9 research outputs found

    Exploiting vehicular social networks and dynamic clustering to enhance urban mobility management

    Get PDF
    Transport authorities are employing advanced traffic management system (ATMS) to improve vehicular traffic management efficiency. ATMS currently uses intelligent traffic lights and sensors distributed along the roads to achieve its goals. Furthermore, there are other promising technologies that can be applied more efficiently in place of the abovementioned ones, such as vehicular networks and 5G. In ATMS, the centralized approach to detect congestion and calculate alternative routes is one of the most adopted because of the difficulty of selecting the most appropriate vehicles in highly dynamic networks. The advantage of this approach is that it takes into consideration the scenario to its full extent at every execution. On the other hand, the distributed solution needs to previously segment the entire scenario to select the vehicles. Additionally, such solutions suggest alternative routes in a selfish fashion, which can lead to secondary congestions. These open issues have inspired the proposal of a distributed system of urban mobility management based on a collaborative approach in vehicular social networks (VSNs), named SOPHIA. The VSN paradigm has emerged from the integration of mobile communication devices and their social relationships in the vehicular environment. Therefore, social network analysis (SNA) and social network concepts (SNC) are two approaches that can be explored in VSNs. Our proposed solution adopts both SNA and SNC approaches for alternative route-planning in a collaborative way. Additionally, we used dynamic clustering to select the most appropriate vehicles in a distributed manner. Simulation results confirmed that the combined use of SNA, SNC, and dynamic clustering, in the vehicular environment, have great potential in increasing system scalability as well as improving urban mobility management efficiency1916CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP401802/2016-7; 2015/25588-6; 2016/24454-9; 2018/02204-6; 465446/2014-088887.136422/2017-002014/50937-

    Roteamento de tráfego veicular colaborativo e sem infraestrutura para sistemas de transportes inteligentes  

    Get PDF
    Orientadores: Leandro Aparecido Villas, Edmundo Roberto Mauro MadeiraTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Devido à atual tendência mundial de urbanização, a sociedade moderna enfrenta, cada vez mais, sérios problemas de mobilidade urbana. Além disso, com o aumento constante do fluxo de tráfego veicular, as atuais soluções existentes para gerenciamento de tráfego se tornaram ineficientes. Com isso, para atender às crescentes necessidades dos sistemas de transporte, é necessário sistemas de transporte inteligentes (ITS). O desenvolvimento de ITS sustentável requer integração e interoperabilidade contínuas com tecnologias emergentes, tais como as redes veiculares (VANETs). As VANETs são consideradas uma tecnologia promissora que provê aplicações críticas de segurança e serviços de entretenimento, consequentemente melhorando a experiência de viagem do motorista e dos passageiros. Esta tese propõe um sistema de gerenciamento de tráfego de veículos sem a necessidade de uma infraestrutura de apoio. Para alcançar o sistema desejado foram necessários propor soluções intermediárias que contribuíram nesta tese. A primeira contribuição reside em uma solução que emprega conhecimento histórico dos padrões de mobilidade dos motoristas para obter uma visão global da situação da rede viária. Diferentemente de outras abordagens que precisam de troca constante de informações entre os veículos e o servidor central, nossa solução utiliza informações espaciais e temporais sobre padrões de mobilidade, além das informações específicas da infraestrutura viária, a fim de identificar congestionamentos no tráfego, permitindo, assim, o planejamento de roteamento de veículos. Como segunda contribuição, foi proposta uma solução distribuída para calcular a intermediação egocêntrica nas VANETs. Por meio da métrica egocêntrica foi proposto um mecanismo inovador de ranqueamento de veículos em redes altamente dinâmicas. As principais vantagens desse mecanismo para aplicações de VANETs são: (i) a redução do consumo de largura de banda e (ii) a superação do problema de topologias altamente dinâmicas. A terceira contribuição é uma solução de planejamento de rotas colaborativo com intuito de melhorar o gerenciamento do tráfego de veículos em cenários urbanos. Como última contribuição, esta tese integra as soluções descritas acima, propondo um sistema eficiente de gerenciamento de tráfego de veículos. As soluções propostas foram amplamente comparadas com outras soluções da literatura em diferentes métricas de avaliação de desempenho. Os resultados mostram que o sistema de gerenciamento de tráfego de veículos proposto é eficiente e escalável, qual pode ser uma boa alternativa para mitigar os problemas de mobilidade urbanaAbstract: Due to the current global trend of urbanization, modern society is facing severe urban mobility problems. In addition, considering the constant increase in vehicular traffic on roads, existing traffic management solutions have become inefficient. In order to assist the increasing needs of transport systems today, there is a need for intelligent transportation systems (ITS). Developing a sustainable ITS requires seamless integration and interoperability with emerging technologies such as vehicular ad-hoc networks (VANETs). VANETs are considered to be a promising technology providing access to critical life-safety applications and infotainment services, consequently improving drivers¿ and passengers¿ on-road experiences. This thesis proposes an infrastructure-less vehicular traffic management system. To achieve such a system, intermediate solutions that contributed to this thesis were proposed. The first contribution lies in a solution that employs historical knowledge of driver mobility patterns to gain an overall view of the road network situation. Unlike other approaches that need constant information exchange between vehicles and the central server, our solution uses space and temporal information about mobility patterns, as well as road infrastructure information, in order to identify traffic congestion, thus allowing for vehicle routing planning. Secondly, a distributed solution to calculate egocentric betweenness in VANETs was proposed. Through the egocentric metric, an innovative vehicle ranking mechanism in highly dynamic networks was proposed. The main advantages of this mechanism for VANETs applications are (i) reduced bandwidth consumption and (ii) overcoming the problem of highly dynamic topologies. The third contribution is a collaborative route planning solution designed to improve vehicle traffic management in urban settings. As the last contribution, this thesis integrates the solutions described above, proposing an efficient vehicle traffic management system. The proposed solutions were widely compared with other literature solutions on different performance evaluation metrics. The evaluation results show that the proposed vehicle traffic management system is efficient, scalable, and cost-effective, which may be a good alternative to mitigate urban mobility problemsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2015/25588-6FAPES

