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ABSTRACT 
 

The conventional Von Neumann architecture imposes strict constraints on the 

development of intelligent adaptive systems. The requirements of substantial computing power 

to process and analyse complex data make such an approach impractical to be used in 

implementing smart systems. Neuromorphic engineering has produced promising results in 

applications such as electronic sensing, networking architectures and complex data processing. 

This interdisciplinary field takes inspiration from neurobiological architecture and emulates 

these characteristics using analogue Very Large Scale Integration (VLSI). The unconventional 

approach of exploiting the non-linear current characteristics of transistors has aided in the 

development of low-power adaptive systems that can be implemented in intelligent systems. 

The neuromorphic approach is widely applied in electronic sensing, particularly in 

vision, auditory, tactile and olfactory sensors. While conventional sensors generate a huge 

amount of redundant output data, neuromorphic sensors implement the biological concept of 

spike-based output to generate sparse output data that corresponds to a certain sensing event. 

The operation principle applied in these sensors supports reduced power consumption with 

operating efficiency comparable to conventional sensors. Although neuromorphic sensors such 

as Dynamic Vision Sensor (DVS), Dynamic and Active pixel Vision Sensor (DAVIS) and 

AEREAR2 are steadily expanding their scope of application in real-world systems, the lack of 

spike-based data processing algorithms and complex interfacing methods restricts its 

applications in low-cost standalone autonomous systems. 

This research addresses the issue of interfacing between neuromorphic sensors and 

digital neuromorphic circuits. Current interfacing methods of these sensors are dependent on 

computers for output data processing. This approach restricts the portability of these sensors, 

limits their application in a standalone system and increases the overall cost of such systems. 

The proposed methodology simplifies the interfacing of these sensors with digital 

neuromorphic processors by utilizing AER communication protocols and neuromorphic 

hardware developed under the Convolution AER Vision Architecture for Real-time (CAVIAR) 

project. The proposed interface is simulated using a JAVA model that emulates a typical spike-

based output of a neuromorphic sensor, in this case an olfactory sensor, and functions that 

process this data based on supervised learning. The successful implementation of this 

simulation suggests that the methodology is a practical solution and can be implemented in 
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hardware. The JAVA simulation is compared to a similar model developed in Nengo, a 

standard large-scale neural simulation tool. 

The successful completion of this research contributes towards expanding the scope of 

application of neuromorphic sensors in standalone intelligent systems. The easy interfacing 

method proposed in this thesis promotes the portability of these sensors by eliminating the 

dependency on computers for output data processing. The inclusion of neuromorphic Field 

Programmable Gate Array (FPGA) board allows reconfiguration and deployment of learning 

algorithms to implement adaptable systems. These low-power systems can be widely applied 

in biosecurity and environmental monitoring. With this thesis, we suggest directions for future 

research in neuromorphic standalone systems based on neuromorphic olfaction.  
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CHAPTER 1. INTRODUCTION 
 

The need for intelligent machines is rising as technology continues to evolve. To embed 

intelligence in electronic devices, it is necessary to equip them with sensors and efficient 

processors. Currently, the operating principle in most electronic sensors and processors is based 

on the Von Neumann architecture where memory and data processing are two different units. 

Systems based on this architecture tend to consume excessive power with the operating 

frequencies increase and as the data is transmitted back and forth between memory and 

processor during data operations. The ever growing number of sensors in modern systems 

results in a huge amount of redundant data that requires substantial computing power to 

implement complex data processing strategies. However, increasing the number of transistors 

on a chip to increase processing power is impractical due to the physical limitations of silicon 

and heat dissipation issues [2]. 

Extensive research in neuroscience has revealed that animals and humans perform 

cognitive tasks such as grasping, smelling and recognising voices, with utmost ease. The 

operating principles of neurobiological architecture depend on asynchronous processing that 

ensures real-time response to stimuli. The unification of memory and processing as a single 

unit dramatically reduces power consumption. An essential characteristic of neurobiological 

architecture is extensive connectivity between neurons and synaptic weight changes that form 

the basis of learning rules in biological systems. The idea of reverse-engineering this biological 

phenomenon using electronics gave an impetus towards the development of an interdisciplinary 

science called neuromorphic engineering. 

Scientists including Max Delbruck, Richard Feynman, John Hopfield and Carver Mead 

collaborated to study the non-linear current characteristics of transistors [3]. Carver Mead in 

his path-breaking paper, ‘Neuromorphic Electronic Systems’, exposed the drawbacks of using 

the transistor merely as a digital switching device. He proposed that the analogue properties of 

transistors can be exploited to implement adaptive circuits that mimic neurobiological 

architecture. He highlighted the advantages of this approach including low-power consumption 

and efficiency and presented a prototype for an adaptive silicon retina and cochlea [4, 5]. 

     Since the development of neuromorphic engineering, these concepts have been applied 

in data processing, the design of network architecture, and, most successfully, in electronic 

sensing [6]. The properties of human sensory systems such as vision, audition and olfaction are 
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emulated by using analogue VLSI. Recent developments have adopted an analogue-digital 

hybrid approach to implementing the state-of-the-art neuromorphic vision, auditory and 

olfactory sensors. 

 

1.1. MOTIVATION 

 

An important characteristic of neuromorphic sensors is low-power consumption and 

asynchronous spike-based output. This unique format of the output is analogous to 

asynchronous action potentials generated in biological sensory systems to detect an occurrence 

of an event independent of time. Hence, conventional interfacing protocols that depend on 

external clocking circuits cannot be applied for transmission of outputs from neuromorphic 

sensors. To overcome this limitation, neuromorphic sensors use Address Event Representation 

(AER)-based communication that facilitates transmission of address events in the form of 

spikes. Neuromorphic sensors are provided with interfaces such as AER, Universal Serial Bus 

(USB) and Data Acquisition (DAQ) to communicate the output data with a processing unit. 

The output data processing of these sensors is mainly implemented on computers due 

to the limitations on processing algorithms that can be deployed on a low-power system. In 

such cases, a USB interface is used to connect these sensors and transmit time-stamped AER 

spikes. This interfacing technique restricts the portability of these sensors as well as incurring 

high costs for output data processing and, thus, limits large-scale application. Development 

towards standardisation of AER interfaces has enabled direct connection between 

neuromorphic sensors and rapid-prototyping development boards [7]. Accordingly, 

neuromorphic processing boards such as SpiNNaker [8], BrainScaleS [9] and CAVIAR [10] 

have been developed that can process spike-based data and can be reconfigured for application 

specific tasks by using on-board FPGAs. 

This research project addresses the issue of interfacing neuromorphic vision, auditory 

and olfactory sensors with digital neuromorphic circuits. This project will encourage the use of 

neuromorphic sensors in stand-alone autonomous systems and eliminate their dependency on 

computers for output data processing. 

1.2. RESEARCH QUESTIONS: 
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This research project focuses on establishing a direct interface between neuromorphic 

vision, auditory and olfactory sensors with digital neuromorphic circuits. An important issue 

this project addresses is: “What methodology should be adopted to establish an efficient 

interface between neuromorphic vision, auditory and olfactory sensors and digital 

neuromorphic circuits?” 

 The answer to this research question will be the result of a series of answers for the questions 

below: 

 Which learning algorithm is best suited for implementation in an autonomous system 

with neuromorphic sensors? 

 Which neuromorphic sensors are compatible with AER interfacing? 

 Which digital neuromorphic processing board facilitates AER interfacing with rapid 

prototyping and upscaling? 

 How will the system implement correlation of output from multiple sensors? 

 How can a simulation of this interface be implemented using standard programming 

environments? 

 Which application areas can benefit from this interface and how? 

These research questions will focus on determining appropriate learning methods for 

autonomous systems implementing neuromorphic sensors, selection of sensors based on their 

output data format, correlation of output from multiple sensors and selection of appropriate 

neuromorphic FPGA development board. 

 

1.3. RESEARCH CONTRIBUTION: 
 

 This thesis focuses on eliminating the dependency on computers for interfacing of 

neuromorphic sensors. The original contribution of this research lies in establishing a 

simplified model of interfacing neuromorphic sensors with digital neuromorphic circuits that 

can be readily adopted in the design of autonomous systems based on neuromorphic sensing. 

This model will provide a platform for stand-alone autonomous systems to integrate multiple 

sensors and correlate their output data. The digital neuromorphic circuits can be used as a 

learning unit and tend to improve the performance of the system during the course of time. The 

proposed interfacing method will extend the scope of application of neuromorphic sensors for 

bio-security and other advanced applications.  
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1.4. THESIS ORGANISATION: 
 

This introductory chapter is followed by a literature survey in Chapter 2. The literature 

review starts with a detailed description of developments in neuromorphic engineering and 

investigates state-of-the-art neuromorphic sensors and their operating principles. Chapter 3 is 

adapted from the author’s manuscript “A Review of Current Neuromorphic Approaches for 

Vision, Auditory and Olfactory Sensors”. This chapter will introduce current benchmarks in 

neuromorphic sensing and compare them. Chapter 4 describes the proposed methodology and 

explains each component of the interface. Chapter 5 describes the JAVA modelling and 

simulation of the interface and compares the JAVA model with a standard simulation tool, 

Nengo. Chapter 6 comprises of conclusion, application and future direction for this project.  

  



5 
 

CHAPTER 2. LITERATURE REVIEW 
 

 Neuromorphic engineering is a rapidly evolving field that takes inspiration from 

unconventional biological computing concepts like asynchronous processing, hybrid 

analogue/digital components and the combination of computing and memory components. 

Since the last decade, there have been path-breaking research activities in neuromorphic 

sensing and that has led to sophisticated designs of neuromorphic sensors. This literature 

survey is focused on studying prominent work in neuromorphic vision, auditory and olfactory 

sensing, in order to determine digital interfacing methodology for neuromorphic sensors.  

 During this literature review, most of the work was referred from IEEE Xplore digital 

library. Other libraries like Springer Link, Science Direct and Elsevier were also used. Some 

of the keywords used were “neuromorphic vision”, “neuromorphic auditory sensors”, 

“neuromorphic olfaction”, “neuromorphic engineering” and “biomimetic sensors”. This 

literature review, highlights key contributions from researchers like Tobi Delbruck, Shih-Chii 

Liu, André van Schaik, Thomas Jacob Koickal and Carver Mead. 

 

2.1. NEUROMORPHIC ENGINEERING 
 

 Neurobiological architecture is an example of a well-organized and efficient computing 

approach. Biological methods of processing certain complex data can be more efficient than 

any digital system attempting to perform similar tasks. For example, a bee’s flight motor skills 

and cognitive behaviour cannot be matched by even the most sophisticated aerial vehicles. The 

bee’s ability to sense and scan a large area for navigation between beehives and flowers, 

dissipates only 10 mW of energy [11]. Similar digital systems that use sensory data and Global 

Positioning Systems (GPS) consume approximately 1kW of computing power [11]. This shows 

that even though biological systems implement slow, inhomogeneous and stochastic 

computing elements, they tend to outperform today’s powerful digital systems at processing 

sensory data and motor control. Research has shown that neurobiological systems utilise the 

advantages of massively parallel mechanisms, both analogue and digital signal representations, 

and distributed processing. The combination of computing and memory elements, allows 

biological systems to learn, adapt and improvise in varied tasks [2]. However, state-of-the-art 

digital systems rely on Boolean logic, synchronous processing and precise digital formats. 

Even the simulation of neuronal computing methods requires supercomputers that rely on fast, 
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clocked and multi-processor digital hardware that involves high-power consumption [6]. The 

Von Neumann architecture based on digital systems require several data transfer iterations 

from memory chips to processing units, as memory and computing elements are implemented 

as different entities. This technique is not ideal for complex data processing like image and 

sound processing [12]. Understanding the intelligent computation principles in neurobiological 

systems will boost the development of novel computing models that are both power-efficient 

and intelligent. 

 The quest to develop custom hardware, that takes inspiration from neurobiological 

architecture, started since the development of the perceptron and electronic retina. In the late 

1980s, Carver Mead utilised the non-linear current characteristics of transistors and analogue 

VLSI concepts, to develop circuits that somewhat mimic human sensory systems. Such systems 

were called neuromorphic, describing their ability to emulate the neurobiological architecture 

for effective processing and sensing. Carver Mead quantified the energy loss to be 10,000 times 

in excess when transistors are operated as digital switches, especially, when simple digital 

calculation causes numerous ON-OFF switching of millions of transistors. In [4], Mead 

particularly highlighted the voltage-dependent exponential behaviour of a transistor in the 

subthreshold region. As illustrated in Figure 2.1, these characteristics are analogous to the 

exponential dependence of active populations of voltage-sensitive ionic channels as a function 

of the potential across the membrane of a neuron. This similarity facilitates the implementation 

of voltage-controlled conductance-based electronic models of neurons and synapses. These 

concepts were also applied to construct useful computational biological primitives such as 

phototransduction, logarithmic functions, inhibition, correlation amplification, multiplication, 

thresholding, and winner-takes-all selection [6]. 

 Biological structures depend on analogue computing to process sensory data. This 

computing is carried out by the physics of these special-purpose structures. For example, the 

natural structure of the ear provides physical properties that can perform frequency analysis, 

signal modulation and filtering, eventually relaying the signals to the brain. Developments in 

neuromorphic engineering have boosted research in biological sensing. Although biological 

sensing depends on analogue computation, there is a certain digital aspect to it. A brain cell or 

neuron receives certain patterns of voltage from other neurons at its membrane, integrates these 

voltages in an analogue manner and produces a spike-based output when the voltage exceeds 

a certain threshold. This output is analogous to digital information which denotes the presence 
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(1) or absence (0) of a voltage spike [13]. These spikes act as an input to more neurons and this 

process, when amplified to involve millions of neurons, leads to sensing and motor movements.  

