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Pattern and scale are key to understanding ecological processes. My dissertation research 

aims for novel quantification of vegetation, fuel, and wildfire patterns at multiple scales and to 

leverage these data for insights into fire processes. Core to this motivation is the 3-dimensional 

(3-D) characterization of forest properties from light detection and ranging (LiDAR) and 

structure-from-motion (SfM) photogrammetry. Analytical methods for extracting useable 

information currently lag the ability to collect such 3-D data. The chapters that follow focus on 

this limitation blending interests in machine learning and data science, remote sensing, wildland 

fuels (vegetation), and wildfire. In Chapter 2, forest canopy structure is characterized from 

multiple landscapes using LiDAR data and a novel data-driven framework to identify and 

compare structural classes. Motivations for this chapter include the desire to systematically 

assess forest structure from landscape to global scales and increase the utility of data collected by 

government agencies for landscape restoration planning. Chapter 3 endeavors to link 3-D canopy 

fuels attributes to conventional optical remote sensing data with the goal of extending the reach 

of laser measurements to the entire western US while exploring geographic differences in 

LiDAR-Landsat relationships. Development of predictive models and resulting datasets increase 

accuracy and spatial variation over currently used canopy fuel datasets. Chapters 4 and 5 

characterize fire and fuel variability using unmanned aerial systems (UAS) and quantify trends in 

the influence of fuel patterns on fire processes. 
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Chapter 1. Introduction 

 

Pattern and scale are key to understanding ecological processes (Levin 1992). My 

dissertation research aims for novel quantification of vegetation, fuel, and wildfire patterns at 

multiple scales and to leverage these data for insights into fire processes. Core to this motivation 

is the 3-dimensional (3-D) characterization of forest properties from light detection and ranging 

(LiDAR) and structure-from-motion (SfM) photogrammetry. Analytical methods for extracting 

useable information currently lag the ability to collect such 3-D data. The dissertation focuses on 

this limitation, blending interests in machine learning and data science, remote sensing, wildland 

fuels (vegetation), and wildfire. In Chapter 2, forest canopy structure is characterized from 

multiple landscapes using LiDAR data and a novel data-driven framework to identify and 

compare structural classes. Motivations for this chapter include the desire to systematically assess 

forest structure from landscape to global scales and increase the utility of data collected by 

government agencies for landscape restoration planning. Chapter 3 endeavors to link 3-D canopy 

fuels attributes to conventional optical remote sensing data with the goal of extending the reach of 

laser measurements to the entire western US while exploring geographic differences in LiDAR-

Landsat relationships. Development of predictive models and resulting datasets increase accuracy 

and spatial variation over currently used canopy fuel datasets. Chapters 4 and 5 characterize fire 

and fuel variability using unmanned aerial systems (UAS) and quantify trends in the influence of 

fuel patterns on fire processes. 

The common threads relating each chapter are the collection and analysis of 3-D point 

cloud representations of vegetation using new technology and novel analytical methods with the 

final chapter relating the representations to wildfire processes. At the time of this writing, Chapter 

2 has been published in the journal Remote Sensing of Environment (Moran et al. 2018). Chapter 

4 has been published in the journal Fire (Moran et al. 2019). Chapter 3 will be submitted for peer-

review, and Chapter 5 is complete but needs collection of additional data across a broader range 

of environmental conditions before is submission for publication is warranted. For this reason, 

Chapter 5 can be thought of as ongoing and future research.  

For the remainder of this introductory chapter, abstracts for each chapter are presented. 

The following chapters are each stand-alone in terms of having introduction, methods, results, 

discussion, conclusions, and literature cited sections. 

 

Chapter 2: A data-driven framework to identify and compare forest structure classes using 

LiDAR 

 

As LiDAR datasets increase in availability and spatial extent, demand is growing for analytical 

frameworks that allow for robust comparison and interpretation among ecosystems. We utilize 

data-driven classification in a hierarchical design to estimate forest structure classes with 

parsimony, flexibility, and consistency as priorities. We use an a priori selection of six input 

features derived from small-footprint  (32 cm), high density (17 returns/m2) airborne LiDAR: four 
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L-moments to describe the vertical distribution of canopy structure, canopy density as a measure 

of vegetation coverage, and standard deviation of canopy density to characterize within-cell 

horizontal variability.  We identify 14 statistically-separated meta-classes characterizing six 

ecoregions over 168,117 ha in Montana, USA. Meta-classes follow four general vertical shapes: 

tall and continuous, short-single strata, tall-single strata, and broken strata over short strata. 

Structure classes that dominate locally but are rare overall are also identified. The approach 

outlined here allows for intuitive comparison and assessment of forest structure from any number 

of landscapes and forest types without need for field training data.  

 

Chapter 3: Mapping forest canopy fuels over the western US with LiDAR-Landsat relationships 

 

Complete coverage of forest canopy fuels spatial data over the western US is necessary for pre-

fire, during-fire, and post-fire decision-making in land management. LiDAR provides accurate, 

comprehensive characterization of canopy fuels but lacks complete spatial coverage. Landsat 

satellite imagery provides complete coverage but lacks the data for direct canopy fuel 

characterizations. Here, a collection of LiDAR datasets are fused with Landsat-derived spectral 

indices to map the canopy fuels necessary for wildfire predictions: canopy cover (CC), canopy 

height (CH), canopy base height (CBH), and canopy bulk density (CBD). Spatial variance in the 

LiDAR-Landsat relationships is identified. The spectral index response shapes are largely 

consistent among landscapes but shifted in mean response values. A single, gradient boosting 

machine (GBM) model using data from all datasets is able to characterize these relationships with 

only small reductions in model performance (mean 0.04 reduction in R²) compared to local GBM 

models trained on individual LiDAR datasets. Model evaluation on completely independent 

LiDAR datasets shows the global model outperforming local models (mean 0.24 increase in R²) 

indicating improved model generality. The global GBM model drastically improves performance 

over existing LANDFIRE canopy fuels data while testing on independent datasets (R² ranging 

from 0.15 to 0.61 vs. -3.94 to -0.374). The ability to automatically update canopy fuels following 

wildfire disturbance is also tested, and results show intuitive reductions in fuels for high and 

moderate fire severity classes and little to no change for unburned to low fire severity classes.  

 

Chapter 4: Deriving fire behavior metrics from UAS imagery 

 

The emergence of affordable unmanned aerial systems (UAS) creates new opportunities to study 

fire behavior and ecosystem pattern—process relationships. A rotor-wing UAS hovering above a 

fire provides a static, scalable sensing platform that can characterize terrain, vegetation, and fire 

coincidently. Here, we present methods for collecting consistent time-series of fire rate of spread 

(RoS) and direction in complex fire behavior using UAS-borne NIR and Thermal IR cameras. We 

also develop a technique to determine appropriate analytical units to improve statistical analysis 

of fire-environment interactions. Using a hybrid temperature-gradient threshold approach with 

data from two prescribed fires in dry conifer forests, the methods characterize complex 
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interactions of observed heading, flanking, and backing fires accurately. RoS ranged from 0–2.7 

m/s. RoS distributions were all heavy-tailed and positively-skewed with area-weighted mean 

spread rates of 0.013-0.404 m/s. Predictably, the RoS was highest along the primary vectors of 

fire travel (heading fire) and lower along the flanks. Mean spread direction did not necessarily 

follow the predominant head fire direction. Spatial aggregation of RoS produced analytical units 

that averaged 3.1–35.4% of the original pixel count, highlighting the large amount of replicated 

data and the strong influence of spread rate on unit size. 

 

Chapter 5: Deriving 3-D fuel variability from UAS imagery and characterizing trends in fuel 

pattern-fire Process spatial associations 

 

Characterizing fuel pattern and fire process relationships remains a research priority but is 

hampered by a lack of datasets with coincident fuel and fire measurements. Here, unmanned 

aerial systems (UAS) are used to characterize 3-D fuel variability using structure-from-motion at 

moderate extents (100 m2). Using 196-340 images collected per 100 m2 plot and with custom 

UAS flight patterns and manual identification of reference tiepoints and scale constraints, surface 

fuels are characterized in exquisite detail (mean 235,816,443 3-D points/plot). Conversion of 

point cloud data to gradient metrics produces a direct measurement of fuel variability without 

supporting field data. In conjunction with coincident fire rate of spread (RoS) observations, trends 

in spatial associations between fuel and fire patterns are quantified. A bivariate measure of spatial 

association, the L-index, shows decreasing spatial co-patterning between fuel variability and fire 

RoS as RoS increases. Collection of additional fire and fuel data in different fuel types and RoS 

ranges will further elucidate trends in fuel and fire spatial associations.  
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Chapter 2. A data-driven framework to identify and compare forest structure classes using LiDAR 

 

1) Introduction 

Forest structure is both a driver and product of ecosystem processes (Spies 1998, Shugart 

et al. 2010). A variety of connections exist between structure and ecosystem traits including 

biodiversity, habitat, previous and future disturbance, successional trajectories, water interception, 

gas exchange, carbon storage, and productivity (Ellsworth and Reich 1993, Spies 1998, Franklin 

et al. 2002, Parker et al. 2004, Pregitzer and Euskirchen 2004, Bergen et al. 2009,  Culbert et al. 

2013, Johnstone et al. 2016). Characterizing forest structure and its variation remains a priority 

for research and land management engaged in conservation, restoration, and the ecological 

sciences. 

Light detection and ranging (LiDAR) and related analyses have been used to quantify and 

classify forest structure for a variety of applications (Lim et al. 2003, Vierling et al. 2008, Kane et 

al. 2010a, Miura and Jones 2010, Smart et al. 2012, Simonson et al. 2014, Listopad et al. 2015). 

LiDAR can characterize the three-dimensional arrangement of the overstory canopy, which 

correlates to biomass and other structural metrics (Lefsky et al. 2002).  In its raw form, a modern 

LiDAR point cloud contains an abundance of height measurements that are often summarized on 

raster grids to reduce data volumes and facilitate development of predictive models (Yu et al. 

2010, Wulder et al. 2013).  These so-called area-based approaches (ABAs) effectively predict 

forest attributes and classify forest structure (e.g., Lefsky et al. 1999, Næsset 2002, Zimble et al. 

2003, Frazer et al. 2005, Lefsky et al. 2005, Coops et al. 2007, Falkowski et al. 2009, Leiterer et 

al. 2015).   

While applicable for a particular study area, ABA techniques tend to produce features and 

models with unique properties, which often have low generality (Lefsky et al. 2005, Bouvier et al. 

2015). Differing LiDAR sensor configurations and acquisition parameters, vegetation types, 

structure attributes, and field collection methods contribute to site-specific results.  In addition, 

the widespread use of arbitrary canopy height strata and percentiles provides no consistency, 

thereby confusing potential comparisons, and may reduce the ability to accurately characterize 

structural attributes (Chen 2013, Gorgens et al. 2017).  Field-sampling usually provides the 

training and test data for classification but adds considerable expense and rarely captures the 

range of variability over large spatial extents (Hawbaker et al. 2009, Maltamo et al. 2011).   

The latter limitation in particular has led to development of data-driven approaches 

utilizing unsupervised or semi-supervised classification methods (Kane et al. 2010a, Jones et al. 

2012, Leiterer et al. 2015, Vauhkonen and Imponen 2016). The defining characteristic 

distinguishing a data-driven approach from a standard ABA is that classes are not predefined and 

thus depend on the characteristics of the input datasets (e.g., Zhang et al. 2011, Dupey et al. 2013, 

Kane et al. 2013, Dickinson et al. 2014). Derived classes are centered on statistical groupings 

(Halkidi et al. 2001) and may not match existing forest structure classifications. Depending on the 
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features used in a classification, interpretation of identified classes may also suffer from many of 

the same aforementioned ABA limitations (e.g., Leiterer et al. 2015).  

Much of the literature focusing on data-driven approaches is concerned with selection of 

variables that best characterize and differentiate forest structure types. Kane et al. (2010b) 

identified a subset of LiDAR variables related to both field measurements and forest structure 

complexity including 95th percentile height, mean height, height variance, canopy density, and 

rumple. Similarly, Jones et al. (2012) showed that certain structure classes (e.g., young forest 

versus mature forest) could only be discriminated using specific metrics — in this case the 

ordinary statistical moment kurtosis.  The most frequently cited variables in the literature 

consistently fall into the general categories of forest height, height variability, and canopy cover, 

corresponding to the classes noted by Lefsky et al. (2005). More than a decade later, the literature 

has repeatedly revealed the utility of variables in these categories for characterizing a variety of 

related forest structure classifications based on forest age (Jones et al. 2012), complexity (Kane et 

al. 2010a, b), number of strata (Whitehurst et al. 2013), tree size (Kane et al. 2013, North et al. 

2017), successional stage (Falkowski et al. 2009), and forest type (Zhang et al. 2011) among 

others (Dupey et al. 2013, Dickinson et al. 2014, Niemi and Vauhkonen 2016).  The diversity of 

variables combined with the diversity of classification schemes adds complexity to forest 

characterization but still provides strong underpinnings for development of more broadly 

applicable approaches.  

As LiDAR datasets increase in availability and spatial extent, demand is growing for 

unifying analytical frameworks that allow for comparison and interpretation among and between 

landscapes with and without supporting field data. At a minimum, such approaches could support 

optimization of forest surveys by systematically describing structure variability, guiding field data 

collection, and determining optimal plot dimensions (Frazer et al. 2011).  A major challenge is the 

selection of a small set of LiDAR variables that not only can discriminate relevant structure 

classes but can be interpreted by forestry professionals without supporting field data (Kane et al. 

2010b).  A second challenge is development of classification methods to facilitate natural 

groupings of structure attributes and common interpretations of them across landscapes. These 

challenges provide the basis for our research, which focuses on methods to: (1) discriminate 

natural groupings of forest structure (classes) within landscapes using a few, interpretable LiDAR 

metrics without the need for field training data, and (2)  aggregate structure classes across 

landscapes using a consistent set of features.  Our approach follows Frazier et al. (2011) who 

suggest partitioning LiDAR into a few unique statistical classes each with relatively homogenous 

properties. It addresses the sensitivity of statistical classes to area and data parameters noted by 

Jones et al. (2012) by aggregating multiple sub-classifications of individual landscapes to create 

‘meta-classes’. Leiterer et al. (2015) suggests this type of spatially stratified classification to 

maintain localized distinctness when comparing diverse forest types. 

 We use machine learning to produce structure classes. Specifically, a combination of 

Random Forests (RF, Breiman 2001) to estimate dissimilarity and predict classes and hierarchical 
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clustering to group based on dissimilarity (Murtagh and Legendre 2014). Hierarchical clustering 

has successfully grouped forest structure into ecologically-relevant classes based on statistical 

distinctiveness (Latham et al. 1998, Kane et al. 2010a, Kane et al. 2013). While machine learning 

techniques excel at identifying complex, non-linear feature relationships (Lawrence and Moran 

2015), their inherent nature and the propensity to use a large number of input features contribute 

to ‘black-box’ classification.  A priori feature selection, with priority given to interpretable 

metrics and low dimensionality, allows us to exploit the power of machine learning and minimize 

the black-box effect. 

The L-moments provide the basis of our a priori feature selection to characterize the 

vertical domain of forest structure. L-moments have strong statistical underpinnings and provide a 

low-dimensional solution to the complex problem of distribution characterization (Hosking 1990). 

Multiple studies have utilized L-moments for characterizing canopy structure with LiDAR data 

(Frazer et al. 2011, Ozdemir and Donoghue 2013, Valbuena et al. 2017). They are order statistics 

and can be used to calculate features analogous to standard deviation, skewness, and kurtosis (i.e. 

basic descriptors of theoretical distributions). Being linearly combined, they are less affected by 

outliers and variation in sample sizes than standard product moments (Hosking 1992). 

Furthermore, the L-moment ratios have finite theoretical bounds allowing for comparisons of 

shape with different location and scale (Hosking 1990). Valbuena et al. (2017) utilized two L-

moment ratios describing LiDAR distributions, the L-coefficient of variation (L-CV) and L-

skewness, to classify key structural features of boreal forest canopies without having to 

statistically link field data to LiDAR metrics. Similarly, L-CV, L-skewness, and L-kurtosis 

explained unique and significant structure variability in simulated forest stands (Frazer et al.  

2011). Hosking and Wallis (1997) provide an in-depth treatment of L-moments and their 

formulation. 

Alone, the L-moments are not sufficient to fully characterize forest structure because, like 

many LiDAR point cloud derivatives, they do not account explicitly for the abundance and 

horizontal distribution of canopy structure within individual cells (Popescu and Zhao 2008, Zhao 

et al. 2009, Bouvier et al. 2015, Leiterer et al. 2015). Canopy density (defined here as the number 

of first returns above 2 meters height divided by all first returns) provides a useful conception of 

the amount of vegetation coverage within a cell (Lefsky et al. 2002, Maltamo et al. 2016), but 

lacks information on the within-cell, horizontal variability of canopy material.  Sub-cell metrics 

that characterize variability in canopy density or canopy density within different height strata 

have been used to describe the horizontal distribution of vegetation and as predictors of related 

field metrics (Lim and Treitz 2004, Hudak et al. 2006).  

The primary objective of our work is to develop a consistent, interpretable, and flexible 

framework to identify and compare predominant forest canopy structures across diverse 

landscapes without the need for field training data.  We rely on a priori selection of input 

features, using the four statistical L-moments, canopy density, and a sub-grid metric called 

horizontal standard deviation of canopy density (HSD of CD, defined in section 2.3).  We take an 
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unsupervised classification approach to estimate forest structure classes. RF identifies natural 

groupings within LiDAR datasets, hierarchical clustering groups based on estimated dissimilarity, 

a second iteration of RF classifies landscapes using cluster labels, and equivalence testing 

aggregates landscape-specific classes to meta-classes.  We use 168,117 ha of high-density, small-

footprint LiDAR data spanning six ecoregions in the Northern Rocky Mountains, USA to develop 

and test our methods. 

2) Methods 

2.1) Study Area 

The study area is in the southwest portion of the four million ha Crown of the Continent 

Ecosystem (CCE) in the Northern Rocky Mountains, USA.  In 2014-2015, the US Forest Service 

acquired airborne laser scanning (ALS) data for the southwestern portion of the CCE. In 2015, the 

University of Montana added two additional acquisitions on its properties in the CCE. The extent 

of these datasets forms the boundary of our study area. The study area was divided into 17 distinct 

landscapes delineated by LiDAR acquisition dates, ecoregion, and total area (Fig. 1, Table 1). The 

landscapes cover 168,117 ha in a range of ecosystems typical of the Northern Rocky Mountains 

from dry, low elevation Pinus ponderosa forests to higher elevation, mixed-conifer forest types. 

Six Omernik Level IV ecoregions are present in the study area (Fig.1; Omernik and Griffith 

2014). Elevations range from 1038-2544 m, annual precipitation from 405-1479 mm, and mean 

annual temperature from 1.3-6.4o C (Table 1; PRISM 2012). Pseudotsuga menziesii is the most 

common tree, coexisting with abundant Larix occidentalis, Pinus contorta, Pinus ponderosa, 

Abies lasiocarpa, and Picea engelmannii (Barber et al. 2012). Stands of Pinus albicaulis are also 

present at a lower abundance.  

The study area has been subjected to extensive timber harvesting and fire exclusion 

practices. Fire cessation in the 20th century pushed portions of these ecoregions outside historical 

norms with consequent changes in forest structure (Schoennagel et al. 2004). Other land-uses 

such as logging, grazing, agriculture, and human habitation have had strong impacts on forest 

structure, particularly in the Stillwater-Swan Wooded Valley, depicted in landscapes 1-5 where a 

checkerboard of different land ownership and use is conspicuous.  
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Figure 1. Map of Omernik Level IV ecoregions and delineated landscapes (numbered) 

comprising the study area (Omernik and Griffith 2014). Ecoregions shown in the legend are only 

those that are within the study area. 

Table 1. Description of landscapes in this study. Ranges and means are spatially derived from 

1981-2010 climatic normals (PRISM 2012). 

Landscape  

Area 

(ha) Elevation (m) 

Mean Annual 

Temperature (0C) 

Mean Annual 

Precipitation (mm) 

# Name  

Min-

Max Mean 

Min-

Max Mean Min-Max Mean 

1 North 

Meadow 

7458 1038-

2305 

1226 2.6-6.4 5.8 528-1469 679 

2 North 

Hemlock 

7774 1089-

1965 

1364 2.9-6.1 5.3 516-1269 796 

3 South 

Meadow 

7332 1068-

1993 

1156 4.4-6.4 6.0 495-1206 558 

4 South 

Hemlock 

8546 1155-

1984 

1375 2.5-5.8 5.2 526-1359 763 

5 Buck 9956 1170- 1347 3.9-5.4 5.0 539-1167 670 
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2.2) LiDAR Data  

 Quantum Spatial (https://quantumspatial.com) conducted three discrete return, small-

footprint LiDAR collection campaigns in 2014 and 2015 (Table 2). Acquisition parameters were 

designed for optimal vegetation characterization: low flight altitude, high pulse rate, maximum 

angle of 15o off nadir, multiple returns recorded per pulse, 50% side-lap (100% overlap) of 

flightlines, and opposing flight line directions. These parameters intended to reduce laser 

shadowing, reduce edge-of-scan error, and prevent data gaps. Fundamental vertical accuracy 

averaged 0.06 m (n=963) for all acquisitions. First-return point density averaged 17.74 points/m2 

for the 2014 acquisitions and 19.82 points/m2 for 2015 acquisitions. 

1949 

6 Colt 9296 1237-

2449 

1552 1.3-5.1 4.3 613-1479 888 

7 Rice 9661 1218-

2103 

1522 2.8-5.1 4.5 485-1133 672 

8 Lower Trail 11531 1283-

2450 

1613 1.3-5.1 4.2 466-1309 750 

9 Monture 12006 1238-

2200 

1609 2.9-4.9 4.2 418-1078 645 

10 North 

Lubrecht 

13105 1080-

2149 

1426 2.6-6.1 5.2 411-742 507 

11 South 

Lubrecht 

13386 1157-

2145 

1525 2.9-6.1 5.1 405-747 552 

12 West 

Stonewall 

8654 1334-

2544 

1798 1.3-4.8 3.7 452-1277 766 

13 East 

Stonewall 

7523 1451-

2520 

1837 1.3-4.6 3.4 520-1244 761 

14 West Dalton 9306 1325-

2258 

1770 2.3-4.8 4.1 423-811 608 

15 East Dalton 10016 1403-

2330 

1793 2.1-4.8 3.8 477-768 627 

16 Stemple 12226 1433-

2312 

1806 2.1-4.5 3.6 487-782 607 

17 Blackfoot 10341 1536-

2203 

1773 2.8-4.3 3.6 496-690 570 

 

All: 

 

168117 

1038-

2544 

1558 1.3-6.4 4.5 405-1479 672 

https://quantumspatial.com/
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Sensor and acquisition parameters were nearly identical between campaigns (Table 2). 

However, acquisition dates were in the fall for 2014 and early summer in 2015. Major differences 

between acquisitions due to phenology in the canopy were unlikely as evergreen, coniferous trees 

dominate, and the foliage of deciduous conifer Larix occidentalis was still attached in all 

acquisitions. We did not include any points below two meters above ground (except in canopy 

density calculations) to focus on forest canopy structure and to reduce any differences due to 

acquisition dates in the sub-canopy. Gorgens et al. (2017) found exclusion of points close to the 

ground strengthened relationships between most LiDAR metrics and stand volume estimates.  

Table 2. Description of LiDAR parameters. 

Acquisition 

Parameters 1st Campaign 2nd Campaign 

Dates Sep 24, 14 -

Nov 1, 14 

Jun 22, 15 -    

Jun 30, 15 

Landscapes 

Scanned 

1-9, 14-17 10-13, ~6% of 

9 

Laser Sensor Leica ALS70 Leica ALS70 

Altitude 1450m 1400-1450m 

Laser Pulse Rate 180-193 kHz 180-193 kHz 

Field of View 30o 30o 

Laser Pulse 

Diameter 

32 cm 32 cm 

Mean First Return 

Pulse Density 

17.72 

points/m2 

19.82  

points/m2 

Maximum Returns Up to 

4/pulse 

Up to 5/pulse 

Fundamental 

Vertical Accuracy 

0.06 m  0.07 m  

 

LiDAR processing to attribute point location, filter erroneous points, perform calibration 

corrections, and classify ground points with error estimations was completed by Quantum Spatial 

using a proprietary workflow including TerraScan, TerraMatch, and TerraModeler (versions 14 

and 15). A digital terrain model (DTM) was derived from a triangulated irregular network using 

the mean elevation at a 1 m scale. Each LiDAR point’s orthometric elevation was differenced 

from the underlying DTM to normalize to height above ground.  
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2.3) Feature Selection  

We utilized FUSION software (McGaughey 2015) to calculate the four L-moment 

features and canopy density (CD, Table 3). Horizontal standard deviation of canopy density (HSD 

of CD) was calculated with R software (raster package; Hijmans 2016). All features were 

calculated at a 20 m cell resolution. Cell size was informed by Leiterer et al.’s (2015) findings on 

the effects of spatial resolution on information loss in data-driven canopy structure classification.  

CD is defined as the percentage of first laser returns above 2 m. HSD of CD was derived by first 

splitting the original 20 x 20 m cell into 400 sub-cells (1 m2 each) and calculating the CD for each 

sub-cell. The standard deviation of all the sub-cell CDs was then attributed to the original 20 x 20 

m cell. In other words, HSD of CD is a focal statistic of neighboring sub-cells that correspond to 

the original cell resolution.  HSD of CD does not explicitly account for spatial arrangement, only 

variability, but Fig. 2 shows this metric can characterize important structural arrangements related 

to clump-gap patterns. The use of a 1 m2 sub-cell size to calculate HSD of CD requires dense 

LIDAR data, and more typical acquisitions with lower point densities may need larger sub-cell 

sizes.    
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Table 3. Description of input features for classification of canopy structure. 

Feature Name Units Theoretical 

Bounds 

Range 

Observed  

Description 

L-location (mean), λ1 Meters *  2.01 – 50.53 Mean height of all points in the sample distribution. 

