable is uniformly partitioned and the MFs are placed 
with 50% overlap. Using the min operation for the 
aggregation AND (outer product) of the fuzzy rules, the 
output fuzzy set is given by juu = Min({te , //Al, ) . Thus, 
the F-like PD controller is a controller where the output 
is a non-linear function of the error e and its derivative 
de/dt (u = F(e, de/dt)), where F is a non-linear function 
of two variables.

Both inputs of yaw i.e. EV , AE^ and depth i.e. Ez ,
AEZ controllers are operated in the whole range of their 
universe. Therefore, for the universe of the yaw and 
depth controllers the maximal limits are

" S

and the minimal limits are as eyaWmln
*p,h,

* S = YawU

For the yaw controller two different universes are 
applied. The first is within the range of - 90° to + 90°

E-5



Appendix E Papers

degrees and the second is within the range -180° to
+ 180° degrees in the cases of "Small" or "Big" changes 
occurring in GARBI's navigation path respectively. 
Moreover for the depth controller the universe is in a 
range of 10 meters. It should be noted that the depth 
controller starts using the range of its universe when 
GARBI is within 10 meters of the set point. In any other 
case the control output has the maximum value.

One way of improving the dynamic properties is to 
adjust the SFs used in the construction of the fuzzy 
controller. SFs play a important role in the formation of 
the dynamics of the close-loop structure leading to the 
desired response of the controlled system, Zheng (4).

For the Fuzzy-like PD controller the corresponding SFs 
are for the inputs Se ,S^ and for the output Su 
respectively. The factors that influence the dynamics of 
the system are:

• if both Se and 5^ increase, the control becomes 
more sensitive around the set point until oscillations 
are observed.

• where Se and S^, decrease, a tolerance band exist 
around the set point and a large steady-state error is 
quite common; so if the scaling factors are too 
small, the system gives a poor response.

• Su affect the proportional gain, so it is desirable to 
have them as large as possible without creating too 
much overshoot. If too small, the system will be too 
slow, and if too large the system might become 
unstable.

In relation to the above factors, design of experiments 
has been performed to tune the input/output scaling 
factors.

5. DESIGN OF EXPERIMENTS

A large amount of engineering effort is consumed in 
conducting experiments (either in hardware, software or 
simulation) to produce the information required to make 
decisions about how different factors affect performance 
under different usage conditions. Experimentation seeks 
to determine the best material, the best pressure, the best 
force, the best speed etc., which will operate together 
within a system to produce a desired response such as 
settling time, overshoot, steady state error, etc. Designs 
of experiments are statistical methods that seeks to 
minimise the number of experiment and still find the 
optimal combination of the factors under study which 
are robust in a variety of environmental conditions. A 
widely used method is the Taguchi Method of Robust 
Design, which can be applied to a wide variety of 
problems.

Various types of arrays are used for planning 
experiments to study one factor at a time, where each 
individual factor is varied while all the other factors are 
fixed, full factorial experiments that investigate all 
possible combinations of all factors and their levels, 
where the possible combinations can rise to the order of
y* , x being the number of factors and y the different 
levels. This approach investigates all the possible 
combinations, maximising the possibility of finding the 
optimum result, but large numbers of experiments are 
required. Alternatively, orthogonal array extensively 
used in the Taguchi Method studies several factors at 
different levels simultaneously, but only requires a 
fraction of the full factorial combinations. The 
orthogonal array imposes an order on the way the 
experiment is carried out. The combinations are chosen 
to provide enough information to determine the factor 
effects using the analysis of mean values. In order to use 
a standard orthogonal array provided by the Taguchi 
Method, the degrees of freedom (number of independent 
measurements available to estimate sources of 
information) of the factors and levels must be matched 
with the degrees of freedom for that orthogonal array.

The orthogonal array of the Taguchi Method was used 
to plan the experimentation for the underwater robot. 
Three factors ( Se, 5Ae ,SU ) at three levels each (Level 
1, Level 2, Level 3) were investigated. With the full 
factorial, this would result in 33 (27) different 
experiments. For three factor three level experiments, 
six degrees of freedom exist, so an orthogonal array 
with nine experimental runs as shown in Table 2 is 
sufficient for this study.

No
Exp

1

2
3
4
5
6
7
8
9

se
Level 1
Level 1
Level 1
Level 2
Level 2
Level 2
Level 3
Level 3
Level 3

s*
Level 1
Level 2
Level 3
Level 1
Level 2
Level 3
Level 1
Level 2
Level 3

sa
Level 1
Level 2
Level 3
Level 2
Level 3
Level 1
Level 3
Level 1
Level 2

Table 2. Orthogonal array with nine experiments

The value of 10 for the 1 st level, and 1 for the 3rd level is 
chosen for both Yaw and Depth Fuzzy-like PD 
Controllers. For the 1 st level the maximum value that 
can be applied without saturation in either universe of 
discourse or voltages that are applied to the propellers is 
chosen. For the 3 level the value where no proportional 
gain is added into inputs/output of the FLC is selected. 
Finally, the value 2 & 0.5 are chosen for the 2nd level of 
the Yaw & Depth Fuzzy-like PD Controllers 
respectively. It should be noted that proportional gain 
values below these resulted, in unacceptable 
performance.
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6. EXPERIMENTS

Experimental trials in a real environment have been held 
to test both depth and yaw F-like PD controller. The 
power of the propellers is controlled with power cards 
for voltage tuning. The voltage used is in the range of 0 
to 10 Volts (V). For heading control the opposite 
voltage between the horizontal propellers (T,, T2) is 
used i.e. +V,, -V2 . So, if the heading angle is turned to 
a" clockwise for instance, the voltage in the right 
propeller T, is reduced and the voltage in the left 
propeller T2 in increased by this amount. If the increase 
in voltage in propeller T2 is now more than the 
predefined voltage range of 1-10 this over-limited 
voltage is added to the other propellers. The 
performance of the controller in course-changing and 
course-keeping navigation is shown in Figure 6 & 
Figure 7. The navigation plan for the robot is:

• initial power of the horizontal propellers is 3V for a 
period of 60 seconds.

• change the heading course from 270° degrees to 135° 
and then to 225° and then keep it in this direction,

• and at the same time change the depth course from 0 
meters to 10m and then to 5m and then keep it at this 
depth.

After the trials as shown in Table 2, and analysis of the 
results the best combination in terms of performance 
and robustness is for the Yaw Se = 1, S4e = 0.5 &
S,r = 7 and for the Depth Se = 0.5, S^ = 0.5 and
Sa =10. Note that for the depth, this combination is
not outlined in the experiments in Table 2, however, 
using the Taguchi method it was identified. This is one 
of the most important features of the Taguchi method. 
That is, it can identify experimental combinations that 
were not originally specified in the orthogonal array.

Figure 6(a) illustrates the Yaw, 6(b) the controller 
output of the power horizontal propellers (Ti, T2) 
(notice that as mentioned before they have opposite 
sign), 6(c&d) the error and the change of error between 
the desired and actual yaw. Additionally, Figure 7(a) 
shows the Depth, 7(b) the controller output of the power 
of the vertical propellers (T3, T4), 7(c&d) the error and 
the change of error between the desired and the actual 
depth. Finally, Figure 8 and Figure 9 show the 
corresponding pitch and the roll motions.