    Efficient Multi-Hop Communications for Software-Defined Wireless Networks

    Get PDF
    PhD thesisSoftware-Defined Networking (SDN) recently emerged to overcome the difficulty of network control by decoupling the control plane from the data plane. In terms of the wireless medium and mobile devices, although new challenges are introduced into SDN research, SDN promises to address many inherited problems in wireless communication networks. However, centralised SDN control brings concerns of scalability, reliability, and robustness especially for wireless networks. Considering these concerns, the use of physically distributed SDN controllers has been recognized as an effective solution. Nevertheless, it remains a challenge in regard to how the physically distributed controllers effectively communicate to form a logically centralised network control plane. Dissemination is a type of one-to-many communication service which plays an important role in control information exchange. This research focuses on the strategic packet forwarding for more efficient multi-hop communications in software-defined wireless networks. The research aim is to improve the delivery efficiency by exploiting the delay budget and node mobility. To achieve this objective, existing multi-hop forwarding methods and dissemination schemes in wireless networks are investigated and analysed. In the literature, information from the navigation system of mobile nodes has been utilised to identify candidate relay nodes. However, further studies are required to utilise partially predictable mobility based on more generalised navigational information such as the movement direction. In this research, the feasible exploitation of directional movement in path-unconstrained mobility is investigated for efficient multi-hop communications. Simulation results show that the proposed scheme outperforms the state-of-the-art because directional correlation of node movement is considered to dynamically exploit the delay budget for better selection of the relay node(s).Chinese Scholarship Council (CSC