L-scale, λ2 Meters ≥ 0  0.00 – 12.13 Measurement of scale or dispersion, similar to standard 

deviation but with less weight given to outliers (Hosking 

1990). 

L-skewness, τ3 Dimensionles

s (ratio) 

-1 to 1 -0.98 – 1.00 Ratio of 3rd L-moment to L-scale (λ3/ λ2). Analogous to 

skewness, a measure of distribution shape, high or low 

values indicate departure (or skew) from a symmetrical 

distribution (Hosking 1990). 

L-kurtosis, τ4 Dimensionles

s (ratio) 

1

4
(5τ3

2 − 1) 

to  1 

-0.25 – 1.00 Ratio of 4th L-moment to L-scale (λ4/ λ2). Analogous to 

kurtosis, a measure of distribution shape, but with less 

weight given to extremes. Generally, high values indicate 

heavy-tailed and/or peaked distributions with low values 

describing the inverse (Hosking 1990). 

Canopy Density, CD Percent 0 to 100 0.00 – 

100.00 

Ratio of first laser pulse returns above 2 meters to the total, 

similar to canopy cover (field measurement), and used in 

this study as a measure of the amount of vegetation 

coverage in the canopy.  

Horizontal Standard 

Deviation of Canopy 

Density, HSD of CD 

Percent 0 to 

(max(𝐶𝐷) −

min(𝐶𝐷))/2 

0.00 – 50.00 Standard deviation of 1 m2 canopy density within 20x20 m 

grid cells, used to describe dispersion/variability in the 

horizontal plane. 

*L-location is theoretically unconstrained, but the sample distribution must have a finite mean for L-moments to exist.  
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Figure 2. Examples of the spatial configuration of 1 m2 canopy density at varying levels of 

canopy density (CD) and horizontal standard deviation of canopy density (HSD of CD) at the 20 

m cell size (black boxes). ‘Low’ refers to CD’s from 24.8-27.9% and HSD of CD’s from 27-

27.9%. ‘Moderate’ ranges from 49.3-50.5% and 36.0-36.4%. ‘High’ ranges from 72.5-75.6% and 

41.9-45.1%. Examples taken from landscape 10.  

2.4) Plot Data 

Following Kane et al. (2010b)’s analysis, we tested whether selected features 

corresponded to field metrics of canopy structure. 113 plots were measured throughout the 

summer of 2015 coincident with the LiDAR campaigns. The field plots were located on a regular 

grid spaced at approximately 1 plot per 80 ha within landscapes 10, 11, and the southern portion 

of 9 (Fig 1). Trees greater than 12.7 cm diameter at breast height (DBH, mature trees) were 

measured on a 0.1 ha fixed-radius plot with total tree height, height of live crown, and DBH 

recorded for each individual. Tree saplings, defined as greater than 2 m in height and less than 

12.7 cm in DBH, were measured in an 81 m2 area at plot center and tallied within 2.5 cm DBH 

classes. A mean height was also estimated for each 2.5 cm DBH class. Seedlings were not 

considered as they were below the 2 m canopy threshold. We calculated Spearman’s rank 

correlation coefficient between our input features and plot metrics. We also classified each plot 

as a meta-class for validation outlined in section 2.7. 
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2.5) Structure Classification 

Our approach utilized Random Forests (RF) to find similarities between sample cells, 

hierarchical clustering to group based on estimated similarity, and then RF again to classify the 

landscape based on cluster labels.  The algorithm was applied individually to each landscape 

within the study area (Fig. 1). We took this approach to explore the variation in structure classes 

across a large geographical area while maintaining the ability to identify relatively rare structural 

classes with localized areas of high density. Every landscape had several structural classes 

defined, and we then grouped these classes into meta-classes through equivalence testing. 

Analysis was conducted using R statistical software (version 3.3) with the following packages: 

randomForest (model development; Liaw and Wiener 2015), raster (model prediction; Hijmans 

2016), cluster (hierarchical clustering; Maechler et al. 2016), maptree (tree pruning; White and 

Gramacy 2012), gstat (variogram modeling; Pebesma and Graeler 2016), and ggplot2 

(visualization; Wickham 2009).  

We first used RF in an unsupervised fashion to assess dissimilarity between samples. 

Many unsupervised methods, including hierarchical clustering used here, require a measure of 

dissimilarity or distance between samples. RF dissimilarity has been shown to naturally weigh 

feature contributions, to display non-parametric qualities including robustness to outliers and 

skewed distributions, and to allow features with different units and ranges (Breiman and Cutler 

2003, Shi and Horvath 2006, Seligson et al. 2005), all attributes important to a generalized 

framework. We randomly sampled 10% of each landscape for training data. We chose 10% as a 

reasonable number of training samples (mean of 22,772 training samples for each landscape) 

balanced by the computational costs to calculate the similarity matrices. Synthetic datasets were 

created by randomly sampling reference distributions of the input features. We then trained an 

RF model to distinguish observed data from the synthetic (two classes). A similarity (or 

proximity) matrix was developed by calculating the frequency real observations appear in the 

same terminal tree node divided by the total number of trees.  We grew five separate forests for 

each landscape, each containing 1000 trees, to minimize the random effects of the generated 

synthetic datasets (Shi and Horvath 2006). Three of the six variables were randomly selected as 

candidates for splitting at each tree node. Seventy-five percent of the training data was randomly 

selected for use in each individual tree. Minimum terminal node size was kept to 1% of the tree’s 

training dataset to reduce overfitting and increase stability of the similarity measure. We 

averaged the five resulting similarity matrices to calculate a final measure of dissimilarity 

(defined as one minus similarity).  

Hierarchical clustering then grouped training samples using dissimilarity as the metric for 

aggregation. It affords flexibility in cluster number if project objectives desire a different number 

of clusters. We used the Kelley-Gardner-Sutcliffe (KGS) penalty function to determine the 

appropriate number of clusters. The function seeks to minimize the within-cluster mean 

dissimilarity relative to the mean dissimilarity across all clusters with a penalty function for a 

larger number of clusters (Kelley et al. 1996).  
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Each training sample was assigned a cluster label and used to train a subsequent RF 

model in supervised mode for class prediction in each landscape. One forest was trained with 

10,000 trees for each landscape. Seventy-five percent of the training data was used for each tree, 

and minimum node size kept to 1% of the total sample size to prevent overfitting. The clusters 

found and the resulting RF model’s predictions were then considered ‘landscape classes’ from 

which ‘meta-classes’ could be derived. 

2.6) Aggregation to Meta-classes 

We aggregated landscape classes into meta-classes with pairwise equivalence testing. 

While meta-classes could be aggregated by any combination (or all) of the six input features, we 

chose to use the four that corresponded to the vertical distribution of vegetation — the L-

moments. Our reasoning was threefold-fold: (1) within-cell forest structure is traditionally 

defined in the vertical plane (Lefsky et al. 2002, Lim et al. 2003); (2) we desired to explore how 

many structural classes could have equivalent vertical distributions but different CD and HSD of 

CD values; (3) we wanted to offer an example of one of the multiple ways to aggregate in order 

to highlight the utility and flexibility of meta-class aggregation. In this way, landscape classes 

were derived using the comprehensive set of features to create base data from which a variety of 

meta-classes could be derived dependent on objectives. 

Each feature variable was first tested for spatial autocorrelation to maintain assumptions 

of independence in all subsequent statistical tests. We computed semivariograms for each feature 

in each landscape using a 20 m distance interval corresponding to cell size. We overlaid the 17 

subsequent response curves for each feature and also estimated the semivariogram range values. 

A 300 m separation of samples (15 cells), corresponding to 0.4 % of the total sample count, was 

determined optimal to maintain a reasonable expectation of no spatial dependence while also 

keeping an adequate number of samples for robust statistical testing. 

After sampling, each landscape class was compared to every other for each of the four 

vertical features (L-moments). Non-parametric Mann-Whitney tests for equivalence were used 

with a 20% symmetrical equivalence interval, the higher end of suggested interval values 

(Wellek 1996, Wellek 2010). The equivalence interval can be used as a tuning parameter for the 

number of meta-classes dependent on objectives (i.e. small or large number of resulting meta-

classes). Equivalence testing was completed in R using scripts from Wellek (2010). Landscape 

classes that were determined equivalent (p = 0.05) in all four vertical features were then 

aggregated to a meta-class. Pairwise comparison allows for the possibility that a landscape class 

would test equivalent to multiple meta-classes. For these cases, we attributed the landscape class 

to the meta-class that was closest in terms of the landscape class’s median values compared to 

the meta-class’s median values.  
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2.7) Validation 

We aimed to determine whether our method was suitable for its intended purpose, 

thereby following a broad definition of validation (Mayer and Butler 1993). A data-driven 

framework to identify and compare structure classes must be consistent, statistically robust, and 

relate to field-measured canopy structure. We correlated our input features to field-measured plot 

data (described in section 2.4). We then conducted a three-step validation to test: 

1) If the method showed consistency in derived landscape classes and predictions over 

similar landscapes. We overlapped the extent of two adjacent landscapes by 

approximately 10% of their respective area and assessed the predictions from each 

classification through inspection of a matching matrix and calculation of the Kappa 

coefficient (Cohen 1960). We chose landscapes 10 and 11 because they fell within 

Lubrecht Experimental Forest and have similar species composition, environmental 

gradients, and disturbance histories. Thus, we expected derived classes and predictions to 

be similar. We used table 2 from Vierra and Garrett (2005) as the means to interpret the 

Kappa coefficient’s value and selected a threshold of greater than 0.6 (‘substantial 

agreement’) to demonstrate consistency. 

2) If the meta-classes were statistically distinct in the native point cloud-derived probability 

density function (PDF). We used two-sample Kolmogorov-Smirnov (KS) tests to assess 

differences in both location and shape of the empirical distribution functions (Conover 

1971).   Fedrigo et al. (2018) showed that differences in vertical distributions of LiDAR 

points relate to ecologically relevant forest structure classes. If feature-driven 

classification leads to statistically differentiated vertical PDFs, then support is present for 

both the a priori feature selection and the method of meta-class aggregation. For each 

meta-class, we randomly selected up to 500 cells (after sampling to remove spatial 

autocorrelation), extracted the raw LiDAR points, and then fit PDFs to each cell’s points. 

We also created 2D kernel density heat maps of the vertical PDFs to visually assess their 

distinctiveness. 

3) If the meta-classes showed differences in field-sampled plot data. After extracting the 

LiDAR points in 0.1 ha circles equivalent to the field plot size and calculating input 

features using the same process described in section 2.3, we used the RF model from 

each respective landscape to predict the class for each plot and then assigned them to the 

respective meta-class. With a small sample size, we first used non-parametric Kruskal-

Wallis multiple comparison tests to ensure Mann-Whitney pairwise comparisons of 

LiDAR class and field metrics were robust. We also applied a Bonferroni correction to 

the significance level. 

For the plot data, we compared the metrics of mean tree height, the ratio of sapling to 

mature tree basal area, quadratic mean diameter of mature trees, and the ratio of live crown to 

total height of mature trees. While our classification considers more than these metrics, three-

dimensional structure is difficult to assess with traditional field sampling and would require more 
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extensive measurement than was available for this study. Also, we acknowledge that the field 

plots measured only a small portion of the meta-classes identified. These caveats highlight the 

difficulty in sampling forest structure variability over large areas and support the continued 

development of data-driven approaches.  

 3) Results 

 Each feature selected showed significant correlation to at least one field metric (Table 4).  

Canopy density showed the strongest correlation (0.78) to trees per hectare. L-scale showed the 

most significant correlations with six of eight comparisons being significant at p < 0.01. L-

kurtosis had the least number of significant correlations (1 of 8), which was the ratio of live 

crown to total height of live  

trees. 

 Table 4. Spearman rank correlation of LiDAR features and field metrics derived from plot data. 

Values shown are significant at p < 0.01. 

Seventy landscape classes were identified from the seventeen landscapes tested. Fifteen 

landscapes had four classes each, and two landscapes had five classes each. While predicting 

over each landscape, the mean RF out-of-bag error rate was 0.11 for all classes in all landscapes. 

The maximum error rate of 0.27 was for class 3 in landscape 7 while the minimum was 0.04 for 

class 1 also in landscape 7. Mean prediction error rates ranged from 0.08 to 0.15 for each 

landscape. The matching matrix showed ‘substantial’ agreement in class prediction for the 

overlapping areas of landscapes 10 and 11 with a Kappa coefficient of 0.72 (Table 5).  

 LiDAR Features 

Field Metrics 

Mean 

Height L-scale L-skewness L-kurtosis 

Canopy 

Density 

SD of 

Canopy 

Density 

Trees per ha  -0.37 -0.28  0.78  

Quad. Mean DBH 0.29 0.46   -0.48  

SD of DBH  0.40 0.35   0.28 

Mean Tree Height 0.63 0.52 -0.36   -0.26 

SD of Tree Height 0.34 0.60 0.2    

Sapling Mean 

Height -0.26     -0.33 

Sapling:Mature 

Basal Area Ratio  -0.49   0.38  

Live Crown:Total 

Height Ratio -0.40  0.43 -0.34 -0.50 0.18 
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Table 5. Matching matrix of class predictions in overlapped portions of landscapes 10 and 11 

(see Fig. 1 and Table 1 for landscape descriptions). 

 Landscape 10 Classes    

Landscape 11  1 2 3 4 

1 7368 3529 0 189 

2 88 8589 3016 50 

3 362 958 21246 9584 

4 2017 200 1596 27582 

Kappa Coefficient: 0.72    

 

After aggregation, fourteen meta-classes were derived from the seventy landscape classes 

(Table 6). The top nine classes represented 94.7% of the study area (Figs. 3 and 4). The bottom 

five were unique to a particular landscape (i.e. were not equivalent to any other landscape class), 

and each represented less than 1.5% of the total area (Fig. 5). KS tests showed significant 

differences (p < 0.01) in vertical distributions for every meta-class (Fig. 6). D-statistics of each 

pairwise KS test ranged from very similar (0.04) for meta-classes F and C to highly different 

(0.84) for meta-classes K and N. 
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Table 6. Description of meta-class median feature values and area coverage following 

aggregation of individual landscape classes. See Figs. 4 and 5 for graphical depiction of feature 

distributions for each meta-class. Mean height (L-location), L-scale, L-skewness, and L-kurtosis 

were used to aggregate to meta-classes. HSD of CD refers to horizontal standard deviation of 

canopy density. 

Meta-

Class 

Coverage of 

Study Area (%) 

Mean 

Height (m) 

L-scale 

(m) 

L-

skewness 

L-

kurtosis 

Canopy 

Density 

(%) 

HSD of 

CD (%) 

A 24.3 8.3 2.2 0.08 0.07 51.4 37.0 

B 16.7 10.1 2.6 0.03 0.05 53.6 37.3 

C 13.9 15.7 3.5 -0.09 0.07 70.4 34.7 

D 8.3 12.6 3.4 0.01 0.04 58.8 37.8 

E 7.4 6.4 1.6 0.14 0.07 33.6 36.2 

F 6.9 15.6 4.1 -0.03 0.05 64.9 37.1 

G 6.3 10.8 2.2 -0.10 0.07 77.0 29.7 

H 5.7 4.9 1.1 0.18 0.09 27.4 34.1 

I 5.2 13.9 3.2 -0.06 0.05 66.4 36.4 

J 1.5 14.2 2.5 -0.08 0.10 29.9 33.5 

K 1.2 15.8 2.6 -0.11 0.13 32.8 34.4 

L 1.0 15.7 5.0 0.03 0.02 64.0 38.4 

M 0.8 17.0 2.9 -0.19 0.13 42.3 33.2 

N 0.7 2.9 0.4 0.28 0.12 3.5 10.7 
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Figure 3. Heat map (2D kernel density) of vertical probability density derived from sample cells 

of the native LiDAR point clouds for the top nine meta-classes (letter designations) ordered by 

percent coverage (descending) in the study area. 
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Figure 4. Violin plots of the top nine meta-classes (letter designations) sorted by area covered 

(descending) showing the median (bold horizontal line) and interquartile ranges (white boxplots) 

along with probability density of values over the full range (gray area) of input features used to 

classify canopy structure. 
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Figure 5. Heat map (2D kernel density) of vertical probability density derived from native LiDAR point clouds for the five rare 

classes (letter designations) along with violin plots (bottom row) showing the median (bold horizontal line) and interquartile ranges 

(white boxplots) along with probability density of values over the full range (gray area) of input features used to classify canopy 

structure. 



 

 

 

Meta-

Class 

             A B C D E F G H I J K L M N 

A  0.14 0.46 0.30 0.18 0.44 0.21 0.36 0.41 0.48 0.56 0.41 0.59 0.60 

B   0.35 0.18 0.31 0.35 0.08 0.48 0.30 0.34 0.44 0.34 0.49 0.66 

C    0.17 0.58 0.04 0.36 0.70 0.10 0.16 0.11 0.08 0.14 0.77 

D     0.43 0.19 0.19 0.57 0.12 0.19 0.26 0.21 0.31 0.70 

E      0.54 0.39 0.18 0.54 0.62 0.68 0.50 0.69 0.48 

F       0.37 0.66 0.14 0.20 0.14 0.05 0.15 0.74 

G        0.55 0.29 0.31 0.42 0.36 0.49 0.72 

H         0.67 0.75 0.80 0.62 0.80 0.39 

I          0.08 0.15 0.18 0.20 0.76 

J           0.14 0.23 0.24 0.81 

K            0.18 0.10 0.84 

L             0.19 0.71 

M              0.82 

N               

 

Figure 6. Meta-class comparison matrix showing the D-statistic of the two-sample 

Kolmogorov-Smirnov (KS) test. Vertical probability distribution functions were derived 

from native point clouds randomly sampled from each meta-class. All tests rejected the null 

hypothesis of being drawn from the same distribution at p < 0.01.  

Visual interpretation of the meta-classes indicated four basic shapes of vertical 

distributions. Meta-classes H and N had nearly all their canopy material low to the ground 

with low mean height, low L-scale, high L-skewness, and high L-kurtosis (Table 6, Fig. 3). 

Meta-classes A and B distributions also had a majority of points low but with taller tails 

implying a sparse overstory. Meta-class A’s high sapling to mature tree basal area ratio 

(0.2, Table 7) found in the field data supports this interpretation. These classes were 

typified by moderate mean heights, moderate L-scale, positive L-skewness, and moderate 

L-kurtosis. Meta-classes C, F, and L exhibited tall, vertically dispersed structure with high 

mean heights, high L-scale, variable L-skewness, and low to moderate L-kurtosis. The last 

shape was depicted by meta-classes J, K, and M showing heavy overstory dominance with 

little understory (Fig. 5). These classes were typified by high mean heights, moderate L-

scale, high negative L-skewness, and high L-kurtosis. The remaining meta-classes fit 

between or were variations of these four basic shapes.     

Although not directly used to aggregate meta-classes, canopy density (CD) and 

horizontal standard deviation of canopy density (HSD of CD) showed several trends. 

Dominant meta-classes A and B’s CDs spanned nearly the entire range with median values 
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of 51.4% and 53.6%, respectively (Fig. 4). Meta-class G had the highest median CD (77%) 

paired with low HSD of CD (median 29.7%), suggestive of high uniformity in the 

horizontal plane. Meta-classes E and H had predominantly low CD (median 33.6% and 

27.4%) and high HSD of CD (median 36.2% and 34.1%), indicating more variability in the 

horizontal domain.  Meta-class N was distinct with low CD (3.5%) and relatively high HSD 

of CD (10.7%), suggesting sparse, variable vegetation in the horizontal plane.  In general, 

HSD of CD had a restricted range of variation in 12 of the 14 meta-classes with median 

values from 33.2-38.4%.  

 The field sampling data allowed comparison of two similar meta-classes, C and I, 

and the most prevalent, meta-class A. Significant differences (Bonferroni-corrected p = 

0.017) were found for at least one metric among all three classes (Table 7). Meta-class A 

had significantly lower mean tree height and a larger live crown ratio compared to meta-

classes C and I. The ratio of sapling to mature tree basal area was higher for meta-class A 

compared to I but not significantly different from C. Meta-classes C and I were the same 

for all metrics except the sapling to mature tree basal area ratio.  The Kruskal-Wallis test 

showed no difference among all three meta-classes for tree sapling mean height and mature 

tree quadratic mean diameter. Thus, no Mann-Whitney pairwise comparison tests were 

performed for those metrics. 

Table 7. Comparison of field sampled data for three meta-classes. Different superscript 

letters denote significant differences as determined first by Kruskal-Wallis multiple 

comparison tests followed by Mann-Whitney pairwise comparisons (Bonferroni-corrected 

significance level of p = 0.017).  

Meta-class 

Plots 

Sampled 

Mean Height 

of Mature 

Trees (m) 

Sapling:Matur

e Basal Area 

Ratio 

Quadratic 

Mean 

Diameter 

(cm) 

Live 

Crown 

Ratio 

Sapling 

Mean 

Height 

(m) 

A 32 15.3A 0.20A 30.2A 0.63A 4.6A 

C 20 17.3B 0.17A 26.9A 0.50B 5.9A 

I 32 18.2B 0.04B 30.7A 0.51B 4.7A 

 

4) Discussion 

Our primary objective was to create a parsimonious framework for determining 

predominant forest structure over large and diverse geographical areas without pre-defining 

classes. The approach is explicitly flexible at multiple levels through a hierarchical and 

stratified design recognizing that no rigid classification system will meet all potential 

objectives (O’Hara et al. 1996). The input features comprehensively describe vertical and 
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horizontal distribution of canopy material and are interpretable. RF-based similarity 

naturally weighs feature contributions (Shi and Horvath 2006, Seligson et al. 2005), and 

hierarchical clustering allows for selection of any number of landscape clusters. Meta-class 

aggregation can then use any combination of input features. 

Two important concerns for this approach are how well the structural variation is 

characterized and the ecological relevancy of identified classes. O’Hara et al. (1996) 

identified seven structural classes defined by successional traits characteristic of Inland 

Northwest forests. Falkowski et al. (2009) mapped these classes using a large suite of 

LiDAR metrics with a high degree of accuracy. Comparison of height profiles from these 

studies to the meta-classes derived here shows that our approach captures the range of 

variability, and the meta-classes can be intuitively grouped to the seven major successional 

types of O’Hara (1996).  

Structure development proceeds along a continuum forever in transition (Franklin et 

al. 2002). Binning this spectrum of variation can be as specific as necessary. We aggregated 

meta-classes on vertical distribution features, the L-moments, and identified fourteen 

significantly different structural meta-classes. However, evaluation of the height profiles 

and associated variance along with comparison of the distributions of input features shows 

overlap in several of the classes (Figs. 3, 4, and 5). A primary cause is the clustering by 

landscape design. A cell in two different landscapes with the same feature values could be 

aggregated to different meta-classes. For example, two adjacent landscapes cells near their 

connected edge are likely similar but may be on the fringes of their respective class centers. 

Each landscape class may then be aggregated into a different meta-class. Thus, the fringes 

of the meta-classes must be viewed as fuzzy with no discrete delineation. This example also 

highlights the existence of edge effects in the design with the potential for arriving at 

different landscape classes with different landscape delineations, inherent in any data-

driven approach. However, our analysis of landscapes 10 and 11 shows stability in the 

classes when run over similar landscapes (Table 5). A simple solution to reduce edge 

effects and have discrete delineations between classes is to derive feature thresholds from 

the meta-classes. From this perspective, our approach discovers and compares existing 

structure classes over broad areas, and thresholds could then be used to define discreet 

classes for mapping or other product-oriented applications.  

A key question, then, is why produce sub-classifications first and aggregate to meta-

classes instead of sampling all landscapes together and applying a single classification? Our 

primary objective was to develop a framework that can be applied at any scale, with any 

number of landscapes, and with consistency and flexibility. Sub-classification followed by 

aggregation ensures that each landscape has representation with an equal sampling rate 
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regardless of size, prioritizes identification and comparison of locally dominant, but 

globally rare structure classes, allows for meta-class aggregation with any combination of 

features, and facilitates geographic comparisons by giving each landscape its own set of 

classes derived from the same features and methods. Leiterer et al. (2015) suggested a 

spatially stratified clustering approach to maintain the distinctness of localized structure 

classes (i.e. locally dominant, but globally rare classes). We envision the development of a 

database of classified landscapes that is built incrementally over time as new LiDAR 

datasets become available without having to reclassify previous landscapes.  Additionally, 

the flexibility inherent in meta-class aggregation is amenable to diverse or transient 

conservation and ecological objectives. 

The selection of features was driven by the project design goal of consistent and 

parsimonious characterization of LiDAR point distributions.  Feature selection based on 

search algorithms or optimization criteria such as Akaike information criterion (AIC) will 

likely choose different features when presented different datasets, especially when a large 

number of features and/or models are evaluated. For this reason (and others described 

above), we instead relied on a priori selection of features.  

Naturally, other features that would meet our design goals could have been selected 

to characterize forest structure. For example, many studies derive the same features at 

multiple height strata (e.g., CD at 2-4 m, 4-6 m, etc.; Hudak et al. 2008, Falkowski et al. 

2009). While effective in certain situations, the large number of resulting features, arbitrary 

thresholds, and potential lack of consistency can confuse interpretation and limit the ability 

to compare (Chen 2013).  Similarly, features such as the rumple index (ratio of canopy 

outer surface area to ground surface area), which integrate three-dimensional horizontal and 

vertical heterogeneity (Parker et al. 2004, Kane et al. 2010a, b), can be difficult to interpret 

as variation in either the vertical or horizontal plane can drive value change.  Even the L-

moments present multiple options for feature selection.  For example, the L-coefficient of 

variation (L-CV, λ2/ λ1) can be used in place of L-scale (λ2) as a measure of dispersion. L-

CV has the advantage of discreet theoretical bounds (Hosking 1990, Valbuena et al. 2017). 

However, we chose L-scale over L-CV for three reasons: 1) Hosking (1990) preferred it as 

a characterization of dispersion; 2) L-CV had much higher Spearman correlation (ρ > 0.9) 

to L-location (mean) than L-scale in our test landscapes (9, 10, 11); 3) Tall forests should 

inherently have more potential dispersion than short forests. We argue that measures of 

location and scale of height distributions of forest canopy material should depend on the 

absolute values of the sample data (although arguments for or against application of this 

principle to dispersion metrics border on the philosophical).  In any case, there is no one 

collection that captures forest structure in its entirety, and our broader framework is 

amenable to a different selection of features. However, consistency and low dimensionality 
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should be maintained for robust comparison and interpretation with any set of features in 

this framework. 

