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Abstract: Transport authorities are employing advanced traffic management system (ATMS) to
improve vehicular traffic management efficiency. ATMS currently uses intelligent traffic lights and
sensors distributed along the roads to achieve its goals. Furthermore, there are other promising
technologies that can be applied more efficiently in place of the abovementioned ones, such as
vehicular networks and 5G. In ATMS, the centralized approach to detect congestion and calculate
alternative routes is one of the most adopted because of the difficulty of selecting the most appropriate
vehicles in highly dynamic networks. The advantage of this approach is that it takes into consideration
the scenario to its full extent at every execution. On the other hand, the distributed solution needs to
previously segment the entire scenario to select the vehicles. Additionally, such solutions suggest
alternative routes in a selfish fashion, which can lead to secondary congestions. These open issues
have inspired the proposal of a distributed system of urban mobility management based on a
collaborative approach in vehicular social networks (VSNs), named SOPHIA. The VSN paradigm has
emerged from the integration of mobile communication devices and their social relationships in the
vehicular environment. Therefore, social network analysis (SNA) and social network concepts (SNC)
are two approaches that can be explored in VSNs. Our proposed solution adopts both SNA and
SNC approaches for alternative route-planning in a collaborative way. Additionally, we used
dynamic clustering to select the most appropriate vehicles in a distributed manner. Simulation
results confirmed that the combined use of SNA, SNC, and dynamic clustering, in the vehicular
environment, have great potential in increasing system scalability as well as improving urban mobility
management efficiency.

Keywords: vehicular social networks; dynamic clustering; urban mobility management; social
network analysis; social network concepts; advanced traffic management system

1. Introduction

Over recent years, the research community in the field of communication and ad-hoc networks
has been very attracted to social network analysis (SNA) and social network concepts (SNC) to
design and implement new algorithms and protocols for socially aware networks, such as mobile
social networks (MSNs) and vehicular social networks (VSNs). The legacy of social networks in
communication networks is that all entities have a certain degree of interdependence to each other [1].
Such interdependencies can include network topology similarity, physical contact, community,
and mutual interest. In addition to the interdependencies, the correlations between the entities can be
explored in SNA. Social networks are a virtual group of entities that have some social interdependencies
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among them, and such interdependencies can be applied to improve the efficiency and effectiveness of
network services [2,3].

The VSN paradigm has emerged through the integration of the concepts of mobile social networks
and vehicular ad-hoc networks (VANETs) [4–6]. As a consequence of this integration, two approaches
can be explored in the vehicular environment, such as (i) application of the SNA [5,6] techniques
and/or (ii) use of the SNC [4,6]. The first approach focuses on identifying the node importance in
the network. To this end, three main measures of centrality most used in VSNs are degree, closeness,
and betweenness [5,6]. It is known that the network topology, in VSNs, is highly dynamic and
consequently calculating the node centrality is a challenging task. On the other hand, once identified,
it can be useful for many applications such as the management of information flow in the network.
The second one, however, involves social interactions between nodes that have mutual interests in
the temporal virtual community [4,7]. In other words, such an approach provides the opportunity
of vehicles to participate in a virtual vehicle community and share information of mutual interest
through social interactions. Based on this idea, each vehicle can share their social information,
for example, the personal route. In this way, allowing the practice of collaborative route-planning.
The social interaction occurs when vehicles meet each other and share their social information through
wireless communication.

The highly dynamic topology of VSNs is due to the high mobility of the nodes (or vehicles), thereby
the development of systems in such networks must take into account this characteristic. For example,
due to high mobility, the communication links between vehicles only last for short periods of
time [8]. Two communication types most commonly applied in VSNs are vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) [9]. The IEEE 802.11p WLAN standards have been used as the dedicated
frequency spectrum for inter-vehicular communication in the 5.9 GHz band and have also assigned
multiple communication channels, such as control channel (CCH) and service channels (SCHs).

ATMS integrates communication, storage, and processing technologies to collect raw data from
the VSNs, to extract knowledge of vehicular traffic on roads [7]. The ATMS can provide services to
improve traffic management efficiency and safety using such knowledge. For better performance,
many ATMS applications require vehicles to periodically share their data (floating car data) between
neighboring vehicles, a central server, and/or roadside unit (RSU). Through this sharing, it is
possible to create awareness about vehicular traffic conditions [10–12]. This practice is known as
beaconing and the data exchanged is associated with vehicle mobility, such as vehicle identification,
current vehicle position, speed, the direction of travel, just to name a few examples. This data exchange
is performed by the CCH and generally at a transmission frequency between 1 Hz and 10 Hz [13].

Different ATMSs have been designed and implemented to overcome the lack of urban mobility
that affects the daily life and well-being of the citizens [10–12,14]. Several solutions implement a
centralized approach [11,12] due to the difficulty of selecting the most appropriate vehicles, in highly
dynamic networks, for congestion detection and calculation of alternative routes. As a result,
such solutions are not easily scalable. Another solution employs a distributed approach for congestion
detection and calculation of alternative routes [14]. However, to achieve its goal, such a solution needs
to segment the entire scenario into multiple sub-regions beforehand. Moreover, the alternative route is
calculated selfishly, i.e., without considering the routes chosen by neighboring vehicles.