    Security and Privacy Preservation in Mobile Social Networks

    Get PDF
    Social networking extending the social circle of people has already become an important integral part of our daily lives. As reported by ComScore, social networking sites such as Facebook and Twitter have reached 82 percent of the world's online population, representing 1.2 billion users around the world. In the meantime, fueled by the dramatic advancements of smartphones and the ubiquitous connections of Bluetooth/WiFi/3G/LTE networks, social networking further becomes available for mobile users and keeps them posted on the up-to-date worldwide news and messages from their friends and families anytime anywhere. The convergence of social networking, advanced smartphones, and stable network infrastructures brings us a pervasive and omnipotent communication platform, named mobile social network (MSN), helping us stay connected better than ever. In the MSN, multiple communication techniques help users to launch a variety of applications in multiple communication domains including single-user domain, two-user domain, user-chain domain, and user-star domain. Within different communication domains, promising mobile applications are fostered. For example, nearby friend search application can be launched in the two-user or user-chain domains to help a user find other physically-close peers who have similar interests and preferences; local service providers disseminate advertising information to nearby users in the user-star domain; and health monitoring enables users to check the physiological signals in the single-user domain. Despite the tremendous benefits brought by the MSN, it still faces many technique challenges among of which security and privacy protections are the most important ones as smartphones are vulnerable to security attacks, users easily neglect their privacy preservation, and mutual trust relationships are difficult to be established in the MSN. In this thesis, we explore the unique characteristics and study typical research issues of the MSN. We conduct our research with a focus on security and privacy preservation while considering human factors. Specifically, we consider the profile matching application in the two-user domain, the cooperative data forwarding in the user-chain domain, the trustworthy service evaluation application in the user-star domain, and the healthcare monitoring application in the single-user domain. The main contributions are, i) considering the human comparison behavior and privacy requirements, we first propose a novel family of comparison-based privacy-preserving profile matching (PPM) protocols. The proposed protocols enable two users to obtain comparison results of attribute values in their profiles, while the attribute values are not disclosed. Taking user anonymity requirement as an evaluation metric, we analyze the anonymity protection of the proposed protocols. From the analysis, we found that the more comparison results are disclosed, the less anonymity protection is achieved by the protocol. Further, we explore the pseudonym strategy and an anonymity enhancing technique where users could be self-aware of the anonymity risk level and take appropriate actions when needed; ii) considering the inherent MSN nature --- opportunistic networking, we propose a cooperative privacy-preserving data forwarding (PDF) protocol to help users forward data to other users. We indicate that privacy and effective data forwarding are two conflicting goals: the cooperative data forwarding could be severely interrupted or even disabled when the privacy preservation of users is applied, because without sharing personal information users become unrecognizable to each other and the social interactions are no longer traceable. We explore the morality model of users from classic social theory, and use game-theoretic approach to obtain the optimal data forwarding strategy. Through simulation results, we show that the proposed cooperative data strategy can achieve both the privacy preservation and the forwarding efficiency; iii) to establish the trust relationship in a distributed MSN is a challenging task. We propose a trustworthy service evaluation (TSE) system, to help users exchange their service reviews toward local vendors. However, vendors and users could be the potential attackers aiming to disrupt the TSE system. We then consider the review attacks, i.e., vendors rejecting and modifying the authentic reviews of users, and the Sybil attacks, i.e., users abusing their pseudonyms to generate fake reviews. To prevent these attacks, we explore the token technique, the aggregate signature, and the secret sharing techniques. Simulation results show the security and the effectiveness of the TSE system can be guaranteed; iv) to improve the efficiency and reliability of communications in the single-user domain, we propose a prediction-based secure and reliable routing framework (PSR). It can be integrated with any specific routing protocol to improve the latter's reliability and prevent data injection attacks during data communication. We show that the regularity of body gesture can be learned and applied by body sensors such that the route with the highest predicted link quality can always be chose for data forwarding. The security analysis and simulation results show that the PSR significantly increases routing efficiency and reliability with or without the data injection attacks

    Clustering algorithm for D2D communication in next generation cellular networks : thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, Massey University, Auckland, New Zealand

    Get PDF
    Next generation cellular networks will support many complex services for smartphones, vehicles, and other devices. To accommodate such services, cellular networks need to go beyond the capabilities of their previous generations. Device-to-Device communication (D2D) is a key technology that can help fulfil some of the requirements of future networks. The telecommunication industry expects a significant increase in the density of mobile devices which puts more pressure on centralized schemes and poses risk in terms of outages, poor spectral efficiencies, and low data rates. Recent studies have shown that a large part of the cellular traffic pertains to sharing popular contents. This highlights the need for decentralized and distributive approaches to managing multimedia traffic. Content-sharing via D2D clustered networks has emerged as a popular approach for alleviating the burden on the cellular network. Different studies have established that D2D communication in clusters can improve spectral and energy efficiency, achieve low latency while increasing the capacity of the network. To achieve effective content-sharing among users, appropriate clustering strategies are required. Therefore, the aim is to design and compare clustering approaches for D2D communication targeting content-sharing applications. Currently, most of researched and implemented clustering schemes are centralized or predominantly dependent on Evolved Node B (eNB). This thesis proposes a distributed architecture that supports clustering approaches to incorporate multimedia traffic. A content-sharing network is presented where some D2D User Equipment (DUE) function as content distributors for nearby devices. Two promising techniques are utilized, namely, Content-Centric Networking and Network Virtualization, to propose a distributed architecture, that supports efficient content delivery. We propose to use clustering at the user level for content-distribution. A weighted multi-factor clustering algorithm is proposed for grouping the DUEs sharing a common interest. Various performance parameters such as energy consumption, area spectral efficiency, and throughput have been considered for evaluating the proposed algorithm. The effect of number of clusters on the performance parameters is also discussed. The proposed algorithm has been further modified to allow for a trade-off between fairness and other performance parameters. A comprehensive simulation study is presented that demonstrates that the proposed clustering algorithm is more flexible and outperforms several well-known and state-of-the-art algorithms. The clustering process is subsequently evaluated from an individual user’s perspective for further performance improvement. We believe that some users, sharing common interests, are better off with the eNB rather than being in the clusters. We utilize machine learning algorithms namely, Deep Neural Network, Random Forest, and Support Vector Machine, to identify the users that are better served by the eNB and form clusters for the rest of the users. This proposed user segregation scheme can be used in conjunction with most clustering algorithms including the proposed multi-factor scheme. A comprehensive simulation study demonstrates that with such novel user segregation, the performance of individual users, as well as the whole network, can be significantly improved for throughput, energy consumption, and fairness