Because the L-moments do not explicitly account for the abundance and horizontal 

distribution of vegetation, we included the features CD and HSD of CD. Spies (1998) stated 

that horizontal variation in canopy density is one of the four major components of forest 

structure. Larson and Churchill (2012) found inherent horizontal aggregation of trees at 

scales less than 20 m in the western US and noted its ecological importance. Additionally, 

Hudak et al. (2006) discovered that sub-plot variation in canopy cover was an important 

predictor of tree basal area and tree density. We also observed complimentary correlations 

of CD and HSD of CD to field metrics in our plot data (Table 4).  Although alternative 

spatial metrics such as Ripley’s K are attractive due to their spatial explicitness, they are 

not feasible to calculate on every cell for large area analysis because every LiDAR point 

must be compared to every other. Since HSD of CD measures sub-cell variability rather 

than spatial arrangement of CD, there are certain structural arrangements that may have 

comparable HSD of CD values without being structurally similar (e.g., alternating vs. 

symmetrically-split high and low sub-cell CD values). Despite this limitation, we argue that 

HSD of CD meets our objective of parsimony, is based on a conventional measure of 

variability (interpretable), and would rarely have enough similarity in the other structural 

features for those confounding cases to create confusion in a classification.  Altogether, the 

six features selected represent a comprehensive, interpretable set of features to describe 

canopy structure.  

The study area is dominated by younger, largely multi-strata forest structure. L-

skewness (L-skew) has been used successfully to divide forest stands into oligophotic (low 

light, negative L-skew) and euphotic (high light, positive L-skew) structural types 

(Valbuena et al. 2013, Valbuena et al. 2017). Using L-skew = 0 as a threshold, 64.1% of the 

study area is classified into meta-classes with understory dominance (large euphotic zone) 

and 35.9% with overstory dominance (large oligophotic zone). Although the work of 

Valbuena et al. (2017) was restricted to Boreal forest types, the meta-classes in our 

classification with high, positive L-skew also have lower mean heights and canopy 

densities; generally supporting the inference of understory dominance and the ability of L-

skew to delineate structure in diverse forest types.  

The less common meta-classes M, K, and J are exceptions, exhibiting high negative 

L-skew and low CD. They represent the open, tall, single-strata structural type, which is the 

climax structure of dry, low-elevation forests traditionally maintained by frequent, low-

severity fire (O’Hara et al. 1996, Agee 1998). Today, these meta-classes are largely created 

by mechanical treatments in the study area as evidenced by the clumping of meta-classes K 
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and J in the heavily-managed Lubrecht Experimental Forest (landscapes 10 and 11). Mean 

height largely separates these three meta-classes from each other, and a relatively low L-

scale, negative L-skew, and highly positive L-kurtosis distinguishes them from other meta-

classes.  

A strength of the stratified clustering method is its ability to identify and group 

globally prevalent classes along with locally predominant, but rare overall structure types. 

The rarest meta-class, N, represents a severely burned portion of the 2002 Crazy Horse 

wildfire. Analysis of high resolution aerial imagery shows an abundance of shrubs and 

regenerating conifers. Low mean height, low L-scale, high L-skew, and high L-kurtosis 

typify this structure class, which is essentially an extreme version of meta-class H. These 

structural types have important, early-successional ecological considerations (Swanson et 

al. 2010). Indeed, many of the rare classes are similar in shape to prevalent meta-classes, 

but with one or more of their L-moment features pushed to an extreme. Class L, 

representing 1% of the study area, has the lowest L-kurtosis, a slightly positive L-skew, and 

the largest L-scale indicating a tall, continuous canopy structure typical of mixed-conifer 

forests in the high elevation Western Canadian Rockies ecoregion from which it’s derived 

(landscape 6). 

By aggregating only on the features that characterize the vertical domain, we show 

that multiple meta-classes exist on nearly the entire range of CDs especially the two most 

prevalent, meta-classes A and B, representing 41% of the study area (Fig. 4). Both of these 

classes have low to moderate mean heights, moderate L-scales, positive L-skews, and low 

to moderate L-kurtosis. Their vertical distributions imply broken overstories over a stratum 

of understory trees, characteristic of forests often targeted for restoration (Graham et al. 

2004, Noss et al. 2006). Other meta-classes span a large range of CDs, but their 

distributions imply a self-organization of certain vertical canopy structures at particular 

CDs, such as the aforementioned L-skew and CD relationships.  

The HSD of CD shows moderate values within nearly all meta-classes (Fig. 4). 

These values, however, must be interpreted with respect to the value of the CD metric. For 

example, meta-classes G and H have a 4.4% difference in median HSD of CD but meta-

class G has a 77% median CD compared to H’s 27.4%. This indicates that meta-class H has 

more relative horizontal variability.  Scale likely influences the HSD of CD more than any 

other input feature.  Leiterer et al. (2015) found a 0.12 absolute mean difference in input 

data correlation comparing 1 m to 20 m horizontal cell sizes.  However, differences reached 

an asymptote near 20 m resolution. There likely exists a minimum cell size at which HSD 

of CD is not relevant potentially below the average crown diameter of canopy trees. We 

speculate that HSD of CD would become increasingly relevant for structure classification 



 

 29 

as cell size increases and therefore includes more potential horizontal structure variation.  

The point density and laser footprint size must also be considered while determining both 

sub-cell and cell resolutions. The LiDAR data used here had unusually high point density, 

and typical acquisitions may need to use larger sub-cells (e.g., 5 m). Further research is 

warranted for within-cell horizontal variation and scaling. 

As they are related, both CD and HSD of CD can be used to create sub-classes 

within the meta-classes similar to the matrix classification shown in Fig. 2. We suggest first 

grouping based on vertical distribution and after achieving the desired number of meta-

classes, splitting these classes into low, moderate, and high CDs along with variable (high) 

or uniform (low) HSD of CD. A large number of classes will ensue, but the logical and 

hierarchical design should allow for relatively easy interpretation and application for a 

variety of objectives. This again highlights the strength of a flexible approach as it supports 

an a posteriori ability to select and modify the defining characteristics of a structure class. 

For example, meta-classes J, K, and M have similar vertical distributions with different 

mean heights driving the class separations (Fig. 5).  These could logically be grouped into 

one meta-class for practical applications ignoring height differences of a few meters. For 

other meta-classes, height may be a defining characteristic, such as C and G, which share 

similar shape features.  

5) Conclusions 

 Resource management is increasingly recognizing the need for consistent and 

comparable assessments of forest structures and spatial patterns as the pace of 

environmental change accelerates. The growing abundance of LiDAR and other remotely-

sensed datasets necessitate new methods capable of efficiently deriving actionable 

information. We build on previous data-driven approaches of structural classification, such 

as Kane et al. (2010a) and Leiterer et al. (2015), to create a framework of identification 

along with comparison of multiple, diverse landscapes.   

We identify several strengths to the approach: 

1) Statistically robust design allowing for comparability with interpretable and 

consistent a priori feature selection.   

2) Field sampling not required to develop structure classes. 

3) Characterizes and maps globally dominant meta-classes across ecosystems. 

4) Characterizes and maps locally dominant, but globally rare structure classes. 

5) Provides inherent flexibility at multiple levels including number of clusters at the 

landscape level, features selected for meta-class aggregation, and an a posteriori 

ability to select and modify defining features of a meta-class.   
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Weaknesses: 

1) Meta-classes are fuzzy in nature with overlapping ranges of feature values. 

2) Assumes airborne LiDAR produces unbiased samples of 3-dimensional forest 

structure. 

3) Can be computationally expensive with certain parameterizations. 

4) Despite low-dimensionality, six input features still allows for a potentially 

confusing variety of combinations for aggregating to meta-classes.  

5) Scale affects results from size of landscapes to cell size. While L-moment features 

are resistant and meta-class aggregation methods tolerate differences in landscape 

size, HSD of CD is likely susceptible to changes in cell and sub-cell size. 

6) Derived classes and meta-classes are statistical in nature, and their ecological 

significance must be demonstrated with independent validation (e.g., field 

sampling).  

 

We argue that a cursory knowledge of statistical moments and forest structure will 

allow for interpretation of the derived classes in this study’s approach.  As such, consistent 

comparisons of forest canopy structure that consider a diversity of landscapes and 

ecoregions should expand the perspectives of resource managers and improve their ability 

to assess and respond to environmental change. 
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Chapter 3: Mapping forest canopy fuels over the western US with LiDAR-Landsat 

relationships 

1) Introduction 

Characterization of forest structure remains a priority for a variety of scientific 

research and land management objectives, as highlighted in Chapter 2. Forest management 

across the globe has integrated and now relies on these spatial data to inform policy and 

decision-making (Wulder et al. 2004). For example, the LANDFIRE project produced 

nationally-consistent and comprehensive forest characterizations for the US and has 

facilitated landscape-scale management including fuel and restoration treatment planning 

and assessment (Collins et al. 2011, Cochrane et al. 2012, Ryan and Opperman 2013, Drury 

et al. 2016), prescribed fire planning and implementation (Wiedinmyer and Hurteau 2010), 

and wildfire prediction, suppression, impact mitigation, rehabilitation, and assessment 

(Liang et al. 2008, Calkin et al. 2011, Ager et al. 2012, Ryan and Opperman 2013). For 

wildfire management in particular, LANDFIRE provides the spatial data for fire models 

that predict the spread and intensity of wildfires (Rollins 2009). Strategic and tactical 

decisions are increasingly becoming explicitly risk-based (Calkin et al. 2011, Noonan-

Wright et al. 2011), and these fire predictions are essential for robust risk assessments. At 

least forty countries have national forest inventories with satellite imagery becoming the 

predominant data source for full coverage spatial data (McRoberts et al. 2010). In short, 

maps of forest attributes are essential to and in many ways have ushered in modern forest 

and fire management.  

To create this broad spatial data, standard approaches utilize field and photo-based 

inventories which provide the explicit measurements of attributes (McRoberts et al. 2010). 

These are then related to satellite imagery thereby creating spatially-complete datasets (e.g. 

Tomppo et al. 2008). These assessments have risen in scale from local (e.g. Makela and 

Pekkarinen 2004) to regional (e.g. Ohmann et al. 2014) to global assessments (e.g. Hu et al. 

2016) in parallel with the rise in computing performance and analytical sophistication. 

However, traditional field-based methodologies are labor intensive, often do not capture the 

range of variation on the landscape, are inconsistent in spatial distribution and methods of 

data collection, and cannot feasibly capture many sought-after three-dimensional (3D) 

attributes (Hawbaker et al. 2009, Maltamo et al. 2016). Light detection and ranging 

(LiDAR), a now pervasive active remote sensing technology, has provided large-area 3D 

datasets and facilitated the conceptualization of new 3D forest attributes (Lim et al. 2003). 

As shown in Chapter 2 (Moran et al. 2018), point cloud features and unsupervised 

classification frameworks can be used to describe complex forest properties consistently 

over a diversity of landscapes without intensive field campaigns.  



 

 40 

The spatial and temporal scales of these LiDAR data are still limited for a variety of 

management needs though. LiDAR is commonly attained in preparation for landscape-scale 

projects such as the Collaborative Forest Landscape Restoration Program implemented by 

the US Forest Service, but for acute disturbances threatening lives, homes, infrastructure, 

drinking water, and natural resources, LiDAR data is often incomplete, out-of-date, or not 

available. For wildfires in particular, the age of mega-fires in is full maturity with 

unprecedented destruction and costs (Williams 2013). With climate change set to increase 

aridity across the western US, mega-fires are likely to become the norm throughout the 21st 

century (Abatzoglou and Williams 2016, Schoennagel et al. 2017), Accurate, up-to-date, 

and comprehensive datasets are thus needed for effective fire management and could 

prevent loss of life and property and improve decision-making.   

As satellite imagery provides the necessary spatial and temporal coverage and 

LiDAR the accurate 3D characterization, many studies have harnessed their complementary 

strengths and fused these data to create comprehensive spatial datasets. LiDAR metrics are 

used directly as the response variable (e.g. canopy cover and height) or indirectly as the 

feature of a modeled response (e.g. biomass, basal area, and Lorey’s height).  Correlations 

of satellite imagery to basic attributes characterizing vegetation coverage fractions, such as 

forest canopy cover, are well-documented, especially from the series of Landsat satellites 

(e.g. Hansen et al. 2013); the ability of satellite imagery to characterize complex forest 

attributes such as canopy height and height variability (Hudak et al. 2002, Hyde et al. 2006, 

Pascual et al. 2010, Stojanova et al. 2010, Ahmed et al. 2015, Wilkes et al. 2015, Hansen et 

al. 2016), basal area (Frazier et al. 2014), stem volume (Huang et al. 2013), biomass 

(Lefsky et al. 2005, Margolis et al. 2015, Bell et al. 2018), and other measures of structural 

complexity (Zald et al. 2016, LaRue et al. 2018, Matasci et al. 2018) has come relatively 

recently. Though the potential for these types of characterizations using imagery has been 

exploited for several decades (Cohen and Spies 1992), the ubiquity of LiDAR datasets with 

large numbers of samples and accurate 3-D characterizations have enabled more robust 

assessments over many forest types. For example,  Matasci et al. (2018) showed that six 

forest structural attributes can be mapped across the entirety of Canada using LiDAR 

predictor variables with reasonable levels of accuracy (R²  0.49-0.61).  

Landsat indices derived Landsat 5 TM, Landsat ETM+, and Landsat 8 OLI have 

proven important for characterizing forest structure. Tasseled cap indices have been used 

since the availability of Landsat MSS to characterize vegetation (Kauth and Thomas 1976). 

Tasseled cap transformations reduce the six spectral Landsat bands to three indices while 

maintaining most of the information pertinent to vegetation characterization, and they form 

a discrete, orthogonal separation in spectral space. Each sensor’s transformations have also 

been tweaked to account for differences among Landsat sensors for continuity for the 
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entirety of the spatial library (Huang et al. 2002, Baig et al. 2014). Many studies have found 

the tassel cap indices to be among the most important for predictive modeling of forest 

structure from LiDAR training data (Pascual et al. 2010, Zald et al. 2016, Matasci et al. 

2018). Normalized difference vegetation index (Rouse et al. 1974) and normalized burn 

ratio (Key and Benson 2003) are also two popular indices for characterizing vegetation. 

Both have shown to be sensitive to wildfire-caused vegetation change (Escuin et al. 2008) 

and have shown importance to characterizing forest canopy fuels (Erdody and Moskal 

2010).  

The rise of machine learning techniques has also contributed to the increase in 

correlative and predictive power for remote sensing of forests (Lawrence and Moran 2015). 

Mousivand et al. (2014) showed that the sum of second-order interactions was larger than 

first-order canopy effects on spectral reflectance at the scales and wavelengths of Landsat 

imagery. Machine learning algorithms have the ability to characterize these complex, non-

linear relationships. Indeed, the success of Matasci et al. (2018) for country-wide mapping 

would not have been possible without the random forest (RF) algorithm (Brieman 2001). 

Of note, their approach followed methods presented in Chapter 2, where a proximity or 

distance metric characterizing the similarity of samples was derived from RF models. 

Machine learning algorithms have been developing at a rapid pace and new models and 

processing environments are available, which may further increase the ability to 

characterize forest attributes and their relationship to satellite spectral data.  

Gradient boosting machines (GBM) are one of these ensemble algorithms now 

applied in ecological sciences (Elith et al. 2008). They combine the advantages of tree-

based algorithms such as RF, which relate a response to predictor variables using recursive 

binary splits, with a boosting approach that adaptively combines many simple regression 

trees (Friedman 2001, Hastie et al. 2001). The major difference of GBM from RF is the 

sequential or ‘stagewise’ addition of trees rather than averaging the predictions of a set of 

independent trees. For classification problems, boosting focuses subsequent trees on error 

from previous trees by recursively weighting observations that are incorrectly predicted and 

for regression problems, focuses subsequent trees on the residuals (variation not yet 

explained in the model) from the previous tree. In this way, each subsequent tree attempts 

to correct its predecessor. Each tree minimizes a loss function (e.g. deviance) to the extent 

possible; each step moving down a loss gradient (gradient descent).  

The major drawback of GBM is the tendency to overfit (Elith et al. 2008, Natekin 

and Knoll 2013). Indeed, enough trees can be added to completely overfit a dataset. Model 

generality must therefore be prioritized. LiDAR datasets are also rather arbitrarily collected 

representing the diverse needs of contributing stakeholders. At best, cohesive collection 
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campaigns have been conducted at the state level and the 3D Elevation Program (3DEP) of 

the USGS (www.usgs.gov/core-science-systems/ngp/3dep) is now planning acquisitions 

cohesively for more systematic coverage.  Thus, with the sporadic spatial extents and 

differing years of acquisition, many forest ecosystems may not have any direct training data 

available, and a predictive model must be able to accurately provide estimates in these 

situations. A host of regularization techniques for GBM to improve generality have been 

developed (Hepp et al. 2016). Another opportunity for GBM is the ability to rapidly update 

layers following disturbance such as wildfire, logging, and insect outbreaks. While 

imputation approaches such as those employed by Matasci et al. (2018,) may maintain the 

covariance structure of several response variables leading to improved accuracy overall, 

they will not be able to predict new response covariance assemblages that may be produced 

by disturbances not captured in the training data. GBM and similar approaches are expected 

to benefit systematic mapping efforts such as LANDFIRE which currently devotes 

enormous resources to updating fuels data as disturbances occur. 

Generalized models capable of reasonable accuracy across many landscapes has 

been a research priority for remote sensing and forestry applications for decades (Lefski et 

al. 2002, Bouvier et al. 2015, Bell et al. 2018). The inability of models derived from 

localized datasets to apply to other landscapes stems from three primary and related issues: 

model overfitting (Bouvier et al. 2015), mis-specified predictor variables not fully 

characterizing the response, and spatial variance in the feature-response relationships, in 

this case the LiDAR-Landsat relationships (Matasci et al. 2018). Spatial variance in feature-

response relationships is a well-known problem but differing acquisition years among 

LiDAR datasets adds the additional complication of potential temporal variance in the 

relationship as well.  

Hyperparameter tuning is one regularization approach that can increase model 

generality, but can still lead to overfitting if not properly applied. Hyperparameter tuning is 

a Monte Carlo approach where model parameters are varied and accuracy assessments 

(usually on the validation dataset) determine the optimal set of parameter values for a final 

model (Bergstra and Bengio 2012). For GBM, important parameters to tune for generality 

are the proportion of samples evaluated in each tree (bagging), number of predictor 

variables assessed at each binary split, learn rate annealing, stopping tolerances, maximum 

runtimes, and the series of tree pruning parameters such as max tree depth, minimum 

accuracy improvement for each split, and minimum number of samples in each terminal 

node (Natekin and Knoll 2013).  

Another important approach to reduce overfitting is sample weighting (Torgo et al. 

2013, Branco et al. 2017). Forest landscapes can display sample distributions that are 

http://www.usgs.gov/core-science-systems/ngp/3dep
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heavily skewed or have high kurtosis in one or more canopy variables. A machine learning 

model trained on a landscape with these characteristics will be biased as the model attempts 

to minimize a single error metric such as RMSE. The most extreme example would be a 

model predicting only the sample mean value, which could be quite accurate in cases of 

extreme kurtosis or skewness in the sample distribution. Analogous to class balancing in 

classification tasks, several approaches have been developed to address this issue (Branco 

et al. 2017). The simplest and most common are pre-processing steps to change the original 

data distribution such as over- and under-sampling certain observations. This approach can 

reduce overall model performance when assessed by single error metrics, such as RMSE, 

but generality would improve leading to improvements in the ability to assess disturbance 

or other changes to canopy fuels in landscapes without many examples of such disturbances 

in the training data. 

For large-area predictions, spatial variance in the LiDAR-Landsat relationships also 

lead to decreased model generality if there is insufficient variation in training data (Lefsky 

et al. 2002, Bell et al. 2015, Bell et al. 2018). One solution is to create many localized 

models from each individual LiDAR dataset and stitch the predictions together. 

Determining boundaries where each local model is most applicable would be difficult 

however. Conversely, a single global model can be used with either sufficient generality or 

including locational features to correct for spatial variance as in Zald et al. (2016) and 

Matasci et al. (2018). A few models trained on data stratified using biophysical rationale 

may represent a compromise between these two extremes. 

LANDFIRE is one such dataset originally derived from field-based inventories that 

can be significantly improved with the addition of LiDAR training data (Peterson et al. 

2015). As canopy information is directly and accurately measured with LiDAR, updates to 

canopy fuel estimations are a logical starting point. For operational fire modeling, canopy 

fuels dictate the threshold surface fire intensity necessary to create crown fire, control the 

wind reduction factor, the speed of active crown fire spread, and the distance and amount of 

spot fires, all of which in turn can induce  non-linear increases in fire intensity and spread 

(Cruz et al. 2003). Accurate canopy fuel layers are thus important for the characterization 

of large and intense wildfires which account for the majority of fatalities, structure lost, and 

acres burned (Williams 2013). 

Canopy cover and height can be directly measured by LiDAR while the other two 

canopy variables, canopy base height (CBH) and canopy bulk density (CBD), can be 

estimated indirectly using established equations (Peterson et al. 2015). Though not direct, 

these LiDAR-based conceptualizations of CBH and CBD capture the spatial variation in 3D 

canopy structure important for fire modeling. While different in their conception from field-
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based estimates, the absolute values of these variables are not as important as representing 

the structural variability present across the landscape because fire behavior modelers will 

often need to calibrate fuels data to match observed fire behavior  (e.g. reduce all CBH by 

half or double CBD) (Stratton et al. 2009, Cochrane et al. 2012).  

In this study, canopy fuels are estimated from LiDAR datasets and then related to 

Landsat spectral data in order to create models with sufficient generality to predict over the 

entirety of the western US. Model predictions are then be compared to current LANDFIRE 

data to quantify improvements due to LiDAR training data and GBM modeling. The 

research has five objectives: 

1) Describe relationships between Landsat-derived spectral indices and LiDAR-

derived canopy cover, stand height, crown base height, and canopy bulk density 

2) Characterize the variance of the LiDAR-Landsat relationships over a diversity of 

landscapes 

3) Create predictive model(s) that can be applied to any area in the western US  

4) Compare model predictions to current LANDFIRE products 

5) Assess the selected model’s ability to update canopy layers following wildfire 

disturbance 

2) Methods 

2.1 Data 

LiDAR datasets were selected based on availability and to represent the diversity of 

conifer forests, climates, and disturbance regimes in the western contiguous US (Fig. 1). 

LiDAR acquisitions were ultimately grouped into thirteen landscapes for analysis based on 

proximity and vegetation similarities. All LiDAR data acquisition parameters followed at a 

minimum the requirements for the US Geological Survey’s Quality Level 1 (Heidemann 

2018). Important collection parameters include  ≥ 3 returns/pulse, ≥ 8 returns/m2, and a 

relative vertical accuracy ≤ 0.06 m RMSD.  Landscape sizes and descriptions are in Figure 

1. LiDAR data totaled 1,258,993 ha for training and validation and 265,225 ha for testing. 

Elevations range from 0 to 3599 m a.s.l. and precipitation normal range from less than 200 

mm to over 4000 mm annually (PRISM 2019). At least one dataset is within each EPA 

Level I forest ecoregion of the western US (Fig. 1).  

 

 

 



 

 45 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of western US and LiDAR datasets used in the study with year of acquisition, 

area of actual forest data used after filtering (see Methods), and number of samples in each 

dataset. Black perimeters show landscapes where training, validation, and testing data was 

used while red perimeters show landscapes used exclusively for testing (North Coast, 

Illilouette, and Slate Creek). 
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Table 1. Summary of canopy fuel response variables (LiDAR-sourced) and predictor variables 
used in the study.  

Source 
Variable 
Name Description Citation 

LiDAR Canopy 
Cover (CC) 
(%) 

Percentage of first returns above 2 m Hopkinson 
and Chasmer 2009; Smith 
et al. 2009; Peterson et 
al. 2015 

 Canopy 
Height (CH) 
(m) 

99th percentile return height Peterson et al. 2015 

 Canopy 
Base Height 
(CBH) (m) 

Mean return height minus standard deviation 
of heights 

Rowell et al. 2005; 
Peterson et al. 2015 

 Canopy 
Bulk 
Density 
(CBD) 
(kg/m3) 

𝑒^(−2.489 + 0.034(𝐶𝐶) − 0.357(𝑆𝐻1)
− 0.601(𝑆𝐻2) − 1.107(𝑃𝐽)
− 0.001(𝐶𝐶 ∗ 𝑆𝐻1)
− 0.002(𝐶𝐶 ∗ 𝑆𝐻2)) 

 
If CH is 0-15m, SH1=0 and SH2=0 
If CH is 15-30m, SH1=1 and SH2=0 
If CH is 30-91m, SH1=0 and SH2=1 
If EVT equals Pinyon or Juniper type,  
PJ =1 else PJ=0 

Reeves et al. 2009 

Landsat Med NDVI Median normalized difference vegetation 
index (NDVI) value  

Rouse et al. 1974 

 Max NDVI Maximum NDVI value  Rouse et al. 1974 

 Med NBR Median normalized burn ratio (NBR) Key and Benson 2002 

 Max NBR Maximum NBR Key and Benson 2002 

 Med Bright Median Tasseled Cap Brightness Crist 1985; Huang et al. 
2002; Baig et al. 2014 

 Max Bright Maximum Tasseled Cap Brightness Crist 1985; Huang et al. 
2002;  Baig et al. 2014 

 Med Green Median Tasseled Cap Greenness Crist 1985; Huang et al. 
2002;  Baig et al. 2014 

 Max Green Maximum Tasseled Cap Greenness Crist 1985; Huang et al. 
2002;  Baig et al. 2014 

 Med Wet Median Tasseled Cap Wetness Crist 1985; Huang et al. 
2002;  Baig et al. 2014 

 Max Wet Maximum Tasseled Cap Wetness Crist 1985; Huang et al. 
2002;  Baig et al. 2014 

LANDFIRE EVT Existing vegetation type Rollins et al. 2009 

 FRG Fire regime group Rollins et al. 2007 

 Slope (%) Slope   

 Aspect 
(deg) 

Aspect   

 Elev (m) Elevation   
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2.2 LiDAR Processing  

LiDAR point clouds were processed through FUSION software (McGaughey 2015) 

to extract height above ground and calculate metrics to match the 30 m Landsat cell 

resolution. Bilinear interpolation aligned the Landsat and LiDAR rasters. Table 1 shows the 

formulation of the canopy fuel metrics from LiDAR. Canopy height (CH), canopy cover 

(CC), and canopy base height (CBH) are defined directly from the LiDAR metrics while 

canopy bulk density uses a combination of canopy cover and canopy height from the 

LiDAR data and existing vegetation type from LANDFIRE (Reeves et al. 2009). LiDAR 

data were filtered for a minimum canopy height of 2 m, canopy cover of 2%, and an 

existing LANDFIRE vegetation type of forest to describing a forest to ensure that non-

forested pixels did not contaminate samples. 