The performance of the yaw controller in changing the 
course (heading/depth) is satisfactory, as both overshoot 
and rise time are small. Due to buoyancy effects the 
depth control dynamics vary i.e. the vehicle rises faster 
than it descends. From Figure 7 it can be seen that the 
controller has accommodated this variation producing 
very acceptable rise times with very small overshoot 
when ascending. In course-keeping control both 
controllers perform quite well (Figure 6 & Figure 7). 
Finally in Figure 8 & Figure 9, the pitch and roll

appears mostly due to the heading changes. These are 
very small and can be considered as fractional and thus 
negligible.

7. CONCLUSIONS

F-like PD control technique possesses features that are 
attractive in navigation control problems posed by 
underwater vehicles. The fuzzy logic part helps to 
model different types of uncertainty and imprecision of 
the system and together with the scaling factors it 
allows the building of a robust controller. Scaling 
factors have been chosen to be tuned to the optimal 
value, due to their global effect in the dynamics of the 
close-loop control system. Taguchi experimental 
method can help to minimise the number of experiments 
without risk of loosing vital information. This is very 
important when experiments are held in a real 
environment and therefore are time and money 
consuming.

F-like PD controller is much more complicated than 
conventional controller is. It is in fact a non-linear 
adaptive controller. This is why F-like PD controller 
usually presents strong robustness characteristics.

In this work it has been shown how a fuzzy controller 
combined with conventional PD control techniques can 
help to design a robust controller, dealing with the 
uncertainties and non-linearities of an underwater 
vehicle.
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Figure 6. The plan of the "Yaw" experiment (briefly) was as follows: Change the course from 27 ff degrees to 135° and
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then to 5m and then keep depth at this level

Figure 8. The pitch due to the experiment 
is not more that 2.5°degrees.

Figure 9. The roll due to the experiments 
is not more than 5° degrees
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Abstract: The design of a steering and depth control of an underwater vehicle is of 
interest from the point of view of motion stabilisation as well as manoeuvring 
performance. The paper describes how a Fuzzy-like Proportional Derivative Controller 
(Fuzzy-like PD Control) is used to control the course-changing and course-keeping 
tracking mission and motion of an underwater vehicle. The idea for this type of control 
architecture is to identify the optimum values, in terms of control performance and 
robustness, of the parameters of the F-like PD Controller. These parameters may be the 
scaling factors that are applied in the input/output of the PD part of the controller as 
well as the fuzzy sets of the fuzzy part of the controller. The values of the scaling 
factors for the error, the change-of-error and the control output are optimised based on 
experiments. In this work a method has been developed to control the yaw and depth of 
an underwater robot in terms of course-changing and course-keeping. The controller is 
synthesised in two parts. Firstly it is applied in horizontal xy and secondly in vertical xz 
surface. Experiments in a real environment were planned using the Taguchi Design of 
Experiments and performed to investigate the capabilities of the controller. The results 
are presented and analysed extensively. Copyright © IF AC 2000

Keywords: Fuzzy like-PD Controller, Yaw and Depth Control, Taguchi Design of 

Experiments.

1. INTRODUCTION

Manoeuvring and depth control of an Underwater 
Vehicle (UV) is discussed in this paper. The 
difficulty that stems from this type of controller is 
that they have to be robust. UVs are classified as 
systems possessing highly non-linear dynamics. In 
addition the environment in which they operate has a 
lot of disturbances. These give rise to special 
problems that may be solved using intelligent control 
techniques.

This paper presents the development of fuzzy 
controller to control steering and depth of a low-cost 
Remote Operated Vehicle (ROV) named GARBI 
developed at the Polytechnic of Barcelona and the 
University of Gerona in Spain. The vehicle is used 
for underwater mission operations such as 
observations and inspections. An umbilical cable 
carrying power and providing a communication link, 
links GARBI to a surface ship or other operating 
platform (Amat et al, 1996). The objective of the 
Fuzzy Logic Controller (FLC) is to control the yaw 
and the depth of the vehicle in terms of keeping the

E-9



Papers

path of the navigation to a desired one, and/or 
changing the path according to a set point. This 
makes the navigation smoother and safer, the 
propulsion more economical and more accurate path- 
keeping.

Structure and parameter designs are important tasks 
during the building of PCs. Structure design means to 
determine the architecture of a controller, the 
input/output variables of a controller, the format of 
the fuzzy control rules, and the number of rules. 
Parameter design means determining the optimal 
parameters for a fuzzy controller. The objective of 
this paper is to describe how to design and apply 
Fuzzy-like Proportional Derivative Controller (F-like 
PD Controller) in an underwater vehicle. This 
controller's strategy is based on the combination of 
Fuzzy Logic and conventional proportional- 
derivative control techniques. The main advantage of 
the Fuzzy Logic Controller (FLC) is that it can be 
applied to systems that are non-linear where their 
mathematical model are difficult to obtain. Another 
advantage is that the controller can be designed to 
apply heuristic rules that reflect experiences of the 
human experts. F-like PD controller has a fixed set of 
control rules, usually derived from experts' 
knowledge. The Membership Functions (MF's) of the 
associated input and output linguistic variables are 
generally predefined according to non-linearities of 
the system. Conventional Proportional Derivative 
(PD) controllers provide high sensitivity and tend to 
increase the stability of the overall feedback control 
system. Additionally, PD controllers can reduce 
overshoot and permit the use of larger gain by adding 
damping to the system. The derivative action is 
employed because it performs well in reducing 
disturbances and keeping the set point to the desired 
one.

For the successful design of FLC's, proper selection 
of the optimal input and output Scaling Factors (SF's) 
is required which scales up or down the entire 
universe of discourse. Due to their global effect on 
the control performance and robustness, input and 
output SF's play critical role in the F-like PD 
controller and they have the highest priority in terms 
of tuning and optimisation (Mudi & Pal, 1999). 
Analysis of how to investigate their optimal values is 
presented in this paper. Experimental results of the F- 
like PD controller are presented and discussed 
extensively in the following sections.

2. THE HYDRODYNAMIC FORCES AND 
MOMENTS OF GARBI

The motion study of marine vehicle involves six 
Degrees Of Freedom, since six independent co­ 
ordinates are necessary to determine the position and 
orientation of a rigid body. The first three co­ 
ordinates Surge, Sway and Heave and their time 
derivatives correspond to the position and

translational motion along the x-, y-, andz-axes. The 
last three co-ordinates Roll, Pitch and Yaw and their 
time derivatives are used to describe orientation and 
rotational motion. In GARBI the motions in the x and 
z direction (Surge and Heave) are controlled from the 
horizontal propellers (T,, T2) and vertical propellers 
(T3 , T4) respectively (Fig. 1). However, no correction 
in y direction (Sway) is applied.

Starboard

Stem

Fig. 1. GARBI Body-fixed reference frames showing 
the six degrees of freedom

The structure of GARBI is designed in such a way 
that pitch and roll cross-coupling is virtually non­ 
existent. However, coupling appears between yaw 
and surge only when the vehicle has initial speed. 
Nevertheless, this coupling is expected and 
acceptable. Similarly, coupling between yaw and 
pitch and yaw and depth is also minor and can be 
neglected.

3. CONTROL TASKS OF GARBI UNDERWATER 
VEHICLE

As in any underwater vehicle the dynamics of 
GARBI are coupled and highly non-linear. When 
designing GARBI's controller it is necessary to 
compensate for its non-linear dynamics and 
kinematics, non-linearities due to thrusters and 
pressure hysteresis, barometer dead-zones, and the 
noise in yaw and depth measurements. Therefore, 
robust controllers that reliably perform complex task 
in the face of the above uncertainties should be used. 
F-like PD Controller is designed to make the vehicle 
follow the commands from the pilot in terms of 
course-changing and the course-keeping of both yaw 
angle and depth of the robot.