Based on the gaps found, SOPHIA, a distributed System of urban mObility management
based on a collaborative aPproach in veHIcular sociAl networks was designed and implemented.
Inspired by the two VSN approaches mentioned above, an SNA technique to classify and select
the vehicles in each clustering was applied to reduce bandwidth consumption. Two SNCs
were employed (social interaction and virtual temporal community) to perform the exchange of
information of common interest. This exchange of information helps in alternative route-planning in a
collaborative way, thus improving urban mobility management.

In brief, the focus of the SOPHIA system is to minimize the problems associated with
traffic congestion, in a distributed manner, and without jeopardizing its scalability. The evaluation
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of the proposed system was performed through simulations comparing with other systems of the
literature [11,12,14] in different requirements. Additionally, several performance assessments were
conducted following three perspectives: (i) control channel assessment, (ii) scalability assessment,
and (iii) traffic management assessment.

The main contributions of this paper can be summarized as follows:

• A novel dynamic clustering approach based on SNA along with received signal
strength (Section 3.2). This approach is applied to improve the data flow within the network;

• A novel collaborative rerouting approach based on social interaction and virtual temporal
community to enhance urban mobility management (Section 3.4).

The remainder of this paper is organized as follows. In Section 2, an overview of existing work in
the literature about urban mobility management is described. The proposed solution is presented in
Section 3. The simulation setup and experimental results are given in Section 4. Finally, conclusion
and future work are presented in Section 5.

2. Related Work

This section presents the related works relevant to the design and implementation of SOPHIA
system. Moreover, the aspects related to dynamic clustering algorithms are discussed along with
infrastructure-less and infrastructure-based for urban mobility management.

2.1. Dynamic Clustering Algorithms

Grouping nodes into clusters has been extensively investigated in many fields, such as wireless
ad-hoc networks and mobile ad-hoc networks, by focusing mainly on energy saving [15–17].
In VANETs, due to the high topology changes, the clustering algorithms proposed for other kinds of
ad-hoc networks such as mobile sensor networks are not suitable to be applied in VANETs [16].

In VANETs, clustering techniques have been proposed to improve communication efficiency
and facilitate network management, by grouping vehicles in a geographical vicinity together.
The advantages of clustering can be visible in highly dynamic networks, in which information
aggregation and management can be performed in each network cluster [18]. Thus, clustering can
increase the network scalability and decrease the communication overhead.

Hafeez et al. [19] proposed a clustering algorithm by considering speed as the main parameter to
build clusters. The cluster head (CH) is elected in a distributed manner according to their relative speed
and distance from their cluster members (CMs). This algorithm improves cluster stability through
diffuse speed processing. Besides that, it chooses the second optimal vehicle as the temporary CH
when the original one becomes unavailable.

In [20], the authors proposed a mobility-based clustering scheme according to the parameters of
the vehicle’s movements, such as moving direction, relative velocity, and the relative distance between
vehicles. Such parameters are applied to select the CH. In mobility-based clustering, each CH is located
in the geographical center of a cluster, and CMs are inside transmission range of the CH and moving
in the same direction as the CH. Hassanabad et al. [21] also proposed a mobility-based clustering
scheme like the aforementioned one. The difference between them is that the latter applies the Affinity
Propagation algorithm, proposed by the authors, to produce clusters with high stability.

Abuashour and Kadoch [22] proposed the algorithm named CORA—Control Overhead
Reduction Algorithm. The proposed algorithm aims to minimize the overhead network generated by
CMs in a clustered segment scenario. The CHs are selected based on maximum lifetime among all
vehicles that are located within each cluster.

2.2. Infrastructure-Based Urban Mobility Management

In [11], the authors proposed a centralized system for traffic management called EcoTrec.
The proposed system is centralized because of congestion detection and alternative route calculation are
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performed by a central entity. The EcoTrec system aims to reduce CO2 emissions without significantly
increase travel time. To this end, the system was built on a three-component architecture: Vehicle Model,
Road Model, and Traffic Model. The Vehicle Model collects and updates the individual information of
the vehicle, as well as periodically sharing them with the Road Model. The shared information comes
from Global Positioning System (GPS), accelerometer, and gyroscope embedded in vehicles. The Road
Model is hosted in the RSUs which are along the roads and connected by the Traffic Model. The Traffic
Model is a central server containing the characteristics and road traffic conditions. Both Road Model
and Traffic Model communicate with vehicles through V2I communication. Each vehicle makes
periodic requests to the server about the road traffic condition and if the route is congested, the server
sends an alternate route.

In [10], the authors introduced Next Road Rerouting (NRR). The main objective is to assist drivers
in choosing the next most appropriate road, to circumvent the congested areas. The proposed system
operates in two-stage traffic management: (i) estimates only the next road for the vehicle to bypass the
congested point, and thereafter, (ii) uses the vehicle’s GPS to calculate the remainder of the alternate
route to the destination. The reason for this approach lies in the fact that the calculation of the next
road is less costly than the recalculation of the end-to-end route. The NRR mechanism needs a central
server (Traffic Operation Center) to gather all the traffic information. In this case, NRR assumes that
there is a traffic light at each intersection, to collect such information. Once the congestion is detected,
the server notifies the nearest traffic light of the congested area. Thereafter, the traffic light notifies the
next most appropriate road for vehicles. After that, the rest of the route is calculated with the aid of
the vehicles’ GPS.

