654 research outputs found

    Data Assimilation Based on Sequential Monte Carlo Methods for Dynamic Data Driven Simulation

    Get PDF
    Simulation models are widely used for studying and predicting dynamic behaviors of complex systems. Inaccurate simulation results are often inevitable due to imperfect model and inaccurate inputs. With the advances of sensor technology, it is possible to collect large amount of real time observation data from real systems during simulations. This gives rise to a new paradigm of Dynamic Data Driven Simulation (DDDS) where a simulation system dynamically assimilates real time observation data into a running model to improve simulation results. Data assimilation for DDDS is a challenging task because sophisticated simulation models often have: 1) nonlinear non-Gaussian behavior 2) non-analytical expressions of involved probability density functions 3) high dimensional state space 4) high computation cost. Due to these properties, most existing data assimilation methods fail to effectively support data assimilation for DDDS in one way or another. This work develops algorithms and software to perform data assimilation for dynamic data driven simulation through non-parametric statistic inference based on sequential Monte Carlo (SMC) methods (also called particle filters). A bootstrap particle filter based data assimilation framework is firstly developed, where the proposal distribution is constructed from simulation models and statistical cores of noises. The bootstrap particle filter-based framework is relatively easy to implement. However, it is ineffective when the uncertainty of simulation models is much larger than the observation model (i.e. peaked likelihood) or when rare events happen. To improve the effectiveness of data assimilation, a new data assimilation framework, named as the SenSim framework, is then proposed, which has a more advanced proposal distribution that uses knowledge from both simulation models and sensor readings. Both the bootstrap particle filter-based framework and the SenSim framework are applied and evaluated in two case studies: wildfire spread simulation, and lane-based traffic simulation. Experimental results demonstrate the effectiveness of the proposed data assimilation methods. A software package is also created to encapsulate the different components of SMC methods for supporting data assimilation of general simulation models

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Data Assimilation for Spatial Temporal Simulations Using Localized Particle Filtering

    Get PDF
    As sensor data becomes more and more available, there is an increasing interest in assimilating real time sensor data into spatial temporal simulations to achieve more accurate simulation or prediction results. Particle Filters (PFs), also known as Sequential Monte Carlo methods, hold great promise in this area as they use Bayesian inference and stochastic sampling techniques to recursively estimate the states of dynamic systems from some given observations. However, PFs face major challenges to work effectively for complex spatial temporal simulations due to the high dimensional state space of the simulation models, which typically cover large areas and have a large number of spatially dependent state variables. As the state space dimension increases, the number of particles must increase exponentially in order to converge to the true system state. The purpose of this dissertation work is to develop localized particle filtering to support PFs-based data assimilation for large-scale spatial temporal simulations. We develop a spatially dependent particle-filtering framework that breaks the system state and observation data into sub-regions and then carries out localized particle filtering based on these spatial regions. The developed framework exploits the spatial locality property of system state and observation data, and employs the divide-and-conquer principle to reduce state dimension and data complexity. Within this framework, we propose a two-level automated spatial partitioning method to provide optimized and balanced spatial partitions with less boundary sensors. We also consider different types of data to effectively support data assimilation for spatial temporal simulations. These data include both hard data, which are measurements from physical devices, and soft data, which are information from messages, reports, and social network. The developed framework and methods are applied to large-scale wildfire spread simulations and achieved improved results. Furthermore, we compare the proposed framework to existing particle filtering based data assimilation frameworks and evaluate the performance for each of them

    Unmanned-Aircraft-System-Assisted Early Wildfire Detection with Air Quality Sensors †