 

Figure 2.1. Current-Voltage plots by Carver Mead to compare the ubiquitous exponential characteristics between 
membrane potentials and analogue transistors (adapted from [4])  

Initially, Carver Mead proposed the use of only aVLSI to construct neuromorphic 

hardware [14]. He attempted to include most of the functionality of a retina and a cochlea in 

silicon. These experiments aimed at replicating the actual working of these sensory structures 

but they failed to fully implement the underlying operating principles. The application of 

analogue concepts ensured that only a few transistors had to be used to carry out computations 
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and operation in the subthreshold region evaded excessive power consumption. Analogue 

implementations can be more accurate than digital systems within a given power budget as 

precise values can be computed using the analogue format unlike in digital implementations 

that are restricted to only two values 1 or 0. Although analogue implementations provide these 

advantages, the analogue properties of every transistor are intrinsically different, which leads 

to transistor mismatch. This mismatch introduces errors in computation and the output is 

compromised. Analogue implementations are prone to noise due to temperature variations and 

voltage supply variance [15]. The restriction of digital representation to two values provides 

much greater immunity to erroneous signal alteration due to noise. Digital systems are robust 

to noise from temperature variance, supply voltage variance, fluctuations in the flow of current 

and thermal noise [2]. Digital systems also tend to be relatively easy to program and upscale. 

These advantages were noticed and reported in early implementations in [16]. Recent 

neuromorphic implementations include a hybrid approach that leverages the advantages of both 

analogue and digital approaches [2].  

Extensive research on the computational power of biological systems to the abstraction 

level of a single neuron and its associated synapses has facilitated the development of 

sophisticated designs of neuromorphic systems. This has sparked advanced research in 

developing large-scale neural systems that exhibit adaptive characteristics rather than the 

largely used feed-forward and reactive systems [12]. 

 

2.2. SILICON NEURON: ESSENTIAL COMPONENT OF NEUROMORPHIC 

SYSTEMS 

 

2.2.1. REAL NEURONS 

 

A neuron is a fundamental functional block in a neural system that is responsible for 

many chemical and electrical processes. There are approximately 1011 neurons in the human 

brain, each with about 104 connections to others of its kind [17]. The connections between the 

axons and dendrites of neurons are called synapses. The output pulse of a neuron, the so-called 

action potential, is carried by the axon. Dendrites receive this input current that flows to the 

soma within which it is eventually integrated. The axon hillock is responsible for initiation of 

an action potential as the integrated input current (often referred to as the membrane voltage 
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Vm) amounts to a voltage higher than some threshold. Figure 2. 2 shows the basic anatomy of 

the biological neuron. 

 

Figure 2. 2. Basic anatomical part of a neuron (Adapted from [18]) 

Figure 2.3, gives an impression of a real neuron. This image is a light microscope photograph 

by John Anderson, Institute for Neuroinformatics, Zurich, Switzerland. 

 

Figure 2.3. Light microscope photograph of a stained neuron (Adapted from [18]) 

The synapses are responsible for storing the learning information in the brain. The 

amount of charge deposited on the post-synaptic cell per input spike is identified as the 

connection strength between synapses. These connection strengths can change permanently 
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and alter the behaviour of an entire network. These long-term connection changes in synaptic 

weights are termed as Long-Term Potentiation/Depression (LTP/LTD) [19]. Spike Timing 

Dependent Plasticity (STDP) is a term coined to describe changes in the synaptic strength that 

are triggered by temporal spiking patterns of a pre- and post-synaptic neuron. 

 

2.2.2. aVLSI MODELS OF NEURONS 

 

 Recent developments in neuromorphic engineering have sparked interest in the 

physiological model of a neuron that describes its functionality and can be realised in aVLSI 

circuits. As biological neurons depend on voltages and currents, it has been relatively easy to 

model neurons in VLSI electronic circuits [15]. There are several aVLSI models of neurons 

based on their level of detail. The simplest way of representing a neuron in electronics is by 

representing them as electrical nodes where a voltage or current represents a neuron's activity, 

and the input and output are identical with no transfer function [20]. 

 

2.2.2.1. PERCEPTRONS 

 

A perceptron is a simple representation of a neuron, mostly implemented as a 

mathematical model. A perceptron, also known as a sigmoid neuron, models the multiple input-

single output property of real neurons. The output of a perceptron is computed by an activation 

function of the weighted sum of its inputs [21]. The idea of a perceptron is limited to 

mathematical modeling and is rarely implemented using aVLSI. Perceptron implementation in 

digital hardware and traditional computers, provide the advantages of a fully parallel, space 

and energy conservative implementation [18]. Equation 2.1 is a representation of a perceptron 

as an activation function that performs summation of Xi inputs with Wi weights. 

∑𝑓(𝑊𝑖𝑋𝑖)

𝑖

 

Equation 2.1. Mathematical model of a perceptron (Adapted from [18])  
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2.2.2.2. INTEGRATE AND FIRE NEURONS 

An integrate-and-fire neuron performs integration of weighted charge, triggered by 

presynaptic spikes. The neuron fires an output pulse when the voltage reaches a certain 

threshold, and the integrator is reset. This type of neuron is widely implemented in aVLSI as 

shown in Figure 2.4 [18]. The spike-based communication in this model provides distinct 

advantages in noise robustness. 

 

Figure 2.4. High-level conceptual model of an Integrate and Fire neuron (Adapted from [18])  

Figure 2.5 presents a model of an integrate-and-fire neuron proposed by Carver Mead 

[14]. This neuron comprises an integrator capacitor that represents the membrane potential of 

a neuron, a high gain amplifier that switches as the integrated input current exceeds the 

threshold voltage, and a stabilising feedback capacitor to maintain the membrane capacitance 

by adding the extra charge to stabilise the firing state.   

 

Figure 2.5. Integrate-and-Fire neuron model by Carver Mead (Adapted from [22])  
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2.2.2.3. SILICON NEURONS 

Silicon neurons extend the level of detail to model neurons. This model includes the 

details of varying properties and states along the dendrites and the axons of the neuron. The 

action potentials are generated as a sharp voltage rise when the membrane potential reaches a 

threshold. 

 

Figure 2.6. Schematics of HH-soma implementation in CMOS (Adapted from [23])  
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This modelling of the action potential generation is based on the Hodgkin- Huxley 

model [23]. This model was initially limited to the mathematical formulas, but with 

developments in electronic modelling, this model has been implemented in aVLSI and verified 

using simulations. A CMOS implementation of Hodgkin-Huxley soma that emulates the 

sodium and potassium conductance in real neurons is shown in Figure 2.6. The red graph line 

shown in Figure 2. 7, depicts the typical behaviour of membrane voltage (Vm) that is activated 

once the voltage increases beyond threshold (THRES). The delayed activation (Vfkd) 

introduced by RC-type delay filter/integrator circuit causes some delay for the turning off 

action of the spike. This results in the membrane potential falling below resting potential before 

returning to the normal values. 

 

Figure 2. 7. Signal time course of a HH-soma implementation (Adapted from [18]) 

 

2.3. NEUROMORPHIC VISION SENSING 
 

The extensive research in neuromorphic engineering has led to the development of 

several neuromorphic devices such as neural processors, neural network architectures and the 

most successful being neuromorphic sensors. The silicon retina is the most prominent example 

of effective emulation of a biological sensory system using neuromorphic concepts [24]. It is 

necessary to study the biological retina and underlying concepts of biological vision sensing in 

order to understand the working of the silicon retina. 
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2.3.1. BIOLOGICAL RETINA 

 

The human visual system is a complex sensory system that is responsible for relaying 

optical information to the brain [25]. This process of sensing light starts with appropriate pre-

processing at the eyeball and ends with the optic cranial nerve that sends action potentials to 

the brain’s visual cortex. The essential processing of the visual data is carried out by the retina. 

The retina is a thin tissue with a dense neural network that lines the inner surface of the eye. 

As shown in the Figure 2.8 and Figure 2.9, the retina comprises of three primary layers, the 

inner and outer plexiform layer and the photoreceptor layer. The photoreceptor layer further 

contains cone cells and rod cells that are responsible for the conversion of incident light into 

action potentials. These photoreceptor cells control the functionality of bipolar cells and 

horizontal cells of the outer plexiform layer.  

 

Figure 2.8. Cross section of primate retina (Adapted from [11]) 

The horizontal cells are arranged in a resistive mesh and carry out computation of 

spatio-temporal averages. The bipolar cells are divided into ON and OFF cells that are capable 

of distinguishing between bright spatio-temporal contrast and dark spatio-temporal contrast. 

Thus, the bipolar cells are controlled by the difference between photoreceptor and horizontal 
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cell output. These ON and OFF bipolar cells further join onto different amacrine cells and, ON 

and OFF ganglion cells in the inner plexiform layer [11, 12]. The communication signals 

between the ganglion and bipolar cells are mediated by the amacrine cells.  

The ganglion cells and bipolar cells can be further differentiated into cells with more 

sustained responses and cells with more transient responses. The information related to 

transient and sustained responses is carried along separately in two parallel pathways: the 

parvocellular pathway is sensitive to spatial changes, and the magnocellular pathway is 

sensitive to temporal changes. Although there are several other pathways of the visual input, 

the simplified classification of sustained and transient pathways is relatively easy to understand 

and emulate in aVLSI [24]. Temporal changes provide the “where” information of the visual 

scene, and spatial information provides the “what” information. For example, the information 

related to motion parameters like the direction of a moving object is provided by temporal 

change, whereas details of the object such as colour and shape is provided by spatial vision 

[11]. The retina encodes the spatio-temporal information of the visual scene into action 

potentials that are communicated to the visual cortex of the brain. This information is carried 

through retinal ganglion cells and undergoes advanced adaptive filtering and sampling.  

 

 

Figure 2.9. Key components of biological retina that are emulated in silicon retina (Adapted from [24]) 
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2.3.2. LIMITATIONS OF CONVENTIONAL VISION SENSING 

  

To match the performance parameters of human vision like high photopic range (>100 

dB), spatial and temporal resolution, and field of view, requires a conventional vision sensor 

to capture images at Nyquist rate and transmit them at 20 GB/s. Biological vision carries out 

this functionality by coding 2 bytes of visual scene information per spike. The optic nerve 

communicates these spikes to the visual cortex at about 20 MB/s, which is a thousand times 

less than conventional vision sensing [11, 12, 24].  

The frame-based operation principle of conventional Charge Couple Device (CCD) and 

Complementary Metal-Oxide Semiconductor (CMOS) imagers imposes several limitations on 

efficient processing of visual data. Images are taken at a predetermined rate; this data undergoes 

appropriate image processing depending on the application. As events in the real world occur 

in an asynchronous manner and in continuous time, the concept of capturing visual data using 

a frame-based approach can lead to sampling inconsistencies. If frames are captured at a slow 

rate, changes in visual data between two consecutive frames is lost. This problem of 

undersampling can prove to be intolerable for applications such as machine vision and visual 

feedback systems [26].  

Conversely, oversampling can lead to huge volumes of redundant data where there is 

no significant change in several frames. When the frame-based approach is applied, 

information is recorded from all the pixels regardless of any change in their values. Acquisition 

and processing of this large data set is complex, incurs high power consumption, and requires 

a lot of resources like wide channel bandwidth and large amounts of memory [27]. 

 

2.3.3. SILICON RETINA 

 

Biological vision is asynchronous and controlled by changes occurring in the visual 

scene. This approach is contrary to the one used in traditional vision sensors, where information 

is captured by synchronous timing and control signals without any change in visual information 

and its dynamics. In order to apply a biological vision approach, it is necessary to eliminate the 

external synchronous clock for acquisition of visual information and allow each pixel to relay 

its information as per the changing light exposure [28, 29]. By implementing such a frame-free 

approach and computation at an individual pixel-level, the problems of frame based 

conventional vision sensing can be solved. 
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 Mahowald was the first to implement vision chips that follow the operating principles 

of biological vision in silicon [30, 31]. Through this design, she tried to replicate the 

functionality of the cone cells to detect light, horizontal cells to compute the spatial and 

temporal average from cone cells output, and the bipolar cells that can compute the difference 

between average output and incoming input. In this silicon retina, the cone cell functionality 

has been demonstrated by using parasitic phototransistors and MOS-diode logarithmic current 

to voltage converters. As observed in the Figure 2.10, the averaging functionality of horizontal 

cells is implemented using a hexagonal network of active resistors. Finally, the potential 

difference between the hexagonal resistive network and the local receptor is computed. 

However, the mismatches in transistors affected the performance of the sensor under uniform 

lighting conditions, and the resulting output was compromised. 

 

Figure 2.10. Schematic of pixel from Mahowald retina (Adapted from [4]) 

Mead pointed out that the drawbacks of transistor mismatch in Mahowald’s retina are 

also observed in biological vision as no two photoreceptors or synapses have a similar 

sensitivity or synaptic weights [29]. He suggested that biology applied adaptive techniques to 

overcome the mismatch drawbacks and improve its precision. He enhanced the Mawhold’s 

retina by using a floating gate Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) 

as a feedback element to correct the offset and mismatch between the transistors. This is applied 

by adding a Ultra-Violet (UV) activated coupler of a poly-1-poly-2 structure. This UV coupler 

would close the feedback loop when exposed to UV light and hold the output voltage for a 

certain input current [4, 31, 32]. Figure 2.11 shows the circuit for the adaptive retina pixel by 

Carver Mead. 
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Figure 2.11. Adaptive retina pixel circuit by Carver Mead (Adapted from [4]) 

Zaghloul and Boahen improved the silicon retina by Mahowald and Mead, by adding 

both sustained (parvo) and transient (magno) cellular pathway functionalities [33, 34]. This 

simplified model of all five layers of retina comprised of both outer and inner retina 

functionalities. The inner retina model added the functionality of contrast gain control and the 

outer retina model could effectively carry out spatio-temporal bandpass filtering and local gain 

control. This model exhibited biological retina-like ability to adapt to varying light and contrast 

conditions and dynamically realign spatial and temporal filtering. The 3.5 × 3.3 mm2 chip they 

designed could accommodate 5760 phototransistors at a density of 722 per mm2 and 3600 

ganglion cells at a density of 461 per mm2. This implementation provides an output of spike 

trains which is analogous to ON and OFF centre wide-field transient and narrow-field sustained 

ganglion cells. This approach emphasised extensively on modelling biological retina closely, 

but the large mismatch, and 1-2 decades of Fixed Pattern Noise (FPN) restricted its application 

to laboratory experiments. 