Pan et al. [12], the authors proposed a hybrid urban vehicle management system named DIVERT.
It is considered a hybrid approach because it requires a central server to collect information from
vehicles and detect vehicular traffic condition. The alternative routes calculation is carried out
by the vehicles in a collaborative manner. In the DIVERT system, the central server operates
as a coordinator that receives the vehicle information (speed, location, and direction) via V2I
communication. Through this information, the server can detect congested locations and inform
the vehicles that are driving to such locations. In this system, the responsibility for the alternative
routes calculation is given to the vehicles. Once they need to compute an alternative route, it must take
into account the chosen route of the neighboring vehicles, i.e., a collaborative routing decision applies.
It is important to notice that in the DIVERT system, the broadcast suppression mechanism was not
applied during the message dissemination process. This can lead to a broadcast storm problem.

2.3. Infrastructure-Less Urban Mobility Management

In [14], the authors proposed a distributed system for vehicular traffic management,
named FASTER. In the proposed system the congestion detection and alternative route calculation
do not need any infrastructure. To achieve its goal, FASTER needs to previously segment the entire
scenario into multiple sub-regions (or districts). This is performed to aggregate traffic information.
Each district has an area equal to 1-hop communication. Each vehicle periodically collects and transmits
information, such as average speed and route identification to everyone within its transmission range.
The vehicle closest to the center of the district is selected to initiate the dissemination of traffic
information aggregated to other vehicles. During the dissemination process, a broadcast suppression
mechanism is applied to avoid network overhead. In such a system, the calculation of the alternative
route is performed selfishly, based on the probabilistic k-shortest path.

Kasprzok et al. [23] presented a decentralized congestion avoidance strategy for connected
vehicles. Their approach measures the vehicular traffic congestion level of a road segment using the
amount of wireless network traffic generated by vehicle-to-vehicle communications. The vehicle
computes an alternative path employing a modified k-shortest path algorithm whose paths are
weighted using a Logit model [24] upon the congestion is detected.
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In [25], the authors proposed a fully distributed congestion avoidance system which detects traffic
congestion and reroutes vehicles to minimize their travel time. The proposed system does not require
global traffic information to detect congested areas but rather only the local information about the
traffic conditions. According to local traffic information, each vehicle computes the traffic condition in
its current road segment. Hereafter, if necessary, it requests information about the alternative paths of
the surrounding vehicles to make the choice that will minimize its remaining travel time. This system
relies on sending information request messages whenever a vehicle desires or needs to know more
about upcoming roads and traffic. This strategy was applied to reduce network overhead and increase
system scalability.

On one hand, infrastructure-based vehicular traffic management systems have been most explored,
due to the difficult task of selecting the most relevant vehicles within a subset for detecting congestion
and calculating alternative routes. On the other hand, distributed systems cannot ignore such a task.
For this, for example, in work of [14] is previously segmented the entire scenario and the most central
vehicle is chosen. However, this choice is not always the most appropriate. To overcome this gap,
a novel dynamic clustering approach based on SNA along with received signal strength was proposed.
In addition, most of the known solutions suggest alternative routes in a selfish fashion. To overcome
this gap, a novel collaborative rerouting approach based on social interaction and virtual temporal
community was proposed.

3. Towards the Design of SOPHIA

SOPHIA is a distributed system for urban mobility management based on a collaborative approach
in vehicular social networks. The aim of such a system is to improve the vehicular flow on the roads
without compromising the system’s scalability. Taking this into consideration, the system is composed
of four components: (i) vehicular crowdsensing; (ii) dynamic clustering approach; (iii) knowledge
extraction and distribution; and (iv) collaborative route-planning. Details of each component are
presented below.

3.1. Vehicular Crowdsensing

The mobile crowdsensing paradigm (MCS) employs the concept of ubiquitous computing in the
collection and sharing of data [26,27]. In other words, this paradigm aims to incentivize participants to
efficiently and effectively contribute to a common goal to use context-related sensing data from their
mobile devices in solving a specific problem in a collaborative manner [28]. In addition, by aggregating
the crowd-generated local data, it is possible to create cooperative local awareness. Such awareness can
lead to improvements in numerous large-scale applications, such as air pollution monitoring and traffic
congestion warnings. Since vehicles are equipped with wireless communication technologies along
with smart sensors in VSNs, that enables the vehicle crowdsensing (VCS) paradigm [27]. This paradigm,
in turn, enables the monitoring of dynamic and large-scale phenomena [29].

The motivation for using VCS lies in the fact that the participants of the networks can solve
problems in cooperation. For example, VSN participants can jointly improve urban mobility by sharing
data collected about traffic conditions. In doing so, VSNs’ systems can aggregate the collected data and
extract knowledge (local awareness) about real-time traffic conditions. Thus, the knowledge extracted
can assist in urban mobility management.

In this work, the VCS paradigm was applied to create the local traffic awareness, in which vehicles
cooperate to sense and collect urban data requested by the system. For this purpose, it was assumed
that each vehicle (n) periodically generates a packet (bn) containing some data collected from onboard
units, such as current speed (sn), location (pn), time stamp (tn), and vehicle score (vescn ), as described in
Equation (1). The vescn will be used in the dynamic clustering mechanism which will be explained later.

bn = (pn, sn, vescn , tn) (1)
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3.2. Dynamic Clustering Approach

One of the great challenges in highly dynamic networks is to select the most appropriate
nodes within a subset to perform a given task [16]. A straight solution for this problem is to
employ an infrastructural approach, for example, RSUs and/or a central server, [10–12], thus
eliminating the difficult task of selecting vehicles. To overcome this challenge in an infrastructure-less
approach, the proposed work adopts a dynamic clustering technique. Unlike the FASTER [14] system,
SOPHIA does not need to segment scenario to select the most appropriate vehicle that will perform
the congestion detection task.

