1,572 research outputs found

    Novel neural networks for structured data

    Get PDF

    Learning with Graphs using Kernels from Propagated Information

    Get PDF
    Traditional machine learning approaches are designed to learn from independent vector-valued data points. The assumption that instances are independent, however, is not always true. On the contrary, there are numerous domains where data points are cross-linked, for example social networks, where persons are linked by friendship relations. These relations among data points make traditional machine learning diffcult and often insuffcient. Furthermore, data points themselves can have complex structure, for example molecules or proteins constructed from various bindings of different atoms. Networked and structured data are naturally represented by graphs, and for learning we aimto exploit their structure to improve upon non-graph-based methods. However, graphs encountered in real-world applications often come with rich additional information. This naturally implies many challenges for representation and learning: node information is likely to be incomplete leading to partially labeled graphs, information can be aggregated from multiple sources and can therefore be uncertain, or additional information on nodes and edges can be derived from complex sensor measurements, thus being naturally continuous. Although learning with graphs is an active research area, learning with structured data, substantially modeling structural similarities of graphs, mostly assumes fully labeled graphs of reasonable sizes with discrete and certain node and edge information, and learning with networked data, naturally dealing with missing information and huge graphs, mostly assumes homophily and forgets about structural similarity. To close these gaps, we present a novel paradigm for learning with graphs, that exploits the intermediate results of iterative information propagation schemes on graphs. Originally developed for within-network relational and semi-supervised learning, these propagation schemes have two desirable properties: they capture structural information and they can naturally adapt to the aforementioned issues of real-world graph data. Additionally, information propagation can be efficiently realized by random walks leading to fast, flexible, and scalable feature and kernel computations. Further, by considering intermediate random walk distributions, we can model structural similarity for learning with structured and networked data. We develop several approaches based on this paradigm. In particular, we introduce propagation kernels for learning on the graph level and coinciding walk kernels and Markov logic sets for learning on the node level. Finally, we present two application domains where kernels from propagated information successfully tackle real-world problems

    Combining Long Short Term Memory and Convolutional Neural Network for Cross-Sentence n-ary Relation Extraction

    Get PDF
    We propose in this paper a combined model of Long Short Term Memory and Convolutional Neural Networks (LSTM-CNN) that exploits word embeddings and positional embeddings for cross-sentence n-ary relation extraction. The proposed model brings together the properties of both LSTMs and CNNs, to simultaneously exploit long-range sequential information and capture most informative features, essential for cross-sentence n-ary relation extraction. The LSTM-CNN model is evaluated on standard dataset on cross-sentence n-ary relation extraction, where it significantly outperforms baselines such as CNNs, LSTMs and also a combined CNN-LSTM model. The paper also shows that the LSTM-CNN model outperforms the current state-of-the-art methods on cross-sentence n-ary relation extraction

    Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction

    Full text link
    Entities, as the essential elements in relation extraction tasks, exhibit certain structure. In this work, we formulate such structure as distinctive dependencies between mention pairs. We then propose SSAN, which incorporates these structural dependencies within the standard self-attention mechanism and throughout the overall encoding stage. Specifically, we design two alternative transformation modules inside each self-attention building block to produce attentive biases so as to adaptively regularize its attention flow. Our experiments demonstrate the usefulness of the proposed entity structure and the effectiveness of SSAN. It significantly outperforms competitive baselines, achieving new state-of-the-art results on three popular document-level relation extraction datasets. We further provide ablation and visualization to show how the entity structure guides the model for better relation extraction. Our code is publicly available.Comment: Accepted to AAAI 202
    • …
    corecore