Controllers for course-keeping and/or course- 
changing are normally based on feedback from a 
gyrocompass measuring the heading for the yaw and 
air press-sensors measuring the difference of the 
pressure inside and outside of the robot and therefore 
the depth.

The control objective for a course-keeping controller 
can be expressed as y/,z = constant. For course- 
changing, the objective is to follow the changes of
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the pilot commands with the best control 
performance in terms of small overshoot, settling 
time and steady state error.

Fig. 2 shows a simplified scheme of course- 
keeping/course-changing. The structure uses two 
independent FLCs for each controlled variable (Yaw 
and Depth), greatly simplifying the design at the cost 
of some decrease in performance. The corresponding 
inputs of these controllers are the error 
ev (nT) = y/sp -\if(nT) between the real and the 
desired yaw angle and the error ez (nT) = z, -z(nT) 
between the real and the desired heave position as 
well as the change of the above errors (see Fig. 3 & 
Fig. 4)

where e(nT) , &e(nT) and y/, z(nT) designate, crisp 
error, rate and process output at sampling time nT 
respectively. The computed rate (Ae) may not be the 
actual one due to delays and noise of the 
measurements. To overcome the above problem a 
rate giro should be used. Unfortunately, during the 
experiments the above device was not available. 
Limiters are used to avoid saturation of inputs in the 
universe of discourse. As a convention, signals are 
written in lower case before gains/SFs and upper case 
after gains/SFs, for instance E = Se *e . The 
corresponding outputs of these controllers are; for the 
first controller the moment N around the z-axis, and 
for the second controller the force Z of the two 
propellers in the z-direction. The rotation N is related 
to the difference of power between the propellers TI 
& Tj in the x-direction. The motion Z in the z- 
direction relates to the power of the propellers T3 & 
T4i which is always equal and of the same polarity.

^>p */~\e = V' ~V

Heading

'* VY,-,,-*
Commanded \^ f̂/D.pth y

F-like PD 
Controller in 
xy surface

F-like PD 
Controller in 
zy surface

N

ILK*''-. 
"^SS-"'

GARBI

V

z

Fig. 2. Control loop for GARBI

Fig. 4. Depth F-like PD controller

4. DESIGN OF THE F-LIKE PD CONTROLLER 
FOR GARBI

In studying the dynamic properties of the fuzzy 
controller, the model of the process is needed so that 
the impact of the successive control actions may be 
monitored. Since a model of GARBI is not available 
(due to its very complicated shape), the dynamic 
properties of the close loop structure have to be 
derived intuitively and experimentally. This is simply 
a cornerstone feature of the idea of fuzzy controllers. 
However, the tuning of F-like PD controllers systems 
is a fundamental problem, specially, for optimum 
performance. There are two different levels of tuning 
during the design of F-like PD controllers. The first 
level includes the structure (as described in section 
3), the rule base, the antecedent and consequent 
membership functions together with their 
distribution, the inference mechanism and the 
defuzzification strategy. The second level is the 
tuning of gain parameters. This includes the scaling 
factors and other gains used in building the structure.

The settings in the design procedure for the F-like PD 
controller for both yaw and depth control are as 
follows:

• Sampling time of 1 sec. If shorter, the 
computation of Ae may become too sensitive to 
noise. This normally shows up as a restless 
control signal.

• Each of the FLC blocks contains 49 rules. The 
rule base is presented in the table format shown 
in Table 1. The cell defined by the intersection 
of the first row and the first column represents a 
rule such as, if e(nT) is NB and Ae(«r) is NB 
then u(nT) is NB

• The linguistic variables such as PB (positive 
big), PS (positive small), ZO (zero) in the 
premise parts are fuzzy variables, while those in 
the consequence part are singleton with values 
between 0 and 1.

Table 1 The Rule Base of a F-like PD in tabular 
form.

Fig. 3. Yaw F-like PD controller

e\Ae
NB
NM
NS
ZO
PS
PM
PB

NB
NB
NB
NB
NB
NM
NS
ZO

NM
NB
NB
NB
NM
NS
ZO
PS

NS
NB
NB
NM
NS
ZO
PS
PM

ZO
NB
NM
NS
ZO
PS
PM
PB

PS
NM
NS
ZO
PS
PM
PB
PB

PM
NS
ZO
PS
PM
PB
PB
PB

PB
ZO
PS
PM
PB
PB
PB
PB
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It is well known that generally fuzzy variables in the 
consequent parts are not needed (Nguyen & Prasad, 
1999). Additionally singletons make defuzzification 
simpler and faster. The universe of discourse for each 
variable is uniformly partitioned and the MFs are 
placed with 50% overlap. Using the min operation 
for the aggregation AND (outer product) of the fuzzy 
rules, the output fuzzy set is given by 
fiu = Min(fte ,fjfo). Thus, the F-like PD controller is 
a controller where the output is a non-linear function 
of the error e and its derivative de/dt 
(« = F(e,de/dt)), where F is a non-linear function of 
two variables.

Both yaw and depth controllers use the whole range 
of its universe. Therefore, the maximal £ and 
A£ should equal the limit of the universe. Thus, for 
the yaw controller

ey>»«~ * ^W = ^yav^ * ^Wv = YawUniversem!0.

where the universe is in a range of-180° to +180° 
degrees (the positive sign is for port and the negative 
sign is for starboard turns). The depth controller

$*«»,. = DepthUniverse^

where the universe is in a range of 10 meters. In both 
cases the scale is normalised into the range [-1,1]. It 
should be noted that the depth controller starts using 
the range of its universe when the robot is within 10 
meters of the set point. In any other case the control 
output has the maximum value.

One possible way of improving the dynamic 
properties is to adjust the SFs used in the 
construction of the fuzzy controller. SFs play 
important role in the formation of the dynamics of 
the close-loop structure leading to the desired 
response of the controlled system (Zheng, 1992). For 
the F-like PD controller the corresponding SFs are 
for the inputs Se ,SAe and for the output Su 
respectively. In this study design of the experiments 
has been performed to optimise the input/output 
scaling factors.

5. DESIGN OF EXPERIMENTS

A large amount of engineering effort is consumed 
in conducting experiments (either in hardware, 
software or simulation) to produce the information 
required to make decisions about how different 
factors affect performance under different usage 
conditions. Experimentation seeks to determine the 
best pressure, the best force, the best speed etc., 
which will operate together within a system to 
produce a desired response such as settling time, 
overshoot, steady state error, etc. Designs of 
experiments are statistical methods that seeks to

minimise the number of experiment and still find the 
combination of the factors under study which are 
robust in a variety of environmental conditions. A 
widely used method is the Taguchi Method of Robust 
Design, which can be applied to a wide variety of 
problems (Fowlkes, 1995).

Various types of matrices are used for planning 
experiments to study one factor at a time, where each 
individual factor is varied while all the other factors 
are fixed, full factorial experiments that investigate 
all possible combinations of all factors and their 
levels, where the possible combinations can rise to
the order of y*, x being the number of factors and y 
the different levels. This approach investigates all the 
possible combinations, maximising the possibility of 
finding the optimum result, but large numbers of 
experiments are required. Alternatively, orthogonal 
array, extensively used in the Taguchi Method, 
studies several factors at different levels 
simultaneously, but only requires a fraction of the 
full factorial combinations. The orthogonal array 
imposes an order on the way the experiment is 
carried out. The combinations are chosen to provide 
enough information to determine the factor effects 
using the analysis of mean values. In order to use a 
standard orthogonal array provided by the Taguchi 
Method, the degrees of freedom (number of 
independent measurements available to estimate 
sources of information) of the factors and levels must 
be matched with the degrees of freedom for that 
orthogonal array.