Network clustering is the division of a graph into a set of subgraphs, called clusters. Each cluster
elects one node leader (CH), according to some rules, that works as a local management entity.
In addition to that, CMs are all nodes from CH’s 1-hop neighbor set. A 1-hop cluster is a clustering
such that every node in the network can communicate in 1-hop with the CH of the cluster it
belongs to. The cluster is composed of two levels of communications [20]. The first one is intra-cluster
communication, where CMs can directly communicate with its CH or nearby CMs within the
same cluster. The second one is when a CH communicates with nearby CHs or roadside infrastructures,
which is known as inter-cluster communication.

As a general procedure in cluster formation, the nodes participating in, or seeking to join in one,
will typically carry out some or all the steps described below [16]:

1. Neighborhood discovery: a node generally announces its existence to its neighbors through a
periodic short-message transmission, while simultaneously gathering the same message from
its neighbors;

2. CH selection: after collecting data about the local environment, each node will compute, based
on some rule, to find the most appropriate node to act as its CH. In this step, the node can also
consider its suitability to be a CH;

3. Affiliation: the node will contact the neighbor node that was chosen as the appropriate CH and
seek to become a CM of that cluster;

4. Announcement: the most appropriate CH may then send an announcement message to its
neighbors to initiate the process of cluster formation;

5. Maintenance: this step is divided into two parts:

(a) As a CH: if a CH loses all connections with its CMs, the cluster is assumed to be dead,
and the procedure is started again (Step 1). On the other hand, a cluster can merge with
another one and become a larger cluster. In this case, the node will execute the Step 5(b);

(b) As a CM: the node periodically evaluates the link to its CH. If the link fails it will return
to Step 1. If the node receives an affiliation request from a node that does not belong to
its group, it can start the CH selection again (Step 2) to choose the next appropriate CH.

In SOPHIA, each cluster is associated with a set of vehicles called CMs and a representative of CH,
as shown in Figure 1. The vehicles depicted by the labels A and B represent the CHs of the clusters 1
and 2, respectively, while the other vehicles portray the CMs. The vehicle label as 1 will be used in an
example afterward. The CH is the vehicle temporarily selected with the responsibility of gathering and
forwarding the information on behalf of the CMs. The vehicle with the highest score (vescn ) is selected
as CH, the details of the scoring computation are given below. By means of the dynamic clustering
approach, it is possible to overcome the following challenges: (i) selecting the most appropriate vehicle
in a distributed manner; (ii) minimizing the network overhead; (iii) increasing the scalability of the
system; and (iv) facilitating the data flow within network. It is noteworthy that in congested areas,
fatally, there will be vehicles in multiple clusters and this particularity was explored to improve the
flow of data on the network, otherwise, the information flow would be interrupted.
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Figure 1. Example of clustering, the labels A and B represent the temporary CHs of groups 1 and 2.

Our dynamic clustering algorithm procedure only takes into consideration Steps 1 and 2 of
the aforementioned general procedure. The idea here is to explore the social properties of nodes to
select the CH to improve data flow in the network. This improvement can be done by a path with
minimal interference in communication along with the social properties of nodes. To achieve this goal,
each vehicle autonomously calculates its score according to neighborhood communication links.
This calculation performed together with a received signal strength indicator, as shown in Equation (2).

vescn = ∑
Mn(i,j) 6=0,i<j

1
M2

n[1−Mn]i,j
+ (PL(d0) + 10α log(

d
d0

) + Ψσsingle), d ≥ d0 (2)

For simplicity’s sake, initially, let us focus on only the first half of the equation. This part
of the equation describes an egocentric network metric. One advantage of this metric is that it
applies only the locally available topology information. More specifically, the egocentric betweenness
metric (EBM) [30,31]. EBM aims to indicate the relevance of the node for the information flow continuity
in the network. It is known that an adjacency matrix, (Mk×k), can represent the intercommunication
links between the nodes, in which k is the number of 1-hop communication. The EBM calculation is
given by the inverse sum of the equation (M2

n[1−Mn]i,j), where Mn denotes the adjacency matrix of
the vehicle n, M2

n represents the geodesic distance between the pairs of vehicles i and j, and finally,
1 in the expression corresponds to a matrix with all elements equal to 1.

The second half of the equation refers to the received signal strength indicator. The log-distance
path-loss [32] was the model applied. d is the Euclidean distance between vehicles, d0 is the distance
from a reference point to the emitter, PL(d0) is the power of the reference point to the sender,
α describes the path-loss exponent (it varies according to the environment), and Ψσsingle is a variable
that describes the attenuation of the communication signal. In brief, the power of the received signal
fades logarithmically with the distance between the vehicles.

For each change in the local topology, the vehicle’s score should be updated. Algorithm 1
describes the procedure of our proposed dynamic clustering. For every change in the network
topology (Lines 2 to 4), which corresponds to Step 1 of the general procedure in cluster formation, the
vehicle score is recalculated (Line 7), which matches the Step 2. Thereafter, the value is added to vescn

and transmitted in the subsequent beacon package (bn), Line 10.
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Algorithm 1: Vehicle score calculation.
inputs : N = {n1, n2, ..., nn} the set of all vehicles that are currently within the transmission range
output :Vehicle score (vescn )

1 foreach Ni, i ∈ [1, n] do
2 if isNew(ni) then
3 M = updateAdjacencyMatrix(ni);
4 end
5 end
6 if wasUpdate(M) then
7 vescn = computeVehicleScore(Equation(2));
8 end
9 updateAllBeaconData();

10 sendBeacon();

3.3. Knowledge Extraction and Distribution

To better understand the details of the aggregation functions for knowledge extraction, a formal
definition of the road network topology is required.