    Wireless social networks: a survey of recent advances, applications and challenges

    Get PDF
    With the ubiquitous use of smartphones and other connected pieces of equipment, the number of devices connected to the Internet is exponentially growing. This will test the efficiency of the envisioned 5G network architectures for data acquisition and its storage. It is a common observation that the communication between smart devices is typically influenced by their social relationship. This suggests that the theory of social networks can be leveraged to improve the quality of service for such communication links. In fact, the social networking concepts of centrality and community have been investigated for an efficient realization of novel wireless network architectures. This work provides a comprehensive introduction to social networks and reviews the recent literature on the application of social networks in wireless communications. The potential challenges in communication network design are also highlighted, for a successful implementation of social networking strategies. Finally, some future directions are discussed for the application of social networking strategies to emerging wireless technologies such as non-orthogonal multiple access and visible light communications

    Social, Private, and Trusted Wearable Technology under Cloud-Aided Intermittent Wireless Connectivity

    Get PDF
    There has been an unprecedented increase in the use of smart devices globally, together with novel forms of communication, computing, and control technologies that have paved the way for a new category of devices, known as high-end wearables. While massive deployments of these objects may improve the lives of people, unauthorized access to the said private equipment and its connectivity is potentially dangerous. Hence, communication enablers together with highly-secure human authentication mechanisms have to be designed.In addition, it is important to understand how human beings, as the primary users, interact with wearable devices on a day-to-day basis; usage should be comfortable, seamless, user-friendly, and mindful of urban dynamics. Usually the connectivity between wearables and the cloud is executed through the user’s more power independent gateway: this will usually be a smartphone, which may have potentially unreliable infrastructure connectivity. In response to these unique challenges, this thesis advocates for the adoption of direct, secure, proximity-based communication enablers enhanced with multi-factor authentication (hereafter refereed to MFA) that can integrate/interact with wearable technology. Their intelligent combination together with the connection establishment automation relying on the device/user social relations would allow to reliably grant or deny access in cases of both stable and intermittent connectivity to the trusted authority running in the cloud.The introduction will list the main communication paradigms, applications, conventional network architectures, and any relevant wearable-specific challenges. Next, the work examines the improved architecture and security enablers for clusterization between wearable gateways with a proximity-based communication as a baseline. Relying on this architecture, the author then elaborates on the social ties potentially overlaying the direct connectivity management in cases of both reliable and unreliable connection to the trusted cloud. The author discusses that social-aware cooperation and trust relations between users and/or the devices themselves are beneficial for the architecture under proposal. Next, the author introduces a protocol suite that enables temporary delegation of personal device use dependent on different connectivity conditions to the cloud.After these discussions, the wearable technology is analyzed as a biometric and behavior data provider for enabling MFA. The conventional approaches of the authentication factor combination strategies are compared with the ‘intelligent’ method proposed further. The assessment finds significant advantages to the developed solution over existing ones.On the practical side, the performance evaluation of existing cryptographic primitives, as part of the experimental work, shows the possibility of developing the experimental methods further on modern wearable devices.In summary, the set of enablers developed here for wearable technology connectivity is aimed at enriching people’s everyday lives in a secure and usable way, in cases when communication to the cloud is not consistently available

    Responsible AI and Analytics for an Ethical and Inclusive Digitized Society

    Get PDF
    publishedVersio
    corecore