 

2.3.4. RETINOMORPHIC VISION DEVICES 

 

Early silicon retina implementations emphasised on emulating the biological retina 

pathway for vision sensing. However, it was realised that the modelling of retina introduced 

drawbacks like large mismatch and FPN. This resulted in silicon retinas being developed only 

to study retina functionalities, but failed to prove useful for wider application. It is found that 

rather than emulating the entire retina pathway, only the essential characteristics of the retina 

can be implemented using aVLSI to achieve a result that is more reliable than the previous 
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silicon retina. Further developments in spike-based communication techniques like AER 

supported the implementation of event-based retinomorphic vision sensors. 

Neuromorphic engineering concepts have been successfully applied in developing 

neuromorphic vision sensors like DVS [35], Asynchronous Time-based Image Sensor (ATIS) 

[36] and DAVIS [27]. Before the development of these sensors, several promising designs were 

explored that underpinned further study in neuromorphic vision. Researchers at CSEM 

Neuchatel developed a device that provides an event-based output that encodes high-to-low 

spatial contrast changes [37]. This enables early termination of readout without the loss of 

critical high-contrast changes especially when time constraints are applied for processing this 

information. With features such as 2% contrast mismatch and six-decade dynamic range, this 

device was commercially applied in the automotive industry. The temporal resolution of this 

device was limited to the frame rate that resulted in failure to reduce temporal redundancy. 

Mallik et al. [38] developed a temporal change detector Active Pixel Sensor (APS) imager that 

can detect a quantised absolute change in illumination and thus detect temporal changes. This 

design led to the development of a synchronous AER implemented by storing the addresses of 

the changed pixels in a First-In First-Out (FIFO) format. A limited dynamic range of 2.5 

decades and absolute illumination-detection threshold restricted the use of this imager to 

uniform lighting conditions. The frame-based approach added the disadvantages of the 

sampling rate. 

Several other applications like [39-41], contributed towards development in AER 

utilisation to communicate pixel address, spatial-contrast vision sensors, Time to First Spike 

(TTFS) images and time-based imagers. However, most of these designs suffered from 

transistor mismatch and leakage current in the transistor feedback circuit which resulted in 

failure to respond to slow changes in the visual scene. Developments by Kramer et al. in [42, 

43], underpinned further research in vision sensors where individual pixels could compute and 

respond to positive and negative luminosity changes. The 48 × 48-pixel imager developed in 

[42], was further improved in [43] by using advanced pixel circuits with better performance to 

symmetrical ON-OFF responses. As the image contrast undergoes temporal differentiation, this 

imager can substantially reduce redundancy. This design exhibited a 32 × 32-pixel array with 

a pixel size of 40 × 40 µm2 and dynamic input range of 100 dB. These contributions along with 

[26, 44-46], facilitated the development of DVS. 



20 
 

In 2008, Lichtsteiner, Posch and Delbruck presented the first practically usable device, 

DVS, in their path-breaking paper [35]. This 128 × 128 pixel frame-free CMOS vision sensor 

has been widely accepted as a benchmark in neuromorphic vision sensors. Each DVS pixel is 

designed to compute local relative luminosity changes and respond to temporal contrast 

changes in real-time. The dynamic range of DVS is > 120dB and the power consumption of 

this sensor is about 23 mW. DVS is built in a 0.35 µm 4M2P process with a pixel area of 40 × 

40 µm2 and 9.4% fill factor. The AER implementation ensures that the illuminance changes 

are reported with a precision timing of sub-millisecond. The events generated are directly 

proportional to the dynamic content of the scene that makes the operation of DVS independent 

of any external timing circuit. 

 

 

Figure 2.12. A 128 × 128 Dynamic Vision Sensor by Tobi Delbruck (Adapted from [37]) 

DVS models key properties of biological vision: sparse and event-based output, pixel-

level computation of relative luminosity change and the rectification of ON and OFF signals 

in the separate pathway [24]. These properties are analogous to the photoreceptor-bipolar-

ganglion cell information flow in the biological retina as shown in Figure 2.13. 
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Figure 2.13. Three layer model of biological vision and corresponding DVS pixel circuit (Adapted from [24]) 

The principle of operation of DVS is plotted below in Figure 2.14. The upper graph 

represents a voltage waveform at point Vlog. This voltage is computed by tracking the 

photocurrent of the photoreceptor circuit. The lower graph denotes the response from the 

bipolar circuit where spikes of different polarities are generated that are further communicated 

by the ganglion cells circuit to the next processing stage. These spikes represent the number of 

events. The output of the array of pixels is as shown in Figure 2.15. The events are recorded at 

an interval of tens of milliseconds. The dark pixels denote the OFF events, and the bright pixels 

denote the ON events. The main application areas of DVS are high-speed low-bandwidth 

imaging, wireless sensor networks, autonomous navigation systems and many more [47, 48]. 

 

Figure 2.14. Waveforms of DVS pixel circuit (Adapted from [24])  
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Figure 2.15. Output image from DVS (Adapted from [12]) 

Implementation of the DVS underpinned further study, specifically in temporal change 

detection. Developments mentioned in [49] add features like colour vision to DVS pixels by 

utilising properties of Buried Double Junction (BDJ)  photodiodes. Such an implementation 

can be used to detect light wavelength variation up to 15 nm. Improvements reported in [50], 

provided an impetus to extend the application of DVS. Serrano-Gotarredona and Linares-

Barranco used a novel per-pixel photo sensing and transimpedance preamplifiers to improve 

the contrast sensitivity of DVS pixels by one order of magnitude i.e. down to 1.5% from 10-

15% of the original DVS pixel. This also resulted in reduced power consumption to 4 mW, 

FPN to 0.9% and thus reduced the overall pixel size to 30 × 31 µm2. The dynamic range and 

latency were maintained at 120 dB and 3 µs respectively. This improved design has the only 

drawback of a limited intra-scene dynamic range of three decades. 

Christoph Posch et al. developed ATIS, a Quarter Video Graphics Array (QVGA) 

neuromorphic CMOS vision sensor based on the event-based DVS approach and a PWM-based 

conditional exposure measurement circuit [36]. In this design, a pixel can individually initiate 

exposure measurements when luminosity changes are detected. ATIS is asynchronous and 

event driven, and there are no external timing circuits that control its output readout. Any 

change in temporal and grey scale values of pixels are communicated using AER by requesting 

access to an asynchronous output channel. As the luminosity change information is encoded in 

a time-based manner, the high-dynamic range of 125-143 dB is achieved depending on visual 

scene activity. By implementing TCDS methods, the array FPN of <0.25% RMS and Signal-
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to-Noise Ratio (SNR) of >56 dB is achieved at >10 Lux of illuminance. The greyscale output 

of ATIS overcomes the limitation of object recognition and identification. 

 

Figure 2.16.ATIS pixel circuit, operation principle of ATIS and its output frames (Adapted from [24])  

Implementation of ATIS sparked the idea of a hybrid approach between frame-based 

and frame-free imaging to obtain static and dynamic scene information. Also, it was difficult 

to apply traditional computer vision algorithms to sparse DVS output because no static visual 

scene information was acquired. Drawbacks of ATIS such as non-uniform exposure restricting 

its ability to capture dark, narrow and slow moving objects, inspired the development of 

DAVIS. 

 

Figure 2.17. DAVIS pixel circuit with APS and DVS pixel fusion (Adapted from [27]) 

Developing from [51], DAVIS overcomes the limitation of motion artefacts by using a 

global shutter. This 240 × 180-pixel spatio-temporal vision sensor utilises the novel 
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combination of DVS pixel with an APS at the pixel level. This enables it to capture 

synchronous frame data along with asynchronous DVS events, and thus conventional machine 

vision algorithms can be applied to detect and identify objects in the scene. 

 

 

Figure 2.18. DAVIS vision sensor (Adapted from [27]) 

The pixel size of DAVIS is 18.5 µm2 and it is fabricated in a 0.18 µm 6M1P CIS 

technology [27]. The DVS pathway in DAVIS exhibits features such as a dynamic range of 

130 dB, 3µs latency and 11% contrast detection threshold. The dynamic range of APS readout 

is 51 dB and adds 0.5% of FPN. The images captured using conventional methods can be easily 

used for further processing using traditional machine vision algorithms. Thus, DAVIS has set 

a new benchmark for a hybrid approach and will trigger further research in improving fill factor 

and resolution. 

 

2.4. NEUROMORPHIC AUDITORY SENSORS 
 

As mentioned by Carver Mead in [4], we can build intelligent and efficient machines if 

we can extend brain-like auditory sensing and processing capabilities to these machines. 

Neuromorphic auditory sensors mimic the working principle of the biological cochlea and 

attempt to implement it using aVLSI concepts. Research on silicon cochlea started in parallel 
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with silicon retina, but more efficient AER-based implementations have been developed in the 

last decade [52]. Biological audition concepts are also applied in designing front-ends for 

speech recognition and bionic ear processors. 

 

2.4.1. BIOLOGICAL COCHLEA 

 

 

 

Figure 2.19. Human auditory system (Adapted from [12]) 

Over millenia the auditory sense in animals has evolved to adapt to changing 

frequencies of sound, identify the speaker, and even localise the source of sound on the basis 

of inter-aural time delay. The outer, middle and inner ears adapt to changing sound levels by 

amplifying the soft sound and suppressing loud sounds. The outer ear helps to focus towards 

the direction of the sound. The middle ear detects and reduces the signal strength of loud sounds 

before transferring it to the inner ear. If the sound detected is soft, the inner ear amplifies it by 

using hair cells that add energy back to the auditory system to strengthen the sound signals. 

The cochlea is an essential organ that is responsible for the conversion of sound waves that are 

the incident on outer ears, into action potentials that are communicated to the auditory cortex 

of the brain [11, 18]. It is necessary to study biological cochlea to understand the helical 

structure and functions. A cross-section of a human cochlea is shown below in Figure 2.20. 
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Figure 2.20. Cross-section of biological cochlea (Adapted from [5]) 

 A cochlea is a spiral bony fluid-filled tube structure that is an essential part of the inner 

ear. The wide end of the unwound cochlea is called the base and the tapered end is called the 

apex. The interior of the cochlea is divided by Reissner’s membrane and the Basilar membrane. 

The organ of Corti that contains the inner hair cells and the outer hair cells are situated on top 

of the Basilar membrane. The biophysics of the Basilar membrane produces deflections in the 

inner hair cells that cause generation of action potentials that travel to the auditory cortex of 

the brain. The oval window and the round window connects the cochlea to the middle ear. The 

vibrations created by the sound waves in the eardrum causes movements in the stapes. The 

movement of stapes pushes the oval window that further causes the fluid in the cochlea to 

move. The round window allows the fluid to bulge back as it moves in the opposite direction 

of the initial movement of the oval window.  

  The properties of Basilar membrane vary along its length as the base is sensitive 

towards the high-frequency sound, and the tapered apex is sensitive towards the low-frequency 

sound. The distortion in the fluid results in the formation of a sound wave that propagates from 

the base of the Basilar membrane to the apex. The high frequencies are strongly attenuated, 

and the low sound frequencies are amplified as the wave propagates through the Basilar 

membrane. Thus, only particular parts of the Basilar membrane exhibit maximum deflection 

to a given frequency. The biophysics of the membrane causes the inner hair cells and outer hair 

cells to fire action potentials to the brain as a result of the wave propagation within the 

membrane [53]. The disruptions within the fluid and the partition can be viewed as a distributed 

low-pass filter and the membrane velocity detected at each hair cell can be considered as a 
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bandpass-filtered sound wave. These low-pass and bandpass filtering mechanisms are an 

essential component of an auditory system. Research in auditory sensing has calculated the 

overall power consumption of biological cochlea to be around 14 µW with a dynamic range of 

120 dB [54]. By applying neuromorphic engineering concepts, low-power high dynamic range 

auditory systems can be implemented. 

 

2.4.2. SILICON COCHLEA 

 

Conventional auditory sensing requires regular digital sampling of the input sound 

signal at certain Nyquist frequencies. The generation of auditory frames from this input data 

requires the processing to be carried out at the same input sampling rate. The prime sampling 

rate and high-resolution Analogue to Digital Conversion (ADC) may result in a substantial 

amount of power consumption as per application requirements. As observed in conventional 

vision sensing, the data storage and computation costs for redundant auditory data can be high 

regarding processing power. Although digital processing of sound is highly improved for 

certain applications it involves tremendous complexity [1]. In order to overcome these 

limitations of conventional auditory sensing and processing, neuromorphic concepts are 

applied to develop auditory sensors and processors that emulate the functionality of biological 

cochlea.  