Definition 1. The road topology can be represented through a directed graph G = (V, E, W), where V
corresponds to a set of intersections (v), whereas E denotes to a set of segments (e, where e ∈ E ⊆ V2).
In addition to that, a set of weight (ρ ∈W) is attributed to each road segment. This weight indicates the level
of service and will be explained in detail later on. Finally, a route between two points A and B, r(A, B), is a
sequence of intersections (v1, . . . , vn) such that v1 = A, vn = B and all pairs of consecutive intersections are
connected by a road segment, i.e., for all i = 1, . . . , n− 1 exists (vi, vi+1) ∈ E.

To extract the knowledge about the vehicular traffic condition, two different aggregation
functions are required, i.e., (i) aggregation of beacons received from the neighborhood—local
awareness (Equation (3)) and (ii) aggregation of local awareness—knowledge of the traffic
condition (Equation (4)).

Λ := (E′, Υ, Ω) (3)

where E′ = {e1, . . . , en} | E′ ∈ E(G). The parameters Υ and Ω are {t1, . . . , tn} and {vm1 , . . . , vmn}, i.e.,
the current time and average speed of each element of E′.

Λr,s := ∑
1≤r,s≤n

σΛr + (1− σ)Λs ,

{
tr > ts

sr , ss 6= 0
(4)

where σ is the weighting factor. The purpose of such a factor is to consider the most current information
in the information aggregation process (tr > ts).

Considering again the example of the Figure 1, assuming that the vehicle 1 starts the process
of extracting local awareness. After finishing the initial process, it forwards the local awareness to
the CH (vehicle A) of its cluster. After that, the CH performs the aggregation of the beacons of its
neighborhood (Equation (3)) and the aggregate information received from the vehicle 1 (Equation (4)).
The result of that will be forward to the subsequent CH (vehicle B) until it reaches the vehicle with the
highest score. In this example, the vehicle B has the highest score temporarily, therefore, such a vehicle
is responsible for computing the weight of each road segment according to Equation (5).

ρk = vavg
agrk × (1− vlim

ek
)−1 | ∀ek ∈ E′ (5)
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where the parameters vavg
agrk and vlim

ek
correspond the average aggregate speed and the maximum speed

allowed on the road, k, respectively.
After this step, the vehicle B classifies the weight of the road segment according to the level of

service (LOS) according to Table 1. This table shows the traffic classification for each service level
according to the weight (ρ) calculated by Equation (5). Each service level depicts a traffic condition.
If during the classification process, the LOS D, E, and F are found, a message containing identification
about these roads segment is generated and the dissemination process begins. To avoid the problem of
the broadcast storm during the data dissemination process, the concept of preference zone (ZoP) [33]
was applied. ZoP is a region within the transmission range, whose vehicles within it are most proper
to continue the dissemination process. The ZoP concept is based on the delay, this means that the
vehicles within it have lower delay (or priority) than the vehicles outside it. Thus, vehicles outside the
ZoP receive redundant messages and cancel the scheduled transmission.

Table 1. Level of service and traffic classification [34].

Level of Service Traffic Classification pi

A Free flow (0.0∼0.33]
B Reasonably free flow (0.33∼0.4]
C Stable flow (0.4∼0.5]
D Approaching unstable flow (0.5∼0.7]
E Unstable flow (0.7∼0.9]
F Forced or breakdown flow (0.9∼1.0]

3.4. Collaborative Route-Planning

As mentioned earlier, VSNs involve social interactions (also known as social object
relationship—SOR [35]) within a temporal virtual community of vehicles based on common interests
or mutual goals [4,6]. The common interests applied in this work is the alternative routes chosen
neighborhood vehicles. Inspired by this idea, it was proposed the collaborative route-planning
employing two SNC concepts, such as temporal virtual community and social interactions, as shown
in Figure 2. Therefore, all vehicles within the temporal virtual community area are considered
participants of such a community. The social interactions between community participants are realized
through V2V communication and the information of common interest exchanged are the alternative
routes chosen. It is worth mentioning that the area covered by the temporal virtual community
depends on the circumference radius defined by the application, and the location of the congestion
point was defined the central point of the community area. The main goal in this step is to route
vehicles away from the current congestion point, without creating secondary congestion points.

For the sake of clarity, Algorithm 2 is introduced, which describes the procedure of collaborative
route-planning. During the route-planning phase, vehicles within the temporal virtual community
and closest to the congestion point have priority in choosing an alternative route, i.e., they have
the shortest waiting time in choosing an alternative route. This time is directly proportional to
the distance between vehicle and congestion point (Line 1). Before calculating an alternative route,
the vehicle computes the road popularity (pop) according to the alternative routes chosen by the
neighborhood vehicles (Line 3).The pop indicates the most popular roads chosen by vehicles to bypass
congestion areas. Thus, road popularity (v) is given by Equation (6).

popv = numv × (
len(v)

lin(v)
) (6)

where numv, len(v) and lin(v) represent number of vehicles, road length, and lines on the road
surface, respectively.
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Figure 2. Temporal virtual community and social interactions area in VSNs.