2.3 Landsat and LANDFIRE Data Processing  

Landsat indices (Table 1) were calculated for the contiguous US for 2000-2016 

using May to October imagery. Median and maximum values of each index for each year 

were calculated using US Geological Survey Landsat 5 TM, Landsat 7 ETM+, and Landsat 

8 OLI surface reflectance products created using the Landsat Ecosystem Disturbance 

Adaptive Processing (LEDAPS) algorithm (Masek et al. 2006, Schmidt et al. 2013). 

Landsat TM and ETM+ were merged and constituted the data source for 2000-2014, and 

OLI data was used for 2014-2016. Equations for index calculations are within the citations 

in Table 1. Pixels were filtered for contamination by clouds, cloud shadows, adjacency to 

clouds, snow, and water. All Landsat data was processed within Google Earth Engine, 

exported, and then mosaicked into multi-band rasters organized by year. 

Topography metrics of slope, aspect, and elevation, were taken from LANDFIRE 

(Rollins 2009). Fire regime groups (FRG) (Rollins et al. 2007) and existing vegetation type 

(EVT) were also extracted along with LANDFIRE’s existing canopy fuel layers CC, CH, 

CBH, and CBD (Reeves et al. 2009) for comparison to model outputs. 

2.4 Dataset Stratification, Sample Weighting, and Model Development 

All subsequent data processing and model development was completed using R 

statistical software as a wrapper to the Apache Spark analytics engine. Spark is an open-

source, parallel, scalable, and resilient Big Data processing environment (Zaharia et al. 

2016). H2O machine learning algorithms (www.h2o.ai) were employed within R and 

SPARK using the R packages h2o (LeDell et al. 2019), sparklyr (Luraschi et al. 2019), and 

rsparkling (Hava et al. 2019). Data preprocessing, stratification, and weighting was 
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completed using the R packages raster (Hijmans et al. 2019), ggplot2 (Wickham et al. 

2019), and dplyr (Wickham et al. 2019).  

Three data stratification approaches were devised leading to three sets of models. 

Local models, models stratified by fire regime groups (FRG), and a global model taking 

data from all landscapes. For local models, training, validation, and test data were taken 

from within each individual landscape and a separate model derived for each. This 

represents a traditional modeling approach ubiquitous in remote sensing literature. 

Recognizing these local models are likely overfit to their landscapes, they represent the 

baseline accuracy or maximum potential extractable information that subsequent, more 

generalized models can be compared to. Next, I hypothesized that the nature of the spectral 

relationships may vary across forest types and separate models may better characterize 

these relationships.  Fire regime groups produced by LANDFIRE represent an integration 

of existing and potential vegetation, climate, topography, and disturbance regimes (Rollins 

et al. 2007). For forested areas, four fire regime groups within the landscapes were present:  

FRG 1: ≤35 yr return interval, low and mixed severity  

  FRG 3: 35-200 yr return interval, low and mixed severity  

  FRG 4: 35-200 yr return interval, replacement severity  

  FRG 5: > 200 yr return interval, any severity 

FRG 5 represents a diverse category including multiple vegetation types across the US but 

in the western US and for the landscapes in this study, FRG 5 represents the western 

Cascade Mountains and coastal forests in the Mt. Baker, Hoh, North Coast, and South 

Coast landscapes. All pixels representing a particular FRG from all landscapes were binned 

and used to construct a model. 

Finally, a global model containing all data from all landscapes was created as a 

parsimonious option requiring no stratification. However, with the significant differences in 

dataset sizes between landscapes (cf. Fig. 1), predictor-response relationships in large 

datasets may dominate the smaller datasets. Thus, landscape datasets were randomly 

sampled so that each landscape’s contribution did not exceed 20% of the total sample size 

for the global model. This rule was also applied to the FRG models for the same purpose, 

but the proportion was adjusted to 30% for FRG 4 and FRG 5 because only a few 

landscapes contained enough data. 

An additional sample weighting scheme for every model was applied to improve 

generality and the ability to characterize disturbance on any landscape. For each of the four 

canopy response variables (CC, CH, CBH, CBD), the range of values was assessed and 

then split into ten even-sized bins (e.g. CC: 1-10%, 11-20%, 21-30%, etc.). The bins were 
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ordered by sample size, and the samples within the bin with the highest count all received a 

weighting value of one (i.e. would be considered once in the model). Each other bin’s 

samples were then multiplied by the necessary weighting value so that the sum of the 

sample weights were equal across all bins. This effectively gave an equal weighting to the 

full range of values, helping to prevent model bias due to skewed or leptokurtotic response 

distributions. Several classes for certain models had very few samples within a class which 

led to extreme weighting values to few samples (> 100,000x weight in one case). 

Therefore, the maximum weight for any sample was set to 100x to reduce model instability 

created by extreme weighting. 

Once stratification and weighting were completed, model development was then 

possible. From each model’s sample pool, 80% were selected for training, 10% for 

validation and internal error estimation during training, and 10% for final testing and error 

estimation. This form of testing is a largely accepted for error estimation in research, but 

does not represent a truly independent dataset. The testing data’s acquisition parameters, 

especially the year of acquisition, and the geographic location and vegetation type are still 

related to the particular landscape from which they were derived. Thus, three separate 

LiDAR datasets without any data used in the training process were used as a final 

assessment of model performance.   

  Table 2 shows the GBM model parameters including those varied during 

hyperparameter tuning. For more explanation of each parameter see H2O.AI GBM 

documentation (http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html). A 

maximum of ten models were trained before selecting each final model, and the various 

parameter options were randomly selected for each model run.  Final model selection used 

minimum RMSE as the selection metric. 
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 2.5 Spectral Response and Accuracy Assessment 

  In order to assess the stationarity of the spectral features to the canopy fuel 

variables, partial dependence plots were calculated for the local, FRG, and global models. 

Partial dependence plots assess the marginal effect of a single feature on the response 

variable (Friedman 2001). The major assumption is that features are independent of each 

other. While the GBM model is resistant to multicollinearity, if a feature is highly 

correlated with another, then data combinations created from the feature distributions can 

be highly unlikely in reality and therefore bias partial dependence estimates. Thus, local, 

FRG, and global models were first trained on a reduced subset of features for creation of 

partial dependence plots. The reduced set included only the median spectral index values as 

the median and maximum indices were highly correlated for most features (r=0.7-0.9). 

  For accuracy assessment and local-FRG-global model comparisons, models were 

then trained on the full suite of features.  Root mean squared error (RMSE), mean absolute 

error (MAE), and r-squared (R²) were used as model evaluation metrics. For the 

independent datasets (Illilouette, North Coast, and Slate Creek), the nearest local models 

were used for comparison to the FRG and global model predictions. The independent 

dataset model outputs were also compared to existing LANDFIRE canopy metrics. 

Table 2. Model parameters. Those with multiple values were varied in the 
hyperparameter tuning. 

GBM Model Parameters Value(s) 

ntrees Up to 4000 
learn_rate 0.1 
learn_rate_annealing 0.01 
max_runtime_secs 750 
sample_rate 0.4, 0.6, 0.9, 1 
col_sample_rate 0.6, 0.9, 1 
col_sample_rate_per_tree 0.6, 0.9, 1 
col_sample_rate_change_per_lev
el 

0.01, 0.9, 1.1 

nbins 32, 64, 128, 256 
min_split_improvement 0, 1e-4, 1e-6, 1e-8 
max_depth 20, 30, 40 
histogram_type AUTO, UniformAdaptive, QuantilesGlobal 
stopping_metric RMSE 
stopping_tolerance 0.01 
Score_tree_interval 10 
Stopping_rounds 3 
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Model predictions should be able to account for disturbance effects on canopy fuels 

accurately, especially wildfire effects. Within the spatial extents of the LiDAR datasets, I 

searched for wildfires that occurred after the LiDAR acquisition date but before 2016 so 

post-fire imagery the following growing season could be attained. Spectral indices for one 

year before the fire and one year after the fire were calculated. Burn severity maps from the 

Monitoring Trends in Burn Severity (MTBS; mtbs.gov) were acquired and samples 

stratified by high, moderate, and unburned to low severity classes. The global model and 

local model pre-fire and post-fire predictions were compared to evaluate whether 

predictions followed post-fire expectations of change. CC, CH, CBH, and CBD were all 

hypothesized to decrease the most in the high severity classes with the unburned to low 

class having little change and the moderate severity class in-between. 

3) Results 

The partial dependence plots show complex and non-linear feature-response 

relationships. The spectral features exhibited relatively consistent response shapes but 

shifted in mean response values among landscapes (Fig. 2 and Fig. 3). For example, for the 

NDVI-CC relationship (top left, Fig. 2), the mean response for a median NDVI value of 0.6 

is ~40% CC for the Ochoco landscape and ~80% for the Garcia landscape. CBH and CBD 

had more inconsistent response shapes between landscapes overall compared to CC and 

CH. For example for the TC Brightness-CBD relationship (third row, second column, Fig. 

3), the Mt. Baker, Garcia, and Hoh landscapes all show an increase in CBD as TC 

Brightness increased while the other landscapes showed a mean decrease. Present in most 

feature-response relationships but especially noticeable for CBH and CBD, Mt. Baker, 

Clear Creek, Garcia, Hoh, and South Coast landscapes all had larger canopy fuel values 

across the distribution of feature values while the Ochoco and Grand County landscapes 

were consistently on the lower end. The partial dependence plots derived from the FRG 

models (Fig. 4 and Fig. 5) characterize this same trend with FRG 5 (primarily derived from 

the Mt. Baker, Hoh and South Coast landscapes), consistently having higher canopy fuel 

values and FRG 4 (present in many upper elevation, inland landscapes) showing lower 

canopy fuel values. FRG 1 and FRG 3 follow similar trends to each other and the global 

dataset overall. 
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Figure 2. Partial dependence plots for the local landscape and global gradient boosting 

machine (GBM) models for the canopy cover and canopy height response variables. 
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Figure 3. Partial dependence plots for the local landscape and global gradient boosting 

machine (GBM) models for the canopy base height and canopy bulk density response 

variables. 
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Figure 4. Partial dependence plots for the fire regime group (FRG) and global gradient 

boosting machine (GBM) models for the canopy cover and canopy height response 

variables. 
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Figure 5. Partial dependence plots for the fire regime group (FRG) and global gradient 

boosting machine (GBM) models for the canopy base height and canopy bulk density 

response variables. 
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The global model compared favorably to the local models in the error assessments 

(Table 3). The complete breakdown of each landscape including FRG model accuracies is 

shown in Table 4. The following mean change in error metrics are averages of local-global 

comparisons with equal weighting given to each landscape regardless of size. For CC, the 

use of the global model increased error by 0.08 % and 0.11 % for RMSE and MAE, 

respectively, and increased R² by 0.004. R² decreased slightly with the global model for all 

landscapes, except for the Garcia and Hoh landscapes (Table 4). For CH, use of the global 

model increased RMSE by 0.4 m, MAE by 0.32 m, and decreased R² by 0.041. For CBH, 

the global model increased RMSE by 0.17 m, MAE by 0.15 m, and decreased R² by 0.053. 

For CBD, the global model increased RMSE and MAE each by 0.002 kg/m3 and decreased 

R² by 0.02. 

 

The error comparisons of 

individual landscapes to the 

global model predictions largely 

follow this same trend of slight 

increases in error with global 

model use (Table 4). The 

independent test landscapes flip 

this trend with the global 

modeling performing better in 9 

of 12 (75%) landscape-response variable combinations (Table 5). The starkest difference is 

in the Slate Creek landscape for CBD where the R² using the nearest local model (Clear 

Creek) was -0.889 and use of the global model increased the R² to 0.479. The South Coast 

model performed better than the global model in the North Coast landscape for CH, CBH, 

and CBD. The FRG models also performed better than the nearest local models in most 

comparisons, on par or near to global model performance. The performance of the global 

models on the test landscapes is further highlighted in the predicted versus observed graphs 

(Figs. 6, 7, and 8).  

The predicted versus observed graphs also show the increase in performance 

compared to the existing LANDFIRE data. The global model reduced RMSE on average by 

11.3 % for CC, 5.45 m for CH, 5.78 m for CBH, and 0.062 kg/m3 for CBD compared to 

LANDFIRE results. The LANDFIRE data had little ability to characterize canopy fuels in 

general with negative R² values for 8 of 12 (66.7%) LANDFIRE-response variable 

combinations. For those with positive values, LANDFIRE had a mean R² of 0.183. The 

global model performed worse on the test landscapes compared to the training landscapes, 

Table 3. Comparison of local models to the global 

model. Each landscape weighted equally in calculation 

of the mean accuracy metrics (i.e. not area-weighted). 

Accuracy CC 

(%) 

CH 

(m) 

CBH 

(m) 

CBD 

(kg/m3) 

Local RMSE 10.02 4.91 2.33 0.057 

Global 

RMSE 

10.10 5.31 2.50 0.059 

Local MAE 7.42 3.67 1.73 0.041 

Global MAE 7.53 3.99 1.88 0.043 

Local R² 0.725 0.672 0.600 0.622 

Global R² 0.729 0.631 0.547 0.602 
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but produced a mean R² of 0.439 overall compared to a mean R² of -1.375 for LANDFIRE. 

The global model performed comparably to the training landscapes for the Illilouette and 

North Coast landscapes except for Illilouette-CBH which had a -0.094 R². For Slate Creek, 

R² values were noticeably worse than training landscapes with a mean of 0.372.  

Table 4. Error assessment of local, global, and fire regime group (FRG) models for 

landscapes used in model training. 80% of landscape data used for training, 10% for 

validation, and 10% for testing. N refers to the number of samples used for the performance 

metrics. 

Landscape Model 

Canopy 

Fuel 

Variable N RMSE MAE R² 

Mt. Baker Local CC 43636 9.34% 6.63% 0.862 

Mt. Baker Global CC 43636 9.84% 7.27% 0.846 

Mt. Baker FRG 5 CC 42840 9.79% 7.16% 0.844 

Mt. Baker Local CH 43636 5.36 m 3.86 m 0.83 

Mt. Baker Global CH 43636 5.96 m 4.33 m 0.747 

Mt. Baker FRG 5 CH 42840 5.44 m 3.97 m 0.822 

Mt. Baker Local CBH 43636 2.16 m 1.57 m 0.79 

Mt. Baker Global CBH 43636 2.35 m 1.74 m 0.747 

Mt. Baker FRG 5 CBH 42840 2.29 m 1.68 m 0.759 

Mt. Baker Local CBD 43636 0.057 kg/m3 0.040 kg/m3 0.8 

Mt. Baker Global CBD 43636 0.063 kg/m3 0.045 kg/m3 0.749 

Mt. Baker FRG 5 CBD 42840 0.060 kg/m3 0.043 kg/m3 0.77 

Blackfoot-Swan Local CC 175639 8.11% 5.93% 0.839 

Blackfoot-Swan Global CC 175639 8.55% 6.36% 0.822 

Blackfoot-Swan FRG 1 CC 85805 8.19% 6.08% 0.819 

Blackfoot-Swan FRG 3 CC 45767 8.69% 6.35% 0.84 

Blackfoot-Swan FRG 4 CC 41856 8.50% 6.17% 0.82 

Blackfoot-Swan Local CH 175639 3.37 m 2.47 m 0.757 

Blackfoot-Swan Global CH 175639 3.84 m 2.85 m 0.686 

Blackfoot-Swan FRG 1 CH 85805 3.65 m 2.72 m 0.662 

Blackfoot-Swan FRG 3 CH 45767 3.89 m 2.87 m 0.732 

Blackfoot-Swan FRG 4 CH 41856 3.70 m 2.74 m 0.726 

Blackfoot-Swan Local CBH 175639 1.54 m 1.13 m 0.645 

Blackfoot-Swan Global CBH 175639 1.68 m 1.25 m 0.586 

Blackfoot-Swan FRG 1 CBH 85805 1.64 m 1.23 m 0.588 

Blackfoot-Swan FRG 3 CBH 45767 1.73 m 1.28 m 0.597 

Blackfoot-Swan FRG 4 CBH 41856 1.51 m 1.11 m 0.655 

Blackfoot-Swan Local CBD 175639 0.049 kg/m3 0.032 kg/m3 0.723 

Blackfoot-Swan Global CBD 175639 0.047 kg/m3 0.034 kg/m3 0.712 

Blackfoot-Swan FRG 1 CBD 85805 0.045 kg/m3 0.032 kg/m3 0.702 

Blackfoot-Swan FRG 3 CBD 45767 0.048 kg/m3 0.035 kg/m3 0.736 

Blackfoot-Swan FRG 4 CBD 41856 0.047 kg/m3 0.034 kg/m3 0.712 

Clear Creek Local CC 21060 10.24% 7.71% 0.72 

Clear Creek Global CC 21060 10.44% 8.00% 0.718 
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Clear Creek FRG 3 CC 17122 9.91% 7.35% 0.732 

Clear Creek Local CH 21060 4.84 m 3.56 m 0.788 

Clear Creek Global CH 21060 5.43 m 4.03 m 0.734 

Clear Creek FRG 3 CH 17122 5.17 m 3.80 m 0.768 

Clear Creek Local CBH 21060 2.67 m 1.93 m 0.628 

Clear Creek Global CBH 21060 2.85 m 2.11 m 0.586 

Clear Creek FRG 3 CBH 17122 2.87 m 2.15 m 0.589 

Clear Creek Local CBD 21060 0.065 kg/m3 0.049 kg/m3 0.631 

Clear Creek Global CBD 21060 0.069 kg/m3 0.052 kg/m3 0.598 

Clear Creek FRG 3 CBD 17122 0.069 kg/m3 0.053 kg/m3 0.577 

Dinkey Local CC 41443 10.42% 7.91% 0.748 

Dinkey Global CC 41443 10.60% 8.19% 0.739 

Dinkey FRG 1 CC 33790 10.43% 7.99% 0.73 

Dinkey FRG 3 CC 6989 10.17% 7.75% 0.765 

Dinkey Local CH 41443 6.60 m 5.05 m 0.702 

Dinkey Global CH 6.88 6.88 m 5.31 m 0.675 

Dinkey FRG 1 CH 33790 7.31 m 5.67 m 0.64 

Dinkey FRG 3 CH 6989 6.80 m 5.23 m 0.563 

Dinkey Local CBH 41443 2.60 m 1.95 m 0.551 

Dinkey Global CBH 41443 2.73 m 2.07 m 0.508 

Dinkey FRG 1 CBH 33790 2.75 m 2.07 m 0.51 

Dinkey FRG 3 CBH 6989 2.86 m 2.27 m 0.355 

Dinkey Local CBD 41443 0.057 kg/m3 0.038 kg/m3 0.666 

Dinkey Global CBD 41443 0.057 kg/m3 0.039 kg/m3 0.667 

Dinkey FRG 1 CBD 33790 0.059 kg/m3 0.041 kg/m3 0.659 

Dinkey FRG 3 CBD 6989 0.042 kg/m3 0.026 kg/m3 0.667 

Garcia Local CC 5522 8.99% 6.16% 0.216 

Garcia Global CC 5522 8.56% 6.24% 0.269 

Garcia FRG 1 CC 5493 7.98% 5.30% 0.363 

Garcia Local CH 5522 4.72 m 3.57 m 0.152 

Garcia Global CH 41443 5.02 m 3.81 m 0.081 

Garcia FRG 1 CH 5493 5.13 m 3.92 m 0.041 

Garcia Local CBH 5522 2.29 m 1.78 m 0.423 

Garcia Global CBH 5522 2.40 m 1.88 m 0.368 

Garcia FRG 1 CBH 5493 2.40 m 1.88 m 0.365 

Garcia Local CBD 5522 0.081 kg/m3 0.064 kg/m3 0.284 

Garcia Global CBD 41443 0.080 kg/m3 0.064 kg/m3 0.305 

Garcia FRG 1 CBD 5493 0.079 kg/m3 0.062 kg/m3 0.325 

Grand Canyon Local CC 10548 7.09% 5.30% 0.738 

Grand Canyon Global CC 10548 7.32% 5.51% 0.717 

Grand Canyon FRG 1 CC 7629 7.31% 5.50% 0.716 

Grand Canyon FRG 4 CC 2671 6.82% 5.05% 0.725 

Grand Canyon Local CH 10548 3.09 m 2.32 m 0.663 

Grand Canyon Global CH 10548 3.13 m 2.37 m 0.673 

Grand Canyon FRG 1 CH 7629 3.23 m 2.45 m 0.674 

Grand Canyon FRG 4 CH 2671 3.13 m 2.38 m 0.487 
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Grand Canyon Local CBH 10548 2.06 m 1.55 m 0.822 

Grand Canyon Global CBH 10548 2.21 m 1.69 m 0.792 

Grand Canyon FRG 1 CBH 7629 2.37 m 1.82 m 0.759 

Grand Canyon FRG 4 CBH 2671 1.69 m 1.30 m 0.668 

Grand Canyon Local CBD 10548 0.028 kg/m3 0.021 kg/m3 0.556 

Grand Canyon Global CBD 10548 0.030 kg/m3 0.021 kg/m3 0.506 

Grand Canyon FRG 1 CBD 7629 0.030 kg/m3 0.022 kg/m3 0.509 

Grand Canyon FRG 4 CBD 2671 0.022 kg/m3 0.017 kg/m3 0.654 

Grand County Local CC 74132 9.87% 7.20% 0.76 

Grand County Global CC 74132 10.03% 7.43% 0.753 

Grand County FRG 1 CC 14605 12.08% 9.01% 0.696 

Grand County FRG 4 CC 55336 9.49% 6.95% 0.745 

Grand County Local CH 74132 3.02 m 2.25 m 0.619 

Grand County Global CH 74132 3.22 m 2.39 m 0.566 

Grand County FRG 1 CH 14605 3.73 m 2.85 m 0.421 

Grand County FRG 4 CH 55336 3.01 m 2.23 m 0.581 

Grand County Local CBH 74132 1.33 m 0.98 m 0.552 

Grand County Global CBH 74132 1.48 m 1.08 m 0.448 

Grand County FRG 1 CBH 14605 1.68 m 1.26 m 0.387 

Grand County FRG 4 CBH 55336 1.30 m 0.96 m 0.531 

Grand County Local CBD 74132 0.043 kg/m3 0.030 kg/m3 0.599 

Grand County Global CBD 74132 0.044 kg/m3 0.031 kg/m3 0.587 

Grand County FRG 1 CBD 14605 0.049 kg/m3 0.033 kg/m3 0.545 

Grand County FRG 4 CBD 55336 0.042 kg/m3 0.031 kg/m3 0.585 

Hoh Local CC 62288 12.93% 9.71% 0.61 

Hoh Global CC 62288 11.23% 8.03% 0.712 

Hoh FRG 5 CC 62016 11.50% 8.35% 0.697 

Hoh Local CH 62288 5.75 m 4.13 m 0.871 

Hoh Global CH 62288 6.42 m 4.68 m 0.841 

Hoh FRG 5 CH 62016 5.89 m 4.27 m 0.865 

Hoh Local CBH 62288 3.28 m 2.45 m 0.67 

Hoh Global CBH 62288 3.78 m 2.87 m 0.564 

Hoh FRG 5 CBH 62016 3.73 m 2.84 m 0.575 

Hoh Local CBD 62288 0.080 kg/m3 0.059 kg/m3 0.644 

Hoh Global CBD 62288 0.084 kg/m3 0.062 kg/m3 0.607 

Hoh FRG 5 CBD 62016 0.083 kg/m3 0.062 kg/m3 0.617 

Ochoco Local CC 122339 8.52% 6.46% 0.79 

Ochoco Global CC 122339 8.60% 6.60% 0.787 

Ochoco FRG 1 CC 93212 8.53% 6.49% 0.782 

Ochoco FRG 3 CC 22380 8.53% 6.50% 0.778 

Ochoco Local CH 122339 4.86 m 3.73 m 0.646 

Ochoco Global CH 122339 5.08 m 3.93 m 0.615 

Ochoco FRG 1 CH 93212 5.13 m 4.00 m 0.564 

Ochoco FRG 3 CH 22380 4.68 m 3.53 m 0.704 

Ochoco Local CBH 122339 1.91 m 1.41 m 0.501 

Ochoco Global CBH 122339 1.95 m 1.44 m 0.47 
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Ochoco FRG 1 CBH 93212 2.01 m 1.50 m 0.448 

