49 research outputs found

    Trennung und Schätzung der Anzahl von Audiosignalquellen mit Zeit- und Frequenzüberlappung

    Get PDF
    Everyday audio recordings involve mixture signals: music contains a mixture of instruments; in a meeting or conference, there is a mixture of human voices. For these mixtures, automatically separating or estimating the number of sources is a challenging task. A common assumption when processing mixtures in the time-frequency domain is that sources are not fully overlapped. However, in this work we consider some cases where the overlap is severe — for instance, when instruments play the same note (unison) or when many people speak concurrently ("cocktail party") — highlighting the need for new representations and more powerful models. To address the problems of source separation and count estimation, we use conventional signal processing techniques as well as deep neural networks (DNN). We first address the source separation problem for unison instrument mixtures, studying the distinct spectro-temporal modulations caused by vibrato. To exploit these modulations, we developed a method based on time warping, informed by an estimate of the fundamental frequency. For cases where such estimates are not available, we present an unsupervised model, inspired by the way humans group time-varying sources (common fate). This contribution comes with a novel representation that improves separation for overlapped and modulated sources on unison mixtures but also improves vocal and accompaniment separation when used as an input for a DNN model. Then, we focus on estimating the number of sources in a mixture, which is important for real-world scenarios. Our work on count estimation was motivated by a study on how humans can address this task, which lead us to conduct listening experiments, confirming that humans are only able to estimate the number of up to four sources correctly. To answer the question of whether machines can perform similarly, we present a DNN architecture, trained to estimate the number of concurrent speakers. Our results show improvements compared to other methods, and the model even outperformed humans on the same task. In both the source separation and source count estimation tasks, the key contribution of this thesis is the concept of “modulation”, which is important to computationally mimic human performance. Our proposed Common Fate Transform is an adequate representation to disentangle overlapping signals for separation, and an inspection of our DNN count estimation model revealed that it proceeds to find modulation-like intermediate features.Im Alltag sind wir von gemischten Signalen umgeben: Musik besteht aus einer Mischung von Instrumenten; in einem Meeting oder auf einer Konferenz sind wir einer Mischung menschlicher Stimmen ausgesetzt. Für diese Mischungen ist die automatische Quellentrennung oder die Bestimmung der Anzahl an Quellen eine anspruchsvolle Aufgabe. Eine häufige Annahme bei der Verarbeitung von gemischten Signalen im Zeit-Frequenzbereich ist, dass die Quellen sich nicht vollständig überlappen. In dieser Arbeit betrachten wir jedoch einige Fälle, in denen die Überlappung immens ist zum Beispiel, wenn Instrumente den gleichen Ton spielen (unisono) oder wenn viele Menschen gleichzeitig sprechen (Cocktailparty) —, so dass neue Signal-Repräsentationen und leistungsfähigere Modelle notwendig sind. Um die zwei genannten Probleme zu bewältigen, verwenden wir sowohl konventionelle Signalverbeitungsmethoden als auch tiefgehende neuronale Netze (DNN). Wir gehen zunächst auf das Problem der Quellentrennung für Unisono-Instrumentenmischungen ein und untersuchen die speziellen, durch Vibrato ausgelösten, zeitlich-spektralen Modulationen. Um diese Modulationen auszunutzen entwickelten wir eine Methode, die auf Zeitverzerrung basiert und eine Schätzung der Grundfrequenz als zusätzliche Information nutzt. Für Fälle, in denen diese Schätzungen nicht verfügbar sind, stellen wir ein unüberwachtes Modell vor, das inspiriert ist von der Art und Weise, wie Menschen zeitveränderliche Quellen gruppieren (Common Fate). Dieser Beitrag enthält eine neuartige Repräsentation, die die Separierbarkeit für überlappte und modulierte Quellen in Unisono-Mischungen erhöht, aber auch die Trennung in Gesang und Begleitung verbessert, wenn sie in einem DNN-Modell verwendet wird. Im Weiteren beschäftigen wir uns mit der Schätzung der Anzahl von Quellen in einer Mischung, was für reale Szenarien wichtig ist. Unsere Arbeit an der Schätzung der Anzahl war motiviert durch eine Studie, die zeigt, wie wir Menschen diese Aufgabe angehen. Dies hat uns dazu veranlasst, eigene Hörexperimente durchzuführen, die bestätigten, dass Menschen nur in der Lage sind, die Anzahl von bis zu vier Quellen korrekt abzuschätzen. Um nun die Frage zu beantworten, ob Maschinen dies ähnlich gut können, stellen wir eine DNN-Architektur vor, die erlernt hat, die Anzahl der gleichzeitig sprechenden Sprecher zu ermitteln. Die Ergebnisse zeigen Verbesserungen im Vergleich zu anderen Methoden, aber vor allem auch im Vergleich zu menschlichen Hörern. Sowohl bei der Quellentrennung als auch bei der Schätzung der Anzahl an Quellen ist ein Kernbeitrag dieser Arbeit das Konzept der “Modulation”, welches wichtig ist, um die Strategien von Menschen mittels Computern nachzuahmen. Unsere vorgeschlagene Common Fate Transformation ist eine adäquate Darstellung, um die Überlappung von Signalen für die Trennung zugänglich zu machen und eine Inspektion unseres DNN-Zählmodells ergab schließlich, dass sich auch hier modulationsähnliche Merkmale finden lassen