Algorithm 2: Collaborative route-planning for vehicles that are moving toward the
congested road.

inputs : msg—warning message, which contains the coordinates of the traffic congestion
point (sx, sy). (rx, ry) depicts the coordinates of the receiving vehicle

output : r - the alternative route chosen

1 waitingTime(ms) =
√
(sx − rx)2 + (sy − ry)2;

2 if hasExpired(waitingTime) then
3 pop = computeRoadsPopularity(Equation(6));
4 r = leastPopularRoute ‖ r∗ ‖;
5 end
6 send(r);

Now suppose that r∗(pcur, dest) denotes the set of all possible alternative routes from the current
position (pcur) to the destination (dest). Thus, the choice of an alternative route is given by Equation (7),
in other words, the vehicle selects the least popular route (r) among all possible routes (Line 4)
and shares it through social interaction (Line 6). In this way, reducing the possibility of generating
congestion points in another place in the near future.

r = leastPopularRoute
r∈R(pcur ,dest)

‖ r∗ ‖ (7)

4. Performance Evaluation and Results

This section shows the performance assessment of SOPHIA and compares it to FASTER [14],
DIVERT [12], and EcoTrec [11] systems. In addition, the EcoTrec system is going to be used as a
baseline due to its simplicity. It is worth mentioning that SOPHIA’s aim is to make the most of
public roads without compromising the system’s scalability. For a better presentation, this section was
divided into four subsections: simulation setup is shown in Section 4.1 and the results and analysis
of simulations were divided into: control channel assessment—Section 4.2, scalability assessment—
Section 4.3, and traffic management assessment—Section 4.4.
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4.1. Simulation Setup

The performance evaluation of SOPHIA was conducted through simulations using the
Veins 4.5—Vehicular Network Simulations (http://veins.car2x.org/). This is an open source
framework which integrates two simulators well-known tools, i.e., OMNet++ 5.0—Network
Simulation Framework (https://omnetpp.org/) and SUMO 0.29.0—Simulation of Urban MObility
(http://sumo.sourceforge.net/). In addition, the Handbook Emission Factors for Road Transport
(HBEFA, http://www.sumo.dlr.de/wiki/Models/Emissions/HBEFA-based) was used to measure
CO2 emissions. It is worth remembering that HBEFA is natively implemented in SUMO.

The TAPASCologne project (http://kolntrace.project.citi-lab.fr/) of the Institute of Transportation
Systems at the German Aerospace Center (ITS-DLR) was adopted in the simulation process. This project
aims to reproduce the vehicle traffic, with the highest possible level of realism, in a large-scale scenario
of the city of Köln, Germany, see Figure 3.

[Meters]

[M
et
er
s]

Figure 3. Road network of Cologne used in the simulation.

We chose the dataset that contains traffic data traces from 6:00 a.m. to 8:00 a.m., representing
more than 250,000 vehicle routes. However, only a central submap was chosen for the simulation
experiments because it displays a higher incidence of traffic congestion (LOS D, E, and F—heat bar), as
shown in Figure 3. With the traffic demand of the submap, it was constructed a new dataset (containing
more than 46,000 vehicles routes) and divided into five different vehicle insertion rates, namely 20%,
40%, 60%, 80%, and 100%. For example, 20% means that only 20% of the total vehicles are inserted in
the scenario for the simulation experiments, and so on. All the experimental results of this work were
conducted with a confidence interval of 95%. Table 2 summarizes the simulation parameter settings.

Table 2. Simulation parameters settings.

Parameter Value

Vehicle Insertion Rate 20% to 100%
MAC layer IEEE 802.11p PHY
Bandwidth 10 MHz
NIC Bitrate 6 Mbps

NIC TX power 20 mW
NIC Sensitivity −82 dBm

Transmission range 287 m
Beacon transmission rate 1 Hz

Confidence interval 95%

http://veins.car2x.org/
https://omnetpp.org/
http://sumo.sourceforge.net/
http://www.sumo.dlr.de/wiki/Models/Emissions/HBEFA-based
http://kolntrace.project.citi-lab.fr/
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Additionally, nine metrics were used to evaluate the performance of the SOPHIA system. These
metrics were divided into three perspectives (or assessments), which are described in detail below.

1. Control channel assessment

• Channel busy ratio: indicates the interference level. This is estimated as the fraction
of the time in which the channel is identified as busy due to packet collisions or
successful transmission;

2. Scalability assessment

• Overhead: measures the total amount of transmitted messages by the vehicles;
• Latency: demonstrates the time spent to deliver the messages to the vehicles;
• Packet loss: shows the total number of lost packets during the message transmissions;
• Coverage: indicates the percentage of messages successfully delivered.

3. Traffic management assessment

• Travel time: indicates the average travel time in relation to all vehicles;
• Travel Time Index: measures the level of urban traffic congestion [36]. This index is

calculated by the ratio of the total travel time to the free-flow travel time;
• Congestion time loss: describes the average time spent on congestion;
• CO2 emission: gives the average CO2 emission of all vehicles.

4.2. Control Channel Assessment

As all the solutions apply the beaconing approach in their solution to achieve the goals, and the
channel used for that purpose is the control channel. Then, the assessment of the control channel is
necessary to analyze. In the experiments, the beacon transmission rate of 1Hz was set to all systems.