The orthogonal array of the Taguchi Method was 
used to plan the experimentation for the underwater 
robot. Three factors (Se,She ,Sa ) at three levels 
each were investigated. With the full factorial, this 
would result in 3 3 different experiments. For a three 
factor, three level experiment, six degrees of freedom 
exist, so an orthogonal array with nine experimental 
runs for both Yaw and Depth Fuzzy-like PD 
Controllers as shown in Table 2 is sufficient for this 
study. It should be noted that proportional gain 
values below these resulted in unacceptable 
performance.

Table 2 Orthogonal array with nine experiments

No 
Exp

1
2
3
4
5
6
7
8
9

se
0.5
0.5
0.5
I
I
I

0.75
0.75
0.75

5^

0.5
I
2

0.5
I
2

0.5
I
2

su
3
7

10
7

10
3
10
3
7
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6. EXPERIMENTS

Experimental trials were undertaken in Lake 
Banyoles, Spain in October 1999 to test both depth 
and yaw F-like PD controller. The power of the 
propellers is controlled with power cards for voltage 
tuning. The voltage used is in the range of 0 to 10 
Volts. For heading control the opposite voltage 
between the horizontal propellers (T,, T2) is used i.e. 
+Vj, -V2. So, if the heading angle is turned to a° 
clockwise for instance, the voltage in the right 
propeller TI is reduced and the voltage in the left 
propeller T2 in increased by this amount. The 
performance of the controller in course-changing and 
course-keeping is shown in Fig. 5 to Fig. 8.

The navigation plan for the robot is:

• initial power of the horizontal propellers is 3V for 
a period of 60 seconds.

• change the heading course from 270° degrees to 
135° and then to 225° and then keep it in this 
direction,

• and at the same time change the depth course 
from 0 meters to 10m and then to 5m and then 
keep it at this depth.

After the trials as shown in Table 2, the best 
combination of the SFs in terms of performance and 
robustness for both Yaw and depth controllers is 
Se = 0.5 , Sfc = 0.5 and Su = 1. Note that this set is 
not a member of any in Table 2. That is one of the 
main advantages of Taguchi method analysis.

Fig. 5(a) illustrates the Yaw, 5(b) the controller 
output of the power horizontal propellers (T1; T2) 
(notice that as mentioned before they have opposite 
sign), 5(c&d) the error and the change of error 
between the desired and actual yaw. Additionally, 
Fig. 6(a) shows the Depth, 6(b) the controller output 
of the power of the vertical propellers (T3, T4), 
6(c&d) the error and the change of error between the 
desired and the actual depth. Finally, Fig. 7 and Fig. 
8 show the corresponding pitch and the roll motions.

The performance of the yaw controller in changing 
the course (heading/depth) is satisfactory, as both 
overshoot and rise time are small. Due to buoyancy 
effects the depth control dynamics vary i.e. the 
vehicle rises faster than it descends. From Fig. 6 it 
can be seen that the controller has accommodated 
this variation producing very acceptable rise times 
with very a small overshoot when ascending. In 
course-keeping control both controllers perform quite 
well (Fig. 5 & Fig. 6). Finally in Fig. 7 & Fig. 8, the 
pitch and roll appears mostly due to the heading 
changes. These are very small and can be considered 
as fractional and thus negligible.

7. CONCLUSIONS

F-like PD control technique possesses features that 
are attractive in navigation control problems posed 
by underwater vehicles. The fuzzy logic part helps to 
model different types of uncertainty and imprecision 
of the system and together with the scaling factors it 
allows the building of a robust controller. Scaling 
factors have been chosen to be tuned to their optimal 
values, due to their global effect in the dynamics of 
the close-loop control system. Taguchi experimental 
method can help to minimise the number of 
experiments without risk of loosing vital information, 
investigating what is the optimal combination of the 
SFs. This is very important when experiments are 
held in a real environment and therefore are time and 
money consuming.

F-like PD controller is much more complicated than 
conventional controller. It is in fact a non-linear 
adaptive controller. This is why F-like PD controller 
presents strong robustness characteristics.

In this work it has been shown how a fuzzy controller 
combined with conventional PD control techniques 
can help to design a robust controller, dealing with 
the uncertainties and non-linearities of an underwater 
vehicle.
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Fig. 5. The plan of the "Yaw" experiment (briefly) was as follows: Change the course from 270° degrees to 135° 
and then to 225° and then keep heading in this direction
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Fig. 6. The plan of the "Depth" experiment (briefly) was as follows: Change the course from 0 meters to 10m 
and then to 5m and then keep depth at this level

Fig. 7. The roll due to the experiment is not more 
that 5° degrees

Fig. 8. The pitch due to the experiment is not more 
that 2.5"degrees
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Modelling and Motion Control of an Autonomous Underwater Robot using a Fuzzy and 
Fuzzy-neural Approach

I. S. Akkizidis and G. N. Roberts

Mechatronics Research Centre, University of Wales College, Newport, 
Allt-yr-yn Campus, PO Box 180, Newport, South Wales, NP9 5XR, UK

The design of an autopilot for the control of an Autonomous Underwater Vehicle (AUV) is of interest both 
from the point of view of motion stabilisation as well as manoeuvring performance. Such vehicles are 
commonly classified as being highly non-linear uncertain systems and are consequently difficult to control 
effectively using model-based control methods. The modelling task of these vehicles which consists of three- 
dimensional equations of motion for its hydrodynamical shape is very complicated. The paper describes a 
modelling, mission and motion control system for an AUV based on fuzzy and fuzzy neural techniques. The 
idea for the fuzzy modelling is an on-line supervisory scheduling system, which chooses the linear function that 
describes the system. Fuzzy mission control and fuzzy neuro motion control strategies, with the ability to adapt 
membership functions, extract new rules and forget unused rules, are proposed.

1. INTRODUCTION

Manoeuvring control of underwater vehicles is a 
demanding task. This difficulty stems from the fact 
that Remotely Operated Vehicles (ROVs) and 
Autonomous Underwater Vehicles (AUVs) may be 
classified as uncertain systems possessing highly 
non-linear dynamics. Therefore developing the 
model of the AUV dynamics has to be attempted 
before controller design may be considered. AUVs 
and ROVs are highly non-linear, multivariable 
dynamic process which means that controller 
designs must be able to deal with the non-linearities 
encountered.

This study described herein is based on a low- 
cost ROV named GARBI developed at the 
University of Barcelona and the University of 
Girona. The vessel, which is illustrated in figure 1, 
is used for underwater mission operations such as 
observations and inspections [1,2,3]. GARBI is 
linked to a surface ship (or with other operating 
platform) by an umbilical cable carrying power and 
providing a communication link. This umbilical link 
imposes limitations to the ROV operations, such as 
depth limits and danger of cable snagging.

Figure 1. Photo of GARBI underwater robot

By definition AUVs are vessels which have 
sufficient on-board power and intelligent ability to 
move purposefully without human intervention in 
environments that have not been specifically 
engineered for it. It is clear therefore that AUVs 
bring a number of advantages: they have no
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umbilical cable to limit range, or to become 
entangled in a surrounding structure. They can also 
undertake missions that would be impractical or 
impossible with an ROV, such as long range 
observations and collection of oceanographic data 
and under-ice surveying.

The motivation for this work is to extend GARBI 
from operating as an ROV to operating as an ADV. 
Fuzzy Logic and Neuro Fuzzy techniques are 
propose for modelling, mission and motion control.