As described by Mead and Lyon in [5], a silicon cochlea should take real auditory 

signals as input, process it in real-time and provide an output that is analogous to the spike-

based output given to the cochlear cranial nerve. They proposed that the filtering action of the 

Basilar membrane could be implemented using a cascade of low-order filters. Similarly, the 

cochlear’s ability to adapt to changing sound environments can be modelled using some form 

of coupled Automatic Gain Control (AGC). This implementation introduced the essential 

quality factors for silicon cochlea such as latency, high-gain pseudo resonance and sharp roll-

off. Figure 2.21, shows a floorplan of this 100 stage cochlea chip. This design suffered from 

transistor mismatch, limited dynamic range and high latency caused by a large number of 

cascades. If one of the second-order sections fails, the entire cascade becomes unusable which 

is another major drawback of 1D designs. 
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Figure 2.21. Silicon cochlea design by Mead and Lyon (Adapted from [5]) 

This design is further improved in [55]. Watts et al. pointed out the issues of the original 

design in [5] and proposed a 51 stage cascaded structure for improved silicon cochlea that 

consumed only 7.5 mW. Although this design was compact and consumed much less power, it 

did not address any issues that are related to 1D cascade design flaws and dependency on 

temperature, process and voltage variations. By improving the designs mentioned in [56], 

Sarpeshkar et al. presented an analogue VLSI Cochlea that dissipates 0.5 mW and can work in 

the auditory range of 100 Hz to 10 KHz. The prime focus in developing this design was to 

improve the dynamic range by using a novel wide-linear-range transconductance amplifier, 

low-noise second order filters, integrating dynamic gain control and implementing these in an 

architecture of overlapping cochlear cascades. A dynamic range of 61dB is achieved by 

implementing this analogue VLSI Cochlea in 117 stages of second-order sections. These early 

designs underpinned further research in improving the dynamic range of silicon cochlea and 

keeping the latency and power consumption to a minimum value. 

A noteworthy contribution by Hamilton et al. is described in [57, 58]. This 

implementation was based on 2D architecture i.e. the modelling of cochlear fluid is the prime 

focus rather than modelling just the Basilar membrane as a cascade of filters. The system-level 

effect of the failure of a single unit in a cascade is minimised when a 2D architecture is used. 
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The power consumption of this chip is 16.72 mW, and the dynamic range is about 46 dB. The 

chip is fabricated using MOSIS AMI 0.5µm CMOS technology and has a die size of about 

5mm2.  

Conventional cochlear implants convert sound frequencies into electrode-stimulation 

patterns for the auditory nerve. Although there has been steady improvement in performance 

of these implants, power consumption of these processors will be a critical issue if these devices 

are to be completely implanted inside the body. The neuromorphic concepts used in the 

development of silicon cochlea are also applied to develop bionic ear processors that are ultra-

low-power consuming. Based on developments in [56, 59-62], Sarpeshkar et al. developed a 

bionic ear processor with a dynamic range of 77 dB and power consumption of 211 µW, which 

was 25 times less power consuming than state-of-the-art ADC and Digital Signal Processing 

(DSP) speech processors [54]. This processor operates over 16 programmable spectral channels 

at an internal dynamic range of 57 dB. A microphone preamplifier is used as an audio front 

end to capture input sound frequencies. With appropriate processing hardware/software 

architecture, these processors can be used in portable speech-recognition systems. The authors 

claim that these processors can, theoretically, function for 30 years on a 100 mAh rechargeable 

battery [54]. The architecture of this implementation is as given below. 

 

Figure 2.22. Block diagram representation for bionic ear processor by Sarpeshkar et al. (Adapted from [62]) 
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2.4.3. EVENT-BASED SILICON COCHLEA 

 

 The spike-based output of biological cochlea ensured that each section of the Basilar 

membrane can respond to its specific sound frequency by generating action potentials. 

Developments in implementing spike-based communication using AER, Micro-Electro-

Mechanical Systems (MEMS) technology and more precise CMOS technology supported more 

sophisticated implementations in silicon cochlea. A major drawback of Carver Mead’s design 

in [5] was transistor mismatch that led to inaccurate results. Andre van Schaik et al. [63], 

proposed a solution to this problem by using Compatible Lateral Bipolar Transistors (CLBTs) 

for the current sources and thus ensured that the spacing of the cochlear filters was consistent. 

This design also eliminated the dependency of temperature variance on biasing of the cut-off 

frequency. Another contribution by van Schaik in [64], introduced the concept of binaural 

audition and use of MEMS technology in a neuromorphic audition to develop a low-power 

aVLSI sound localiser. These implementations demonstrated promising results in localisation 

and sound processing applications [12, 64]. 

 The development of AER gave an impetus to research on silicon cochlea. An AER 

interface was provided to the matched silicon cochlea pair mentioned in [64]. This 32 stage 

silicon cochlea is modelled using second-order low-pass filters followed by a simplified Inner 

Hair Cells (IHC) circuit and a circuit that generates output spikes. The second-order sections 

employed in this model can be tuned to respond to frequencies ranging from 50 Hz to 50 KHz 

[65]. This model was used for localisation applications by computing Interaural Time 

Difference (ITD) [66]. This model laid a concrete foundation for research in silicon cochlea 

using AER. The IHC and spiking neuron circuit improvements were marked for future versions 

of this model. 

 

Figure 2.23. Operating principle of AEREAR (Adapted from [65]) 
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 The development of AEREAR2 has set a benchmark in neuromorphic auditory sensing. 

AEREAR2 [1] is a binaural silicon cochlea that comprises of 64-stage cascaded analogue 

second-order filter banks that can be digitally calibrated. Each channel consists of 4 Pulse 

Frequency Modulation (PFM) outputs that generate address-event spikes. The 5 bit Digital to 

Analogue Conversion (DAC) is used to adjust quality factors of each channel individually. The 

front-end microphones are used to capture incident sound frequencies with onboard 

preamplifiers to amplify low sound frequencies [59]. This binaural Cochlea provides spike-

based output by modelling the Basilar membrane biophysics using a large number of coupled 

filters followed by half-wave rectification. 

 

 

Figure 2. 24. Block diagram representation of working of AEREAR2 (top) and AEREAR2 sensor board (bottom)  
(Adapted from [1]) 

 

The local gain adjustment and biasing circuits ensure the operation of the cochlea is 

independent of temperature, voltage and process variations. When combined with preamplifier 

gain control, the total dynamic range of this cochlea is 52dB with power consumption between 
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12 and 22 mW. A USB interface is provided to enable easy digital interfacing to PCs and host 

microcontrollers. AEREAR2 is 40 times less computationally demanding than conventional 

cross-correlation method for localisation applications [1]. Features like being robust to 

mismatch and easy programmability has promoted the application of AEREAR2 in auditory 

scene analysis applications [67].  

We can learn from these implementations that future research in neuromorphic auditory 

sensing will be directed towards sound reconstruction from spike data and deriving efficient 

solutions for the cocktail-party auditory scene analysis problem. Research towards developing 

neuromorphic auditory front-ends [68] will expose several other avenues to implement a 

complete neuromorphic auditory system. 

 

2.5. NEUROMORPHIC OLFACTION SENSING 
 

 The biological sense of smelling aromatic compounds is termed as olfaction. Olfaction 

is among the most complex sensory system to decode and understand entirely because millions 

of receptor neurons exhibits phenomenal redundancy to appropriately identify and distinguish 

between odours. Gustatory sensing is mainly dependent on the ability of biological entities to 

sense different smells, which enhances their ability to taste. Recent developments in electronic 

olfactory sensors have enabled implementation of real-time embedded systems that can sense 

various gases. Such systems are used in biosecurity applications, the food industry and to avoid 

hazards by detecting harmful gases [69, 70].  

 

2.5.1. BIOLOGICAL OLFACTION 

 

 Biological olfaction sensing requires an odour delivery channel for the odour molecules 

to enter the olfactory system. Most of the biological entities sniff odour molecules using nasal 

cavity whereas a few insects depend on antennal lobes for this task. The sensitivity of olfaction 

sensing varies across different living beings as some insects and animals depend solely on 

olfaction for their very existence [71]. Extensive research on the human olfactory system has 

triggered immense interest from neuromorphic engineering to understand and reverse engineer 

this phenomenon.  
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Figure 2.25. Cross-section of human olfactory system (Adapted from [71])  

The odour molecules enter the olfactory system through the nasal cavity. The receptor 

neurons situated on the ciliary membrane are responsible for identification of odours based on 

the odorant molecules. The olfactory epithelium, a thin tissue in the nasal cavity, is a vital part 

of olfaction system. It comprises of three types of cells: the Odour Receptor Neurons (ORNs) 

and the dendrite-like projections called cilia, the supporting cells, and the basal cells that are 

responsible for the generation of new ORNs. The bones in the nose direct the inhaled airflow 

in such a way that the volatile compounds reach the ORNs in the olfactory epithelium.  

 

Figure 2.26.Cross-section of biological olfactory epithelium (Adapted from [72]) 
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 The number of ORNs in humans vary from 106 to 108 [73]. An ORN comprises of 

dendrite-like structures called cilia that project into the olfactory mucus, a Soma that is the 

main cell body and an axon that propagates action potentials from the soma to the olfactory 

bulb [72]. Specific ORNs are sensitive to only selective volatile compounds and are spatially 

distributed along the olfactory epithelium. Each ORN is responsive to a broad range of volatile 

compounds. The cribriform plate, a part of the ethmoid bone, lies between the olfactory 

epithelium and the olfactory bulb. The axons of ORNs fasciculate together and coarse through 

tiny holes in the cribriform plate and synapse with glomeruli. Glomeruli are second order 

neurons in the olfactory system that are spherical in structure and contain neuropil. The 

dendrites of the mitral cells synapse with the ORN axons in the neuropil of glomeruli. The 

ORNs that are sensitive to specific odours synapse to a common glomerulus.  

 

Figure 2.27. Detailed pathway for biological olfaction (Adapted from [72]) 

The primary processing of the olfactory signals is completed at the local neuronal 

circuits in the olfactory bulb; this data is further processed by the mitral cells that have the 
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narrower receptive range for volatile compounds compared to the ORNs [74, 75]. This second-

stage processing by multiple glomeruli provides the basis to discriminate between olfactory 

qualities. The action potentials are propagated through the lateral olfactory tract to the olfactory 

cortex of the brain. The axons of the ORNs bind together to form the olfactory tract, which is 

the olfactory cranial nerve. This olfaction data is also used by pre-pyriform cortex that is a part 

of the limbic system of the brain. 

 

2.5.2. BIOMIMETIC OLFACTION SENSORS 

 

 Technological advancements in electronic nose instrumentation have sparked interest 

from various fields for its ability to solve problems related to detecting hazardous gases, 

application in the food industry to determine food quality, environmental monitoring and many 

such applications related to odour detection and identification [76]. The conventional E-nose 

is a complex architecture with a bulky design that restricts its portability. It is necessary to have 

specialized gas sensor to detect a particular gas or odour. This limits the odour identification 

to the number of sensors used. Along with a large number of sensors, conventional olfactory 

sensing systems require sizeable odour delivery channels and a processing unit with an ADC 

and pattern recognition engine [77]. Conventional olfactory sensors also suffer from significant 

latency, sensor poisoning issues, and temperature and voltage variation dependence. These 

factors along with high manufacturing costs have largely restricted the use of such sensors to 

laboratory experiments. 

 The limitations of conventional olfactory sensors impeded its commercial application 

[78]. The successful application of neuromorphic concepts in vision and auditory sensing 

inspired research in the development of neuromorphic olfactory systems. To emulate the 

olfactory pathway, a general structure starting with an odour delivery channel followed by a 

sensor array, signal conditioning circuitry and spike-based output generator, is implemented 

using aVLSI [74]. The odour delivery channel acts like nasal cavity that directs the volatile 

compounds towards the sensor array and is designed accordingly. Numerous approaches have 

been proposed for the implementation of the sensor array, among which metal oxide sensors 

and polymer sensors are widely used. The signal conditioning circuit is responsible for ADC 

and signal modulation. The modulated signal is processed to generate spike-based output that 

describes the odour concentration. 
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Figure 2.28. Typical biomimetic olfactory sensor design (Adapted from [74]) 

Developing on interface circuitry, sensor array design, and silicon olfactory pathway 

described in [70, 79] and [80], Thomas Koickal et al. developed the most cited neuromorphic 

olfactory system [77]. This implementation stressed on emulating all the functionalities of the 

olfactory pathway using aVLSI. The analogue VLSI design ensures low power consumption, 

low costs and minimal area for the hardware. By applying neuromorphic concepts, the 
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developed system can adapt and work efficiently in changing environmental conditions and 

perform complex odour detection. A block diagram representation of the olfactory system is 

given in Figure 2.29. 

 

Figure 2.29. Block diagram of aVLSI implementation of adaptive olfactory system (Adapted from [77]) 

The on-chip resistive Carbon Black (CB) polymer chemosensor array is fabricated 

using Austria Micro Systems 0.6-µm CMOS process [77]. Each sensor cell comprises a 

programmable current source, a sensor and interface circuitry. A novel DC cancellation circuit 

and a difference amplifier are implemented in the sensor interface. This reduces variations 

caused by the baseline signals due to poisoning effect of the chemosensor array and different 
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operating current specifications for various sensor types. The output from the interface circuitry 

is given to the neuromorphic circuits that implement on-chip STDP learning. The dynamic 

exponential learning window function is implemented to emulate the biological olfactory 

characteristics. A data acquisition interface is used to obtain the spike-based output of the 

sensor. Although this implementation is highly cited in neuromorphic olfaction sensing, issues 

such as long-term weight storage, component mismatch and layout optimisation were identified 

for future development [78]. A crucial shortcoming of this implementation is the lack of AER 

interface to implement spike-based post-processing algorithms [81]. 

 

 

Figure 2.30 Sensor interface PCB (Adapted from [77]) 

 This implementation inspired several promising developments in neuromorphic 

olfaction sensing. Hung-Yi Hsieh and Kea-Tiong Tang developed a VLSI implementation of 

the neuromorphic Spiking Neural Network (SNN) chip with 48 mitral cells, 48 STDP synapses 

and six cortical cells [82]. The proposed SNN chip consumes an average power of 3.6 µW and 

provides either a HIGH or an LOW output that represents if the input odour is identified. The 

mean testing accuracy of the chip is 87.59% and is comparable to the K-Nearest Neighbour 

pattern matching algorithm.  
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Figure 2.31. System implementation diagram for olfactory sensor based on SNN (Adapted from [82]) 

Kea-Tiong Tang has also contributed to the development of low-power signal 

processing chip for a portable E-nose system [83]. The front-end conductive polymer sensor 

array chip is composed of multi-walled carbon nanotubes. The chip comprises of interface 

circuitry, an ADC component, a memory module, and a microprocessor running a pattern 

recognition algorithm. The output of the signal processing chip is a distinct pattern that can be 

termed as a signature to identify and distinguish odours.  