Ochoco FRG 3 CBH 22380 1.78 m 1.27 m 0.53 

Ochoco Local CBD 122339 0.031 kg/m3 0.022 kg/m3 0.585 

Ochoco Global CBD 122339 0.030 kg/m3 0.021 kg/m3 0.608 

Ochoco FRG 1 CBD 93212 0.031 kg/m3 0.022 kg/m3 0.598 

Ochoco FRG 3 CBD 22380 0.028 kg/m3 0.019 kg/m3 0.555 

Powell Local CC 55239 8.81% 6.52% 0.859 

Powell Global CC 55239 9.46% 7.17% 0.837 

Powell FRG 3 CC 24599 10.04% 7.54% 0.83 

Powell FRG 4 CC 28985 8.10% 6.03% 0.835 

Powell Local CH 55239 4.44 m 3.33 m 0.752 

Powell Global CH 55239 4.76 m 3.58 m 0.718 

Powell FRG 3 CH 24599 4.90 m 3.67 m 0.75 

Powell FRG 4 CH 28985 4.06 m 3.05 m 0.739 

Powell Local CBH 55239 2.13 m 1.54 m 0.533 

Powell Global CBH 55239 2.10 m 1.49 m 0.545 

Powell FRG 3 CBH 24599 2.31 m 1.64 m 0.588 

Powell FRG 4 CBH 28985 1.76 m 1.28 m 0.54 

Powell Local CBD 55239 0.054 kg/m3 0.037 kg/m3 0.59 

Powell Global CBD 55239 0.051 kg/m3 0.035 kg/m3 0.635 

Powell FRG 3 CBD 24599 0.062 kg/m3 0.045 kg/m3 0.603 

Powell FRG 4 CBD 28985 0.036 kg/m3 0.024 kg/m3 0.61 

Southern Coast Local CC 491731 16.35% 12.32% 0.613 

Southern Coast Global CC 491731 15.75% 11.19% 0.642 

Southern Coast FRG 1 CC 125537 15.97% 11.11% 0.684 

Southern Coast FRG 3 CC 83831 13.30% 8.60% 0.731 

Southern Coast FRG 5 CC 281017 16.81% 12.09% 0.554 

Southern Coast Local CH 491731 7.31 m 5.30 m 0.78 

Southern Coast Global CH 491731 8.39 m 6.19 m 0.709 

Southern Coast FRG 1 CH 125537 7.37 m 5.51 m 0.634 

Southern Coast FRG 3 CH 83831 7.90 m 5.64 m 0.721 

Southern Coast FRG 5 CH 281017 8.47 m 6.27 m 0.738 

Southern Coast Local CBH 491731 4.00 m 3.00 m 0.575 

Southern Coast Global CBH 491731 4.41 m 3.36 m 0.485 

Southern Coast FRG 1 CBH 125537 3.33 m 2.50 m 0.555 

Southern Coast FRG 3 CBH 83831 4.37 m 3.31 m 0.54 

Southern Coast FRG 5 CBH 281017 4.70 m 3.60m 0.448 

Southern Coast Local CBD 491731 0.107 kg/m3 0.077 kg/m3 0.552 

Southern Coast Global CBD 491731 0.120 kg/m3 0.087 kg/m3 0.431 

Southern Coast FRG 1 CBD 125537 0.123 kg/m3 0.090 kg/m3 0.478 

Southern Coast FRG 3 CBD 83831 0.110 kg/m3 0.079 kg/m3 0.52 

Southern Coast FRG 5 CBD 281017 0.118 kg/m3 0.084 kg/m3 0.431 

Tahoe Local CC 420960 9.64% 7.09% 0.874 

Tahoe Global CC 420960 10.51% 7.98% 0.85 

Tahoe FRG 1 CC 337658 10.35% 7.64% 0.853 

Tahoe FRG 3 CC 76895 9.98% 7.55% 0.818 
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Tahoe Local CH 420960 5.96 m 4.54 m 0.667 

Tahoe Global CH 420960 6.35 m 4.90 m 0.622 

Tahoe FRG 1 CH 337658 6.67 m 5.18 m 0.591 

Tahoe FRG 3 CH 76895 5.82 m 4.44 m 0.63 

Tahoe Local CBH 420960 2.28 m 1.69 m 0.587 

Tahoe Global CBH 420960 2.41 m 1.79 m 0.541 

Tahoe FRG 1 CBH 337658 2.51 m 1.86 m 0.53 

Tahoe FRG 3 CBH 76895 2.15 m 1.63 m 0.484 

Tahoe Local CBD 420960 0.053 kg/m3 0.036 kg/m3 0.789 

Tahoe Global CBD 420960 0.054 kg/m3 0.037 kg/m3 0.775 

Tahoe FRG 1 CBD 337658 0.058 kg/m3 0.040 kg/m3 0.761 

Tahoe FRG 3 CBD 76895 0.038 kg/m3 0.025 kg/m3 0.75 

Teanaway Local CC 25817 10.01% 7.48% 0.8 

Teanaway Global CC 25817 10.41% 7.91% 0.785 

Teanaway FRG 1 CC 6102 10.29% 7.78% 0.702 

Teanaway FRG 3 CC 19181 10.04% 7.54% 0.809 

Teanaway Local CH 25817 4.51 m 3.54 m 0.509 

Teanaway Global CH 25817 4.52 m 3.51 m 0.533 

Teanaway FRG 1 CH 6102 4.32 m 3.32 m 0.419 

Teanaway FRG 3 CH 19181 4.23 m 3.26 m 0.611 

Teanaway Local CBH 25817 2.03 m 1.53 m 0.525 

Teanaway Global CBH 25817 2.14 m 1.62 m 0.47 

Teanaway FRG 1 CBH 6102 2.16 m 1.64 m 0.451 

Teanaway FRG 3 CBH 19181 2.04 m 1.55 m 0.521 

Teanaway Local CBD 25817 0.042 kg/m3 0.030 kg/m3 0.667 

Teanaway Global CBD 25817 0.043 kg/m3 0.031 kg/m3 0.645 

Teanaway FRG 1 CBD 6102 0.038 kg/m3 0.026 kg/m3 0.501 

Teanaway FRG 3 CBD 19181 0.044 kg/m3 0.032 kg/m3 0.662 
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Table 5. Accuracy assessment of local, global, and fire regime group (FRG) models for 

test landscapes. All data within the landscape’s datasets used for model assessment. N 

refers to the number of samples used for the performance metrics. 

Landscape Model 

Canopy 

Fuel 

Variable N RMSE MAE R² 

Illilouette Dinkey CC 124229 10.95% 8.53% 0.680 

Illilouette Global CC 124229 10.68% 8.31% 0.696 

Illilouette FRG 1 CC 59941 11.51% 9.05% 0.684 

Illilouette FRG 3 CC 59606 9.56% 7.36% 0.717 

Illilouette Dinkey CH 124229 8.06 m 6.28 m 0.300 

Illilouette Global CH 124229 7.84 m 6.18 m 0.338 

Illilouette FRG 1 CH 59941 8.81 m 6.90 m 0.280 

Illilouette FRG 3 CH 59606 7.40 m 5.96 m 0.191 

Illilouette Dinkey CBH 124229 4.25 m 3.16 m -0.168 

Illilouette Global CBH 124229 4.11 m 3.03 m -0.094 

Illilouette FRG 1 CBH 59941 4.77 m 3.49 m -0.120 

Illilouette FRG 3 CBH 59606 3.35 m 2.55 m -0.094 

Illilouette Dinkey CBD 124229 0.035 kg/m3 0.024 kg/m3 0.417 

Illilouette Global CBD 124229 0.030 kg/m3 0.020 kg/m3 0.578 

Illilouette FRG 1 CBD 59941 0.033 kg/m3 0.022 kg/m3 0.540 

Illilouette FRG 3 CBD 59606 0.029 kg/m3 0.019 kg/m3 0.529 

North Coast South Coast CC 947615 15.93% 12.47% 0.553 

North Coast Global CC 947615 14.22% 10.76% 0.644 

North Coast FRG 3 CC 49945 14.05% 9.73% 0.692 

North Coast FRG 5 CC 895207 14.33% 10.24% 0.631 

North Coast South Coast CH 947615 7.83 m 5.98 m 0.702 

North Coast Global CH 947615 8.15 m 6.27 m 0.677 

North Coast FRG 3 CH 49945 9.05 m 6.80 m 0.565 

North Coast FRG 5 CH 895207 10.04 m 7.61 m 0.510 

North Coast South Coast CBH 947615 4.65 m 3.59 m 0.430 

North Coast Global CBH 947615 4.66 m 3.64 m 0.428 

North Coast FRG 3 CBH 49945 4.37 m 3.44 m 0.433 

North Coast FRG 5 CBH 895207 4.94 m 3.82 m 0.359 

North Coast South Coast CBD 947615 0.116 kg/m3 0.085 kg/m3 0.511 

North Coast Global CBD 947615 0.121 kg/m3 0.090 kg/m3 0.465 

North Coast FRG 3 CBD 49945 0.125 kg/m3 0.092 kg/m3 0.510 

North Coast FRG 5 CBD 895207 0.126 kg/m3 0.095 kg/m3 0.417 

Slate Creek Clear CC 320971 25.29% 22.28% -0.446 

Slate Creek Global CC 320971 14.96% 12.18% 0.494 

Slate Creek FRG 1 CC 55873 13.90% 10.74% 0.633 

Slate Creek FRG 3 CC 190294 14.62% 11.68% 0.561 

Slate Creek FRG 4 CC 73862 15.49% 13.02% -0.057 

Slate Creek Clear CH 320971 7.05 m 5.52 m 0.249 

Slate Creek Global CH 320971 6.36 m 4.90 m 0.390 

Slate Creek FRG 1 CH 55873 7.23 m 5.72 m 0.397 

Slate Creek FRG 3 CH 190294 6.62 m 5.13 m 0.345 
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Slate Creek FRG 4 CH 73862 5.91 m 4.65 m -0.099 

Slate Creek Clear CBH 320971 3.84 m 2.84 m -0.004 

Slate Creek Global CBH 320971 3.58 m 2.69 m 0.125 

Slate Creek FRG 1 CBH 55873 4.33 m 3.36 m 0.142 

Slate Creek FRG 3 CBH 190294 3.72 m 2.81 m 0.070 

Slate Creek FRG 4 CBH 73862 2.75 m 2.23 m -0.411 

Slate Creek Clear CBD 320971 0.114 kg/m3 0.080 kg/m3 -0.889 

Slate Creek Global CBD 320971 0.060 kg/m3 0.045 kg/m3 0.479 

Slate Creek FRG 1 CBD 55873 0.060 kg/m3 0.045 kg/m3 0.503 

Slate Creek FRG 3 CBD 190294 0.063 kg/m3 0.047 kg/m3 0.473 

Slate Creek FRG 4 CBD 73862 0.054 kg/m3 0.042 kg/m3 0.198 
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Figure 6. Predicted versus observed plots for the Illilouette test landscape 

using the global GBM model (left column) and existing LANDFIRE layers 

(right column). Point density indicated with blue (low) to red (high) gradient. 



 

 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Predicted versus observed plots for the North Coast test landscape 

using the global GBM model (left column) and existing LANDFIRE layers 

(right column). Point density indicated with blue (low) to red (high) gradient. 



 

 66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Predicted versus observed plots for the Slate Creek test landscape 

using the global GBM model (left column) and existing LANDFIRE layers 

(right column). Point density indicated with blue (low) to red (high) gradient. 
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For comparisons between response variables using the global model, CBH proved 

the most difficult to characterize with mean R² of 0.547 for the training landscapes and 

0.153 for the test landscapes. CC had the best variance explained with a mean R² of 0.73 for 

the training landscapes and 0.611 for the test landscapes. CBD had a mean R² of 0.602 for 

the training landscapes and 0.507 for the test landscapes. CH had a mean R² of 0.631 for the 

training landscapes and 0.385 for the test landscapes. 

The Ochoco landscape contained the Corner Creek Fire mostly within its extent 

with an ignition date of June 29, 2015. Pre-fire spectral indices were calculated using 2014 

imagery and post-fire used 2016 imagery. Model predictions for both years and from the 

global and Ochoco landscape models were compared (Figs. 9, 10, 11, and 12). High 

severity pixels showed the largest changes in canopy predictions with a mean percent 

decrease of 51.2% for CC (55.6% to 27.13%), 39.4% for CH (28.0 m to 16.9 m), 40.3% for 

CBH (8.3 m to 5.0 m), and 55.0% for CBD (0.135 to 0.061 kg/m3) using the global model. 

The local Ochoco model showed similar results but the percent changes were larger for CC 

(60.0% decrease), smaller for CH (14.9% decrease), larger for CBH (46.2% decrease), and 

smaller for CBD (52.2% decrease).  

Moderate burn severity pixels followed expectations with mean decreases for each 

canopy variable but at reduced percentages compared to high severity pixels. For the global 

model, CC decreased by 31.7%, CH decreased by 20.0%, CBH decreased by 26.3%, CBD 

decreased by 32.5%. For the Ochoco local model, CC decreased by 38.0%, CH decreased 

by 1.2%, CBH decreased by 29.5%, and CBD decreased by 32.8%. 

For unburned to low severity pixels, little change was seen in the canopy fuel 

variables. For the global model, CC had a mean percentage decrease of 5.8%, CH 

decreased by 2.3%, CBH decreased by 5.3%, and CBD decreased by 2.5%. For the local 

Ochoco model, CC decreased by 7.9%, CH increased by 3.8%, CBH decreased by 4.5%, 

and CBD decreased by 5.1%.  

Variable importance calculations show the relative influence of each feature by 

assessing whether the feature was used to split during the tree building process and how 

much the squared error reduced as a result of splitting on that feature over all trees. Fig. 13 

shows the variable importance for the four canopy fuel variables using the global model. 

The spectral predictors Med NBR, Med Bright, and Med Green each had the highest 

importance for at least one variable. Med NBR had the highest importance for CC and CBH 

and was also of secondary importance for CH and CBD. Med Green had low importance 

for CC, CH, and CBH but was the highest for CBD; an interesting result considering CBD 

is calculated using CC and CH, and Med Green had low variable importance for these two 

variables. Latitude, elevation, and aspect had moderate importance in all responses except 
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for CBD. The median spectral indices had higher importance than all their maximum 

counterparts. Tasseled cap wetness had the least importance with both the maximum and 

minimum indices in the bottom four of importance. Max NDVI and Max NBR were the 

other two predictors with the lowest importance overall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of pre- and post-fire, global and local (Ochoco) model 

predictions for canopy cover in high (top row), moderate (middle row), and low to 

unburned (bottom row) fire severity classes for the Corner Creek Fire. Vertical dotted 

lines depict the mean prediction value. 
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Figure 10. Comparison of pre- and post-fire, global and local (Ochoco) model 

predictions for canopy height in high (top row), moderate (middle row), and low to 

unburned (bottom row) fire severity classes for the Corner Creek Fire. Vertical dotted 

lines depict the mean prediction value. 
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Figure 11. Comparison of pre- and post-fire, global and local (Ochoco) model 

predictions for canopy base height in high (top row), moderate (middle row), and low 

to unburned (bottom row) fire severity classes for the Corner Creek Fire. Vertical 

dotted lines depict the mean prediction value. 
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Figure 12. Comparison of pre- and post-fire, global and local (Ochoco) model 

predictions for canopy bulk density in high (top row), moderate (middle row), and 

low to unburned (bottom row) fire severity classes for the Corner Creek Fire. 

Vertical dotted lines depict the mean prediction value. 
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Figure 13. Variable importance for each canopy fuel response variable derived from the 

global gradient boosting maching (GBM) model using training landscape data. 
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4) Discussion  

While the local landscapes show less error and increased variance explained than 

the FRG and global models in the training landscapes, the test landscapes expose evidence 

of overfitting and reduced model performance.  In addition to the parsimony provided, the 

results support the use of the global model for predicting canopy fuels over the western US. 

The FRG models have nearly equivalent performance to the global models but the splitting 

of data and use of multiple models is unnecessary given their near equivalency. GBM’s 

boosting approach is likely able to differentiate the areas of spatial variance in the feature-

response relationships observed in the partial dependence plots. In effect, a single GBM can 

create local models within the ensemble process, as samples with different feature-response 

relationships would show as residuals that GBM then trains on in subsequent trees. The use 

of latitude and its moderate importance for 3 of 4 of the canopy fuel variables supports this 

assertion as spatial variance in spectral-canopy fuel relationship can be captured within this 

locational metric. While longitude was considered as a potential feature, not enough data 

was present to confidently characterize the longitudinal precipitation gradients across the 

western US. Without adequate coverage, use of longitude could potentially lead to 

overfitting and a lack of generality in the model. 

4.1 Comparisons 

Comparisons to LANDFIRE show increased performance in every case. LiDAR’s 

ability to provide added value is unquestionable. However, the conception of these LiDAR-

based metrics is different than LANDFIRE’s. Indeed, ambiguity in the formulation of CBH 

and CBD largely stems from the inability to quickly and consistently measure them in the 

field (Keane et al. 2005). LANDFIRE’s definition of CBD (Table 1) allows LiDAR CC and 

CH metrics to be inserted directly into the equation for near equivalency. However, this 

equation was only one of two equations used to calculate CBD in Reeves et al. (2009), but 

discriminating between which equation was applied at the pixel level is not possible and 

could explain part of the mismatch in the comparisons here. CBH’s LiDAR-based 

definition (mean height minus standard deviation, Rowell et al. 2005)) is not equivalent to 

LANDFIRE’s formulation, which is the lowest vertical height at which the vertical 

distribution of CBD is ≥ 0.012 kg/m3 (Reinhardt et al. 2006), though there is conceptual 

correspondence.  As Peterson et al. (2015) notes, the LiDAR-derived definition of CBH 

over-predicts compared to Reinhardt et al. (2006) but use of this simplified, LiDAR-based 

metric allows improved characterization of variation over a landscape. A bias correction is 

necessary as over-prediction of CBH leads to under-prediction of crown fire in operational 

fire models (Cruz and Alexander 2010). The best interpretation for application is that these 
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remotely-sensed canopy fuel layers relate to and covary in the same fashion as but do not 

exactly replicate the canopy fuel variables conceived in the fire models. 

Direct comparisons of findings to other research are difficult given the breadth of 

the study area and the use of LiDAR-derived canopy fuel-specific response variables. 

Matasci et al. (2018) used a similar approach, predicted over the entirety of the Canadian 

boreal shield, and used similar response canopy variables. Table 6 summarizes the 

comparison. The results from the training and test landscapes are shown, as Matasci et al. 

(2018)’s R² estimation is more comparable to the training landscapes than the test 

landscapes (though not as independent of a test dataset). Hansen et al. (2016) used space-

borne LiDAR and Landsat 7 and 8 data to predict tree height across Sub-Saharan Africa 

and reported MAE of 2.45 m. They report a MAE of 4.65 m for tree heights > 20 m though, 

which is more consistent in error and observed tree heights presented here (MAE 3.99 m 

for training landscapes and 5.78 m for test landscapes). Wilkes et al. (2015) also map 

canopy heights over a broad-area in Australia and report an RMSE of 5.6 m. Ahmed et al. 

(2015) focus on a 2,600 ha area in British Columbia and report an R² of 0.67 for CC and 

0.82 for CH. Stojanova et al. (2010) use LiDAR and Landsat data over Slovenian forests 

and report RMSE of ~14.7% for CC and ~2.1 m for CH. Hyde et al. (2006) uses a dataset 

near the Dinkey landscape and reports similar results (Dinkey results in parentheses): for 

max.height, R² of 0.712 (0.675) and RMSE of 9.6 m (6.88 m); for mean height, R² of 0.603 

and RMSE of 7.5 m; for SD of Heights, R² of 0.517 and RMSE 3.7 m (Dinkey CBH R² is 

0.508 and RMSE 2.73 m). Pascual et al. (2010) report R² of 0.62 for mean height and 0.66 

for height coefficient of variation (CV) using Landsat imagery in Spain. Erdody and 

Moskal (2010) use field-based estimates of canopy fuels and relate them to Landsat spectral 

   

Table 6. Comparison of R² estimates between global model results and those 

of Matasci et al. (2018). Results are shown for both training (top) and test 

landscapes (bottom; right column). 

  

Matasci et al. (2018) Results Global Model Results   

Variable N R² Variable N R²   

Mean Height 20,182 0.49  CBH* 

 

1,550,354 

1,392,815 

0.547 

0.153 

  

SD Height 20,182 0.377   

Height (95th 

Percentile) 
20,182 0.495 

Height (99th 

Percentile) 

1,550,354 

1,392,815 

0.631 

0.478 

  

Cover 20,182 0.612 Cover 
1,550,354 

1,392,815 

0.729 

0.611 

  

*CBH is calculated by subtracting SD Height from Mean Height.   
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indices in south-central WA and report R² values of 0.415 for canopy height (RMSE 5.52 

m), 0.309 for CBH (RMSE 3.6 m), and 0.602 for CBD (RMSE 0.041 kg/m3).   

While these studies tend to produce better results compared to the test landscapes, 

the test data from the training landscapes is the more accurate comparison as none of these 

studies use entirely independent LiDAR datasets from different landscapes. While 

differences in LiDAR acquisition parameters, especially point density, can be small for 

height and cover (Jakubowski et al. 2013), these differences likely contribute a source of 

error especially for CBH, which requires penetration into the canopy. These studies also did 

not have variable years of LiDAR acquisition and annual differences can have large effects 

on spectral features driven primarily by precipitation timing and amount, temperature 

fluctuations, and variable cloud and cloud shadow cover leading to inconsistencies in 

measurement of median and maximum spectral indices (Ichii et al. 2002, Hermosilla et al. 

2015). Nonetheless, the results here are either competitive with or exceed the performance 

of other research of canopy structure based on Landsat TM, ETM+, and OLI imagery.  

4.2 Relevance of predictors and predictor-response spatiotemporal variance 

Beyond accuracy comparisons, a generalized and robust model must be able to 

characterize change due to disturbance. While topographic and locational features aid in the 

modeling process, they are static through time and a model overfit to these feature will not 

be responsive to temporal change. For example, despite Matasci et al. (2018)’s relatively 

high accuracy in prediction across Canada, four of the top five predictors in terms of 

variable importance are either topographic or locational in nature (elevation, latitude, 

longitude, and slope). This implies that their model may produce similar predictions over 

time regardless of changes in vegetation characteristics. In my study, elevation, aspect, and 

latitude show moderate variable importance, but three spectral features are much more 

important. For CC and CH, Med NBR and Med Bright have the vast majority of the 

importance. For CBH, Med NBR is the most important followed by latitude and elevation, 

and CBD has Med Green and Med NBR predominately important. This implies that the 

model is able to recognize and characterize change over time. This assertion is supported by 

findings from the Corner Creek Fire on the Ochoco landscape which shows large 

reductions in canopy fuels in high burn severity pixels, moderate change in moderate burn 

severity pixels, and little change in low to unburned pixels. Although validation data is not 

available for this assessment, the changes predicted are logically intuitive. Despite the large 

reductions in fuels shown from the Corner Creek Fire, however, the model is likely 

underestimating the amount of change. As noted in multiple modeling studies at these 

scales (e.g. Hansen et al. 2016), and seen in the predicted vs. observed plots here (Figs. 6, 

7, 8), predictions tend to over-estimate at the low end of the ranges and tend to under-
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estimate at the high end of the ranges. Indeed, the models were only trained with forested 

samples and thus have no ability to predict type changes to grass- or shrub-dominated 

areas. A separate step in a complete algorithm could determine forest or non-forest 

ecosystem types before applying canopy fuel models as done in LANDFIRE (Rollins et al. 

2009).  

The consistent distributions between multiple years in the unburned to low severity 

pixels also imply that global and local models provide consistent canopy estimations 

through time despite year to year variability in the spectral indices. Though the variable 

year of LiDAR acquisition and corresponding Landsat indices may be a source of error in 

the global model when predicting on a particular landscape in a particular year, it also 

likely improves generality and the ability to predict over time. Additional assessment is 

necessary to characterize the model’s ability to predict over time, but the results here are 

encouraging. 

4.3 Imputation vs. Regression 

Imputation approaches, such as in Zald et al. (2016) and Matasci et al. (2018), 

ensure realistic covariance between several response variables but also limit predictions to 

observed covariance structures. Given the large amount of sample data used in this 

approach (N= 16,702,582), imputation is a viable alternative approach. However, the 

flexibility to model new structural assemblages and maintain performance in significantly 

different forest ecosystems is a priority. In imputation approaches, a similarity or distance 

metric condenses information from all predictor variables to one value, which is used to 

match a sample for prediction to an existing sample. The observed sample’s response 

values are then applied as the prediction. Any confusion in the sample matching would 

potentially lead to errors in all response variables. Unique or rare covariance structures 

could be ignored as well. For this study, post-modeling rules could effectively ensure 

realistic covariance structures as well as imputation approaches. For example, CBH is the 

worst performing model here, and updates to achieve realistic values could be based on a 

better performing model such as CH (e.g., force CBH to a maximum proportion of CH or 

relate it to CBD, which is more in line with the Reinhardt et al. (2006) CBH formulation).  

4.4 Data Processing Architecture 

The combination of Spark, R, and H2O software provides an open-source, parallel, 

scalable, and efficient data processing and model-building environment. Though processing 

and analysis was completed on a modest server (48 processing cores, 256 GB of RAM), the 

entirety of the workflow could run on cloud services and expanded or contracted depending 

on processing needs. Each individual model was restricted to 750 seconds of modeling time 
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and most would be stopped before reaching this limit by the error tolerance metric. R is a 

popular statistical and data processing software, but its object-oriented design holds data in 

memory which limits users to available RAM on a system. A number packages are 

available to hold files on disk including the raster R package (Hijmans et al. 2019), but the 

Spark processing environment features lazy evaluation and transformations that do not 

necessarily require the full dataset to be loaded into memory. Data can be manipulated 

within Spark using an R interface with the dplyr (Wickham et al. 2019) and sparklyr 

(Luraschi) packages. Ultimately, the final dataset does need to be held in-memory for the 

H20 machine learning modeling process, but H20 can use the entire cluster to hold the 

dataset and additional Spark nodes can be added to scale to project needs.  

Google Earth Engine (GEE) offers a cloud-based processing platform and all 

Landsat imagery was processed to the spectral indices. The processing capabilities are vast, 

but certain limitations are purposely applied to reduce the potential data download sizes a 

single user can attempt. This required tiling and manual downloading of data which 

required significant amounts of time. A potential alternative option would be to complete 

the entire workflow within GEE and output the final fuels prediction maps on an annual 

basis. However, GEE’s machine learning capabilities are currently limited and do not have 

the significant parameterization possible in the H2O libraries including hyperparameter 

tuning. The LiDAR datasets would also have to be uploaded and stored for GEE’s access. 

However, as GEE increases in sophistication, this modeling process could likely perform 

entirely in the GEE environment at some point in the future. 