1.1. Comparison between Artificial Neural 
Network and Fuzzy Logic

A detailed presentation of Fuzzy Systems (FS) 
and Artificial Neural Networks (ANN) theory is 
beyond the scope of this paper. A brief comparative 
study between FS and ANNs related to their 
operations in the context of knowledge acquisition, 
uncertainty, reasoning and adaptation is presented in 
table 1.

1.2. Fuzzy Neural Control systems (FNC)
It can be seen from table 1 that the advantages of 

the fuzzy approach are mainly the disadvantages of 
the ANN approach, and vice versa. So the idea is 
naturally to combine neural networks and fuzzy 
systems to overcome their disadvantages, but to 
retain their advantages. The integration of these two 
fields has given birth to Fuzzy-Neural Systems 
(FNS). From ANN, the powerful learning 
capabilities enable these systems either to 
automatically learn the fuzzy decision rules or to 
learn from a set of plant measurements, whereas the 
fuzzy presentation enables designers to extract the 
learnt information from the expert in a form easily 
understandable.

2. MODELLING OF AUV

2.1. Fuzzy Modelling
Fuzzy Modelling is the method of describing the 

characteristics of a system using fuzzy rules. The 
technique can express complex non-linear dynamic 
systems by linguistic (/-then rules [4].

A typical Takagi-Sugeno fuzzy model has the 
form:

R', if s = LS' then x, = f,(x,u) (1)

where s is the operating point vector 
s= {s, ,s2 ,...,sn } . The vector consists, in general, 
of state, input and output variables (the ns is its 
dimension). LS 1 is the i-th fuzzy state vector equal
to:

LS'=(LS 1 ,LS 2 ,...,LS I1 ) T (2)

where LS n is the fuzzy values of s with appropriate
Membership Function (MF).

The then-part of this fuzzy rule defines a linear 
autonomous open loop model representing the 
system dynamics within the fuzzy region LS1 
specified in the if-part of the same fuzzy rule. This 
model is of the form xj=fj(x,u), where ft is a linear 
function normally obtained via an identification 
procedure.

The reason for adopting the fuzzy model 
described above is that most systems (or plants) are 
non-linear and therefore cannot be described by a

Table 1. A comparative study between fuzzy systems and artificial neural networks
Skills
Knowledge acquisition

Uncertainty

Reasoning

Adaptation

Natural language

Inputs
Tools
Information
Cognition
Mechanism
Speed
Fault-tolerance
Learning
Implementation
Flexibility

Fuzzy Systems
Human experts
Interaction
Quantitative and qualitative
Decision making
Heuristic search
Low
Low
Induction
Explicit
High

Algorithms
Quantitative
Perception
Parallel computations~~raiE ————————
Very high
Adjusting synaptic weights
Implicit
Low
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single linear model. Instead of constructing 
complicated non-linear models based on physical 
laws, an alternative approach can be used, namely 
the construction of a collection of linear models. In 
this case, each (local) linear model approximates the 
original non-linear system around different 
operating points and a supervisory scheduling 
system determines which local linear model suits the 
particular operating conditions [5].

The supervisory scheduling system uses a 
discriminant function:

= fd (s) (3)

a weight vector 
j e [0,1], for each

This function defines 
w = {w,,w 2 ,...,w k }, with 
particular value of the operating point vector. This 
definition can be applied using min or max 
operation. For example, for the particular crisp value
s = {s* , 83 , . . . , s* _ } of the operating point vector the 
weight vector will be:

w = (4)

where p. LS is the degree of membership of the

crisp value s n of s n .
The overall output X of the composite model is 

calculated as the weighted mean of the outputs x / of 
the local linear open loop models, given as:

(5)
Z*.

where k is the number of local open loop linear 
models.

2.2. Linear modelling study of GARBI
GARBI is a non-linear, multivariable dynamic 

system. In order to design a controller for GARBI 
or to undertake simulation studies a dynamic model 
is needed. Mathematical models, which describe 
these non-linear dynamics, are very complex as well 
as limited in terms of only being able to represent

the physical laws of the system. An identification 
method based on experiments is proposed. Using 
linear control theory (local) models can be 
investigated. Step or frequency response methods 
can be applied to identify the transfer functions 
which describe the relationships between inputs and 
outputs of the system, in the j- or z- domain.

The equivalent difference equations of the 
transfer functions can be written in the form:

x(t) = - £ a.,x(t -i) (6)

where the degrees na , nb of the polynomials are given 
by the order of the backward shift operation, «a = 
number of poles of G(s) and nb <na .

However, using fuzzy model theory the GARBI 
non-linear system can be described as in section 2.3.

2.3. Fuzzy Modelling of GARBI
The study of the motion of marine vehicle 

involves six Degrees Of Freedom (DOF) (Fig. 2a), 
since six independent co-ordinates are necessary to 
determine the position and orientation of a rigid 
body. The first three co-ordinates (Surge, Sway and 
Heave) and their time derivatives correspond to the 
position and translational motion along the x-, y-, 
and z-axes. The last three co-ordinates (roll, pitch 
and heading angle) and their time derivatives are 
used to describe orientation and rotational motion.

In order to drive the GARBI on the (x,y), (x,z), 
(y,z) surface, four different speeds (Zero, Low, 
Medium and High) of its five propellers M, to M5 
(Fig. 2b,c,d) have to be applied. These are the inputs 
of the system's model. The output however, depends 
on the six DOF of the vessel. Therefore, the rotation 
about the z-axes may be responsible for roll & yaw, 
the y-axes for pitch, surge & heave, and the x-axes 
for sway, roll & yaw. The functions that characterise 
the relation between this Multi-Input Multi-Output 
(MIMO) system represent each (local) linear model 
of the vessel.

The fuzzy variables with speed in the region 
Zero, Low, Medium and High can be used to fuzzify 
the input of the system's model. It is considered that 
the shape of the Membership Function within these 
regions is not so critical. The shapes can be chosen 
after experimental tests.
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(a) degrees of freedom (b) side view (c) horizontal reference (d) top view 

Figure 2. Illustration of the GARBI, showing its degrees of freedom and control

The fuzzy model is given as a set of fuzzy rules 
with each fuzzy rule R|. being of the form as shown 
in (eq.l). Specifically in the GARBI's modelling the 
rules will have a form such as:

Rj: ifspeed Mi is High and speed Mj is Low
then x=f(x,y)

The then-part of the above fuzzy rule defines a 
linear autonomous open loop model representing the 
system dynamics in terms of the six DOF of 
GARBI, within the fuzzy regions (Zero, Low, 
Medium and High) specified in the impart of the 
same fuzzy rule.

Therefore, during the fuzzification procedure the 
fuzzy inputs are defined. Using Sugeno type fuzzy 
rules in the knowledge base, the local open loop 
linear models are determined (equation. 1). The sum 
of these models, (equation 5), having different 
weight, will describe the non-linear GARBI system 
for any variation in the input and/or output.

3. CONTROLLING THE AUV

3.1. Fuzzy-Neuro Control
Fuzzy control is a successful application of fuzzy 

theory [6,7] and is used in many applications [8]. 
Fuzzy Logic Controller (FLC) is a knowledge-based 
controller, which uses fuzzy logic for knowledge 
representation and inference [9]. One feature of FLC 
is that expert knowledge is represented by a compact 
set of fazzy if-then rules consisting of membership

functions in the (/-part and functions agreeing with 
the controller in the then-part. Therefore, the design 
of the parameters in FLCs is obtained from the 
expert. However, FLCs cannot reflect a non-linear 
system dynamics fully. In addition, the design 
processes depend on trial-and-error methods or 
some heuristic algorithm [10]. Moreover, an expert 
who knows the characteristics of the system may 
also be needed for setting up the initial rules.