The power consumption of the chip is 2.81 mW on a continuous supply voltage of 1.8V. 

This chip is fabricated using TSMC 0.18 µm 1P6M CMOS technology. The identification of 

odour is implemented by comparing the ADC data to the library of gas signatures in the 

memory module. Although the success rate using testing is 100 %, this embedded software 

based approach using 8051 microcontrollers and KNN algorithm running on it is inefficient 

regarding response time compared to a neural network-based approach. A system 

implementing similar approach with LabVIEW for analysis and a DAQ interface was used in 

[84] to identify fruity odours. Other interesting approaches presented in [85-87] are also a part 

of comprehensive research by Kea-Tiong Tang in neuromorphic olfaction. 
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Figure 2.32. System architecture for electronic nose chip in [83] 

A CMOS chip with 4 × 4 metal oxide gas sensor array is described in [88, 89]. This 

approach focused only on implementing the biological olfaction characteristics that can be 

emulated in silicon rather than developing a detailed model of the biological olfactory pathway. 

The main aim of this implementation was to implement the olfaction system on a single chip 

that can provide a different signature output for a particular gas. This signature is compared to 

the library of 2D spatio-temporal spike signatures for a match that enables simultaneous gas 

recognition and sensing.  

This chip is fabricated using 0.35 µm CMOS technology with a 4 × 4 tin oxide sensor 

array as a front-end and has a power consumption of 23 mW. The drift insensitive and 

concentration-invariant generation of 2D spatio-temporal signatures is the highlight of this 

implementation. The proposed approach presented a correct detection rate of 94.9% when 

applied to detect propane, ethanol and carbon monoxide. Improvements marked for future 

improvements for this implementation focus on improving the response time of this system, its 

portability and adding an AER interface.  
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Figure 2.33. Key components and working of 4 × 4 gas sensor described in [88] 

 



42 
 

2.6. SUMMARY 
 

This literature survey was focused on the working principles and output characteristics 

of neuromorphic vision, auditory and olfactory sensors. The implementation of an AER 

interface for neuromorphic vision and auditory sensors has underpinned further research 

towards development of processing algorithms for spike-based output. Chapter 4 presents more 

information on AER interfacing and interfacing of neuromorphic sensors. By determining the 

output and performance parameters for vision and auditory sensors, implementations like DVS, 

DAVIS and AEREAR2 have set benchmarks in their respective fields. This study has helped 

us to identify specific gaps in research related to neuromorphic olfactory sensors. Performance 

parameters for interfacing, sensor material, gas recognition engine and signal conditioning 

circuitry, are yet to be standardised. Thus, unlike vision and auditory sensing, where future 

development is directed towards a definite goal (like improving fill factor and resolution in 

vision or sound reconstruction in audition), there is still a wide scope for performance 

improvement in neuromorphic olfactory sensing. 
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CHAPTER 3. COMPARISON BETWEEN CURRENT STATE-OF-

THE-ART NEUROMORPHIC VISION, AUDITORY AND 

OLFACTORY SENSORS 
 

 This chapter is adapted from the manuscript “A Review of Current Neuromorphic 

Approaches for Vision, Auditory and Olfactory Sensors “.The manuscript has been published 

in the journal Frontiers in ‘Neuroscience: Neuromorphic Engineering’ under the research topic 

“Benchmarks and Challenges for Neuromorphic Engineering”. Some of the information in this 

section is redundant with the information in the literature review, but as this section is an extract 

from a publication, the redundant information has been included to maintain a step-by-step 

flow of the document. 

 

3.1. CURRENT DEVELOPMENTS IN NEUROMORPHIC ENGINEERING 

 

The field of neuromorphic engineering has been developing rapidly over the last decade. 

With the growing trend towards embedding intelligence in day-to-day devices, we are 

constantly making our surroundings smarter and more adaptive to our behaviour. However, 

this technological progression requires an ever increasing number of sensors and associated 

data storage [11]. Along with the data processing challenges, factors such as power 

consumption and financial viability limit the development of smart devices. Realising these 

limitations in the late 1980s, Carver Mead introduced the concept of neuromorphic 

engineering. This interdisciplinary field addresses the underlying concepts of neurobiological 

architecture and mimics its implementation using aVLSI. Neurobiological architecture is a low 

power consuming system which learns through exposure; these attributes, along with sparse 

output are crucial design criteria for neuromorphic systems [4]. 

 Neuromorphic approaches have been applied in implementing neural processors, 

developing neural networks, and particularly in electronic sensing where novel methodologies 

have been developed [90]. In the mid-1980s, Max Delbrück, John Hopfield, Carver Mead, and 

Richard Feynman collaborated to exploit the non-linear current characteristics of transistors 

[3]. Carver Mead, further highlighted the excessive dissipation of energy through conventional 

computing methods and the limitation of using transistors merely as digital switching 

components. He proposed that the analogue physical properties of transistors could be 
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exploited to design adaptive and low power consuming sensors like silicon retina and cochlea 

[4]. With these models as inspiration, neuromorphic concepts have been applied to vision 

sensors, auditory sensors and olfactory sensors. Current sensor advances have been supported 

by massive parallelism, asynchronous processing and self-organization [12, 22]. 

 As described in [91], analogue implementation of neural-like systems are capable of 

approaching equivalence to biological systems in terms of power consumption and efficiency. 

Most of the research in neuromorphic sensors has involved aVLSI; however, with rapidly 

changing technology, digital electronics has also been applied to implement neuromorphic 

concepts, particularly as it has proved to be robust to internal and external noise [13]. Systems 

implemented using digital electronics are easily programmed and upscaled [2]. Regardless of 

whether analogue or digital implementations are used, the lack of standards and benchmarks 

for the output of neuromorphic sensors may limit their development and adoption. In the same 

way that the interfacing for neuromorphic sensors uses standard Address Event Representation 

(AER) [92], a standardised method to evaluate sensor outputs could help establish appropriate 

benchmarks for further improvement. In this paper we review significant recent contributions 

to neuromorphic vision, auditory and olfactory sensing and compare them to identify potential 

benchmarks for neuromorphic sensors. 

 

3.2. NEUROMORPHIC VISION SENSORS 

 

Neuromorphic engineering concepts have been successfully implemented to emulate 

biological sensory systems with silicon retinas being a prominent example [11]. Currently, 

vision sensing depends on the conventional frame-based approach but regardless of whether 

the scene changes, these frames are captured continuously and this generates significant 

volumes of redundant data [27, 35]. However, reducing the frame capture rate may cause 

excessive information loss between consecutive frames, particularly for real-time applications 

such as machine vision and robotics. Such frame-based approaches also consume substantial 

power and make data management challenging [24]. Attempts were made to control the data 

output from these sensors by relaying information only for changed values of pixels. However, 

off-sensor processing and complex control strategies increased the overall power consumption 

of the system [35]. 

Mahowald and Mead implemented the first silicon retina model in [29], that was both 

adaptive and energy efficient, by emulating retina functionalities, especially the cone cells, 
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through analogue properties of transistors and introducing adaptive vision sensing. [33, 34], 

improved this model by adding the functionalities of inner retina and parvo-magno cells [33, 

34]. These attempts could only model the retina in silicon, however, and did not provide a 

realistic implementation for practical use. In response, the neuromorphic community focused 

on the operating principle of the neurobiological architecture rather than modelling the overall 

sensory system. Specifically, this problem could be solved by realising the difference between 

temporal and spatial contrasts. With the developments in AER, pixels could operate 

individually as processing units and report any deviations in temporal contrast. The spiking 

output is similar to the action potentials generated by ganglion cells and consequently most 

retinomorphic sensors now use AER communication [24]. 

Tobi Delbruck built on the idea of adaptive photoreceptor circuits developed in [44] and 

introduced strategies for enhancing retinomorphic sensors. The 128 × 128 pixel Dynamic 

Vision Sensor (DVS) can be considered as the product of several improvements through [26, 

43, 93] where the concepts of differentiating ON/OFF events with respect to lumosity change 

and relative lumosity change were implemented. DVS established a benchmark in 

neuromorphic vision sensing with its AER- based approach in which each individual pixel 

processed the normalised time derivative of the sensed light and provided an output in the form 

of spikes of the pixel addresses that detect lumosity change. As an alternative approach, frame-

based temporal detection imagers [94, 95] were developed. The operating principle of these 

imagers was based on integration of the photocurrent between successive frames and 

computing of the difference between them. However these implementations have a limited 

speed response and a low-dynamic range, 100dB for [95] and 52dB for [94].  With features 

such as sub-millisecond precision, dynamic range > 120dB and low power consumption of 

23mW, DVS was a path-breaking discovery and was used in various robotic and real-time 

systems [47, 48, 96].  

With DVS, a benchmark was established for essential characteristics that a neuromorphic 

vision sensor should possess and gave a certain direction for further research in vision sensing. 

Developing on the basic idea of DVS, [97] enhanced the capabilities of DVS by improving the 

contrast sensitivity by one order of magnitude (down to 1.5%) and reducing  power 

consumption to 4mW and fixed pattern noise to 0.9% and thus the overall pixel size of the 

sensor down to 30 × 31µm2 per pixel. The QVGA (304 × 240 pixel) ATIS (Asynchronous 

Time-based Image Sensor) by [36], implemented PWM (Pulse Width Modulation) based 

intensity readout that improved the dynamic range (143-125 dB) at the cost of increased pixel 
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area of 30 × 30µm2. The inclusion of DVS pixel and PWM intensity readout triples the sensor 

output data. [27] proposed a hybrid approach between frame-based and frame-free vision 

sensing. The 240 × 180 pixel DAVIS (Dynamic and Active-pixel Vision Sensor) arose in part 

from contributions by [51], in which the concept of integrating a synchronous active-pixel 

sensor with asynchronous DVS pixels was implemented. 

The successful implementation of DAVIS set another benchmark that will inspire future 

work towards neuromorphic vision sensors that provides spatial details of static scenes while 

also responding to dynamic temporal changes with minimum latency. This will also drive 

efforts to improve the fill factor and dynamic range.  

  

3.3. NEUROMORPHIC AUDITORY SENSORS 
 

The conventional method of sensing auditory signals is sampling the data continuously 

for auditory input at an application specific Nyquist frequency. This data undergoes Analogue-

to-Digital Conversion (ADC) and further digital processing to generate auditory frames. There 

is a significant power cost for high resolution ADC and digital processing of auditory frames. 

Although this sampling rate can be altered dynamically to reduce power consumption, there is 

a risk of losing critical information due to low sampling rate. For applications such as auditory 

scene analysis, it is necessary that such sensors use less power and generate sparse data [1]. 

Lyon and Mead, proposed an auditory sensor in [5] that models the human cochlea 

using aVLSI. This work addressed key concepts like automatic gain control, the use of 

cascaded second-order bandpass filters and the necessary quality factors for auditory 

applications such as delay, high-gain pseudoresonance and sharp roll-off. Although these 

researchers implemented the bio-physics of both outer and inner hair cells of the basilar 

membrane, this analogue cochlea model did not incorporate any biasing circuits for process, 

voltage and temperature variations. However, it was further improved by addressing issues 

such as device mismatch, stability and dynamic range [98]. By introducing ‘overlapping 

cochlear cascades’ [56], established a novel approach to the design of an aVLSI cochlea with 

dynamic range of 61dB that consumes 0.5 mW. These early works underpinned further studies 

in silicon cochlea design. 

 Crucially, the efforts in silicon cochlea research led to the development of an auditory 

processor for cochlear implants that operated on minimal power. Sarpeshkar and his colleagues 



47 
 

extending their work in [61, 62] and taking inspiration from other contributions [59, 60], 

developed an ultra-low power auditory processor for a bionic ear. This processor can 

theoretically operate on a 100 mAh rechargeable battery for several years and features 

automatic gain control and microphone pre-amplifier audio front end, so that the processor 

converts the input signal to the desired dynamic range. The digital output of the processor 

ensures its independence from voltage and temperature variations. It operates over 16 channels 

that are comprised of independently programmable bandpass filters. [54] claimed that such 

processors can be applied in systems needing low-powered portable speech recognition front 

ends. 

 Along with cochlear implants, auditory scene analysis is a crucial application for the 

silicon cochlea. The implementation of AER to communicate output spikes stimulated further 

research on developing a spatial auditory sensor. Building on the silicon cochlea described by 

[63] and a neuromorphic front end MEMS (Micro-Electro-Mechanical Systems) microphone 

explained in [64], [65] developed AER EAR, a matched pair of silicon cochlea with an AER 

interface. This auditory sensor models the basilar membrane bio-physics by cascading low-

pass filters to provide output over 32 channels. The simplified inner hair cell circuit and spiking 

neurons ensured sparse asynchronous output; the design was tested for localization applications 

by computing the interaural time delay between the matched pair of silicon cochlea [66].  

Further improvements including microphone pre-amplifiers and per-channel capability 

led to the development of AEREAR2 [1], a 64 channel binaural audition sensor that set a 

benchmark in neuromorphic audition. By integrating local DACs that enable the quality factors 

of individual channels to be adjusted, this sensor overcomes most of the drawbacks of 

AEREAR. With improved dynamic range, binaural structure, integrated microphone 

preamplifiers and biasing circuits for stability against voltage and temperature variance, this 

sensor provides precise timing of spikes over a USB interface. This approach was used in 

complex applications like speaker identification [67]. A thorough comparison between 

conventional cross-correlation approaches and spike-based sound localization algorithms 

shows that event-driven methods are about 40 times less computationally demanding [1]. Even 

more precise and efficient neuromorphic auditory systems will be developed by applying 

interesting approaches such as spike based audio front ends described in [68].  
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3.4. NEUROMORPHIC OLFACTORY SENSORS 
 

The development of artificial olfaction devices started with [99] who applied 

mechanical concepts to measuring and determining odours. Since the development of the 

electronic nose [75], emphasis has been placed on developing olfactory sensors that are 

portable and precise. Conventional olfactory sensors are large with restricted portability and 

also impede reliability as the chemical constituents in a target gas vary rapidly. These factors 

along with high manufacturing costs have largely restricted the use of such sensors to 

laboratory experiments and industries [78].  