Figure 4 shows the performance result of the control channel in relation to the vehicle insertion rate.
The table (top of figure) depicts the channel busy ratio while the bar chart (bottom) depicts the gain
over EcoTrec. As expected, the channel busy ratio increases with the vehicle insertion rate because
of the number of vehicles in the neighborhood increases, thereby raising the competition for control
channel access. Among all the analyzed solutions, SOPHIA has the lowest average channel busy ratio
for all vehicle insertion rates. The reason for this behavior is due to the system’s ability to perform
better vehicular traffic management. In a few words, SOPHIA distributes vehicular traffic to make the
most of the availability of public roads. As a result, the homogeneous distribution of vehicular traffic
on the roads reduces the consume on the control channel bandwidth. In addition, we can observe that
SOPHIA, FASTER, and DIVERT have a gain, on average, of 19%, 15%, and 11.17%, respectively, over
EcoTrec in all vehicle insertion rate. It is important to notice that, on average, SOPHIA had 27% better
result in comparison to FASTER and a 70% improvement in comparison to DIVERT.
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20 40 60 80 100
SOPHIA 0.1539 0.2069 0.2553 0.3111 0.3623
FASTER 0.1631 0.218 0.2686 0.325 0.3763
DIVERT 0.1699 0.2317 0.2827 0.3369 0.3884
EcoTrec 0.2115 0.2589 0.3068 0.3651 0.4319

20 40 60 80 100
Vehicle Insertion Rate [%]

0

10

20

30

40

27.26

20.06
16.81

14.79 16.12

22.89

15.78
12.46 11.00 12.88

19.70

10.50
7.86 7.74

10.06

Channel Busy Ratio

Gain over EcoTrec [%]

SOPHIA FASTER DIVERT

Figure 4. Control Channel Assessment.

4.3. Scalability Assessment

This subsection analyzes the scalability results of SOPHIA against the FASTER, DIVERT,
and EcoTrec systems in terms of overhead, packet loss, latency, and coverage metrics. The results
are displayed in Figure 5. Each sub-figure is composed of two bar charts. The top one represents
the numerical value of the assessed metric and the bottom one represents the gain with respect to
EcoTrec. Figure 5a displays the performance results of all the evaluated systems according to the
overhead metric. Both systems, EcoTrec and DIVERT, constantly need to exchange messages between
the vehicles and the central server to reach their purposes. Due to this strategy, it is possible to observe
that both have a higher average rate of messages transmitted in relation to FASTER and SOPHIA.
Another determining factor for this high rate, for both systems, is the absence of a broadcast suppression
mechanism during the message distribution process. By examining carefully, it is possible to notice that
DIVERT has a slightly higher transmission rate than EcoTrec. This is because DIVERT, in addition to
communicating with the central server, implements a collaborative routing mechanism when choosing
an alternative route. It is worth mentioning that such a mechanism contributes to vehicular traffic
management and this contribution will be discussed in the following subsection. Both FASTER and
SOPHIA apply vehicle selection techniques for the extraction of knowledge. FASTER segments the
scenario into several sub-regions and in each of them one vehicle for knowledge extraction is selected.
However, SOPHIA applies a dynamic clustering approach to select the most appropriate vehicle.
The dynamic clustering is more appropriate, in this case, as it does not need to segment the scenario for
the vehicle selection. It should also be mentioned that both FASTER and SOPHIA applies a mechanism
to deal with the broadcast storm problem. Additionally, both have similar performance and they can
drastically reduce the total amount of transmitted messages, more than 91% decrease in comparison
with DIVERT and EcoTrec, as shown in Figure 5a (bottom).

Figure 5b shows the number of packet loss according to the vehicle insertion rate. Since it is
known that EcoTrec and DIVERT systems have the highest network overhead compared to FASTER
and SOPHIA (Figure 5a), it is expected that both also have similar results in relation to the packet
loss metric. This expectation is confirmed in Figure 5b. It shows that solutions that have higher
transmission rates also have a greater amount of packet loss. Since FASTER and SOPHIA have the
lowest network overhead among its competitors, consequently they also have lower packet loss rates.
Another factor that causes the rising of packet loss is the intermittent connection between vehicles.
According to Figure 5b (bottom), the percentage reduction achieved for FASTER and SOPHIA is
around 70.8% and 74.2% for all vehicle insertion rates, compared to EcoTrec and DIVERT, respectively.

Another metric evaluated is the transmission latency in relation to the vehicle insertion rate,
Figure 5c. In both, the infrastructural and distributed approaches, as vehicle insertion rates increase the
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latency also increases, as expected. This is because raising the number of vehicles in the simulations
increases the network overhead caused by the exchange of messages. However, FASTER and SOPHIA
have the lowest latencies compared to other systems analyzed. Comparing numerically, the mean
delay of the SOPHIA, FASTER, DIVERT, and EcoTrec systems are around 0.48, 0.42, 1.93, and 1.87 s,
respectively. Comparing SOPHIA and FASTER systems between each other, we can observe that
the FASTER system has a slight reduction in latency. This is because the knowledge is extracted in
several sub-regions, thus delivering it more rapidly to vehicles. Both SOPHIA and FASTER have
an average reduction above 74% compared to the EcoTrec and DIVERT systems, as shown in the
Figure 5c (bottom).
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(a) Total of transmitted messages.
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Figure 5. Scalability Assessment.