If the actual output of the controller differs from 
the desired behaviour, either an unsuitable choice of 
membership functions or missing fuzzy rules is 
possible. The desired output can be estimated either 
under simulation or from experimental results.

Multi-layer neural networks with learning 
algorithms, have been used for extracting fuzzy rules 
or tuning (adapting) the membership functions in a 
linguistic variable based fuzzy control environment.

Here it is proposed to first try and solve the 
problem using adaptation of membership function 
technique. If the solution is not satisfactory, a 
technique for extracting new fuzzy rules is used.

3.1.1. Adaptation of Membership Functions
The adaptation of membership functions is a 

reverse mechanism that is deduced from the 
forwarding inference mechanism. The approach 
comes from ANNs, where the computation of the 
control values are obtained from the measured input 
values, which are feeding a feedforward procedure 
similar to that found in layered neural nets. If the 
actual output is not able to drive the controlled 
system to a desired state, an error has to be 
propagated back through the architecture, changing
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the parameters, taking into account the feed forward 
propagation of inputs.

If it is not possible to determine an optimal 
control action for a given state, the error of the 
produced output cannot be calculated directly. 
Therefore, a reinforcement or "non-supervised" 
learning algorithm is used to evaluate the error of 
the fuzzy controller corresponding to the given input 
[11]. However, if the desired control output is 
known, then a "supervised" learning algorithm is 
used and the network is trained corresponding to 
that output. Previous work in this field is reported in 
[12,13,14]. In each case it is the range of 
membership functions, which is re-adjusted.

3.1.2. Extraction of new fuzzy rules
In some cases, the expert cannot predict all the 

rules to construct the base-knowledge of the fuzzy 
controller. Also it is possible that some of the rules 
may not be the most suitable. Algorithms to extract 
new fuzzy rules can be considered as one solution to 
this problem [15].

An alternative approach, which is used in this 
study, is to extract new fuzzy rules as above but also 
to correct existing rules and to forget unused or 
incorrect rules.

There are several ways to investigate why the 
fuzzy controller may fail because of improper rules, 
such as the error of the controller is too high or the 
controller reaction is too slow. The method is first to 
try and solve the problem by adding or taking out 
linguistic variables of the antecedent part of the 
fuzzy rules. If the improvement is not so good then 
new rules are created. If a rule is not used, then it is 
removed.

3.2. Control study for GARBI
The motion control system for GARBI shown in 

figure 3, involves two control loops: one for mission 
control and one for navigation. The parameters of 
the mission target such as depth and field of action 
are specified using fuzzy logic control techniques. 
The navigation of GARBI, which is affected by 
currents, obstacles and turbulence (regarded, as 
disturbances) is developed using Fuzzy-Neuro 
control technique as discussed above. Therefore the 
motion controller using the five propellers (Fig. 2 
b,c,d) can reach the mission target and also be robust 
against disturbances. Typical Mamdany and Sugeno

fuzzy model rules are used to construct the 
knowledge base, including the mission and the 
control data respectively.

—— >r Fuzzy Control
(Mission) T

Figure 3. Motion Control System

The fuzzy rules have the form: 

For the mission control:

R'em if cma = LA.,..., and cmb =LBt

then cmc = LC (7)

For the navigation control:

RL >f cna =LDj,...,and cnb =LEj

then yj =fl (y,u) (8)

where cma,...cmb, cmc, cna and cnb are linguistic 
variables representing the process state variables and 
the control variable; LAi,...,LBi, LQ, LDj and LEj 
are the linguistic values of the linguistic variables 
cma,...cmb , cmc, cna and cnb in the universes of 
discourses U,....,V, W, Q and G respectively,

A conjunction of input variables associated with 
their respective linguistic values determines a 
linguistic value associated with the output variable. 
All rules are evaluated in parallel, and their outputs 
are combined to a fuzzy set, which has to be 
defuzzified to receive the crisp output value. The 
conjunction of the inputs is achieved by the min- 
operation, and for aggregating the outputs of the
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rules, the wax-operation is utilised. Function y is 
used for the estimation of the parameters of the 
fuzzy-neuro controller system.

There exist three kinds of error signals in the 
proposed system. One of them is the difference 
between the desired response and the process output. 
This error e,, called the learning error, is used to 
learn correct control action u and will tend to zero in 
the time interval of interest with increasing iteration 
number. The other error em , called the mission error, 
is the error between the mission requirements and 
the process statement. The last error eme, called the 
measured control error and defined as the difference 
between the set-point and the process output, is 
primarily employed to construct the rule-base which 
will subsequently be used in the fuzzy control 
system.

4. CONCLUSION

This paper has described how fuzzy and fuzzy 
neural techniques are used for the development of 
the fuzzy model and fuzzy neural controller for the 
motion control of the GARBI underwater robot. The 
problems and difficulties with applying a model- 
following approach have been highlighted and an 
alternative intelligent systems approach has been 
presented.

The next phase of the work is to undertake an 
extensive simulation study in order to evaluate the 
motion control system prior to undertaking trials at 
sea.
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Abstract

This problem addresses the modelling and motion 
control of an Autonomous Underwater Vehicle 
(AUV). Such vehicles are commonly classified as 
being highly non-linear uncertain systems and are 
consequently difficult to control effectively using 
model-based control methods. The paper describes a 
modelling and motion control system for an AUV 
based on fuzzy and fuzzy neural techniques. The 
development of a fuzzy model and fuzzy neural 
motion control strategy is presented.

\ Introduction

Motion control of autonomous underwater 
vehicles is a demanding task for which no completely 
satisfactory approaches have yet been developed. 
This difficulty stems from the fact that Remotely 
Operated Vehicles (ROVs) and Autonomous 
Underwater Vehicles (AUVs) may be classified as 
uncertain systems possessing highly non-linear 
dynamics.

This study is based on a low-cost ROV, GARBI 
developed at the University of Barcelona and Girona 
for underwater mission operations such as 
observations and inspections [1,2,3]. GARBI is 
linked to a surface ship (or with other operating 
platform) by an umbilical cable, which carries power 
and provides a communication link. There are 
however, limitations to the ROV, such as limit on 
depth and danger of cable movement.

Autonomous Underwater Vehicles (AUVs) do not 
suffer from these problems. AUV means a vessel, 
which has enough on-board power and intelligent 
ability to move purposefully and without human 
intervention in environments that have not been

specifically engineered for it. AUV requires a 
number of heterogeneous capabilities, including the 
ability to execute elementary goal-achieving actions. 
For example, reaching a given location; reacting in 
real time to unexpected events; building, using and 
maintaining a map of the surrounding environment; 
determining the robot's position with respect to this 
map; forming plans that pursue specific goals or 
avoid undesired situations; and adapting to changes 
in the environment.

It is obvious therefore that AUV brings a number 
of advantages: it has no umbilical cable to limit its 
range, or to become entangled in a surrounding 
structure. It can also undertake missions that would 
be impractical or impossible with an ROV, such as 
long range observations and collection of 
oceanographic data and under-ice surveying.

The aim of this work is to transfer the GARBI 
from operating as an ROV to an AUV in order to 
expand its capabilities. Fuzzy Logic and Neuro Fuzzy 
techniques are proposed to design the model and the 
controller of GARBI respectively.