4.5 Potential improvements and future work 

Though Landsat TM and ETM+ sensors are practically equivalent, the new Landsat 

8 OLI sensor requires transformations for continuity (Roy et al. 2016). While the tasseled 

cap transformations were designed to maintain continuity among sensors (Baig et al. 2014), 

NDVI and NBR do not have such corrections considered. While Roy et al. (2016) show 

small but significant difference in NDVI between ETM+ and OLI sensors, no such 

assessment has been performed for NBR, but differences are expected. Correcting for 

differences in these two normalized metrics will likely improve temporal continuity and 

minimize differences in the datasets and model predictions due to varying years of 

acquisition and likely improve the ability of the model to predict change over time.  

The tasseled cap transformations themselves were designed for top-of-atmosphere 

(TOA) reflectance but applied to the surface reflectance products here. Inconsistencies in 

the literature are present with multiple approaches used but in general, the application of 

TOA transformations has been successful with surface reflectance products. Indeed, the 

scenes used to develop the transformations were specifically chosen to have little 
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atmospheric contamination (Crist 1985, Huang et al. 2002, Baig et al. 2014).  DeVries et al. 

(2016) argue for the use of one set of coefficients for use with surface reflectance products 

from multiple sensors and apply those of Crist (1985), which were designed for Landsat-5 

TM data. Kennedy et al. (2010) use the same logic but first applied a scene normalization 

algorithm to make the spectral space relatively consistent. As Baig et al. (2014) and Huang 

et al. (2002) designed the Landsat-7 ETM+ and Landsat-8 OLI transformations for 

continuity and no scene normalization process was applied, the transformations specific to 

each sensor are used here (Table 1).  Following recommendations of Crist (1985), I 

compared the resulting tasseled cap transformations against each other to evaluate whether 

orthogonal data is achieved. Figure 14 shows the first two tasseled cap indices (median 

Brightness and Greenness) for the South Coast (2009 acquisition year using Landsat TM 

and ETM+ imagery) and Tahoe landscapes (2015 acquisition year using Landsat OLI 

imagery), and the characteristic tassel cap shapes resembling that of Crist (1985) are 

present. Nonetheless, increased temporal continuity for spectral indices could improve 

temporal stability of model predictions especially if features characterizing multi-year 

spectral data are added as predictor variables. 

 

 

 

 

 

 

 

 

 

 

 

Addition of time series metrics derived from multiple years of Landsat data may 

also improve model predictions (use of time series data reviewed by Banskota et al. 2014). 

The primary benefit in this case would be the ability to identify previous disturbance timing 

and severity and potentially help stabilize the spectral indices’ year-to-year variability 

Figure 14. Comparison of relationships between Med Bright and Med Greenness for 

Landsat TM/ETM+ (right) and Landsat OLI (left). Data taken from the South Coast 

landscape with a 2009 acquisition year for TM/ETM+ and the Tahoe landscape with a 

2015 acquisition year for OLI. 



 

 79 

caused by cloud and shadow contamination or precipitation variability. Although Zald et al. 

(2016) and Matasci et al. (2018) employ these sophisticated metrics, their variable 

importance was minimal in the final assessment. A major downside is the need to re-

calculate the temporal trends annually, which can be computationally expensive. A custom 

script could update features (i.e. add one year to time since disturbance each annual update) 

and only analyze that year’s data for change. The LandTrendr algorithm (Kennedy et al. 

2010) segments Landsat time series trends and can create features describing them. This 

algorithm is integrated in Google Earth Engine and could be run simultaneously when the 

current-year Landsat spectral indices are calculated and integrated into the workflow. 

Additional complex topographic, climatological, and energy balance features could 

also improve model performance if properly implemented. Examples include: topographic 

wetness index (Sorensen et al. 2006), solar radiation index, climatic water deficit (Lutz et 

al. 2010), and cold air pooling (Lundquist et al. 2008). However, these features describe the 

environmental template on which vegetation and disturbance act upon and their utility for 

characterizing the current state of canopy fuels is limited and may lead to overfitting. 

Obviously, additional LiDAR datasets will improve the model’s ability to predict in 

new areas. In this study, only one dataset is present for CO, one for AZ, none for NM, UT, 

WY, SD, and NV. The method’s focus on model generality and processing architecture can 

handle significantly more data with ease and will no doubt improve with dataset additions. 

Many more datasets have been collected and processed (20+) since this research project 

began and will be included in a future map of canopy fuels for the western US.  

Finally, a necessary subject of future research is to develop more consistent 

methods to predict surface fuel models to accompany the improved canopy fuels data 

produced in this study, because changes in surface fuels generally have a stronger effect on 

fire behavior than canopy fuels.  Application of rule sets developed as part of the 

LANDFIRE Total Fuel Change Tool may provide a starting point for predicting surface 

fuels from improved (and continuous rather than categorical) estimates of canopy 

properties. 

5) Conclusions 

LiDAR-Landsat fusion is a capable replacement for existing LANDFIRE canopy 

fuel mapping protocols, is more easily implemented, and produces better results. A single 

GBM global model offers a parsimonious solution with small decreases in performance 

compared to the use of many local models and does not require logic to determine where 

each local model is most applicable. Local models’ partial dependence plots show 

spatiotemporal variability in predictor-response relationships but the response shapes are 
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relatively consistent across the predictor’s range of values. The global model is able to 

account for these differences and shows increased generality by outperforming local models 

on independent datasets. The global model is also able to logically update canopy fuels 

after wildfire disturbance with similar performance compared to the local model. The 

increased accuracy and better representation of canopy fuel variability over broad areas will 

increase the ability to predict fire growth and intensity; thereby enhancing land 

management decision-making for pre-fire, during-fire, and post-fire activities.  
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Chapter 4. Deriving Fire Behavior Metrics from UAS Imagery 

 1) Introduction 

Although laboratory and modeling approaches offer greater control of environmental 

conditions and better replicability than is possible in field settings, empirical studies of fire 

behavior remain important to a range of scientific inquires [1–4], including supporting 

theory of fire spread dynamics [5,6], evaluation/validation of mathematical fire models [7–

10], and assessments of fire and other disturbance interactions [11,12], fuel treatment 

design and effectiveness [13–15], and fire behavior process-vegetation pattern relationships 

[16–18]. In each of these areas of study, field observations and experiments provide 

opportunities to quantify actual fire behavior providing validation of numerical experiments 

in an intellectual environment that still prefers real-world corroboration of modeling 

research [6,19]. Remote sensing from handheld devices, tripods, manned aircraft, satellite, 

and, increasingly, unmanned aerial systems (UAS), are fundamental to the systematic 

measurement of fire behavior in the field [20]. 

The most common fire behavior metrics that are derived from empirical studies can be 

grouped into two distinct types: (1) energy release as characterized by intensity and/or 

power [21] and (2) fire movement such as rate of spread (RoS), spread direction, and 

residence time. Measurements of fire energy have significant scientific legacy from a 

multitude of small-scale laboratory experiments [22–24], in-situ field observations [25–27], 

and regional to global assessments of satellite imagery [28–31]. Significant limitations and 

assumptions are inherent in the estimates of fire radiative energy (FRE), fire radiative 

power (FRP), and fire intensity, primarily related to difficulties in collecting data over the 

full temporal range of combustion [32–34]. However, the performance of these metrics is 

well-documented in the literature, and many of the caveats are well-summarized in Table 6 

of Hudak et al. [35]. 

Derivations of fire movement metrics are less common in the literature, but they are 

experiencing a renaissance of sorts [36–39]. Fire RoS, an essential metric for characterizing 

fire intensity [40], and more generally fire behavior, has become obtainable at high 

temporal and spatial resolutions (~0.1–1 Hz and 1–50 cm, respectively) from UAS. The 

ability of UAS to collect data from new perspectives and variable scales has created a need 

for more robust algorithms to characterize fire progression and RoS. Such fire movement 

data are increasingly valuable for characterizing relationships between fire behavior and 

environmental patterns in fuels, moisture, wind, and topography, as well as in providing 

better estimates of fire intensity and real-time data for managing wildfires. 

UAS confer a fresh, dynamic, and relatively safe and inexpensive perspective for 

studying wildland fire in field settings [4,41,42]. A rotor-wing UAS hovering above a fire 

provides a static, scalable scientific measurement platform, with some advantages over 

other systems. For example, fixed-wing aircraft must be moving, and thus face challenges 

in providing spatially and temporally consistent measurements [39]. Helicopters have the 

same hovering capabilities with longer flight durations [36,43,44], but they come with high 

operating costs, complex logistics, increased risk, and the potential to produce rotor wash 

that affects fire behavior. Boom lifts [27], towers [45], large tripods [46], or trees can raise 
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sensors to overhead perspectives but constrain the spatial extents of measurement and must 

be resistant to high temperatures. 

There has been growing interest in the capabilities of UAS as a fire research tool, but 

their limitations are still not widely known [41]. Hardin et al. [47] outline the six primary 

challenges to using UAS for environmental remote sensing. Relatively short flight times 

(~10–30 min) for small rotor-wing UAS is the primary challenge and it largely determines 

mission parameters, such as launch and landing locations and the amount of time for 

uninterrupted data collection. Payload limits restrict sensor weight and, often as a result, 

sensor performance capabilities (e.g., uncooled microbolometers vs. cooled shortwave 

thermal cameras). Visual line-of-sight rules limit operating extents in many locations and 

further constrain launch and landing locations [41]. Consequently, pilots, visual observers, 

and researchers are constantly at risk of interfering with fire operations. UAS operations 

have not yet been fully integrated into fire operations either, and most fire personnel have 

little experience working with UAS when compared to traditional manned aircraft [48]. All 

of these factors increase the operational complexity in an already complex fire 

environment. Deploying UAS in prescribed fire settings simplifies operations somewhat 

compared to operating in uncontrolled wildfire situations, enhances research efficacy, and 

exposes scientists and fire managers to strengths and weaknesses associated with UAS use 

more broadly. 

UAS are also proving useful for collecting vegetation data, resulting in opportunities 

for acquiring coincident fuels-fire behavior datasets with increasingly finer grains and 

larger spatial extents. Relatively cheap UAS hardware combined with structure-from-

motion photogrammetric techniques can be used to build detailed three-dimensional (3-D) 

models of the environment [49–51]. Lidar systems, which are being mounted to UAS 

platforms, have also produced 3-D datasets of similar quality and detail [4,52]. Thus, the 

analysis of pattern-process ecological relationships is now possible in unprecedented detail 

and extent. There are at least two major and interrelated concerns for these types of pattern-

process analyses. First, the size of analytical units becomes an important consideration [3]. 

Point cloud data are often summarized over two-dimensional (2-D) pixels or 3-D voxels 

with a number of metrics that characterize the arrangement or presence/absence of points 

over defined areas or volumes [52,53]. The choice of area or volume of these units can 

significantly affect results [54]. Secondly, and specific to study presented here, the 

estimation of fire movement suffers from a lack of data between consecutive images. This 

can lead to a violation of statistical assumptions, particularly sample independence, and 

thus the determination of appropriate analytical units is necessary. 

Fire has inherent spatial and temporal dependence as a self-perpetuating chemical 

reaction [55], which should be accounted for or leveraged in analyses. In particular, for 

RoS, if the values are attributed to individual pixels at the original resolution of the 

imagery, interpolation is necessary between flame fronts locations. These are essentially 

redundant data introducing artificial spatial autocorrelation (SA), which confounds the true 

SA signal. This effect is spatially variable, as missing data increases when fire covers a 

larger area between images (i.e., higher RoS). Statistical inference and model performance 

will undoubtedly be affected by inflating independent sample sizes (i.e., pseudo-replication) 

and the aforementioned confounding of the true SA signal [56]. This general issue is coined 

the ‘change of support problem’ or ‘modifiable areal unit problem’ (MAUP), where 
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‘support’ refers to the geometrical size, shape, and spatial orientation of the region 

associated with the value or measurement of interest [57,58]. 

Here, in conjunction with estimating fire spread metrics from UAS imagery, we 

introduce a method to derive more robust analytical units, while also maintaining inherent 

SA, in order to improve pattern-process analyses, such as fuel-fire behavior interactions. 

Our approach is methods-oriented with the intent of sharing techniques in sufficient 

reproducible detail, and with the expectation that fire research with UAS will continue to 

develop and expand in use. Our paper addresses the following specific objectives: 

1. Collect spatially and temporally consistent images of free-burning fire using UAS-

borne thermal IR, NIR, and visible cameras on spatial domains of 0.01–1 Ha. 

2. Generate image time-series with known radiometric and geometric fidelity. 

3. Extract fire progression, rate of spread (RoS), and spread direction in complex fire 

behavior (e.g., interacting fire lines, multiple heads) using automated methods. 

4. Determine appropriate analytical units from fire behavior data to improve statistical 

analysis of fire-environment interactions (e.g., fire behavior-fuels). 

5. Share lessons-learned with the intent of flattening the learning curve for others 

adopting UAS technology for wildland fire operational and research use. 

2) Materials and Methods 

The following methods were derived from UAS deployments on a dozen prescribed 

fires in the states of GA, FL, MT, and OR, USA. Here, we focus on data collected from 

seven field plots in three prescribed fires conducted in dry ponderosa pine forests of 

western MT and southern OR. Five plots were located at the University of Montana’s 

Lubrecht Experimental Forest (referred to as Lubrecht henceforth) in May 2017. Two plots 

were located at The Nature Conservancy’s Sycan Marsh Preserve (Sycan henceforth) in 

October 2018. Plot dimensions for the Lubrecht experiments were 10 × 10 m. The Sycan 

experiments expanded plot sizes to 100 × 100 m. Data were collected by positioning a UAS 

with nadir-viewing cameras above plot center and imaging fire as it burned through a plot. 

We include relevant background and literature pertinent to the specific methods below. 

2.1. UAS Platforms and Sensors 

After testing many rotor-wing UAS and sensors (e.g., platforms: DJI (Shenzhen, GD, 

China) Phantom, Phantom Pro, M600, M100; Skyfish (Missoula, MT, USA) M4; ICI 

(Beaumont, TX, USA) Halo; 3DR (Berkeley, CA, USA) Solo, X8 (DIY); GoPro (San 

Mateo, CA, USA) Karma; sensors: FLIR (Wilsonville, OR, USA) XT; ICI 8640; ICI SWIR 

640; DJI X3, X5; Sony (Tokyo, Japan) A7R, QX1, QX30, A6000; GoPro Hero; MicaSense 

(Seattle, WA, USA) RedEdge), we selected the DJI Matrice M100 with a dual battery 

configuration and the FLIR XT and MicaSense RedEdge sensors. The Matrice provided 

reliability at relatively low cost along with a good balance of size, speed, hovering stability, 

flight time, payload, software capability and stability, camera integration, availability of 

spare parts, and ease of repair. A bench-calibrated (prior to both field missions) FLIR XT 

thermal camera (7.5–13.5 µm spectral band) mounted on a DJI gimbal was used for the 

Lubrecht experiment. A multispectral Micasense RedEdge camera on a fixed mount (no 

gimbal) was added for the Sycan burns. These two sensors provide multispectral, 
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radiometric assessment of fire and vegetation at wavelengths of 0.465–0.86 µm and 7.5–

13.5 µm. Table 1 shows the sensor specifications. 

2.2. Plot Selection and Layout 

Eight ground control points (GCPs) were established at the corners of two nested 

squares for each plot. At Lubrecht, the outer square had 10x10m dimensions with the inner 

square at one-third the area (3.33 × 3.33 m). For Sycan, the outer squares were 100 × 100 m 

and the inner squares were 10 × 10 m. The internal geometry of the GCPs was established 

with measurements from a TruePulse laser rangefinder. GCP locations were geotagged 

using an Emlid Reach RS rover-base station dGPS setup. Plot layout and UAS camera 

orientation were consistent to ease interpretation and georectification of imagery. Plots 

were selected to minimize canopy occlusion but also to represent a variety of western US 

surface fuels that typically experience low and mixed severity fire. Plots were ignited using 

a drip torch with the intention of achieving a coherent, steady-state fire front spreading 

perpendicular to a plot edge. In practice, heterogeneous fuels and shifting wind speed and 

direction led to ignitions at variable distances and directions from plot edges. For example, 

fire in Sycan plot 1 failed to carry into the plot, and it had to be re-ignited in receptive fuels 

within the plot boundaries. 

2.3. Data Collection 

The UAS hovered at a fixed altitude above plot center with cameras viewing nadir. 

Table 1 reports the flying altitudes, corresponding pixel sizes, and other relevant data 

collection parameters. 

Flight altitudes were established to capture the extent of the plot with a buffer of 2–5 m 

at Lubrecht and 10–15 m at Sycan. Data were collected for at least one UAS battery cycle, 

until active fire spread within the plot ceased, or progression of fire operations necessitated 

travel to the next plot. Temporal resolution was fixed at 0.2 Hz at Sycan and 1 Hz for 

Lubrecht, although image capture rates were delayed to 0.13 Hz and slightly variable (SD 

of 0.13 s) at Lubrecht due to memory card issues. The FLIR XT was the primary sensor for 

the Lubrecht burn. Both the Micasense RedEdge and FLIR XT were used at Sycan 

although the RedEdge was the primary camera for RoS derivation. 

2.4. UAS Imagery Stabilization and Georectification 

An important consideration for deriving useable fire data from UAS is the stabilization 

of imagery to mitigate platform drift and jitter [59]. Gimbaled sensors reduce these effects, 

but correction is still necessary. The first step is to establish GCPs that can be identified in 

different spectral bands with fire in the field of view. Either ‘cold’ (i.e., low emissivity) or 

‘hot’ (usually charcoal beds) targets relative to background temperatures are options. After 

extensive experimentation, we settled on low-emissivity, 40 × 40 cm polished aluminum 

targets (for Sycan) and 12 cm diameter aluminum foil-wrapped circular targets (for 

Lubrecht), which proved to be reliably identifiable in visible and infrared imagery. Target 

visibility was tested at multiple altitudes in sunlit and diffuse lighting as well as in active 

fire conditions. 
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Table 1. Sensor and data collection information for the two prescribed burns (Lubrecht and Sycan) in this study. 

Sensor 

Spectral Band 

for Fire 

Behavior 

Radiometric 

Temperature Range 1 
Array Size Plot 

Altitude 

Above 

Ground  

Ground 

Sample 

Distance 

Temporal 

Resolution 

Time 

Series 

Length 

(focal length) (µm) (°C) (pixels) Name (m) (cm) (Hz) (s) 

FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 1 19 3.59 0.13 725 

FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 2 20 3.78 0.13 1216 

FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 3 20 3.78 0.13 1449 

FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 4 18.5 3.49 0.13 1014 

FLIR XT (9 mm) 2 7.5–13.5 100–1100 640 × 512 Lubrecht 5 18 3.41 0.12 928 

FLIR XT (9 mm) 7.5–13.5 100–190 3 640 × 512 Sycan 1 120 22.7 0.2 250 

MicaSense RedEdge (5.4 mm) 0.82–0.86 650–1150 4 1280 × 960 Sycan 1 120 8.2 0.2 250 

MicaSense RedEdge (5.4 mm) 0.82–0.86 650–1150 4 1280 × 960 Sycan 2 180 12.5 0.2 240 
1 Tested on a Mikron M300 blackbody calibration source with a 100–1150 °C temperature range; 2 Higher temperature range achieved 

using a custom neutral-density filter; 3 High gain setting without neutral-density filter saturated pixels at 190 °C; 4 Lower limit 

determined as blackbody radiance became clearly distinguishable from background radiance in a laboratory setting. 
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Two basic methods were evaluated to create co-incident, georectified imagery: (1) 

georectification alone, which effectively corrects image jitter while rectifying, but requires 

each image to be separately processed and (2) image stabilization of the time series, 

followed by separate georectification. Georectification alone may seem faster, but 

automated GCP and tie-point locators struggle with the rapid change between images due 

to fire spread. This created the need for manual identification of GCPs and other visible tie-

points in every individual image necessitating significant time and resources. GCPs were 

also obscured by fire and smoke in some images, which led to inconsistent results across 

the time series. The use of image stabilization algorithms, specifically those designed for 

video stabilization, resolved these issues [59]. We used the warp stabilizer algorithm within 

Adobe After Effects (version 15.1.2) for this purpose, although open-source variants are 

also available. By locating objects that are relatively invariant throughout a time-series or 

only using the previous image to identify tie-points, image stabilization algorithms 

efficiently produce image stacks that need GCPs to be visible in only one image (often pre- 

or post-fire) for effective georectification. The downsides of video stabilization techniques 

are their tendency to transform data to into video compliant data types (8 or 16 bits), which 

often involve data scaling. 

2.5. Data Pre-Processing 

Before calculating fire behavior metrics, aligned imagery was converted to radiance 

(Micasense RedEdge) and radiant temperature (FLIR XT) and organized in raster stack 

form. The FLIR XT sensor requires proprietary software to extract radiometric data and 

calculates radiant temperature based on calibrated equations specific to the sensor. 

Although improvements in radiant temperature estimates can be made using a set of user 

inputs, the inputs can be temporally and spatially variable (e.g., emissivity) [60] and subject 

to radiometric saturation. Thus, accurate spatial calibration is unlikely. We used default 

values besides ambient temperature and relative humidity, which were measured at take-off 

for each plot. An emissivity constant of 0.98 was utilized. Calibration of imagery from the 

Micasense RedEdge is integrated into several software packages (e.g., Agisoft Metashape), 

although its use for observing fire requires customized scripts. A GitHub webpage provides 

Python scripts and tutorials [61]. The RedEdge camera has five distinct sensors for each 

spectral band, and the image rasters must be aligned post collection. While Micasense 

provides an automated alignment script, the results proved inconsistent. We used the GCPs 

to create an alignment model using an affine transformation within ERDAS Imagine 

software (version 16.5.0) to achieve satisfactory band-to-band alignment. We then followed 

Micasense’s algorithms for radiometric calibration and calculation of radiance for each 

spectral band. 

2.6. Flaming Combustion Determination 

Characterizing the movement of flaming combustion begins with a definition of 

flaming, as measured by the sensors employed. Most commonly, raw digital numbers from 

the sensor are converted to radiance and then transformed to radiant temperature. A static 

threshold is then applied to the radiant temperatures for a binary classification. The value of 

this temperature threshold varies considerably in the literature from 150 °C [44], 326.85 °C 
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[36], 426.85 °C [43], 499.85 °C [38,40], and the Draper point at 525 °C [62]. Another 

approach is to define the flaming front using edge detection algorithms, which rely on 

gradient change in the imagery [37,45,63]. Major advantages of edge detection approaches 

are the ability to apply them to image data that do not have robust radiant temperature 

transformations available and in situations where absolute values of radiance may be 

affected, such as smoky atmospheric conditions. With the rapid development of UAS-

specific sensors, we prefer the gradient approaches, as datasets are likely to be variable in 

scale, resolution, and sensor-specific parameters, such as spectral bands and sensitivity. 

Theoretically, one gradient-based approach could be applied to a variety of imagery and 

yield similar results, whereas methods reliant on radiant temperature thresholds would 

likely have to be customized for each sensor and perhaps for different spatial resolutions as 

well. 

However, gradient-based approaches typically define only the leading flame front 

edge. As the active flame front is often discontinuous and complex in heterogeneous fuels, 

the edge-smoothing needed to account for gaps, such as in Ononye et al. [63], simplifies 

subsequent fire behavior calculations and risks reducing the variability seen at the fine 

scales capable from UAS perspectives. Additionally, fire spread into areas not ignited by 

the initial flaming front will often be ignored in these gradient-based approaches. 

To overcome the limitations of both methods, we combined temperature threshold and 

edge detection techniques to maintain observed variability and to maximize indifference to 

resolution, sensor, and spectral band differences. First, edge detection following the Canny 

method was applied to each thermal image [64]. Valero et al. [37] showed that the Canny 

method discriminates between the flaming front, transient flames, and pre-frontal heat. 

Instead of directly using these edges, we extracted pixel values along the defined flame 

front edge from the Canny algorithm and applied a two class k-means clustering algorithm 

to automatically determine the flaming combustion threshold [65]. 

From one perspective, determination of flaming combustion (and any binary 

classification) requires optimizing the balance between errors of commission (false 

positives) and omission (false negatives) [66]. Errors of commission are abundant in the 

pixels that immediately precede the flaming front due to preheated fuel and soot particles. 

Errors of omission are high in situations with high RoS, low residence time, or occlusion by 

vegetation or smoke. In our study, for example, areas of sparse grass and litter overlaying 

rock burned quickly but also cooled quickly once the flame front passed. This required 

logic to attribute pixels that clearly burned in the flaming front but were never detected 

above the flaming combustion threshold (omission error). Similarly, if temperature 

thresholds are set too high, omission error rates increase leading to erroneously 

discontinuous flaming fronts. In such cases, fire spread direction loses coherency, and 

estimates of RoS will erroneously decrease. Alternatively, low thresholds cause high rates 

of commission error, which increase RoS, reduce variability in spread direction, and 

incorporate unburned pixels. 

We tested a dual-threshold approach to account for these situations: one to define the 

leading edge weighted towards a low error of commission and another weighted to 

minimize error of omission. This approach allows for the use of data from one or multiple 

sensors and a single spectral band or a split window using different spectral bands. In our 

experiments at Sycan, we erroneously acquired data from the FLIR-XT in the high-gain 
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setting for plot 1, which saturated the pixels at 190 °C. This plot also had the grass-

overlying-rock fuel arrangement causing the residence times to be shorter than the temporal 

resolution of the imagery. We thus used the Micasense NIR (0.82–0.86 µm) radiance values 

to define the leading flame edge through Canny gradient detection and k-means clustering. 

Within each particular timestep polygon, any pixels that did not reach the threshold were 

then compared to the FLIR XT data. If at the lower threshold (190 °C), the pixels were 

assumed to have experienced flaming combustion at that particular timestep. A single 

threshold was applied as defined by the k-means clustering for the other plots (Lubrecht 

plots 1–5 and Sycan plot 2), since the residence times were consistently longer than the 

temporal resolution of the imagery. 

2.7. Fire Progression 

Each pixel in the time-series stack was assigned the timestep at which flaming 

combustion initially occurred after a temperature threshold was applied individually to each 

image. This is termed a fire progression or time-of-arrival data layer, which is the basis for 

all subsequent fire behavior calculations presented in this study. 