The electronic nose has benefited from CMOS and MEMS technologies, advanced 

pattern matching methods and new sensing materials [81]. Biologically based olfaction systems 

have inspired a general structure for electronic nose systems that are composed of a sensor 

array, signal conditioning circuitry, and a pattern recognition unit [74]. By applying 

neuromorphic concepts, improvements were made to this structure by integrating all these units 

on a single chip and implementing neural networks for pattern recognition. Thomas Koickal 

and colleagues made a notable contribution to developing an adaptive neuromorphic olfaction 

chip. The CB polymer sensor array used in that system was fabricated using the Austria Micro 

Systems 0.6-µm CMOS process [77]. A novel design was implemented to cancel the baseline 

sensor variations due to sensor poisoning and variation in operating current specifications 

across different sensors. The neuromorphic implementation simplified the odour detection 

especially in the presence of background odour signals. This design proved to be a 

technological benchmark to stimulate further study in neuromorphic olfaction by introducing 

features like on-chip Spike Timing Dependent Plasticity (STDP) learning, reduced power 

consumption, and temporal spiking signals output. [100] developed a biomimetic mucosa that 

can generate spatio-temporal output but improvements were needed for reduced response times 

and odour delivery channel size in this design. 

Researchers have focused on implementing the critical olfaction characteristics rather 

than emulating the entire biological olfactory pathway. A 4 × 4 tin oxide gas sensor array was 

designed [88] such that each row forms a group of sensors showing similar drift behaviour. It 

is possible to detect a wide range of chemical gases by assigning the same catalyst to each 

group of sensors. The firing delay in the spiking output from these sensors generates a unique 

sequence of drift-insensitive spikes [101]. This output represents a signature for a specific gas 

which is determined by matching it in a library of 2-D spatio-temporal spike signatures. This 
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approach reduces the computation challenges involved in pattern matching [102]. The entire 

gas recognition circuit is fabricated and implemented on a single CMOS chip and the power 

consumption is as low as 6.6mW with 94.9% identification accuracy.  

E-Nose described in [83], consists of a conducting polymer sensor chip, interface 

circuitry, ADC and a microprocessor with a pattern recognition algorithm and an associated 

memory module. The output of this chip is a unique signature of the target gas, but the inclusion 

of a pattern matching algorithm instead of a neural network makes this approach 

computationally expensive. This approach was also used by [84] to identify and classify fruity 

odours and led to the development of a spiking neural network chip that implements the Spike 

Timing Dependent Plasticity (STDP) learning rule [82]. The sensor array used for sampling 

odour data is a commercial electronic nose (Cyranose 320). This work focused on the backend 

computation to identify odour and the developed chip can identify three different odours 

concurrently. The average power consumption is as low as 3.6µW and mean testing accuracy 

is 87.59%. NEUROCHEM is an important project lead by European universities that is focused 

on developing a large sensor array for neuromorphic olfactory systems [103]. This conductive 

polymer sensor array mimics the essential characteristics of biological Odour Receptor 

Neurons (ORNs) including redundancy and sensitivity to a wide range of volatile compounds. 

 The neuromorphic olfactory sensor literature indicates that there is considerable scope 

for improving these sensors. The CMOS chip by Thomas Koickal is a notable contribution in 

neuromorphic olfaction and can be considered as a highly cited research contribution in 

neuromorphic olfaction. Although there are several shortcomings in this implementation, it 

proposes a novel architecture for olfactory sensors. Improvements proposed in [88] are 

promising if the response time can be improved further. [78], also exposes gaps in interfacing, 

signal conditioning and pattern matching computations in neuromorphic olfaction.  

While neuromorphic sensors offer benefits of low-power consumption and sparse output 

data generation, the means to process the spike-based data format is still limited. Decades of 

research in digital image processing and digital signal processing, has led to the development 

of advanced algorithms and hardware architectures that allowed efficient processing of 

conventional outputs (e.g. frame-based and audio samples). As techniques for high-level 

processing of event-based data are still under development, the large-scale application of 

neuromorphic sensors depends on the introduction of these techniques. However, advanced 

research in neuromorphic sensors has increased the application scope of these sensors in 
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intelligent embedded systems. Prototypes of neuromorphic vision and auditory sensors evolved 

into commercial products such as the DVS128 PAER and Dynamic Audio Sensor (DAS1). 

However, most of the systems that make use of neuromorphic sensing implement only a single 

type of sensor such as vision or auditory. [104] and [105] were among the first who targeted 

the development of platforms for interfacing multiple neuromorphic sensors. [106] 

implemented sensor fusion of Audio-Video (AV) neuromorphic sensors and presented an 

advanced version of the Koala robot that was first developed by [105] for object tracking. 

Development of neuromorphic processing boards under large scale projects such as CAVIAR, 

BrainScaleS and SpiNNaker, promotes the idea of sensor fusion and data correlation. By 

utilizing concepts like the spiking Deep Belief Network (DBN) [107], the idea of multi-sensor 

neuromorphic systems can be brought to fruition. Such systems can have numerous 

applications in fields such as robotics, biosecurity and environmental monitoring to name a 

few. 

We have reviewed some of the most significant research contributions towards the 

improvement of neuromorphic vision, auditory and olfactory sensors. The distinctive 

properties of neuromorphic sensors, such as sparse data output and low power consumption 

have led to extensive research and commercialization. The concept of developing 

neuromorphic sensors by emulating neuro-biological sensing in silicon has been progressing 

for many years. More recently, path-breaking research in biological sensing has provided an 

impetus to developments in neuromorphic sensing, especially in vision and auditory sensors. 

Pioneering contributions such as DVS and DAVIS, and AEREAR2 have provided considerable 

progress towards a sensor design that simulates neuro-biological vision and auditory sensing. 

Accordingly, these have led to the development of several applications for these sensors aiming 

at replacing conventional sensors in vision and audition. What is lacking is research that 

provides benchmarks for olfactory sensor implementation and its performance evaluation. 

Subsequently, future development in neuromorphic sensing should focus on the correlation of 

inputs from different sensors and efficient pre-processing. With this review we have identified 

challenges for future research on neuromorphic olfaction, building on the advancements made 

in vision and audition. In addition to neuromorphic olfaction, future research directions should 

target neuromorphic sensing of parameters such as pressure, vibration, thermal and magnetic 

field as well as their inter-correlated sensor fusion functions which would be ideal for 

applications such as the Internet of Things (IoT).  
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CHAPTER 4. METHODOLOGY 
 

 As discussed in the literature review, neuromorphic sensors utilize the biological 

concept of spike-based communication. These sensors are interfaced to a PC through USB or 

DAQ to perform output data analyses. The application of neuromorphic sensors in standalone 

autonomous systems is restricted due to its reliance on computers as processing units. The 

prime focus of this research is to devise a digital interfacing methodology by utilizing 

established protocols. The proposed methodology aims to eliminate the use of a computer and 

simplify the interface between neuromorphic sensors and processing units such as FPGA and 

microcontrollers. 

 

4.1. ADDRESS EVENT REPRESENTATION 
 

 The point-to-point communication between biological neurons is carried out by firing 

spikes that are called ‘action potentials’. An essential component of these spikes is their spike 

timing, which is responsible for a typical neuronal behaviour to a stimulus. For example, when 

a sharp or a hot object is touched, the spikes generated by the tactile sensors and the timing of 

these spikes are responsible for a rapid response to the stimulus. AER is a spike-based 

communication technology, inspired from biological action potentials [92]. Although AER was 

first implemented in Carver Mead’s lab at Caltech, it was effectively utilized for the first time 

in the implementation of DVS and AEREAR [11]. These asynchronous spikes represent crucial 

information such as the address of a source neuron, address of the destination neuron and the 

spike timing. A schematic representation of AER is given below in Figure 4.1.  

 

Figure 4.1. Conceptual diagram of working of AER (Adapted from [11]) 
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4.1.1. PRINCIPLE OF OPERATION  

 

A biological neuron fires at a rate of 1-10 Hz. When thousands and millions of neurons 

in a cluster spike, the spiking rate reaches about 1 KHz to low MHz range. The high speed of 

data transmission in silicon supports simultaneous transmission of action potentials from 

clusters of neurons. The operation principle of AER takes advantage of the inherent properties 

of digital implementation, to communicate the address of a neuron in a network by using an 

encoder at the source. A decoder is used at the receiving end, and appropriate synapses are 

therefore stimulated. This is accomplished using dedicated AER circuits that are embedded in 

most of the neuromorphic electronic systems. The AER circuits are responsible for both, 

multiplexing (or demultiplexing) the spikes generated by (or delivered to) an array of individual 

neurons. The address of the firing neuron is produced on the output transmission channel with 

a time-stamp that indicates the timing when the spike was generated. A neuron identifier is 

allocated to an address-event while transmitting the spike. This ensures that the inter-arrival 

time between spikes is preserved. 

As neurons in a cluster spike asynchronously, multiple neurons can have the same firing 

time. Potential collision handling is accomplished by using arbitration techniques [18]. 

Demultiplexing circuits are used at the destination to decode the spike address at the 

destination. The input spike is scanned for an axon identifier by an asynchronous decoder and 

delivered to the relevant destination. The data received at the axons is further reported to the 

connected neurons. The implementation of self-timed AER encoders and decoders ensures that 

the inter-arrival time delay among the spikes is preserved during the transmission from source 

to destination [108, 109]. 

 

Figure 4.2. AER sender and receiver architecture (Adapted from [12]) 
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4.1.2. APPLICATION OF AER FOR THIS PROJECT 

 

 This project is focused on interfacing neuromorphic vision, auditory and olfactory 

sensors with digital neuromorphic circuits. The physical and electrical protocol of AER 

supports single-sender/single-receiver architecture to establish a dedicated AER link for each 

sensor in this application [109]. The sensors will communicate with only one node i.e. the 

neuromorphic processing board. An address mapping function is required to appropriately 

deliver the output spikes of a neuron ‘n’ to an address ‘a.’ As the focus of this project is to 

develop a simplified standalone system, the functionality of the neuromorphic processing board 

will be hard-coded. Thus, any complexity related to programming the connectivity or 

maintaining an address translation table will be eliminated. The output spikes of these sensors 

will be directly delivered to the corresponding neurons of a neuromorphic processing chip. A 

standard 15 bit AER bus [12] will be used for this project.  

 

4.2. PROPOSED APPROACH 

 

 It is necessary to identify appropriate sensors and neuromorphic processing boards that 

can support rapid-prototyping and AER interfacing to devise a simplified interfacing 

methodology. This section explains the selection criteria for sensors and processing boards.  

 

4.2.1. FPGA BOARD SELECTION REQUIREMENTS 

 

 Recent advances in neuromorphic processing have resulted in the development of 

sophisticated processing boards under large-scale projects such as CAVIAR [10], BrainScaleS 

[9], and SpiNNaker [8]. These massively-parallel spike-based development boards are applied 

in various sensing-processing-learning-actuating systems. These digital neuromorphic circuits 

have thousands of silicon neurons and millions of synapses to perform large-scale synaptic 

operations. Such large-scale neural processing units support simulation of large-scale spiking 

neural networks, sensor-specific applications, scalable massively parallel systems [110].  

Features such as on-board FPGA, multi-processor architecture, external memory 

interfacing and on-board learning unit have improved the performance of these neuromorphic 

circuits. An important criteria for the selection of an appropriate FPGA board for this project 

is multi-device support for connectivity over AER interface. Other inclusions such as USB 
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interface, on-board microcontroller, and PC independent operation are also necessary to 

implement the proposed interface.  

 

4.2.2. AER SWITCH BOARD AS AER MULTIPLEXER/DEMULTIPLEXER 

 

The implementation of CAVIAR project included the development of several AER-

based processing boards that provided these functionalities. The AER SWITCH [10] is a board 

with five AER ports that support input-output operations. This board supports AER interfacing 

with up to four input devices and one output device with basic bit manipulation for input 

channel identification. The AER SWITCH is based on a Xilinx 9500 CPLD FPGA. 

 

 

Figure 4.3. AER-SWITCH board (Adapted from [10]) 
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4.2.3. USB-AER BOARD AS PROCESSING UNIT 

 

The functionality of the AER SWITCH board is limited to AER data routing, therefore 

AER data processing cannot be executed on this board. The USB-AER board developed under 

CAVIAR project provides interfacing and processing configurations. This board is based on 

Spartan II 200 FPGA with an on-board C8051F320 USB microcontroller, which makes this 

board fully reconfigurable [10]. The two AER ports on this board (one input and one output) 

supports AER data traffic of up to 25 Mega events per second (Meps). The functionality of 

standalone mode operation by using MMC/SD (Memory Management Controller/Secure 

Digital) card for loading firmware appears to be the most appropriate board to use as a 

processing and learning unit. Other functionalities supported on USB-AER board are: (1) 

remapping of AER addresses by implementing a lookup table (AER mapper) (2) storing and 

time stamping events for offline AER data analysis and processing (AER data logger) (3) 

reproducing time-stamped events in real-time (AER data player). 

