16,737 research outputs found

    Index ordering by query-independent measures

    Get PDF
    Conventional approaches to information retrieval search through all applicable entries in an inverted file for a particular collection in order to find those documents with the highest scores. For particularly large collections this may be extremely time consuming. A solution to this problem is to only search a limited amount of the collection at query-time, in order to speed up the retrieval process. In doing this we can also limit the loss in retrieval efficacy (in terms of accuracy of results). The way we achieve this is to firstly identify the most ā€œimportantā€ documents within the collection, and sort documents within inverted file lists in order of this ā€œimportanceā€. In this way we limit the amount of information to be searched at query time by eliminating documents of lesser importance, which not only makes the search more efficient, but also limits loss in retrieval accuracy. Our experiments, carried out on the TREC Terabyte collection, report significant savings, in terms of number of postings examined, without significant loss of effectiveness when based on several measures of importance used in isolation, and in combination. Our results point to several ways in which the computation cost of searching large collections of documents can be significantly reduced

    Stochastic Query Covering for Fast Approximate Document Retrieval

    Get PDF
    We design algorithms that, given a collection of documents and a distribution over user queries, return a small subset of the document collection in such a way that we can efficiently provide high-quality answers to user queries using only the selected subset. This approach has applications when space is a constraint or when the query-processing time increases significantly with the size of the collection. We study our algorithms through the lens of stochastic analysis and prove that even though they use only a small fraction of the entire collection, they can provide answers to most user queries, achieving a performance close to the optimal. To complement our theoretical findings, we experimentally show the versatility of our approach by considering two important cases in the context of Web search. In the first case, we favor the retrieval of documents that are relevant to the query, whereas in the second case we aim for document diversification. Both the theoretical and the experimental analysis provide strong evidence of the potential value of query covering in diverse application scenarios

    AMaĻ‡oSā€”Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaĻ‡oS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaĻ‡oS and discusses how its current architecture realizes these principles

    Spatio-textual indexing for geographical search on the web

    Get PDF
    Many web documents refer to specific geographic localities and many people include geographic context in queries to web search engines. Standard web search engines treat the geographical terms in the same way as other terms. This can result in failure to find relevant documents that refer to the place of interest using alternative related names, such as those of included or nearby places. This can be overcome by associating text indexing with spatial indexing methods that exploit geo-tagging procedures to categorise documents with respect to geographic space. We describe three methods for spatio-textual indexing based on multiple spatially indexed text indexes, attaching spatial indexes to the document occurrences of a text index, and merging text index access results with results of access to a spatial index of documents. These schemes are compared experimentally with a conventional text index search engine, using a collection of geo-tagged web documents, and are shown to be able to compete in speed and storage performance with pure text indexing

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201
    • ā€¦
    corecore