2.8. Spread Rate and Direction 

Of all the metrics based on fire movement, RoS and spread direction may have the 

most utility for characterizing fire behavior. RoS can be estimated in the field, is commonly 

used, and exerts strong influence on the estimation of fire intensity [40]. Johnston et al. [38] 

showed that sensor and algorithm choice have significant influence on these estimates. 

Regardless of how flaming combustion is determined, the most popular approaches to 

estimate RoS utilize vector contours with movement speed and direction estimated from 

straight lines perpendicular to adjacent contours. In cases where threshold temperatures are 

used, contours are derived from the progression map, while edge detection approaches 

inherently create contour vectors. Often, the flaming front is broken and discontinuous and 

steps are needed to reduce the resulting complex geometry of the resulting vectors. Paugam 

et al. [36] found that areas of complex vector shapes were difficult to characterize and had 

to average groups of pixels at the cost of losing data by increasing pixel resolution to 1.44 

m from the initial 18 cm. Valero et al. [59] and Onyaye et al. [63] smoothed the contours 

and applied logic to traverse flame front gaps in order to create continuous vector lines.  

Our perspective was to characterize the variability and complexity observed in 

wildland fire settings and to compliment the diversity of imagery that can be collected with 

UAS. We formulated a new algorithm building on the previous work discussed above. 

While we utilize UAS-derived imagery, the approach could be applied to nearly any 

overhead, coincident time-series imagery. We explicitly consider complex fire behaviors, 

such as multiple distinct firelines interacting, which are common in heterogeneous fuels 

typical of western US forest ecosystems. The approach is primarily vector-based relying on 

pairing points defined as lead (i.e., where the fire is heading) or back edge (i.e., where the 

fire came from). Figure 1 illustrates the algorithm. Scripting was completed using R 

statistical software [67], with the additional packages ‘raster’ [68], ‘sp’ [69], ‘rgeos’ [70], 

and ‘circular’ [71]. First, all spatially connected pixels of the same arrival time were 

grouped into individual polygons. Each of these progression polygons can be assumed to be 
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the actual native sampling resolution, which is determined by the spatial and temporal 

resolution of the sensor and the RoS. For example, we observed several distinct, elliptical-

shaped fire heads in our plots at Lubrecht and Sycan plot 1, and the polygons describing 

them are much larger than those for the flanking and backing portions of the fire (e.g., 

Figure 2 Box E). The statistical implications are important and are discussed below. 

We regularly sampled along each progression polygon edge to create a series of focal 

points, similar to Onyaye et al. [63], but at regular spacing (with random start locations) 

rather than select specific locations. Paugam et al. [36] used a similar approach, but our 

pairing of the back and lead edge points overcomes problems with perpendicular lines not 

representing the fire spread direction when fire edges create complex polygon shapes. We 

also smoothed vector lines just enough to remove the jagged edges created by the square 

shape of the pixel, which are artifacts of the sensor array (Raster to Polygon tool with the 

‘simplify polygons’ option selected, ArcGIS 10.6.1). Using regularly spaced points 

introduces a sampling bias, but we iterated the algorithm twenty times with random start 

locations for the points and averaged the results. 

Each focal point was defined as either a lead or back edge point. This was determined 

by examining the adjacent polygon to the point and assessing whether it burned before or 

after in time. Leading edge points were connected with lines to back edge points with the 

logic demonstrated in Figure 1. Back edge points can be connected to multiple lead edge 

points. This situation represents fire growth in an expanding elliptical pattern, which most 

spatial fire spread models assume (e.g., FARSITE) [72]. The inverse situation is also 

possible where the fire closes in from multiple directions resulting in more back edge points 

than lead edge points. This special situation is highlighted in Figure 1 Box D. Once each 

point is paired, a straight line connecting the pair was created, which allowed for distance 

and direction to be determined. The line was buffered with a width of two pixels, and all of 

the pixels within this area were attributed with the direction and a RoS. The RoS was 

determined by dividing the length of the line by the length of time between the previous 

and current images. The buffering of the line leads to some pixels being attributed multiple 

RoS and directions. In these cases, we attributed the minimum RoS and its associated 

direction with the assumption that the fire traveled the shortest route. 

Another special situation is fire spread of one pixel per timestep, which is not amenable 

to the vector method above. We borrowed logic from calculation of topographical aspect 

from digital elevation rasters for these cases. First, we calculated the potential RoS to all 

the adjacent pixels and decomposed RoS into separate x, y components. The most likely 

spread direction was taken as the two-argument arc-tangent of the x, y components (‘atan2′ 

function) [67]. Therefore, this method is built on the assumption that the direction of fastest 

spread is the most likely. We could not use the same assumption that the shortest route is 

most likely here, as only one pixel is traversed per timestep. We then placed a line pointed 

in this resulting direction, found the intersecting pixel, calculated the pixel centroid to 

centroid distance, determined the length of time to traverse this line, and divided the 

distance by time to calculate the RoS. The intersection of the spread direction line can clip 

the corners of pixels that may not be the pixel with the most likely travel path. Thus, we 

added 20° to the calculated direction line in both directions, iterated the process, and 

selected the pixel with the highest resulting RoS as the most likely travel path. As pixel 

resolutions become larger and fire spread slows, individual pixel movement gains in 
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frequency. This method becomes increasingly important for the accurate characterization of 

fire spread in those situations. 
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Figure 1. Description of the rate of spread algorithm including situations requiring 

additional consideration when experiencing complex fire behavior (Box D and F). 

Illustrated examples taken from Lubrecht plot 5. 

2.9. Analytical Units 

The geometrical size and shape of analytical units are important considerations [58]. 

For RoS, the minimum areal unit of measurement could be considered the point-to-point 

vector line and intersecting pixels (i.e., Figure 1, Box E). However, considerable overlap 

occurs between these buffered lines and the point-to-point spacing is arbitrary. Conversely, 

the progression polygons created from the connected timestep pixels could also be 

considered a measurement unit. However, these polygons can be quite large and 

incorporate backing, flanking, and heading fire behavior. We sought to aggregate (or 
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disaggregate depending on the perspective) pixels (or progression polygons) to achieve a 

medium between these two extremes. 

We chose an automated approach using the idea of connected components from graph 

theory [73,74], hypothesizing that sharp changes in RoS between adjacent pixels delineate 

the boundaries of relatively independent analytical units. Pixels are considered to be 

connected when adjacent, within the same timestep, and below a defined change (or 

tolerance) parameter. The change parameter determines the degree of pixel aggregation. We 

evaluated a series of values settling on 0.015 m/s for the parameter as reasonable to 

aggregate to polygons that were relatively homogeneous in terms of the backing, flanking, 

and heading fire behavior. Tuning this parameter is likely necessary for higher RoS and 

different degrees of variability though this value was acceptable for the range of RoS 

observed in this study. We also required a minimum polygon area of 6x6 pixels for 

progression timesteps with high RoS (polygons sizes > 1 m2) to prevent individual and 

small groups of pixels from becoming their own units. In these cases, pixels that displayed 

large deviations in RoS estimates from neighboring pixels were predominantly artifacts of 

the algorithm (especially areas of complex geometry) and were assumed to not be different 

units. 

3) Results 

We evaluated two cold target sizes as GCPs, circular with 12 cm diameter, and square 

with 40 cm sides, at six altitudes above ground level (AGL) up to 150 m. For polished 

aluminum with an approximate emissivity coefficient of 0.04, targets must be roughly 1.1 

times the size of the pixel to be reliably visible in optical, thermal IR, and NIR imagery 

assuming line of sight is maintained. At altitudes of 150 m, a ratio of 1.2 is a safer 

minimum threshold as atmospheric effects become larger. At nadir and lower AGL (<100 

m), targets can be half the size of pixels and still have visibility. However with flames 

surrounding, we observed targets five times larger than a pixel obscured by heat. Eight 

ground targets distributed throughout the image in our nested square plot layout provided 

accurate georectification results following image stabilization techniques (RMSE 0.14–0.28 

m for Lubrecht and 0.27–0.94 m for Sycan). 

Fire behavior metrics were produced after the images were aligned, calibrated, and 

georectified. First, fire progression maps from gradient-based threshold techniques were 

derived (Figure 2, Box A and B). Similar to the results of Valero et al. [37], gradients 

successfully defined fire movement in thermal imagery. The use of NIR also matched well 

with optical flame imagery (Figure 2, Box C and D). A 1–3 pixel (8.2–24.6 cm) error of 

commission was observed at certain portions of the fireline though. This was most 

conspicuous at the heading portions and along the wind vector (e.g., right side of fireline in 

Figure 2, Box D). The use of the dual threshold technique filled the burned portions with 

low residence times and followed the natural flow of the progression (cf. Figure 2, Box A 

and B), but left unburned areas when visually compared to post-fire imagery (data not 

shown). 

We observed complex fire behavior with multiple heading fires and interacting 

flanking fires in nearly every plot, despite single strip ignition near each plot. Sycan plot 2 

had the most coherent fireline with relatively consistent topography and grass fuels. RoS 

ranged from 0–2.7 m/s at the two Sycan plots and 0–0.1 m/s for the Lubrecht plots (Figure 
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3). RoS distributions all had heavy-tailed, positively-skewed distributions with area-

weighted mean spread rates of 0.013–0.02 m/s for the Lubrecht plots and 0.305–0.404 m/s 

for the Sycan plots. Predictably, RoS was highest along the primary vectors of fire travel 

(heading fire) and lower along the flanks. At Lubrecht, field estimates of RoS were made 

between the visible targets (GCPs) within each plot. These estimates were significantly 

correlated with our image-derived measurements (Pearson correlation, n = 12, r = 0.71, p < 

0.05). Spread direction followed expectations; though in areas of highly irregular and 

complex firelines, inconsistencies still emerged despite designs to reduce them. 

Spatial aggregation of RoS produced polygon numbers averaging 35.4% of the original 

pixel count for Lubrecht and 3.1% of the pixels for Sycan (Figure 3), highlighting the large 

amount of redundant data and the strong influence of spread rate. The areas of inconsistent 

spread direction due to complex fireline geometry tended to have more polygons as spread 

rates showed increased variability along sharper gradients within each progression timestep. 

Aggregated polygons had a mean size of 0.38 m2 for Sycan and 0.033 m2 for Lubrecht. The 

maximum polygon size was 23.6 m2 for Sycan and 2.8 m2 for Lubrecht. 
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Figure 2. UAS data and derived metrics from Plot 1, Sycan Marsh, OR. (A) Fire 

progression with tree occlusion and additional missing data due to low flame 

residence time. (B) Data gaps filled using dual-threshold flaming combustion 

definition. (C) Optical (RGB) imagery from Micasense RedEdge camera 

highlighting one of the multiple heading fires within the plot. (D) Outline (white 

lines) of flaming combustion as defined by the method described in Section 2.6. 

(E) Calculated rate of spread delineated by image timesteps (black lines). (F) 

Automated aggregation of polygons to create analytical units. 
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Figure 3. Fire spread rate and direction plots from Lubrecht, MT and Sycan Marsh, OR. Pixel count, aggregated polygon count, and 

mean polygon size shown to highlight the large amount of redundant data and the loss of perceived sample size (pixels vs. aggregated 

polygons) after removal. All y-axes are scaled independently for ease of viewing and represent probability density functions. 



 

 104 

4) Discussion 

Fire metrics based on fire progression estimates are common in the scientific literature 

though rarely validated [38]. Our estimates of RoS compared well with visual, one-dimension 

estimates (r = 0.71) and also with mathematical fire model predictions. For example, using 

observed weather and fuel moisture parameters at Lubrecht and the timber litter and understory 

fuel model, Rothermel’s [75] fire spread equation predicts heading fire spread rates of 0.0045–

0.060 m/s, which compares favorably to the 0–0.1 m/s range observed. 

Spread direction followed general expectations with heading fire moving in the observed 

primary spread direction. However, our results show an interesting pattern related to fireline 

coherency and the relative amounts of flanking and heading fire. As mentioned, Sycan plot 2 had 

the most coherent fireline and the direction histogram shows the majority of spread in the same 

direction. In contrast, the majority of Lubrecht plot 5 experienced spread directions that were 

nearly orthogonal (mean 69.6° from North) to the direction of the heading fires (c. 135°). All of 

the Lubrecht plots show this spread direction distribution to varying degrees with plot 5 as the 

most prominent. The discontinuous surface fuels are likely the primary cause of this behavior. 

The burn occurred in a previously thinned area having numerous stumps, abundant 100-to 1000-

hr fuel class (2.54–20.32 cm diameter) woody debris, and skid trails left from mechanized 

equipment. The heading fires followed paths with sufficient fine fuels and then flanked and 

backed into areas where the barriers (e.g., larger fuels) had stopped the initial flame front. The 

associated changes in fire behavior have implications for fire effects [18]. 

Multiple heading fires also led to multiple firelines interacting, and the design of the 

algorithm properly identified and estimated RoS in these situations with one significant caveat. 

Some of these interaction zones, for example, the center of Sycan plot 1 (Figure 2, Box A), had 

lower RoS than anticipated. The preceding polygons showed a rise in RoS as the two flanking 

fires interacted, but RoS then decreased at the converging polygon. This artifact arose as a result 

of the temporal resolution of data capture being considerably slower than the RoS, and from the 

assumption that the fire spread at an equal rate from each fire line. Although between-image fire 

behavior can be inferred, assumptions are inherently necessary. For example, total radiant energy 

or intensity metrics could be used to infer higher than observed RoS or to determine the 

predominant direction of spread rather than assuming equal rates from both directions.  

The area traversed by fire between consecutive images causes a lack of data as fire behavior 

in the intervening time period is unknown. As RoS is a derivative of fire progression and fire 

progression is a derivative of the time-series imagery, it is possible and tempting to attribute each 

pixel from the progression or time-series layers with a RoS value. However, our analysis shows 

that the majority of these pixels are not measurement units nor statistically independent. The 

statistical consequences are inflated or introduced spatial autocorrelation and pseudo-replication 

[56]. The approach proposed here does risk a loss of relevant data if the change parameter is too 

high in value or RoS is spatially homogenous. This could lead to large analytical units. For 

example, long, linear fire fronts with consistent RoS could be aggregated to one or a few 

analytical units within a timestep (we emphasize that the units here were aggregated within 
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individual timesteps and not beyond). This issue could also be exacerbated by coarse temporal 

resolution imagery. We focused on creating robust analytical units for subsequent pattern-

process relationships. From this perspective, consistent RoS implies either consistent underlying 

patterns or little influence of pattern on fire processes, either case would be discoverable with 

analysis using larger analytical units. The analytical unit derivation strategy may need to be 

reconsidered for other analytical objectives. A potential research direction would be to follow the 

general approach of Openshaw and Taylor [57] and systematically vary analytical units and 

assess the effect on resulting spatial relationships. See Gelfand [76] for an in-depth review of 

existing literature and strategies for the change of the support problem. 

We hypothesized that this issue could be leveraged to help inform other data sampling 

methods. The analytical unit size is dependent on the interaction of RoS and the temporal and 

spatial resolution of the time-series imagery. Thus, with RoS predictions and known camera 

parameters, estimates of the analytical unit sizes are possible pre-fire. This information could 

provide guidance for field sampling protocols, especially plot sizes, and unit sizes for other 

remotely-sensed data. For example, UAS platforms have enabled increasingly fine-grained pre- 

and post-fire 3-D vegetation data [50]. The data density from these photogrammetrically-derived 

point clouds can be hundreds to thousands of points per square meter, and thus the level of 

spatial aggregation that minimizes the loss of pertinent information while removing redundancy 

is becoming a research priority. The analytical units of fire behavior are likely to be larger and of 

variable size when compared to this vegetation data as we show in this study. Ultimately, these 

datasets will need to be transformed and aligned if characterization of fire behavior and fire 

environment interaction is the objective. With additional research, derivation of a generalized 

relationship between RoS and camera parameters and the resulting analytical unit sizes can be 

useful for the production and analysis of comprehensive datasets. 

4.1. Lessons Learned 

UAS promise relatively cheap and low risk aviation platforms that provide new remote 

sensing capabilities to a variety of users. In the course of our experiences over the last few years, 

we evaluated many off-the-shelf and custom-built UAS. These experiences enable us to provide 

some suggestions for fire researchers interested in employing UAS in their work. First, we advise 

to not focus on flight capabilities alone. Flight time, speed, maneuverability, and payload are 

important, but sensor hardware integration, quality of software, spare parts availability, and ease 

of repair are equally, if not more, consequential to successful data collection. Custom or boutique 

UAS often promise improved or specific performance capabilities but frequently lack available 

spare parts and are often beset with hardware and software issues. Better flight performance and 

larger payloads also require larger UAS, which are cumbersome to transport, an important 

consideration in dynamic and time sensitive field settings. We place a premium on small, cheap, 

reliable systems, which often means working with consumer-grade technology provided by 

established companies. 
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We found that software issues were common in nearly all of the systems that we tested to 

varying degrees. At one point, three different software applications, two being third-party, were 

required to execute pre- and during-fire data collection within a single mission. How software 

interacts is unknown after any updates to the myriad of systems, and mission workflows must 

then be retested in entirety. Automatic software updates are often applied without notification 

and would frequently change system behavior. Considering the resources needed to plan data 

collection, coordinate with fire operations, meet acceptable burn conditions (weather, fuel 

moisture, time of season, etc.), and have needed resources available, the chance of hardware or 

software failure must be minimized. Often, this level of coordination and timing only comes 

together for a few days out of one or more years. Thus, the importance of a dependable UAS 

cannot be understated with emphasis on the system (e.g., platform, sensors, software, planning). 

During our prescribed burn campaigns, the UAS experienced extremes ranging from heat 

from fire, freezing temperatures, heavy smoke and dust, high winds, attacks from territorial 

birds, and nearly all forms of precipitation. Given the likelihood of such situations in field 

conditions, we recommend building redundancy, such as having duplicate UAS available with 

exactly replicated hardware and software configurations. We also recommend platforms with 

weather resistance. The sensors described in this study cost more than the UAS and, if cost is an 

issue, we recommend having duplicate platforms over sensors as the probability of platform 

malfunction is usually greater. 

For the use of UAS in prescribed fire experiments, plot locations must strike a balance of 

achieving desired experimental results while also operating within the context of prescribed burn 

operations. Field-based fire research generally needs to be opportunistic and in harmony with 

burn objectives. The majority of prescribed burn units in the US are fired in one day, and 

coordination and timing with the operations team throughout the day is of utmost importance. 

Unless multiple UAS teams are available, each research plot must be positioned in order to allow 

enough time to collect data at a plot, disassemble, and then reassemble at a new launch location 

before burn operations are ready to fire the next plot. Alternatively, it may be logical to fly 

multiple plots from one location. This strategy can significantly reduce the flight time for data 

collection though. We chose to travel the fire perimeter to locations near each plot where the 

UAS was viewable by the pilot. The pre-planning for these logistics can be complex as 

operational firing plans change based on weather conditions, particularly wind directions. Plot 

layouts designed for a single spread direction due to fuel or topography arrangement often do not 

follow expectations if winds shift. For example, a plot could be burned at either the start or end 

of burn operations, depending on wind directions, with large subsequent changes in fire 

behavior. Successful implementation of UAS in prescribed burn experiments requires flexibility 

to weather conditions while also ensuring that research efforts do not impede firing or holding 

operations. 

In our study, plots were selected and fired to reach steady state fire spread and produce a 

coherent fireline before reaching the plot edge. In practice, heterogeneous fuels and shifting 

winds meant ignition at variable distances and directions in relation to the plots, including 
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through the plot in one instance (Sycan plot 1). Timing UAS takeoff in conjunction with ignition 

in these conditions proved to be difficult, requiring consideration of different tradeoffs. If takeoff 

is too early, then battery life will be expended without gathering useful data; conversely, if 

takeoff is too late, fire may enter the plot before data collection begins. The time to prepare a 

UAS for launch is also variable depending on multiple devices booting, cameras initializing, and 

achieving a GPS fix. A vantage point where the UAS pilot can view burn operations is optimal 

for timing, but often not likely due to fire, smoke, and tree interference. Prompt, succinct, and 

informative radio communication is vital, which usually necessitates a radio liaison 

communicating between pilots, visual observers, operational personnel, and the actual plot 

ignitor. Ideally, personnel with the necessary fire qualifications and sufficient familiarity with the 

research and plot design are inserted into the operational command structure to facilitate the 

necessary coordination. 

5) Conclusions 

UAS can give an unprecedented perspective for data collection in active fire environments at 

favorable spatial and temporal scales if the software, hardware, and fire operations conflicts are 

resolved or minimized. Robust data collection workflows must constantly evolve while still 

maintaining coherent scientific rigor due to the rapid and ongoing development of UAS and 

sensor technology. 

With the new perspective provided by UAS, we are able to image complex fire behavior that 

necessitated updated algorithms capable of characterizing such behavior. Fire behavior is missed 

between sample intervals requiring dynamic analytical unit sizes. The nature of this relationship 

is largely dependent on RoS and the temporal and spatial resolution of the sensor. Characterizing 

this relationship in a generalized fashion is likely possible with additional research and could 

potentially inform other pre- and post-fire sampling methods for the ultimate goal of 

comprehensive datasets of the fire environment. 

The collection of such comprehensive datasets that characterize fuels, fire behavior, weather, 

and, if possible, emissions and fire effects, are essential for evaluation of models and for cross-

disciplinary knowledge gains in the broader field of wildland fire science. Research projects that 

attempt to create such datasets are substantial endeavors. UAS could be a unifying remote 

sensing platform that collects such datasets in a safe and relatively inexpensive manner. 

Ultimately, UAS provide complementary capabilities that enhance our ability to understand how 

fires burn. 
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Chapter 5. Deriving 3D Fuel Variability from UAS Imagery and Characterizing Trends in Fuel 

Pattern-Fire Process Spatial Associations 

1) Introduction 

Fire and fuel science has progressed from relying on broad assumptions of homogeneity 

in fuel and fire metrics to explicit consideration of their variability (Hiers et al. 2009, Parsons et 

al. 2011, Keane et al. 2012, Loudermilk et al. 2012, Alexander and Cruz 2013, O’Brien et al. 

2016a, Vakili et al. 2016, Fernandes et al. 2018). Fuel and fire have been shown to covary at fine 

spatial and temporal scales with significant direct and indirect relationships (Thaxton and Platt 

2006, Archibald et al. 2009, Hiers et al. 2009, O’Brien et al. 2016a, O’Brien et al. 2016b). 

However, obtaining concurrent data on fine-scale fuel heterogeneity and fire behavior remains a 

research challenge (Kremens et al. 2010, O’Brien et al. 2016b, Ottmar et al. 2016a). Integrated 

datasets characterizing the entire fire environment are the gold standard for parameterizing and 

validating the new generation of fire models and for testing a multitude of management and 

ecological research questions (Ottmar et al. 2016a, Hudak et al. 2018) , but they are extremely 

difficult to obtain. Unmanned aerial systems (UAS) offer a new technology to potentially 

overcome many of these challenges in measure fire behavior, terrain, and fuels concurrently. In 

Chapter 4, fire rate of spread and direction was quantified at multiple scales from a UAS. Here, 

the pre-fire fuel environment will be characterized using novel, gradient-based techniques on 3D 

point clouds derived from structure-from-motion photogrammetry (Westoby et al. 2012). Then, a 

measure of bivariate spatial association, the L-index, is used to quantify trends in the influence of 

fuels variability on fire rate of spread (RoS) (Lee 2001).  

Until now, explicit characterization of fire and fuel spatial variance has relied primarily 

on semivariograms relating variation at multiple spatial lags (Hiers et al. 2009, Keane et al. 2012, 

O’Brien et al. 2016b, Valkili et al. 2016). This has revealed the scales at which certain fuel or 

fire components are spatially correlated from a univariate perspective, but the underlying 

question that tends to be indirectly addressed is the degree at which fuel patterns of interest 

covary with fire behavior from a bivariate or multivariate perspective. Loudermilk et al. (2012) 

showed that the importance of LiDAR-derived fuel metrics for predicting fire behavior varied as 

a function of low, moderate, or high intensity fire. Parsons et al. (2017) showed similar results in 

that the effect of canopy fuel aggregation on RoS was reduced at higher wind speeds (and by 

extension, increased overall fire behavior). These results imply non-stationarity in the relative 

influence of fuel variation on fire behavior processes.  The working hypothesis for this research 

is therefore: 

Fuels variability exerts less influence on fire spread as rate of spread increases. 

If true, the ramifications extend to climate change, disturbance, and vegetation interactions and 

feedbacks (Schoennagel et al. 2004), fuel treatment effectiveness and design (Agee and Skinner 

2005), and fire behavior modeling assessment and improvement (Finney et al. 2013). 
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Measures of 3D fuels often require intensive field campaigns to model fuel loading, 

structure, and composition (Rowell et al. 2016a, Ottmar et al. 2016b, Hawley et al. 2018). I 

hypothesized that for objectives focused on fuel and fire variability characterization, metrics 

derived directly from remotely sensed data can provide the necessary information to derive fire-

fuel relationship trends. Fuel heights, vertical distributions metrics, and surface area to volume 

ratios can be directly measured and R,G,B color information can indirectly characterize 

composition and moisture variation. Following the theme of developing new technology for fire 

science and management, UAS again provides a means for characterizing fuel complexes in 3D 

at reduced costs compared to traditionally-used LiDAR. Structure-from-motion photogrammetry 

has successfully quantified surface (Bright et al. 2016) and canopy fuels (Shin et al. 2018). UAS 

flown subcanopy has the potential to extend fine scale characterization of surface fuels as seen in 

Bright et al. (2016) but at broader extents.  

Lee (2001) developed an index to characterize spatial co-patterning by combining an 

aspatial bivariate correlation measure, Pearson’s correlation coefficient, with Moran’s I, a 

univariate spatial association measure, termed the L-index. This can be assessed at a localized 

scale analogous to the suite of local indicators of spatial association (LISA) (Anselin 1995). 

