97 research outputs found

    Interfacing of neuromorphic vision, auditory and olfactory sensors with digital neuromorphic circuits

    Get PDF
    The conventional Von Neumann architecture imposes strict constraints on the development of intelligent adaptive systems. The requirements of substantial computing power to process and analyse complex data make such an approach impractical to be used in implementing smart systems. Neuromorphic engineering has produced promising results in applications such as electronic sensing, networking architectures and complex data processing. This interdisciplinary field takes inspiration from neurobiological architecture and emulates these characteristics using analogue Very Large Scale Integration (VLSI). The unconventional approach of exploiting the non-linear current characteristics of transistors has aided in the development of low-power adaptive systems that can be implemented in intelligent systems. The neuromorphic approach is widely applied in electronic sensing, particularly in vision, auditory, tactile and olfactory sensors. While conventional sensors generate a huge amount of redundant output data, neuromorphic sensors implement the biological concept of spike-based output to generate sparse output data that corresponds to a certain sensing event. The operation principle applied in these sensors supports reduced power consumption with operating efficiency comparable to conventional sensors. Although neuromorphic sensors such as Dynamic Vision Sensor (DVS), Dynamic and Active pixel Vision Sensor (DAVIS) and AEREAR2 are steadily expanding their scope of application in real-world systems, the lack of spike-based data processing algorithms and complex interfacing methods restricts its applications in low-cost standalone autonomous systems. This research addresses the issue of interfacing between neuromorphic sensors and digital neuromorphic circuits. Current interfacing methods of these sensors are dependent on computers for output data processing. This approach restricts the portability of these sensors, limits their application in a standalone system and increases the overall cost of such systems. The proposed methodology simplifies the interfacing of these sensors with digital neuromorphic processors by utilizing AER communication protocols and neuromorphic hardware developed under the Convolution AER Vision Architecture for Real-time (CAVIAR) project. The proposed interface is simulated using a JAVA model that emulates a typical spikebased output of a neuromorphic sensor, in this case an olfactory sensor, and functions that process this data based on supervised learning. The successful implementation of this simulation suggests that the methodology is a practical solution and can be implemented in hardware. The JAVA simulation is compared to a similar model developed in Nengo, a standard large-scale neural simulation tool. The successful completion of this research contributes towards expanding the scope of application of neuromorphic sensors in standalone intelligent systems. The easy interfacing method proposed in this thesis promotes the portability of these sensors by eliminating the dependency on computers for output data processing. The inclusion of neuromorphic Field Programmable Gate Array (FPGA) board allows reconfiguration and deployment of learning algorithms to implement adaptable systems. These low-power systems can be widely applied in biosecurity and environmental monitoring. With this thesis, we suggest directions for future research in neuromorphic standalone systems based on neuromorphic olfaction

    Spike encoding techniques for IoT time-varying signals benchmarked on a neuromorphic classification task

    Get PDF
    Spiking Neural Networks (SNNs), known for their potential to enable low energy consumption and computational cost, can bring significant advantages to the realm of embedded machine learning for edge applications. However, input coming from standard digital sensors must be encoded into spike trains before it can be elaborated with neuromorphic computing technologies. We present here a detailed comparison of available spike encoding techniques for the translation of time-varying signals into the event-based signal domain, tested on two different datasets both acquired through commercially available digital devices: the Free Spoken Digit dataset (FSD), consisting of 8-kHz audio files, and the WISDM dataset, composed of 20-Hz recordings of human activity through mobile and wearable inertial sensors. We propose a complete pipeline to benchmark these encoding techniques by performing time-dependent signal classification through a Spiking Convolutional Neural Network (sCNN), including a signal preprocessing step consisting of a bank of filters inspired by the human cochlea, feature extraction by production of a sonogram, transfer learning via an equivalent ANN, and model compression schemes aimed at resource optimization. The resulting performance comparison and analysis provides a powerful practical tool, empowering developers to select the most suitable coding method based on the type of data and the desired processing algorithms, and further expands the applicability of neuromorphic computational paradigms to embedded sensor systems widely employed in the IoT and industrial domains

    A robust sound perception model suitable for neuromorphic implementation

    Get PDF
    Coath M, Sheik S, Chicca E, Indiveri G, Denham S, Wennekers T. A robust sound perception model suitable for neuromorphic implementation. Neuromorphic Engineering. 2014;7(278):1-10.We have recently demonstrated the emergence of dynamic feature sensitivity through exposure to formative stimuli in a real-time neuromorphic system implementing a hybrid analog/digital network of spiking neurons. This network, inspired by models of auditory processing in mammals, includes several mutually connected layers with distance-dependent transmission delays and learning in the form of spike timing dependent plasticity, which effects stimulus-driven changes in the network connectivity. Here we present results that demonstrate that the network is robust to a range of variations in the stimulus pattern, such as are found in naturalistic stimuli and neural responses. This robustness is a property critical to the development of realistic, electronic neuromorphic systems. We analyze the variability of the response of the network to “noisy” stimuli which allows us to characterize the acuity in information-theoretic terms. This provides an objective basis for the quantitative comparison of networks, their connectivity patterns, and learning strategies, which can inform future design decisions. We also show, using stimuli derived from speech samples, that the principles are robust to other challenges, such as variable presentation rate, that would have to be met by systems deployed in the real world. Finally we demonstrate the potential applicability of the approach to real sounds