    Get PDF
    Numerous Hectares of Land Are Destroyed by Wildfires Every Year, Causing Harm to the Environment, the Economy, and the Ecology. More Than Fifty Million Acres Have Burned in Several States as a Result of Recent Forest Fires in the Western United States and Australia. According to Scientific Predictions, as the Climate Warms and Dries, Wildfires Will Become More Intense and Frequent, as Well as More Dangerous. These Unavoidable Catastrophes Emphasize How Important Early Wildfire Detection and Prevention Are. the Energy Management System Described in This Paper Uses an Unmanned Aircraft System (UAS) with Air Quality Sensors (AQSs) to Monitor Spot Fires Before They Spread. the Goal Was to Develop an Efficient Autonomous Patrolling System that Detects Early Wildfires While Maximizing the Battery Life of the UAS to Cover Broad Areas. the UAS Will Send Real-Time Data (Sensor Readings, Thermal Imaging, Etc.) to a Nearby Base Station (BS) When a Wildfire is Discovered. an Optimization Model Was Developed to Minimize the Total Amount of Energy Used by the UAS While Maintaining the Required Levels of Data Quality. Finally, the Simulations Showed the Performance of the Proposed Solution under Different Stability Conditions and for Different Minimum Data Rate Types

    Multitemporal mapping of post-fire land cover using multiplatform PRISMA hyperspectral and Sentinel-UAV multispectral data: Insights from case studies in Portugal and Italy

    Get PDF
    Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table

    Innovative Techniques for the Retrieval of Earth’s Surface and Atmosphere Geophysical Parameters: Spaceborne Infrared/Microwave Combined Analyses

    Get PDF
    With the advent of the first satellites for Earth Observation: Landsat-1 in July 1972 and ERS-1 in May 1991, the discipline of environmental remote sensing has become, over time, increasingly fundamental for the study of phenomena characterizing the planet Earth. The goal of environmental remote sensing is to perform detailed analyses and to monitor the temporal evolution of different physical phenomena, exploiting the mechanisms of interaction between the objects that are present in an observed scene and the electromagnetic radiation detected by sensors, placed at a distance from the scene, operating at different frequencies. The analyzed physical phenomena are those related to climate change, weather forecasts, global ocean circulation, greenhouse gas profiling, earthquakes, volcanic eruptions, soil subsidence, and the effects of rapid urbanization processes. Generally, remote sensing sensors are of two primary types: active and passive. Active sensors use their own source of electromagnetic radiation to illuminate and analyze an area of interest. An active sensor emits radiation in the direction of the area to be investigated and then detects and measures the radiation that is backscattered from the objects contained in that area. Passive sensors, on the other hand, detect natural electromagnetic radiation (e.g., from the Sun in the visible band and the Earth in the infrared and microwave bands) emitted or reflected by the object contained in the observed scene. The scientific community has dedicated many resources to developing techniques to estimate, study and analyze Earth’s geophysical parameters. These techniques differ for active and passive sensors because they depend strictly on the type of the measured physical quantity. In my P.h.D. work, inversion techniques for estimating Earth’s surface and atmosphere geophysical parameters will be addressed, emphasizing methods based on machine learning (ML). In particular, the study of cloud microphysics and the characterization of Earth’s surface changes phenomenon are the critical points of this work

    NEW, MULTI-SCALE APPROACHES TO CHARACTERIZE PATTERNS IN VEGETATION, FUELS, AND WILDFIRE

    Get PDF
    Pattern and scale are key to understanding ecological processes. My dissertation research aims for novel quantification of vegetation, fuel, and wildfire patterns at multiple scales and to leverage these data for insights into fire processes. Core to this motivation is the 3-dimensional (3-D) characterization of forest properties from light detection and ranging (LiDAR) and structure-from-motion (SfM) photogrammetry. Analytical methods for extracting useable information currently lag the ability to collect such 3-D data. The chapters that follow focus on this limitation blending interests in machine learning and data science, remote sensing, wildland fuels (vegetation), and wildfire. In Chapter 2, forest canopy structure is characterized from multiple landscapes using LiDAR data and a novel data-driven framework to identify and compare structural classes. Motivations for this chapter include the desire to systematically assess forest structure from landscape to global scales and increase the utility of data collected by government agencies for landscape restoration planning. Chapter 3 endeavors to link 3-D canopy fuels attributes to conventional optical remote sensing data with the goal of extending the reach of laser measurements to the entire western US while exploring geographic differences in LiDAR-Landsat relationships. Development of predictive models and resulting datasets increase accuracy and spatial variation over currently used canopy fuel datasets. Chapters 4 and 5 characterize fire and fuel variability using unmanned aerial systems (UAS) and quantify trends in the influence of fuel patterns on fire processes

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens
    • …
    corecore