 

 

Figure 4.4. USB-AER board (Adapted from [10]) 
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A block diagram representation of the proposed processing module is as follows: 

    

 

 

 

 

4.2.4. SENSOR SELECTION REQUIREMENTS 

 

 The recent developments in understanding biological sensory systems have inspired 

different approaches and design architectures to implement neuromorphic sensors. The 

application of neuromorphic concepts in electronic sensing are steadily evolving from simple 

aVLSI designs and laboratory experiments to commercially viable products. Thus, it is 

necessary to define the functional requirements for this project to facilitate appropriate 

selection of sensors. The FPGA board and AER adapter board selected for this project support 

AER interfacing using the standard 40-pin CAVIAR connectors only. So, it is crucial that the 

sensors support standard 40-pin CAVIAR connectors. An implicit requirement for the sensors 

to be used in this project is the spike-based output. Sensors with standard AER protocol, 

mentioned in [12], are more suitable for this project. Other functional requirements for 

selection of sensors are, organised bit-wise AER output data format, commercially tested 

performance, on-board pre-processing and sparse output data. 

 

4.2.5. INTERFACING OF VISION SENSOR 

 

 Among the commercially available neuromorphic vision sensors, the DVS and the 

DAVIS are the most widely used. These sensors provide both, AER and USB interface to 

extend their connectivity to standalone devices and computers. The AER interface on both the 

sensors follows a standard 15-bit AER data format. However, the AER interface of the DVS is 

a parallel AER implementation that transmits the data in a single operation. Such an 

implementation is called Simple AER protocol [109]. The DVS128 PAER [111] is a 

commercial sensor part of the DVS prototype family and that uses 15 bit simple AER protocol 

where bits 14 down-to 8 denotes the Y address of spiked pixels; bit 7 down-to 1 denote the X 

address of spiked pixels, and bit 0 is used as a polarity bit [112]. Features such as simple AER 

interfacing, direct connection pin layout and compact and portable makes this vision sensor 

most suitable for this research.  

AER SWITCH 
(Configured for multiple 

AER inputs and one AER 

output to USB-AER board) 

USB-AER 

(FPGA BOARD) 
(Sensor output data 

processing and learning unit) 

AER output 

data from 

sensors 

Figure 4.5. A block diagram representing the connection between AER-SWITCH and USB-AER 
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Figure 4.6. DVS128 PAER commercial vision sensor based on DVS pixel design (Adapted from [111]) 

 The specifications of the DVS128 PAER sensor match the requirements of this project. 

The 40 pin standard AER interface on the rear side of DVS128 PAER can be directly connected 

to AER SWITCH by using a standard 40 pin CAVIAR connector [108]. Thus, the standalone 

system can be provided with a vision sensor.  

 

 

 

 

4.2.3. INTERFACING OF AUDITORY SENSOR 
 

 DAS1, also known as AEREAR2, is a commercially available neuromorphic auditory 

sensor from iniLabs Zurich. The paper [1], describes the design and implementation of this 

device in detail. The simple AER protocol implemented on DAS1 is similar to DVS128 PAER, 

except for the AER bus width, which in this case is 10 bits [113]. Bits 9 and 8 represent the 

spiking neuron, bits 7 down-to 2 denote the channel, bit 1 denotes left/right ear, and bit 0 is 

used to specify the filter type [112].  

DVS128 PAER AER SWITCH USB-AER BOARD 

Figure 4.7. Interfacing of neuromorphic vision sensor with USB-AER FPGA board 
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Figure 4.8. DAS1 commercial neuromorphic auditory sensor (Adapted from [113]) 

 The supportive features of DAS1 such as the simplified AER interfacing, the wide 

application scope (e.g. localisation), the low-power consumption and the binaural structure 

make this sensor suitable for a standalone system. As the pin layout of both, DAS1 and DVS128 

PAER is based on parallel AER connectors, standard CAVIAR AER connector is used to 

interface DAS1 with AER SWITCH. 

 

4.2.4. INTERFACING OF OLFACTORY SENSOR 

 

 A neuromorphic olfactory sensor mentioned in [77] is a CMOS chip implementation 

that provides spike-based output data stream over a data acquisition interface. The olfactory 

sensor developed in [88] utilizes neuromorphic concepts to generate an output in the form of a 

2D signature of the target gas. Usually, these sensors are connected to a PC over a data 

acquisition interface for output data analysis. The inclusion of PC as a processing unit restricts 

the use of olfactory sensors in standalone portable systems.  

DAS1 AER SWITCH USB-AER BOARD 

Figure 4.9. Interfacing of neuromorphic auditory sensor with USB-AER FPGA board 
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Figure 4.10. Typical interfacing method for CMOS olfactory sensor in [114] 

 After further investigation on interfacing methods, it was found that the neuromorphic 

olfactory sensor described in [77] provides a spike-based output over a standard AER interface. 

Similarities between the format of the output data and the interface enable the connection of 

this sensor to other neuromorphic devices using AER bus. Thus, the AER SWITCH board can 

be used to connect this olfactory sensor to the USB-AER FPGA board. A high-level block 

diagram for this connection is given below.  

 

 

 

4.3. SUMMARY 
 

This chapter showed how the neuromorphic sensors are connected to the digital 

neuromorphic processing hardware. The spike-based output of these sensors is transmitted 

through an AER interface. The data is processed as per the input stimuli and programmed 

instructions. The synaptic weight changes are monitored in order to implement learning 

NEUROMORPHIC 

OLFACTORY 

SENSOR 

AER SWITCH 

BOARD 

USB - AER 

BOARD 

Figure 4.11. Interfacing of neuromorphic olfactory sensor with USB-AER FPGA board using AER SWITCH board 
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algorithms. The processed data can be relayed to a simple digital computing device such as a 

microcontroller that can further control actuators and activate other control circuits. These 

functionalities are implemented using digital logic. A block diagram of the proposed approach 

is given in Figure 4.12. 

 

 

Figure 4.12. Block diagram of the proposed interfacing method 

  

The proposed approach enables interfacing of neuromorphic sensors with a digital 

neuromorphic FPGA such as the CAVIAR USB-AER FPGA board with CAVIAR AER 

SWITCH as an intermediate layer for AER mapping. This reconfigurable neuromorphic FPGA 

board processes the sensory data and manipulates it in application of the learning algorithm. It 

then relays the output to the connected control device. This approach makes the use of 

neuromorphic sensors in a standalone autonomous system possible, for example, by interfacing 

sensors such as [105] [107] [77].   

 

NEUROMORPHIC VISION 

SENSOR  

 

 

NEUROMORPHIC 

AUDITORY SENSOR  

 

NEUROMORPHIC 

OLFACTORY SENSOR 

AER 

AER 

AER 

 

DIGITAL NEUROMORPHIC FPGA  

(LEARNING/PROCESSING UNIT) 

CONNECTION TO DIGITAL DEVICE 

(MICRO-CONTROLLER) 



61 
 

CHAPTER 5. JAVA SIMULATION AND MODELLING 
 

 In the previous chapter, we proposed a methodology to establish an interface between 

the neuromorphic vision, auditory and olfactory sensors and digital neuromorphic circuitry. A 

cost-efficient way to determine the working of this methodology is by emulating the 

functionality of the proposed interface in a programming environment.  

Most of the popular simulation tools in neuromorphic engineering are developed in 

JAVA because of the availability of several mathematical and data representation packages and 

open-source licencing. Easy data acquisition from external hardware and real-time processing 

abilities have encouraged the development of specialized AER tools in JAVA such as jAER 

[115]. jAER was initially developed to allow USB interfacing and output data analysis of DVS 

and AEREAR. Later, functionalities of jAER were extended to allow interfacing and output 

data analysis of DAVIS, ATIS, AEREAR2 and most of the AER devices with a USB interface. 

The prime focus of JAVA modelling for this research is to demonstrate the viability and 

application of the proposed interfacing methodology. 

 

5.1. JAVA BASED MODEL OF OLFACTORY SENSOR 
 

 The interfacing methodology proposed in Chapter 4 can be applied for any 

neuromorphic sensor that provides a spike-based output through AER interface. However, for 

simulation and modelling, we have focused on emulating the output from an olfactory sensor, 

similar to the implementations mentioned in [77] and [88]. The simulation starts with a 

supervised learning process to assign sensitivity of a sensor array element for a particular gas; 

learning data is collected from the user and stored. The neuron class is designed in JAVA to 

monitor multiple parameters such as spike timing and learning data. Random sensor arrays are 

selected to replicate detection of multiple gases. The output data processing on the FPGA board 

is implemented as a JAVA function that plots a graph of changing gas concentration by 

comparing the sensor output data with the learning data. A correct graph proves that by relaying 

digital AER data from a neuromorphic sensor to an FPGA, we can eliminate the requirement 

of a PC for data computation and analysis. 

 The olfactory system structure for this simulation is inspired from [88] and designed as 

an 8 × 8 sensor array. Each sensor element is assumed to be an ORN that is sensitive to a 
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specific gas. These ORNs are implemented as an array of buttons that can be selected to assign 

the learning data. The sensor array of 64 ORNs is shown in Figure 5.1.  

 

Figure 5.1. ORN sensor array panel for JAVA simulation system 

The simulation window comprises 4 panels: 1) Control panel – includes the title of 

simulation, control buttons (Next, Simulate and Exit) and display messages. 2) Sensor array 

panel – includes 8 × 8 sensor array. 3) Output data panel – displays the spike-based sensor 

output data in the form of address events. 4) Graph panel - plots a graph of changing gas 

concentrations based on output data processing. 

The simulation window is shown in Figure 5.2. 

 

Figure 5.2. JAVA simulation system window 
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 The supervised learning process for this simulation is implemented by requesting the 

user to specify the sensitivity of an ORN to a particular gas. Currently, this model supports 

storage of learning data for four gases. When the simulation is started, the user is asked to select 

ORNs that are sensitive to gas 1. The selection of ORNs will enable the button and changes its 

colour to red. The sensor element is now named ORN1. Figure 5.3 shows the selected ORNs 

for gas 1.  

 

 

Figure 5.3. Selection of ORN for supervised learning for gas1 

  Any number of ORNs can be assigned to represent sensitivity to a specific gas. It is 

necessary for the user to select at least one array element to enable the ‘NEXT’ button and 

proceed with the simulation. Subsequently, the user can select ORNs for gas 2 and 3. The 

ORNs selected for gas 2 are highlighted in blue colour and the ORNs for gas 3 are highlighted 

in green colour. The remaining ORNs are auto-selected to be sensitive to gas 4 and highlighted 

in orange colour. This selection of ORNs and assignment of sensitivity constitutes the learning 

data. The supervised learning method requires the user to specify and monitor the learning data 

which is implemented here. Such learning algorithms are stored onboard when implemented in 

hardware on FPGA. Figure 5.4 to Figure 5.6 show learning processes for gas2, gas3 and gas4.  
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Figure 5.4. Selection of ORN for supervised learning for gas2 

The supervised learning process for gas 3 is shown in Figure 5.5. 16 ORNs are 

selected to demonstrate sensitivity to gas 3 and are highlighted in green colour. 

 

Figure 5.5. Selection of ORN for supervised learning for gas3 
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As shown in Figure 5.6, the sensitivity of remaining ORNs is automatically allocated 

to gas 4. These ORNs are highlighted in yellow colour. 

 

Figure 5.6. Selection of ORN for supervised learning for gas4 

The aim of this simulation is to demonstrate the interfacing of neuromorphic sensors 

with digital neuromorphic processors. The methodology proposed in chapter 4, describes the 

neuromorphic vision, auditory and olfactory sensors that provide a spike-based output over an 

AER interface. Such an output represents the addresses of neurons that have spiked due to the 

occurrence of an event. Hence, an AER mapping function, a learning algorithm and an 

appropriate data manipulation and control logic should be implemented on neuromorphic 

FPGA board to process the spike-based output data.  

The gas concentration graph and the output spike data are the two key elements that 

constitute the result of this simulation. The supervised learning process in the simulation is 

analogous to the implementation of the learning algorithm on USB-AER FPGA board. The 

output spike data displayed in the spike data panel signifies that the ORNs selected were 

compared to the learning data to identify the detected gas. Considering the result of the 

simulation (at time = 9 secs) shown in Figure 5.11, the number of ORNs spiked for each gas is 

appropriately displayed under the spike address in Figure 5. 7. This proves that the learning 

function is implemented correctly. 
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Figure 5. 7. Output spike data at time=9 sec 

The computation principle implemented in this function depends on the parameters 

such as spike timing and learning data. The result of this computation represents the 

concentration of a specific gas at an instance. This is represented graphically by plotting a graph 

of varying concentration of gases against time. A graph based on the spike data at time = 9 sec 

is shown in the Figure 5. 8. 

 

Figure 5. 8. Gas concentration graph at time=9 sec 
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5.2. SIMULATION AND RESULT ANALYSIS 

After the supervised learning process is completed, the ‘SIMULATE’ button is enabled, 

and the model is ready to accept spike data for computation. In an olfactory sensor, sensor array 

elements are activated when their sensitive, volatile compounds are detected. This is replicated 

by random activation of array elements at an interval of 1 second to emulate the detection of 

changing gas concentrations. The random function of array elements is handled by JAVA 

engine and does not involve any manual intervention. The addresses of activated (spiked) 

ORNs are passed as parameters to the supervised learning function. The working principle of 

spike-based communication is adopted by studying the implementation of AER in 

neuromorphic sensors and the AER SWITCH board.  

The spike addresses are analysed and compared with the learning data to identify the 

gas sensitivity of the spiked ORNs and the change in concentration of that gas. The 

concentration of a gas in this simulation is denoted by the number of spiked ORNs for that 

specific gas at that instance. Thus, change in concentration of a gas is computed by determining 

the increase/decrease in the number of spiked ORNs for that gas over a period. The spike data, 

along with the number of activated ORNs for each gas is displayed in the bottom-left panel. 

The change in concentration with respect to time is plotted in the form of a graph. It is assumed 

that each sensor element is capable of detecting 1ppm for a specific gas. As shown in Figure 

5. 9, the simulation starts with initial values at time=0 sec. 

 

Figure 5. 9. Initial values for simulation. Simulation at time=0 sec 
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Figure 5.10 shows the state of the simulation system at a time interval of 5 sec. 

 

Figure 5.10. Simulation at time=5 sec 

Figure 5.11 shows the simulation results with the graph representing gas concentrations and 

output spike data at time = 9 secs. 