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    Energy-Efficient Recurrent Neural Network Accelerators for Real-Time Inference

    Full text link
    Over the past decade, Deep Learning (DL) and Deep Neural Network (DNN) have gone through a rapid development. They are now vastly applied to various applications and have profoundly changed the life of hu- man beings. As an essential element of DNN, Recurrent Neural Networks (RNN) are helpful in processing time-sequential data and are widely used in applications such as speech recognition and machine translation. RNNs are difficult to compute because of their massive arithmetic operations and large memory footprint. RNN inference workloads used to be executed on conventional general-purpose processors including Central Processing Units (CPU) and Graphics Processing Units (GPU); however, they have un- necessary hardware blocks for RNN computation such as branch predictor, caching system, making them not optimal for RNN processing. To accelerate RNN computations and outperform the performance of conventional processors, previous work focused on optimization methods on both software and hardware. On the software side, previous works mainly used model compression to reduce the memory footprint and the arithmetic operations of RNNs. On the hardware side, previous works also designed domain-specific hardware accelerators based on Field Pro- grammable Gate Arrays (FPGA) or Application Specific Integrated Circuits (ASIC) with customized hardware pipelines optimized for efficient pro- cessing of RNNs. By following this software-hardware co-design strategy, previous works achieved at least 10X speedup over conventional processors. Many previous works focused on achieving high throughput with a large batch of input streams. However, in real-time applications, such as gaming Artificial Intellegence (AI), dynamical system control, low latency is more critical. Moreover, there is a trend of offloading neural network workloads to edge devices to provide a better user experience and privacy protection. Edge devices, such as mobile phones and wearable devices, are usually resource-constrained with a tight power budget. They require RNN hard- ware that is more energy-efficient to realize both low-latency inference and long battery life. Brain neurons have sparsity in both the spatial domain and time domain. Inspired by this human nature, previous work mainly explored model compression to induce spatial sparsity in RNNs. The delta network algorithm alternatively induces temporal sparsity in RNNs and can save over 10X arithmetic operations in RNNs proven by previous works. In this work, we have proposed customized hardware accelerators to exploit temporal sparsity in Gated Recurrent Unit (GRU)-RNNs and Long Short-Term Memory (LSTM)-RNNs to achieve energy-efficient real-time RNN inference. First, we have proposed DeltaRNN, the first-ever RNN accelerator to exploit temporal sparsity in GRU-RNNs. DeltaRNN has achieved 1.2 TOp/s effective throughput with a batch size of 1, which is 15X higher than its related works. Second, we have designed EdgeDRNN to accelerate GRU-RNN edge inference. Compared to DeltaRNN, EdgeDRNN does not rely on on-chip memory to store RNN weights and focuses on reducing off-chip Dynamic Random Access Memory (DRAM) data traffic using a more scalable architecture. EdgeDRNN have realized real-time inference of large GRU-RNNs with submillisecond latency and only 2.3 W wall plug power consumption, achieving 4X higher energy efficiency than commercial edge AI platforms like NVIDIA Jetson Nano. Third, we have used DeltaRNN to realize the first-ever continuous speech recognition sys- tem with the Dynamic Audio Sensor (DAS) as the front-end. The DAS is a neuromorphic event-driven sensor that produces a stream of asyn- chronous events instead of audio data sampled at a fixed sample rate. We have also showcased how an RNN accelerator can be integrated with an event-driven sensor on the same chip to realize ultra-low-power Keyword Spotting (KWS) on the extreme edge. Fourth, we have used EdgeDRNN to control a powered robotic prosthesis using an RNN controller to replace a conventional proportional–derivative (PD) controller. EdgeDRNN has achieved 21 μs latency of running the RNN controller and could maintain stable control of the prosthesis. We have used DeltaRNN and EdgeDRNN to solve these problems to prove their value in solving real-world problems. Finally, we have applied the delta network algorithm on LSTM-RNNs and have combined it with a customized structured pruning method, called Column-Balanced Targeted Dropout (CBTD), to induce spatio-temporal sparsity in LSTM-RNNs. Then, we have proposed another FPGA-based accelerator called Spartus, the first RNN accelerator that exploits spatio- temporal sparsity. Spartus achieved 9.4 TOp/s effective throughput with a batch size of 1, the highest among present FPGA-based RNN accelerators with a power budget around 10 W. Spartus can complete the inference of an LSTM layer having 5 million parameters within 1 μs

    On the eve of artificial minds

    Get PDF
    I review recent technological, empirical, and theoretical developments related to building sophisticated cognitive machines. I suggest that rapid growth in robotics, brain-like computing, new theories of large-scale functional modeling, and financial resources directed at this goal means that there will soon be a significant increase in the abilities of artificial minds. I propose a specific timeline for this development over the next fifty years and argue for its plausibility. I highlight some barriers to the development of this kind of technology, and discuss the ethical and philosophical consequences of such a development. I conclude that researchers in this field, governments, and corporations must take care to be aware of, and willing to discuss, both the costs and benefits of pursuing the construction of artificial minds
    corecore