Figure 5d shows the coverage achieved as a function of vehicle insertion rate. EcoTrec has a
coverage slightly larger than DIVERT because it has a lower network overhead when compared with
its opponent, as depicted in Figure 5a,b. On the other hand, since FASTER and SOPHIA have lower
network overloads, compared with their competitors, the knowledge extracted can reach a larger
number of vehicles at all analyzed insertion rates. FASTER presents a slightly higher result compared
to SOPHIA, because knowledge is extracted in several sub-regions, thus reaching coverage of 1.8%



Sensors 2019, 19, 3558 15 of 18

higher, see Figure 5d (bottom). There are two observations that should be considered about the
development of the SOPHIA system in relation to FASTER that segments the entire scenario previously
are: (i) slightly lower coverage and (ii) slightly higher latency. However, these two observations do not
compromise the system’s scalability.

4.4. Traffic Management Assessment

This section analyzes the urban mobility management of the SOPHIA system as a function of
travel time, travel time index, CO2 emission, and congestion time loss. The results are displayed in
Figure 6. Each sub-figure is also composed of two bar charts. The top one represents the numerical
value of the metric assessed and the bottom one represents the gain with respect to EcoTrec.
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(a) Average travel time.
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Figure 6. Traffic Management Assessment.

Figure 6a shows the result of the average travel time for all insertion rates. From the figure, it is
possible to notice that the higher the vehicle insertion rate, the longer the average travel time for all
solutions analyzed. This behavior is expected since, at high rates the roads become denser, leading to
the occurrence of congestion. Among all solutions analyzed, EcoTrec system has the longest average
travel time, around 22 min. It is known that the choice of an alternative route within it is given by
the path that emits the lowest CO2 rate until the trip destination. Differently, the FASTER system
selects a selfish route based on the probabilistic k-shortest path. This strategy has a gain of 6.71%
agains EcoTrec. Another approach is taken by the DIVERT system, where the vehicles calculate an
alternative route collaboratively. In this approach, it is possible to notice a reduction in the mean travel
time around 15% and 8.3%, compared to EcoTrec and FASTER, respectively. The SOPHIA system
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applies collaborative routing, such as DIVERT. Even so, it overcomes DIVERT in this metric, due to
the low network overhead. As mentioned before, DIVERT has a higher overhead, so many messages
arrive corrupted at the recipients. Analyzing numerically, SOPHIA achieves a mean reduction of 6.46%,
14.75%, and 21.46% compared to DIVERT, FASTER, and EcoTrec, respectively, see Figure 6a (bottom).

Figure 6b indicates the level of traffic congestion as a function of vehicle insertion rate.
It is observed that the results of this metric show a behavior similar to the average travel time
metric (Figure 6a). This is because both metrics take into account the average travel time.
As discussed earlier, the DIVERT system has a slightly higher overhead on the network compared
to EcoTrec, as there are exchanges of information on alternative routes chosen by neighboring vehicles.
However, this slightly higher overhead causes DIVERT to outpace its competitors (except SOPHIA) in
travel time, trip time index, and two other metrics (congestion time loss and CO2 emission) that will
be explained in more detail below.

Another important metric to be evaluated is the time lost in congestion, Figure 6c. All evaluated
systems apply some vehicle rerouting mechanism after congestion detection. It is important
to emphasize that systems that implement collaborative routing outperform the selfish one.
This can be observed in Figure 6a,b. To demonstrate them numerically, DIVERT achieves
a time reduction of approximately 7.87% and 15.14% over FASTER and EcoTrec, respectively.
While SOPHIA reaches approximately 21.92% and 29.18% compared to FASTER and EcoTrec,
respectively, see Figure 6c (bottom). As mentioned earlier, the SOPHIA system has a lower overhead
compared to DIVERT. Therefore, this fact contributes to the information reaching the largest number
of participants thus contributing to improving traffic management efficiency.

Figure 6d demonstrates the CO2 emission in relation to the vehicle insertion rate. As expected,
EcoTrec presents the highest CO2 emission at all the analyzed insertion rates, since it has the highest
travel time index (Figure 6b) and also the highest time lost in congestion (Figure 6c). By analyzing
this metric, it is possible to observe that the most efficient systems, in the urban mobility management,
present a smaller amount of CO2 emission. In this case, the most efficient ones are DIVERT
and SOPHIA. This happens because both implement collaborative routing. Analyzing numerically,
the SOPHIA, DIVERT and FASTER presented a mean reduction in CO2 emission, against to EcoTrec,
of approximately 25.92%, 13.15%, and 5.9%, respectively, see Figure 6d (bottom).

5. Conclusions

There is an increasing need for efficient urban mobility management systems to improve vehicular
traffic management. To meet this demand, the proposed SOPHIA system is a distributed system of
urban mobility management based on a collaborative approach in vehicular social networks. The main
advantage of SOPHIA is the combined use of two approaches of VSNs, such as social network concepts
and analysis. A metric of social network analysis, more specifically, the egocentric betweenness
metric was employed to compute the vehicle ranking. In addition, two social network concepts
were employed for the collaborative route-planning, i.e., social interaction and temporal virtual
community. Experimental results showed that the difficulty of selecting the most appropriate vehicle,
in highly dynamic networks, can be overcome by the proposed dynamic clustering approach. The main
advantage of this approach is to rely only on local knowledge of the network topology to achieve
its goals. Furthermore, it was proven that SOPHIA was able to do that without jeopardizing
system scalability. Another observation presented is that collaborative decision making is more
efficient than selfish in alternative routes planning. In summary, the distributed solutions analyzed
tend to be more scalable than the infrastructures and those that use the collaborative routing strategy
are most efficient in urban mobility management.

As future work, it is intended to include the driver’s mobility patterns and user preferences in the
SOPHIA system for the alternative routes planning, to personalize the alternative routes according to
the driver preferences.
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