1.1 Fuzzy System Control

Classical control theory is based on mathematical 
models that describe the behaviour of the plant or 
system under consideration. The main idea of fuzzy 
control is to build a model of a human control expert 
who is capable of controlling the plant without 
thinking in mathematical model terms [9,16]. The 
design of fuzzy controllers is normally based on prior 
knowledge of skilled human operators in the form of 
linguistic control rules, which are translated into the 
framework of fuzzy set theory [20]. The process 
knowledge is expressed in the form of IF-THEN 
rules as in traditional expert systems. However, a 
fuzzy logic controller can be regarded as a real-time
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expert system that employs fuzzy logic to manipulate 
qualitative variables. The specification of good 
linguistic rules depends on the knowledge of the 
control expert. The translation of these rules into 
fuzzy set theory depends on the choice of certain 
parameters, such as shape and degrees of 
Membership Functions, for which particular rules do 
not exist. Fuzzy controllers are unable to learn by 
their own experiences and unable to adapt to new 
conditions in cases of non-linear systems (of high 
order with uncertainties in parameter and structure). 
However, their ability to extract new fuzzy rules and 
change parameters of Membership Functions is 
necessary for tuning fuzzy controllers. The fuzzy 
logic approach makes it possible in many cases to 
build control systems that are more robust, cost- 
effective and energy-saving, and seems to be the best 
answer available today for a broad class of 
challenging control problems.

1.2 Artificial Neural Networks

Artificial Neural Networks (ANN), [13] are 
designed to model certain aspects of the human brain. 
They consist of simple processing elements 
(neurones) that exchange signals along weighted 
connections. The idea is to take advantage of the 
knowledge of the ways that the (human) brain learns 
and functions, to present this information at 
algorithmic level, and to use the results in 
computerised problem solving. ANNs need their 
inputs to be quantitive in nature. The main advantage 
of neural networks is the ability to learn from 
examples; moreover good learning algorithms are 
available for them. However, their Black box 
behaviour reduces the above advantages. Generally it 
is neither possible to use prior knowledge to initialise 
the network, nor can their final state be interpreted in 
terms of rules.

1.3 Fuzzy Neural Control systems (FNC)

The advantages of the fuzzy approach are mainly 
the disadvantages of the ANN approach, and vice 
versa. So the idea is naturally to combine neural 
networks and fuzzy systems to overcome then- 
disadvantages, but to retain their advantages. The 
integration of these two fields has given birth to 
fuzzy-neural systems. From ANN, the powerful 
learning capabilities enable these systems either to 
automatically learn the fuzzy decision rules or to 
leam from a set of plant measurements, whereas the

fuzzy presentation enables designers to extract the 
learnt information from the expert in a form easily 
understandable. As the former property reduces the 
time required to create the model, the latter increases 
the usefulness of the model since there now exists at 
least some kind of explanation for the model 
outcome. The learning procedure can also be 
reinitiated from time to time, or adaptive or learning 
systems can be considered. Due to the duality in 
forms of expression, knowledge in IF-THEN form 
can alternatively be used either in the model 
initialisation, or during the adaptation to the changing 
process behaviour.

The goal of neuro-fuzzy combinations in control 
is to obtain adaptive systems that can use prior 
knowledge, and can be interpreted by means of 
linguistic rules. Fuzzy-neural Control systems or 
Neural-fuzzy Control systems can be divided into co­ 
operative and hybrid systems. In Co-operative 
approaches the controller itself has a structure 
resulting from the combination of fuzzy systems and 
neural networks. In Hybrid approaches new control 
architecture is created using concepts from both 
paradigms and thus can be interpreted as a neural net 
and as a fuzzy controller. Besides this, there are 
concurrent neural/fuzzy models in which the resulting 
control system consists of fuzzy systems and neural 
networks as independent components performing 
completely different tasks [7,18,4].

2 Modelling of AUV 

2.1 Fuzzy Modelling

Fuzzy Modelling is the method of describing the 
characteristics of a system using fuzzy rules, and it 
can express complex non-linear dynamic systems by 
linguistic if-then rules [16].

A typical Takagi-Sugeno fuzzy model has the 
form:

R's if 5=15' then x, = f,(x,u) (1) 
where s is the operating point vector 
s= {s,,s2 ,...,s n } . The vector consists, in general, 
of state, input and output variables (the ns is its 
dimension). LS' is the i-th fuzzy state vector equal 
to:

LS i =(LS,,LS 2 ,...,LS.i ) T (2)

where LS n is the fuzzy values of s with appropriate 

MF.
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The then-part of this fuzzy rule defines a linear 
autonomous open loop model representing the 
system dynamics within the fuzzy region LS' 
specified in the impart of the same fuzzy rule. This 
model is of the form xj=fj(x,u}, where fj is a linear 
function normally obtained via an identification 
procedure.

The basic idea underlying the above type of fuzzy 
open loop model is that most systems (or plants) are 
non-linear and therefore cannot be described by a 
single linear model. Instead of constructing 
complicated open loop non-linear models based on 
physical laws, an alternative approach can be chosen 
(Fig. 1), namely the construction of a collection of 
open loop linear models. In this case, each open loop 
(local) linear model approximates locally the original 
non-linear system around different operating points 
and a supervisory scheduling system determines 
which particular local open loop linear model is the 
relevant one [12].

Figure 1. Modified Fuzzy Model structure

The supervisory scheduling system uses a 
discriminant function:

= fd (s) (3)

This function defines a weight vector 
w = {w,,w 2 ,...,w k } , with W; e [0,1], for each 
particular value of the operating point vector. This 
definition can be applied using min or max operation. 
For example, for the particular crisp value
s = {s* , s* , . . . , s^ } of the operating point vector the 
weight vector will be:

w = min(^ LS| (s|), Jit (s n. )) (4)

where H LS is the degree of membership of the crisp

value s* of s n .
The overall output X of the composite model is 

calculated as the weighted mean of the outputs xj of 
the local linear open loop models, given as:

(5)

where k is the number of local open loop linear 
models.

2.2 Linear modelling study of GARBI

Modelling of marine vehicles involve the study of 
statics and dynamics. Statics is concerned with the 
equilibrium of bodies at rest or moving with constant 
velocity, whereas dynamics is concerned with bodies 
having accelerated motion.

GARBI is a non-linear dynamics system. In order 
to design a controller for GARBI a model is needed. 
Mathematical models, which describe these non­ 
linear dynamics, are very complex as well as limited 
in terms of only being able to represent the physical 
laws of the system. An identification method based 
on experiments is proposed. Using linear control 
theory, the open loop (local) models can be 
investigated. Step or frequency response method can 
be applied to identify the transfer function of these 
models (in a 5- or z- domain), and thus the linear 
functions that describe the relationship between input 
and output of the system.

The equivalent difference equation of that 
function can be written as:

x(t) = -JT a,x(t - 0 + JT bj«(t -./-I) (6)
i=] j=0

where the degrees na , nb of the polynomials are given 
by the order of the backward shift operation, n, = 
number of poles of G(s) and nh <na .

However, using fuzzy model theory the GARBI 
non-linear system can be described as follows.