 

Figure 5.11. Simulation at time=9 sec 
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The results obtained from this simulation can be validated by comparing the number of 

ORNs selected by the JAVA engine at an instance with the corresponding graph value. This 

data is shown in a tabular format below. 

TIME 

(SEC) 

ORNs 

SELECTED 

FOR GAS1 

GRAPH 

VALUE 

FOR 

GAS1 

ORNs 

SELECTED 

FOR GAS2 

GRAPH 

VALUE 

FOR 

GAS2 

ORNs 

SELECTED 

FOR GAS3 

GRAPH 

VALUE 

FOR 

GAS3 

ORNs 

SELECTED 

FOR GAS4 

GRAPH 

VALUE 

FOR 

GAS4 

0 6 6 10 10 14 14 12 12 

5 5 5 9 9 7 7 7 7 

9 13 13 15 15 4 4 13 13 

Table 5. 1 Validation of simulation results at different time instances 

 

The coherent data in the above table confirms that the results of the simulation model 

are correct and error-free. For example, at time = 0 sec, the random number of ORNs for gas 1 

generated by JAVA engine is equivalent to the graph reading, i.e. 6. The digital format of the 

output spike data is preserved throughout the simulation as the spike-data is passed as 

parameters to different functions without any conversions. This proves that the proposed 

interface can be implemented in hardware as mentioned in section 4.3. The representation of 

activated sensor elements in AER format, digital processing of the AER data, implementation 

of the supervised learning process and emulation of an olfactory system output are some of the 

highlights of this model. 

As the prime focus of this research is to demonstrate digital interfacing, the functionality of an 

olfactory sensor is implemented in a simple form. However, the functions and classes of this 

simulation model can be reused to plot a similar concentration graph when an external olfactory 

sensor is interfaced to a PC. These properties provide a foundation for an olfactory system 

simulation and testing software and can be further enhanced for doctoral studies. 

 

5.3. COMPARISON WITH NENGO SIMULATION MODEL 
 

 A comparison with a standard simulation tool can help to identify the pros and cons of 

the JAVA simulation model. Nengo is a neural simulation tool designed at the University of 

Waterloo, Canada. This tool allows both, graphical and scripting packages to design and 
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simulate large-scale neural systems. Nengo tools can be used to create ensembles of neurons 

representing a system, with the ability to alter properties of individual neurons. Synaptic 

connections between these ensembles allow them to perform a specific computation that can 

be defined in Nengo workspace. The Neural Engineering Framework is implemented to solve 

neurological simulation problems in Nengo. The scripting language used for Nengo is Python 

and the simulation runs on JAVA engine. Nengo has been used in a wide range of 

neuromorphic designs and dynamic applications like the implementation of complex high-level 

cognitive algorithms, various learning-based systems, motor control, action selection, working 

memory and planning with problem solving [116]. 

 To compare the JAVA model with a de-facto standard simulation tool, a simulation for 

the olfactory system as described in [88] was designed in Nengo. The Nengo simulator 

graphical tools are used to set up the model. The output generated by an olfactory sensor is modelled 

as an output vector function. This spike-based output data is provided to an ensemble of 16 Leaky 

Integrate and Fire (LIF) neurons based on 4 ×4 sensor array design in [88]. The 16 neurons are 

arranged in a 2-dimensional array; this enables the generation of two controls for the input 

vector. These controls are used to vary the concentration of two gases with 0 as the minimum 

value and 1 as maximum.  

Nengo provides with numerous tools to represent the simulation output in the form of 

graphs and spikes. In this simulation, an output graph, a voltage grid of neurons and a spike 

raster for the system are enabled to represent the computations on an FPGA. The concentration 

of gases computed by the ensemble of neurons is dynamically represented in the graph. The 

spike raster displays the spikes generated when the threshold voltage is exceeded. The spike 

trains can be dense or sparse depending upon the varying input control. A voltage grid shows 

the 16 neurons with the grey coloured neurons representing threshold voltage and the spiking 

neurons are represented in yellow. 
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Figure 5. 12. Nengo simulation network with 2D array of 16 neurons 

 Figure 5. 12 shows the simulation window for the designed Nengo network. The two 

input controls at the olfactory sensor function are used to vary the value of input function for 

FPGA, which is analogous to varying the concentration of two gases. Figure 5.13 shows the 

change in output graph as the concentration of gas 2 is increased. Sparse spike trains are 

observed depending on the gas concentration exceeding the threshold. 

 

Figure 5.13. Nengo generated simulation window with two controls for concentration of gases as input and voltage grid, 
output values and spike raster for output 
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Figure 5.14. Output response for increase in gas2 concentration 

Figure 5.14 to Figure 5.16 shows the output values in terms of a graph, a spike raster 

and a voltage grid for changing input for two gases. 

 

Figure 5.15. Output response for maximum concentration of gas2 
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Figure 5.16. Output response for increase in gas concentration of gas1 and gas2 

Figure 5.17 shows an overlapping graph when the controls for both gas 1 and gas 2 are 

brought at a stable value. 

 

Figure 5.17. Output response for stable concentration of gas1 and gas2 
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The results of the Nengo simulation model were monitored over three output 

parameters, a graph, a voltage grid and a spike raster. The simulation demonstrated the effect 

of the changing values of gas concentrations on the output parameters. Although the changing 

concentration of gases was correctly depicted through the output graph, the scope of this Nengo 

simulation environment is limited to detecting the range of concentration level of a gas from 

maximum to minimum and not in terms of ppm values. Also, there is no provision to monitor 

the spiking data that can be used for result validation. 

The design of simulation models in Nengo requires explicit definition for neuronal 

behaviour and properties of neuronal systems at an abstraction level of an individual neuron. 

Thus, system-level simulations are detailed yet they are complex to design which restricts 

Nengo to a general-purpose neural simulator and cannot be used for specialized systems. The 

olfactory system described in [88] does not implement highly detailed biological olfactory 

model but only emulates its essential characteristics. Thus, the parameters such as type of 

neurons, membrane time constant and the firing rates have been set to default values. 

Simplification in the implementation of the learning algorithms and the inclusion of AER data 

monitor in the JAVA simulation model extends the usability of this simulator for specialized 

neuromorphic systems. The JAVA model allows implementation of the supervised learning 

rule and AER based data processing. The design of this model encourages the reuse of several 

classes and functions for output data processing when an external neuromorphic sensor is 

connected. These functionalities are not extended in Nengo. Thus, current JAVA 

implementation provides a promising base for further enhancements such as neuron-level 

detailing.  
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CHAPTER 6. CONCLUSION 
 

 Neuromorphic engineering is a rapidly evolving discipline that utilises unconventional 

concepts to solve complex problems related to electronic sensing, data processing and network 

architectures. This interdisciplinary science takes inspiration from neurobiological architecture 

to solve these complex problems. Traditional electronic devices that are based on the Von 

Neumann architecture tend to consume excessive power due to the complex data processing 

strategies. Electronic sensors based on these principles generate a huge amount of redundant 

data that increases processing complexity. Over the last decade, extensive research in 

neuromorphics has produced promising results in sensing, data processing and network 

technology. With features such as low-power consumption, spike-based data handling and a 

hybrid implementation with both analogue and digital components, application scope for 

neuromorphic sensors is steadily widening. 

Neuromorphic sensors like DVS, DAVIS, AEREAR2 and [77] [88], have set 

performance benchmarks in vision, auditory and olfactory sensing. The application of 

neuromorphic concepts in electronic sensing has assisted in overcoming the drawback of 

conventional sensors. However, a lack of processing algorithms and dedicated processing units 

for spike-based output has restricted their potential application in standalone autonomous 

systems. Current methods of interfacing neuromorphic sensors are dependent on high end 

computers for output data processing. This dependency has restricted the portability of these 

sensors, and the inclusion of such a computer as a processing unit also increases the overall 

cost of the system. Consequently, neuromorphic sensors have not yet made an impact in large-

scale industrial applications and are currently utilised only in limited areas. 

This research started with a focus on simplifying the interface between neuromorphic 

vision, auditory and olfactory sensors and digital neuromorphic circuits. An important aspect 

of this research was to preserve the digital format of the spike-based data throughout data 

transmission and processing. Thus, AER, a specialised communication protocol for 

neuromorphic sensors was used. Sensors such as DVS, DAVIS and AEREAR2 provide an 

AER interface that can be exploited to establish direct connectivity to a neuromorphic FPGA 

board. In recent years, several efficient multi-function digital neuromorphic processing boards 

under projects such as SNAP, BrainScaleS, SpiNNaker and CAVIAR were designed. 
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The proposed methodology utilises digital neuromorphic processing boards designed 

under the project CAVIAR. One of the main goals of this research was to explore possible 

methods for sensor fusion. Thus, AER SWITCH board that supports connection with multiple 

AER devices and AER mapping functionalities is used to connect the sensors. After careful 

consideration of features such as sensor output format, compatibility and interfacing abilities 

the sensors chosen for this research are: DVS128-PAER for vision, DAS1 for audition and the 

CMOS adaptive sensor described in [77] for olfaction. The AER SWITCH communicates 

sensor output to a USB-AER FPGA board that acts as the processing unit for this standalone 

system. This method for interfacing promotes sensor fusion in a standalone autonomous system 

based on neuromorphic concepts.  

The methodology proposed in this thesis is a theoretical solution and must be tested for 

its viability in a real-time application. The digital interface of these sensors with a 

neuromorphic processing unit is simulated using JAVA. This simulation emulated the olfactory 

sensor output in the form of spike addresses and processed the spike data using JAVA classes 

and supervised learning techniques. The digital format of the data was preserved, and processed 

results were plotted in the form of graphs that denote a change in concentration for four gases. 

Assuming that the neuromorphic processing implemented in this simulation emulates the 

behaviour of a neuromorphic FPGA board, we can expect similar interfacing in hardware to 

deliver the correct results. Nengo, a de-facto standard neural simulation tool, was used to design 

a similar model for validation and comparison. The JAVA model forms a strong foundation 

for future enhancements and can be reused for output data processing of an external olfactory 

sensor.  

Thus, the main research question of simplifying the interface between neuromorphic 

sensors and neuromorphic processors has been answered in this thesis through a detailed 

methodology. Along with simplification of the interface, this research has contributed towards: 

 The development of a platform to implement neuromorphic sensor fusion and output 

data correlation. 

 Extending the portability of the neuromorphic sensors by eliminating the dependency 

on computers for output data processing.  

 As a result, these sensors can be easily incorporated in intelligent systems for 

standalone operation. 
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 The cost of processing spike-based output data can be reduced drastically and the 

application scope for these sensors can be extended. 

 The JAVA simulation developed to verify the methodology, provides a strong 

foundation for further research in neuromorphic olfaction systems with spiking output. 

 

6.1. APPLICATION  
 

 The neuromorphic sensors, particularly, the DVS, DAVIS, AEREAR2 have been tested 

and applied in their specialised scope of application. For example, neuromorphic vision sensors 

like DVS and DAVIS have been widely used for applications such as particle tracking. 

Similarly, AEREAR2 has shown promising results for localisation applications. However, it 

has been observed that very few implementations such as [105-107] have taken advantage of 

sensor fusion and output correlation. Furthermore, these implementations require MATLAB 

for analysis and processing. Thus, such systems are dependent on desktop computers for 

processing which impedes their portability.   

 By applying the interfacing methodology proposed in this thesis, multiple 

neuromorphic sensors can be connected to a digital neuromorphic processor to form a 

standalone autonomous system. Such a technique boosts portability for neuromorphic sensors 

and enables easy deployment in intelligent embedded systems and Internet of Things (IoT). 

Specifically in this project, we proposed an interface for DVS128PAER (vision), DAS1 

(auditory) and a neuromorphic CMOS olfactory sensor with digital neuromorphic FPGA board. 

The low-power consumption and self-calibrating structure based learning architecture can be 

exploited to design solar powered embedded systems to be deployed in hostile regions. These 

systems can also be used extensively in industrial robotics and robots used in rescue operations. 

This type of sensor fusion in an intelligent embedded system will be well-suited for  biosecurity 

and environmental monitoring applications.   

 

6.2. FUTURE DIRECTIONS 
 

 During the literature review, it was observed that substantial research has been 

conducted in neuromorphic vision and auditory sensing. Sensors like DVS, DAVIS and 

AEREAR2, are widely accepted as benchmarks in neuromorphic vision and audition. 
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However, research in neuromorphic olfaction is still in its infancy, and there are very few 

implementations that have contributed towards setting a specific benchmark in this field. 

Neuromorphic olfactory sensing is implemented as a system and comprises several sub-

systems such as sensor array, signal conditioning circuitry and a pattern recognition algorithm. 

The neuromorphic olfactory sensors developed in [77] and [88] have provided 

promising results for further research to improve their performance. The olfactory sensor chip 

described in [77] emulates multiple features of the biological olfactory system and includes on-

board signal conditioning circuitry and STDP learning. As pointed out by Koickal et.al further 

research in “long term weight storage, component mismatch, layout optimization and decoding 

of spike outputs” should be considered to improve the overall performance of the chip [77]. 

Yamani et.al designed an olfactory system that implements a spike latency coding structure to 

generate a unique sequence of spikes from the sensor array [108]. Further improvements would 

be targeted towards easy interfacing of the sensor in a stand-alone system and increasing the 

number of ORNs per glomeruli with minimum complexity. A continuation of this project will 

be aimed towards implementing an olfactory system with a research focus on providing an 

AER interface and determining efficient pattern recognition technique for such systems. 

 The JAVA simulation model designed for this research project can be enhanced to 

include STDP learning rather than supervised learning rules. The properties and real-time 

behaviour of the olfactory sensor array can be integrated into the olfactory sensor model. 

Identification of gases can also be implemented if the olfactory sensor is based on [89] that 

generates 2D spike signature. Current results have provided a strong base to extend this project 

for a doctoral scope. 
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