    An Efficient Optimal Reconstruction Based Speech Separation Based on Hybrid Deep Learning Technique

    Get PDF
    Conventional single-channel speech separation has two long-standing issues. The first issue, over-smoothing, is addressed, and estimated signals are used to expand the training data set. Second, DNN generates prior knowledge to address the problem of incomplete separation and mitigate speech distortion. To overcome all current issues, we suggest employing an efficient optimal reconstruction-based speech separation (ERSS) to overcome those problems using a hybrid deep learning technique. First, we propose an integral fox ride optimization (IFRO) algorithm for spectral structure reconstruction with the help of multiple spectrum features: time dynamic information, binaural and mono features. Second, we introduce a hybrid retrieval-based deep neural network (RDNN) to reconstruct the spectrograms size of speech and noise directly. The input signals are sent to Short Term Fourier Transform (STFT). STFT converts a clean input signal into spectrograms then uses a feature extraction technique called IFRO to extract features from spectrograms. After extracting the features, using the RDNN classification algorithm, the classified features are converted to softmax. ISTFT then applies to softmax and correctly separates speech signals. Experiments show that our proposed method achieves the highest gains in SDR, SIR, SAR STIO, and PESQ outcomes of 10.9, 15.3, 10.8, 0.08, and 0.58, respectively. The Joint-DNN-SNMF obtains 9.6, 13.4, 10.4, 0.07, and 0.50, comparable to the Joint-DNN-SNMF. The proposed result is compared to a different method and some previous work. In comparison to previous research, our proposed methodology yields better results

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Proceedings of the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016)

    Get PDF

    Data-driven Speech Enhancement:from Non-negative Matrix Factorization to Deep Representation Learning

    Get PDF

    Perspectives

    Get PDF
    International audienceSource separation and speech enhancement research has made dramatic progress in the last 30 years. It is now a mainstream topic in speech and audio processing, with hundreds of papers published every year. Separation and enhancement performance have greatly improved and successful commercial applications are increasingly being deployed. This chapter provides an overview of research and development perspectives in the field. We do not attempt to cover all perspectives currently under discussion in the community. Instead, we focus on five directions in which we believe major progress is still possible: getting the most out of deep learning, exploiting phase relationships across time-frequency bins, improving the estimation accuracy of multichannel parameters, addressing scenarios involving multiple microphone arrays or other sensors, and accelerating industry transfer. These five directions are covered in Sections 19.1, 19.2, 19.3, 19.4, and 19.5, respectively

    Feature Learning with Matrix Factorization Applied to Acoustic Scene Classification

    Get PDF
    International audienceIn this paper, we study the usefulness of various matrix factorization methods for learning features to be used for the specific Acoustic Scene Classification problem. A common way of addressing ASC has been to engineer features capable of capturing the specificities of acoustic environments. Instead, we show that better representations of the scenes can be automatically learned from time-frequency representations using matrix factorization techniques. We mainly focus on extensions including sparse, kernel-based, convolutive and a novel supervised dictionary learning variant of Principal Component Analysis and Nonnegative Matrix Factorization. An experimental evaluation is performed on two of the largest ASC datasets available in order to compare and discuss the usefulness of these methods for the task. We show that the unsupervised learning methods provide better representations of acoustic scenes than the best conventional hand-crafted features on both datasets. Furthermore, the introduction of a novel nonnegative supervised matrix factorization model and Deep Neural networks trained on spectrograms, allow us to reach further improvements
    corecore