2.3 Fuzzy Modelling study of GARBI

The study of the motion of marine vehicle 
involves six Degrees Of Freedom (DOF) (Fig. 2a), 
since six independent co-ordinates are necessary to 
determine the position and orientation of a rigid 
body. The first three co-ordinates (Surge, Sway and 
Heave) and their time derivatives correspond to the 
position and translational motion along the x-, y-, and 
z-axes. The last three co-ordinates (roll, pitch and 
heading angle) and their time derivatives are used to 
describe orientation and rotational motion.
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(a) degrees of freedom (b) side view (c) horizontal reference (d) top view 

Figure 2. Illustration of the GARBI, showing its degrees of freedom and control

In order to drive the GARBI on the (x,y), (x,z), 
(y,z) surface, four different speeds (Zero, Low, 
Medium and High) of its five propellers (Fig. 2b,c,d) 
have to be applied. These are the inputs of the 
system's model. The output however, depends on the 
six DOF of the vessel. Therefore, the rotation about 
the z-axes may be responsible for roll & yaw, the y- 
axes for pitch, surge & heave, and the x-axes for 
sway, roll & yaw. The functions that characterise the 
relation between this Multi-Input Multi-Output 
(MIMO) system represent each open loop (local) 
linear model of the vessel.

The fuzzy variables with speed in the region Zero, 
Low, Medium and High can be used to fuzzify the 
input of the system's model. It is believed that the 
shape of the Membership Function within these 
regions is not so critical. The shapes can be chosen 
after experimental tests.

The open loop fuzzy model [16] is given as a set
of fuzzy rules with each fuzzy rule RJ. being of the 
form as shown in (eq.l). Specifically in the GARBI's 
modelling the rules will have a form such as:

RS: if speed Mi is High and speed Mj is Low
then x=f(x,y)

The then-pan of the above fuzzy rule defines a 
linear autonomous open loop model representing the 
system dynamics in terms of the six DOF of GARBI, 
within the fuzzy regions (Zero, Low, Medium and 
High) specified in the //-part of the same fuzzy rule.

Therefore, during the fuzzification procedure the 
fuzzy inputs are defined. Using Sugeno type fuzzy 
rules in the knowledge base, the local open loop 
linear models are determined (eq. 1). The sum of 
these models, (eq. 5), having different weight, will 
describe the non-linear GARBI system for any 
variation in the input and/or output.

3. Controlling the AUV 

3.1 Fuzzy-Neuro Control

Fuzzy control is a successful application of fuzzy 
theory [9,19] and is used in many applications [17]. 
Fuzzy Logic Controller (FLC) is a knowledge-based 
controller, which uses fuzzy logic for knowledge 
representation and inference [8]. One feature of FLC 
is that expert knowledge is represented by a compact 
set of fuzzy if-then rules consisting of membership 
functions in the impart and functions agreeing with 
the controller in the then-part. Therefore, the design 
of the parameters in FLCs is obtained from the 
expert. However, FLCs cannot reflect a non-linear 
system dynamics fully. In addition, the design 
processes depend on trial-and-error methods or some 
heuristic algorithms [15]. Moreover, an expert who 
knows the characteristics of the system may also be 
needed for setting up the initial rules.

If the actual output of the controller differs from 
the desired behaviour, either an unsuitable choice of 
membership functions or missing fuzzy rules is 
possible. The desired output can be estimated under 
either simulation or experimental results.

Multi-layer neural networks with learning 
algorithms, have been used for extracting fuzzy rules 
or tuning (adapting) the membership functions in a 
linguistic variable based fuzzy control environment.

The idea is first to try and solve the problem 
using adaptation of membership function technique. 
If the solution is not satisfactory, extraction of new 
fuzzy rules is used.

3.1.1 Extraction of new fuzzy rules

In some cases, the expert cannot predict all the 
rules to build up the base-knowledge of the fuzzy 
controller. Therefore, some of the rules may not be 
the best ones. Algorithms to extract new fuzzy rules
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can be considered as one solution to this problem 
[11].

An alternative approach, which is used in this 
study, is to extract new fuzzy rules as above but also 
to correct existing rules and to forget unused or 
incorrect rules.

There are several ways to investigate why the 
fuzzy controller may fail because of improper rules, 
such as the error of the controller is too high or the 
controller reaction is too slow. The idea is first to try 
and solve the problem by adding or taking out 
linguistic variables of the antecedent part of the fuzzy 
rules. If the improvement is not so good then new 
rules are created. If a rule is not used, then it is 
removed.

3.1.2 Adaptation of Membership Functions

The adaptation of membership functions is a 
reverse mechanism that is deduced from the 
forwarding inference mechanism. The idea comes 
from ANNs, where the computation of the control 
values are given as the measured input values, which 
are feeding a feedforward procedure similar to that 
found in layered neural nets. If the actual output is 
not able to drive the controlled system to a desired 
state, an error has to be propagated back through the 
architecture, changing the parameters, taking into 
account the feed forward propagation of inputs.

If it is not possible to determine an optimal 
control action for a given state, the error of the 
produced output cannot be calculated directly. 
Therefore, a reinforcement or "non-supervised" 
learning algorithm can be used to evaluate the error 
of the fuzzy controller corresponding to the given 
input [10]. However, if the desired control output is 
known, then a "supervised" learning algorithm can be 
used and the network is trained corresponding to that 
output. Previous work in this field [14,5,6]. In each 
case it is the range of membership functions, which is 
re-adjusted.

3.2 Control study for GARBI

The motion control system for GARBI shown in 
figure 3, involves two control loops: one for mission 
control and one for navigation. The parameters of the 
mission target such as depth and field of action are 
specified using fuzzy logic control techniques. The 
navigation of GARBI, which is affected by currents, 
obstacles and turbulence (regarded, as disturbances) 
is developed using Fuzzy-Neuro control technique as

discussed above. Therefore the motion controller 
using the five propellers (Fig. 2 b,c,d) can reach the 
mission target and also be robust against 
disturbances. Typical Mamdany and Sugeno fuzzy 
model rules are used to build up the knowledge base, 
including the mission and the control data 
respectively. The fuzzy rules have the form: 
For the mission control:

R'^ if cma =LAl ,...,and cmb =LB,

then cmc = LC (7) 
For the navigation control:

RL '/ cna =LDi ,...,and cn,=LEj

then y^f^u) (8)
where cma,...cmb, cmc, cna and cnb are linguistic 
variables representing the process state variables and 
the control variable; Lai,...,Lbj, LCJ, LDj and LEj are 
the linguistic values of the linguistic variables 
cma,...cmb, cmc , cna and cnb in the universes of 
discourses U,...., V, W, Q and G respectively, 
i=l,2,...,n.

A conjunction of input variables associated with 
their respective linguistic values determines a 
linguistic value associated with the output variable. 
All rules are evaluated in parallel, and their outputs 
are combined to a fuzzy set, which has to be 
defuzzified to receive the crisp output value. The 
conjunction of the inputs is achieved by the min- 
operation, and for aggregating the outputs of the 
rules, the wax-operation is utilised. Function y is used 
for the estimation of the parameters of the fuzzy- 
neuro controller system.

H Fuzzy Control 
(Mission) r

Figure 3. Motion Control System

There exist three kinds of error signals in the 
proposed system. One of them is the difference 
between the desired response and the process output.
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This error e,, called the learning error, is used to learn 
correct control action u and will tend to zero in the 
time interval of interest with increasing iteration 
number. The other error em , called the mission error, 
is the error between the mission requirements and the 
process statement. The last error eme , called the 
measured control error and defined as the difference 
between the set-point and the process output, is 
primarily employed to construct the rule-base which 
will subsequently be used in the fuzzy control 
system.

4. Conclusion

In this paper the development of the fuzzy model and 
fuzzy neural controller to investigate the motion 
control for the GARBI underwater robot has been 
described. The next phase of the work is to 
undertake an extensive simulation study in order to 
evaluate the motion control system prior to 
undertaking trials at sea.
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