Trends in the L-index using measures of fuel variability and fire RoS as the two variables of 

interest provides a statistic for testing the working hypothesis. The formulation of the L-index is 

simply the replacement of the cells’ values in the numerator of the Pearson equation with spatial 

lag values. Equation 1 shows the formulation of the Pearson correlation coefficient for variables 

X and Y: 

𝑟𝑋,𝑌=
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑖

√∑ (𝑥𝑖 − �̅�)2𝑖 √∑ (𝑦𝑖 − �̅�)2𝑖

 

The spatial lag is defined as the weighted average of neighbors created from a spatial 

weights matrix (Anselin 1998): 

𝑥�̃� =∑ 𝑤𝑖𝑗
𝑗

𝑥𝑗 

Finally, one formulation of L-index is: 

𝐿𝑋,𝑌 =
∑ (�̃�𝑖 − �̅�)(�̃�𝑖 − �̅�)𝑖

√∑ (𝑥𝑖 − �̅�)2𝑖 √∑ (𝑦𝑖 − �̅�)2𝑖

 

A local version of L-index can be calculated as well: 

𝐿𝑖 =
𝑛(�̃�𝑖 − �̅�)(�̃�𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2𝑖 √∑ (𝑦𝑖 − �̅�)2𝑖

 

(1) 

(2) 

(3) 

(4) 
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The study presented here can be viewed as preliminary and exploratory in nature as the 

technologies and methods are relatively new, and the timescales for collecting significant data on 

prescribed burns in the western US often cover many years. Indeed, the software, sensors, and 

spatial scales of measurement have all been modified from the onset of this research to the 

finalization of the dissertation. The work at the Sycan Marsh, OR presented in the previous 

chapter versus that presented here highlights a portion of the evolution in this scientific 

endeavor. Regardless, the ideas, methods, and working hypothesis are still relevant to the fire 

science community, which is rapidly adopting new technology for scientific advancement. This 

study’s objectives are as follows: 

1. Develop techniques to acquire imagery and derive 3D point clouds of surface fuels 

from UAS at moderate scales (100 m2) 

2. Quantify the fuel complex directly from point cloud-derived metrics and through 

gradient change metrics representing variability 

3. Characterize the trends in fire-fuel spatial co-patterning as a function of fire spread 

rates 

 

2) Methods 

The general outline of the methods is as follows: characterize pre-fire fuel patterns using 

3-D photogrammetry from UAS, burn plots in systematic fashion and calculate RoS, derive 

analytical units based on RoS patches, aggregate fuel variability and RoS to analytical units, and 

then estimate spatial co-patterning of fuel variability and RoS.  

2.1 Site Description and Plot Layout 

The 5.1 ha prescribed burn unit was located at Lubrecht Experimental Forest 20 miles NE 

of Missoula, MT. Surface fuels were dominated by logging slash, ponderosa pine and Douglas 

fir needle-litter, and relatively short grass and forbs. The prescribed burn is the same as described 

in Chapter 4. 

Six, 10m x 10m square plots were placed within the burn unit with several conditions for 

placement. Plots were placed at least 20 meters from the unit boundaries to minimize 

interference from the burn’s blacklining operations. Plots were spatially paired (three sets of two) 

in order to reduce the number of UAS takeoff and landing locations and the amount of 

equipment transfer necessary during the burn. Plots were also placed in canopy openings to 

reduce canopy occlusion and to reduce the complexity of UAS flight. One plot was removed as 

fuel conditions did not produce any appreciable fire spread. 

As described in Chapter 4, plots were laid out with an outer 10 m x 10 m and a nested 

3.33 m x 3.33 m square. At each corner of the squares, a length of rebar was driven into the 

ground leaving 20.3 cm exposed, and a circular compact disc (CD) covered in high-visibility 
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duct tape was attached on top. These were the ground control points (GCPs) that assisted the 3-D 

point generation process. The geometry of the plot as defined and measured from the CD 

locations was also used to create eighteen scale constraints for calibration and estimating 

horizontal and vertical error in the point cloud. Outer and inner square edges (n=8/plot) and outer 

square diagonals (n=2/plot) were used for horizontal calibration and error estimation, and the 

height of the rebar above ground was used for the vertical calibration and error estimation 

(n=8/plot). When the plots were burned, the CDs were replaced with CDs covered in aluminum 

foil (low emissivity) which gave them visibility in thermal imagery (cold targets) and allowed 

the pre-fire fuel data and thermal data to be spatially rectified together.   

2.2 Fuel Patterns 

Fuels were characterized using a DJI (Shenzhen, GD, China) Phantom P4 Pro UAS and 

processed in Pix4D (v. 3.2, Prilly, Switzerland) photogrammetry software using structure-from-

motion algorithms (Westoby et al. 2012).  Photos were taken near mid-day in cloudy, overcast 

conditions to minimize shadowing and ensure consistent illumination. For each plot, the UAS 

pilot manually flew a flight pattern with at least four gridlines in two perpendicular directions 

(cross-grid). Two cross-grids were flown at approximately 4 and 9 meters above ground. Oblique 

and nadir imagery was taken at each image collection point. Flights could not be automated due 

to the nearby trees and small branches that may not be sensed by the UAS avoidance system 

causing a crash and the multiple angles of image exposure. Thus, acquisition parameters related 

to altitude and image overlap were not consistent in part from the manual UAS control, but also 

the trees and branches that had to be avoided. A general rule was to attempt to maintain 75% 

overlap between successive images. Figure 1 shows the general flight pattern taken for each plot. 

Additional cross-grids with other patterns and flight altitudes were experimented with but tended 

to cause confusion when the algorithm grouped tiepoints among sets of images that did not tie 

into the larger set of tiepoints. This had the effect of creating false surfaces of tiepoints at 

irregular angles or distances relative to the broader set ultimately reducing the quality of the 

point cloud. Images from the lower altitude cross-grid tended to not have enough common 

tiepoints to the higher cross-grid. Many of those images were not used as a result. The lower 

cross-grid was likely not necessary for fuel metrics ultimately derived at a 10 cm resolution. 
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Figure 1. Flight patterns for image collection from UAS. 

Top pattern is from nadir perspective and bottom is a 

horizontal view. Orange dots are the exposure stations and 

arrows depict the camera angle. *Optional additional flight 

altitude that did not add significant value for deriving 10 

cm resolution fuel metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pix4D software creates a point cloud with each point having x,y,z location and R,G,B 

color data derived from the set of images. Settings were set to maximum resolution (original 

image resolution) and ultra-high density of points. Points had to be identified in at least three 

images to be created. In areas of sparse automatic tiepoints, additional manual tiepoints 

consisting of vegetation features recognizable from multiple perspectives were identified to 

boost the number and quality of rectified images. Thirty-three to sixty-three total (mean 46.4) 

manual tiepoints (including GCPs and scale constraints) were added for each plot. Each tiepoint 

was manually identified in 4 to 144 images adding additional images until the software 

confidently placed each tiepoint in the correct location.  

The aforementioned issue of erroneous sets of tiepoints not matched to the larger set was 

a significant obstacle to overcome. To correct these errors, the process became one of trial-and-

error by adding additional manual tiepoints, changing parameters, removing images with error 

prone or low numbers of automatic tiepoints, and then restarting the tiepoint matching process 

and checking results. One nadir image at an altitude showing the entire plot was useful for 

identifying all GCPs, additional tiepoints, and scale constraints within one image.  
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Figure 2. Example of plot layout and underlying point cloud (plot 5 shown). Blue lines 

represent scale constraints added for calibration and error estimation. Green pointers show 

manually identified GCPs and tiepoints used for image matching. Outer square dimensions are 

10 m x 10 m and the inner square dimensions are 3.33 m x 3.33 m. Each corner of the two 

squares have two manual tiepoints: one at the ground surface and one at 20.3 cm above ground 

at the CD location to create vertical scale constraints. 

Point cloud error estimates were calculated using these GCPs and scale constraints as the 

source of truth. However, Pix4D also uses these data as a source of calibration and thus produces 

a biased, though still useful, measure of error that likely underestimates true error in the point 

cloud. Figure 2 shows an oblique perspective of plot 5. The set of GCPs, manual tiepoints, and 

scaling features are visible. Image acquisition took approximately two hours per plot, GCPs one 

to two hours each (~40-60 hours/plot), eight to twenty-four hours per plot for image matching, 

and finally point cloud creation required about 72 hours of processing time per plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After point cloud generation, data was rasterized to a 10 cm grid matching the thermal 

image-derived RoS data, and a parsimonious set of metrics was chosen to characterize the 

surface fuel mosaic. All points within each grid were exported to individual files using 

LASTools (Isenburg 2018). The rest of the analysis was completed within R software (version 

3.5). Each point cloud file was uploaded and metrics calculated using the rLiDAR package (Silva 

et al. 2017). The package calculates the majority of the metrics calculated by the commonly used 

FUSION software (McGaughey 2015). Many of these metrics are conditional on first estimating 

a ground surface and then attributing a height above ground to each point. However, ground 

classification algorithms were designed primarily for aerial lidar scanning (ALS) data, which do 

not have the density of points created here (mean 235,516,443 points per plot) and also have the 

penetrating ability of an active laser sensor. A conventional TIN-based approach implemented in 

LasTools resulted in the majority of points classified as ground, thus removing surface variability 
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from resulting fuel height metrics. Therefore, ground was defined as the minimum height for 

each 10 cm cell, and all height metrics were defined from that point. This produced a subtle 

difference from the TIN approach as a majority of points were still at or near the surface but 

more variability was ultimately retained in resulting metrics. Eight metrics were chosen as the 

initial set of fuel variables with Pearson correlation used as the feature selection metric to reduce 

data redundancy and analytical complexity. Table 1 shows the resulting four variables chosen to 

characterize the fuel complex. Figure 3 shows the Pearson correlation comparison for the eight 

evaluated metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Chosen fuel variables to characterize the fuel complex 

Metric Definition 

Mean Height Mean height of points above 1st percentile height 

SAV Surface area to volume ratio 

Skew Skewness of the vertical distribution above the 1st percentile height 

Grayscale Color (0.299 * Red) + (0.587 * Green) + (0.114 * Blue) 

Figure 3. Fuel variable pairwise comparison. Significant Pearson correlation coefficients 

displayed in upper right boxes with corresponding scatterplots in the bottom left. Mean 

height, skew, surface area to volume (SAV) and grayscale color were selected as fuel 

variables for the analysis. 
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The influence of fuel variability on fire rate of spread was the objective for this study. 

Thus, the fuel variables were converted to gradients characterizing their change rather than 

absolute values. To quantify this fuels variability, the norm of the gradient for each of the fuel 

metrics was calculated using the following equation: 

 

√(
𝜕

𝜕𝑦
𝐼)

2

+ (
𝜕

𝜕𝑥
𝐼)

2

                          

         

Where 𝐼(𝑥, 𝑦)  is the fuel value at cell x,y. 
𝜕

𝜕𝑦
𝐼 and 

𝜕

𝜕𝑥
𝐼 partial derivatives were estimated using 

the imager package in R (Barthelme 2018). The gradient fuel variables were then aggregated to 

the analytical units derived in Chapter 4 in order to coincide with the fire behavior data. Each 

variable was scaled from 0 to 1 to facilitate comparisons. The scaled variables were also 

averaged together to create one combined variable assessing fuel variability.  

2.3 Fire Rate of Spread  

See Chapter 4 for in-depth description of methods for the fire RoS and direction data 

layers (Moran et al. 2019). These layers were spatially rectified to the fuel layers using the eight 

GCPs identifiable in both sets of data.  

2.4 Statistical Analysis 

Analytical units were derived from the RoS data following methods described in Chapter 

4 (Moran et al. 2019). Fuels data were aggregated from 10 cm to the variable-sized analytical 

units using summary statistics. The L-index, the measure to assess the bivariate spatial co-

patterning (Lee 2001), was then calculated using the sp package in R (Pebesma et al. 2018). L-

indices were calculated for fuel variability layers and also individually for each of the fuel 

variables listed in Table 1 (after conversion to gradients). Random permutation tests (n=10,000) 

were conducted to assess the significance of spatial co-patterns.  

3) Results 

The point clouds produced representations of the fuel complex in exquisite detail (Fig. 4).  

Table 2 shows the calibrated images, total images taken, number of 3D points, mean ground 

sampling distance, and root mean square error (RMSE) for the vertical and horizontal planes. 

The mean RMSE for all plots was 6.97 cm in the horizontal and 1.53 cm in the vertical plane.  

Ground sampling distances ranged from 0.11 to 0.15 cm, and the number of 3D points created 

ranged from 206 million to 352 million. The number of calibrated images correlated to the 

number of 3D points generated. Plot 2 had the lowest number of calibrated images (182) and the 

(5) 
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lowest number of 3D points (205,898,726). Plot 1 had the highest number of calibrated images 

(340) and highest number of 3D points (351,691,433). Table 3 describes the fuel metrics results 

for each plot. Figure 5 provides an example of the calculated fuel metrics and their fuel 

variability counterparts. Figure 6 shows the fuel variables in their final form after being 

aggregated to the analytical units. 

 

 

 

 

 

The statistical analysis showed statistically significant areas of both negative and positive 

local L-index spatial co-patterning (Fig. 7). Plots 5 and 4 did not show significance in the global 

L-index (p > 0.05), plot 1 showed marginal significance (p = 0.03), and plots 2 and 3 showed 

high significance (p < 0.01). Two major hotspots of spatial co-patterning were identified where 

moderately high rates of spread aligned with high and low fuel variability in plots 2 and 3, 

respectively. Other plots showed local regions with the same relationships but at reduced L-index 

Table 2. Point Cloud Generation Results 

Plot 

Calibrated 

Images 

Total 

Images 

 

3D Points 

Mean Ground 

Sampling 

Distance (cm) 

RMSE 

Horizontal 

Error (cm) 

RMSE 

Vertical 

Error (cm) 

1 340 395 351,691,433 0.11 8.05 2.14 

2 182 344 205,898,726 0.14 9.13 1.18 

3 196 338 223,094,765 0.15 4.51 1.44 

4 286 474 239,915,318 0.14 7.45 0.85 

5 270 457 243,369,340 0.11 5.72 2.05 

Figure 4. Left: 3-D point cloud of plot burned in May, 2017, created from structure-

from-motion photogrammetry containing x, y, z spatial location and R, G, B color 

intensity for each point. Right: Image of same location. Spatial differences are largely 

due to geometric distortion, which is rectified in the point cloud. 
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values. In plot 5, the lower-left third showed sustained negative L-index following head fire 

movement (upper left to lower right general spread direction, black arrows in Fig. 6).   

Figure 8 shows the local L-index values compared to their RoS. Similar patterns are seen 

for each fuel variables’ L-index and the combined variable. The vast majority of samples 

(n=14,445) are at lower rates of spread (<0.025 m/s) and low levels of spatial co-patterning 

(<0.5) owing to the highly skewed distribution of rates of spread observed (Moran et al. 2019, 

Chapter 4). The highest levels of spatial co-patterning tend to be at the lower rates of spread but 

the majority of sample points are at lower rates as well.   
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Table 3. Fuel metrics summary by plot. 

 Mean Height (m) Grayscale Color Surface Area to Volume Skewness 

Plot Range Median SD Range Median SD Range Median SD Range Median SD 

1 0-2.71 0.04 0.10 14903-

57566 

31239 3501 40.6-

803.9 

71.2 25.9 -16.3-

104.8 

0.27 2.5 

2 0-2.69 0.02 0.17 17428-

52972 

36158 3424 40.9-

327.9 

100.8 29.4 -7.9-

78.2 

0.21 1.8 

3 0-2.4 0.02 0.07 13318-

52369 

33859 3682 41.2-

220.7 

96.4 26.0 -19.7-

64.2 

0.20 1.9 

4 0-2.36 0.02 0.07 17405-

51501 

34591 3576 41.4-

1028.4 

79.7 22.6 -33.8-

67.3 

0.24 1.8 

5 0-1.15 0.02 0.03 13332-

56263 

36827 3533 42.6-

1185.5 

84.2 30.2 -8.2-

52.1 

0.21 1.3 
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Figure 5. Derived fuel metrics for plot 5 (left column). Fuel layers converted to gradient 

layers shown on right. Color ramps are transformed (except grayscale) to highlight observed 

variability.  
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Figure 6. Derived fuels (left) and gradient (right) metrics. Each fuel layers is aggregated to 

analytical units, scaled from zero to one, and then averaged to create the combined variable. 
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 Figure 7. Local L-index values correlating fuel variability and fire rate of spread (RoS). 

Dark grey indicates areas of no statistical significance while colored areas are significant at p 

< 0.05. Black arrows show predominant fire spread direction. 
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Figure 8. Local L-index values compared to rate of spread for all plots. The top four are 

formulated using each particular metric’s variability layer while the combined variability 

is a function of all four metrics (see methods). Note that the color ramp is on a 

logarithmic scale. 
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4) Discussion 

The results suggest a trend in the decoupling of fuels and fire correlation as RoS 

increases. The high L-index values tend to be at low RoS, and high RoS tends to have low L-

index. However, the large majority of samples at low RoS (<0.02 m/s) ultimately do not provide 

the necessary data distribution for definitive conclusions.  The methodology can characterize fuel 

and fire dynamics though. With a better distribution of RoS values and a diversity of fuel types 

beyond those measured in this study, consistent and replicated trends may appear. Better 

characterization of other variables influencing fire spread (i.e. weather and topography) could 

also help isolate the influence of fuel variability on fire spread. While differences in topography 

were minimal between plots, weather varied and was not explicitly considered in the analysis. 

The spatial correlations can reduce the effect of weather on analyses, but this ‘lurking’ variable is 

ever-present in field studies attempting to characterize fuel-fire behavior relationships (Wimberly 

et al. 2009).  

The L-index is an integrated measure of the aspatial, Pearson’s bivariate correlation and 

Moran’s I univariate spatial association (Lee et al. 2001). While it allows assessment of the 

spatial co-patterning of two variables, its integrated nature can reduce interpretability of L-index 

values. For example, splitting the Pearson’s coefficient and spatial association is necessary to 

determine if point-to-point or spatial lag is driving L-index variation. However, the strong spatial 

association seen in fire behavior necessitates this type of approach to understand the true 

influence of the underlying variability in fuels, weather, and topography (Bataineh et al. 2006).  

 Several potential improvements to the analysis were identified but were beyond the scope 

of the dissertation. The following will be evaluated after additional fuel and fire data are 

acquired, such as those from the ongoing Sycan Marsh prescribed burns described in Chapter 4. 

First, the neighborhood of analytical units used in the formulation of the spatial weights matrix 

was defined as the eight nearest-neighbors. Fire spread has inherent directionality and the spread 

direction estimates could inform the neighborhood definition. Two separate associations could be 

derived, neighborhoods defined by previous timesteps and neighborhoods defined by subsequent 

timesteps. Second, RoS processes change based on heading, flanking, and backing fire spread 

types. Fire direction could again classify these fire types, and L-index values stratified by fire 

type classification. Third, the analytical units vary in size and while designed to create relatively 

independent samples, each unit has a variable effect on the landscape. Faster RoS also tend to 

have larger analytical units and thus are inherently under-represented in the sample count. A 

weighting scheme using the area of the analytical units would likely correct for this sample bias. 

The most comparable results assessing fuel heterogeneity and fire behavior are from 

physics-based fire models with either simulated or measured fuel complexes (e.g. Lynn et al. 

2002, Hoffman et al. 2012, Parsons et al. 2017), though discrete spatial analyses have not been 

conducted and fuel patterns restricted to broad classifications such as spatially aggregated or 

homogenous classes. Parsons et al. (2017) provides explicit characterizations of fuel variability 
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effects on fire behavior at varying levels of fire behavior (modulated by varying wind speeds), 

and their results corroborate the trends seen here. In the low wind speed scenario, the mean 

forward RoS decreased by 22% due to high versus low levels of spatial aggregation in fuels. In 

the high wind speed scenario, the low to high spatial aggregation effect was only a 3.7% mean 

decrease in RoS implying less influence of fuel variability on fire RoS.  Loudermilk et al. (2012) 

field-based analysis shows variable importance metrics as a function of low, moderate, and high 

fire intensity classes implying non-stationarity in the fuel-fire relationships. The ability of 

models to control confounding variables suggests the trends hypothesized here are likely to be 

better quantified in model space, and the L-index and associated methods presented here can be 

applied to modeled, laboratory, or field derived data. 

The 3D point cloud and fuel variability layer produced a detailed and precise 

representation of the pre-fire fuel environment. This represents the first attempt at fine-scale 

surface fuel characterization from a UAV flown below the canopy at moderate (100 m2) spatial 

extents. Small-scale photogrammetry (3 m2 plots) using ground-based cameras has been 

attempted (Bright et al. 2016) but is not feasible at broader scales. Given the mean analytical unit 

size of 332 cm2 derived from the rate of spread data described in Moran et al. (2019), producing 

plots with a mean of 235,816,443 points is not worth the time and computational resources if fire 

processes and fuel pattern relationships are the objective. Indeed, experimental trials show the 

image matching and tiepoint process is easier if attempted with images of reduced resolutions, 

which would then require less manual tiepoint identification and use a more automated 

processing workflow in general at the cost of losing some fine-scale detail. 

While the horizontal and vertical error assessment and comparison to images show an 

accurate representation of the surface fuels, one major issue was identified. Tall, vertical objects, 

in this case tree boles, can be misrepresented leading to errors in the subsequent fuel variability 

metrics. The area of high variability and high RoS spatial co-patterning in plot 2 (Fig. 6) was 

caused by the tree bole leaning off the vertical axis. This caused the 3D points representing the 

tree bole to appear in the wrong grid cells producing high measures of variability. In reality, the 

affected area was relatively flat with high abundance of needle litter, which should have been 

characterized as a low variability area. This would have generated a negative L-index similar to 

the patch in plot 3 (Fig. 6). The error was likely caused by several factors including high levels 

of image distortion and parallax given the close distance of the UAS imagery in combination 

with the change in image overlap and perspective due to the UAS pilot avoiding the trees’ 

branches. Even without the error, resolving 3D to 2D metrics (i.e. area-based approaches) will 

likely cause misrepresentations when overhead branches, shrubs, tree boles, etc. are within the 

same x,y plane but do not materially affect the fire behavior. Identifying which components of 

3D point clouds are most important for characterizing fuel-fire behavior relationships is an 

ongoing research theme (Rowell et al. 2016b).  

The methods presented here could be used to quantify which of the remotely-sensed 3D 

components co-pattern with observed fire behavior. The L-index was derived for all four of the 
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variables individually and compared (Figure 8). The general patterns are largely the same for 

each individual fuel variable in this case. A larger suite could be compared in detail to evaluate 

of which structural components of the fuel complex have the largest influence on RoS. 

Development of the ideas on fuel characterization and the variability defined as first derivative 

gradients presented here could eventually obviate the time-consuming process of field-based 3D 

fuel measurement (e.g. Hawley et al. 2018) and provide a direct link from remotely-sensed data 

to fuels and fire behavior characterization.  

The fuel metrics mean height, skew, SAV, and grayscale color, can be linked intuitively 

to physical components of the fuel complex, specifically structure and composition. Both 

Loudermilk et al. (2012) and Hiers et al. (2009) found structure derived from 3D data to be 

significant variables in explaining fine-scale fire behavior. The relative influence of each fuel 

metrics is not necessarily known and an average of all four represents an adequate first attempt at 

a combined fuel characterization but can be further refined. A sensitivity analysis of existing 

operational or more complex physics-based fire models could provide support for variable 

weighting. However, Liu et al. (2015) found nonstationarity in the sensitivities across different 

fuel types, which complicates the issue. For example, fuel depth (correlative to mean height used 

here) explained 40% of the Rothermel fire model output  variance in light logging slash but only 

12% in short grass fuel models. Given that each fuel metric showed similar trends in L-index and 

RoS relationships, an equal weighting remains reasonable until better information can inform a 

different scheme, which would likely have to change in different fuel types. The point clouds 

also do not account for subsurface fuel variability. Litter depth is an essential component of 

calculating surface fuel load, a standard input to fire behavior models, although the actual effect 

of litter depth on rates of spread may be minimal in certain situations (e.g. Kreye et al. 2012).  

Scale is another important factor to consider when interpreting the results of this work. I 

expect the strength  of spatial co-patterning-and perhaps the general nature-to change at 

difference scales of fuel variability characterization and at different levels of aggregation of the 

RoS analytical units. Further research into this subject is planned and measurements at coarser 

grains are ongoing (e.g. Sycan plots described in Chapter 4). A motivation for this continuing 

research is the potential for trends in spatial co-patterning to inform the scales of field sampling 

and fire modeling. Fuel variability at fine scales can show the effect of individual objects but at 

management-relevant scales, characterizing the effect of fuel type changes or clump-gap canopy 

arrangements (Larson and Churchill 2012) requires broader scales of variability assessment. 

Variable-sized, moving-window averages of variability and/or larger focal areas for gradient 

calculation could delineate stark, courser changes in the fuel complex. 

Hiers et al. (2009) also found significant spatial correlation in both fuel and fire behavior 

with semivariograms range values at approximately 0.5 m2 (but analyzed separately). The L-

index approach could be used to produce a corroborative analysis to better elucidate the 

variability in the fuel-fire relationships due to scale, although the effect of analytical units and 

their size variation would need to be considered in tandem. Complicating the issue is the 
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apparent heterogeneity in the spatial scaling of at least the fuel component. Keane et al. (2012) 

and Vakili et al. (2016) found significant differences in spatial scaling of fuels among field sites 

and a small number of fuel types have been assessed in general. Clearly, more research is 

necessary into the spatial relationships of fuel and fire behavior. This research provides a method 

for producing an integrated characterization that considers the spatial components of fire and fuel 

variability together.  

5) Conclusions 

Detailed, 3D point clouds characterizing fuels variability can be derived from UAS 

imagery. The close-range imagery can create errors in fuel locations especially for tall objects 

and when deviations in flight patterns are necessary to avoid obstacles. A mean of 235,516,443 

3D points generated per 100 m2 plot with a mean ground sampling distance of 0.13 cm had 

unnecessary detail considering the fire spread rate analytical unit size averaged 332 cm2 and 

processing at coarser grains would decrease the necessary number of manual tiepoints and time 

for processing. Bivariate measures of spatial association (L-index) suggest a decoupling of fuel 

variability and RoS co-patterning as RoS increases, but further research is necessary in a 

diversity of fuel types, levels of fuel variability, scales of observations, and ranges of RoS before 

robust conclusions on the trends in fuel and fire behavior co-patterning can be drawn. The 

analytical methods developed here could be applied to either model- or laboratory-based 

experiments, which could better control confounding variables such as weather variation. 
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