529 research outputs found

    Python FPGA Programming with Data-Centric Multi-Level Design

    Full text link
    Although high-level synthesis (HLS) tools have significantly improved programmer productivity over hardware description languages, developing for FPGAs remains tedious and error prone. Programmers must learn and implement a large set of vendor-specific syntax, patterns, and tricks to optimize (or even successfully compile) their applications, while dealing with ever-changing toolflows from the FPGA vendors. We propose a new way to develop, optimize, and compile FPGA programs. The Data-Centric parallel programming (DaCe) framework allows applications to be defined by their dataflow and control flow through the Stateful DataFlow multiGraph (SDFG) representation, capturing the abstract program characteristics, and exposing a plethora of optimization opportunities. In this work, we show how extending SDFGs with multi-level Library Nodes incorporates both domain-specific and platform-specific optimizations into the design flow, enabling knowledge transfer across application domains and FPGA vendors. We present the HLS-based FPGA code generation backend of DaCe, and show how SDFGs are code generated for either FPGA vendor, emitting efficient HLS code that is structured and annotated to implement the desired architecture

    Dynamic Task Execution on Shared and Distributed Memory Architectures

    Get PDF
    Multicore architectures with high core counts have come to dominate the world of high performance computing, from shared memory machines to the largest distributed memory clusters. The multicore route to increased performance has a simpler design and better power efficiency than the traditional approach of increasing processor frequencies. But, standard programming techniques are not well adapted to this change in computer architecture design. In this work, we study the use of dynamic runtime environments executing data driven applications as a solution to programming multicore architectures. The goals of our runtime environments are productivity, scalability and performance. We demonstrate productivity by defining a simple programming interface to express code. Our runtime environments are experimentally shown to be scalable and give competitive performance on large multicore and distributed memory machines. This work is driven by linear algebra algorithms, where state-of-the-art libraries (e.g., LAPACK and ScaLAPACK) using a fork-join or block-synchronous execution style do not use the available resources in the most efficient manner. Research work in linear algebra has reformulated these algorithms as tasks acting on tiles of data, with data dependency relationships between the tasks. This results in a task-based DAG for the reformulated algorithms, which can be executed via asynchronous data-driven execution paths analogous to dataflow execution. We study an API and runtime environment for shared memory architectures that efficiently executes serially presented tile based algorithms. This runtime is used to enable linear algebra applications and is shown to deliver performance competitive with state-of- the-art commercial and research libraries. We develop a runtime environment for distributed memory multicore architectures extended from our shared memory implementation. The runtime takes serially presented algorithms designed for the shared memory environment, and schedules and executes them on distributed memory architectures in a scalable and high performance manner. We design a distributed data coherency protocol and a distributed task scheduling mechanism which avoid global coordination. Experimental results with linear algebra applications show the scalability and performance of our runtime environment

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Extensions of Task-based Runtime for High Performance Dense Linear Algebra Applications

    Get PDF
    On the road to exascale computing, the gap between hardware peak performance and application performance is increasing as system scale, chip density and inherent complexity of modern supercomputers are expanding. Even if we put aside the difficulty to express algorithmic parallelism and to efficiently execute applications at large scale, other open questions remain. The ever-growing scale of modern supercomputers induces a fast decline of the Mean Time To Failure. A generic, low-overhead, resilient extension becomes a desired aptitude for any programming paradigm. This dissertation addresses these two critical issues, designing an efficient unified linear algebra development environment using a task-based runtime, and extending a task-based runtime with fault tolerant capabilities to build a generic framework providing both soft and hard error resilience to task-based programming paradigm. To bridge the gap between hardware peak performance and application perfor- mance, a unified programming model is designed to take advantage of a lightweight task-based runtime to manage the resource-specific workload, and to control the data ow and parallel execution of tasks. Under this unified development, linear algebra tasks are abstracted across different underlying heterogeneous resources, including multicore CPUs, GPUs and Intel Xeon Phi coprocessors. Performance portability is guaranteed and this programming model is adapted to a wide range of accelerators, supporting both shared and distributed-memory environments. To solve the resilient challenges on large scale systems, fault tolerant mechanisms are designed for a task-based runtime to protect applications against both soft and hard errors. For soft errors, three additions to a task-based runtime are explored. The first recovers the application by re-executing minimum number of tasks, the second logs intermediary data between tasks to minimize the necessary re-execution, while the last one takes advantage of algorithmic properties to recover the data without re- execution. For hard errors, we propose two generic approaches, which augment the data logging mechanism for soft errors. The first utilizes non-volatile storage device to save logged data, while the second saves local logged data on a remote node to protect against node failure. Experimental results have confirmed that our soft and hard error fault tolerant mechanisms exhibit the expected correctness and efficiency

    Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers

    Full text link
    The nested parallel (a.k.a. fork-join) model is widely used for writing parallel programs. However, the two composition constructs, i.e. "\parallel" (parallel) and ";;" (serial), are insufficient in expressing "partial dependencies" or "partial parallelism" in a program. We propose a new dataflow composition construct "\leadsto" to express partial dependencies in algorithms in a processor- and cache-oblivious way, thus extending the Nested Parallel (NP) model to the \emph{Nested Dataflow} (ND) model. We redesign several divide-and-conquer algorithms ranging from dense linear algebra to dynamic-programming in the ND model and prove that they all have optimal span while retaining optimal cache complexity. We propose the design of runtime schedulers that map ND programs to multicore processors with multiple levels of possibly shared caches (i.e, Parallel Memory Hierarchies) and provide theoretical guarantees on their ability to preserve locality and load balance. For this, we adapt space-bounded (SB) schedulers for the ND model. We show that our algorithms have increased "parallelizability" in the ND model, and that SB schedulers can use the extra parallelizability to achieve asymptotically optimal bounds on cache misses and running time on a greater number of processors than in the NP model. The running time for the algorithms in this paper is O(i=0h1Q(t;σMi)Cip)O\left(\frac{\sum_{i=0}^{h-1} Q^{*}({\mathsf t};\sigma\cdot M_i)\cdot C_i}{p}\right), where QQ^{*} is the cache complexity of task t{\mathsf t}, CiC_i is the cost of cache miss at level-ii cache which is of size MiM_i, σ(0,1)\sigma\in(0,1) is a constant, and pp is the number of processors in an hh-level cache hierarchy

    A Survey on Design Methodologies for Accelerating Deep Learning on Heterogeneous Architectures

    Full text link
    In recent years, the field of Deep Learning has seen many disruptive and impactful advancements. Given the increasing complexity of deep neural networks, the need for efficient hardware accelerators has become more and more pressing to design heterogeneous HPC platforms. The design of Deep Learning accelerators requires a multidisciplinary approach, combining expertise from several areas, spanning from computer architecture to approximate computing, computational models, and machine learning algorithms. Several methodologies and tools have been proposed to design accelerators for Deep Learning, including hardware-software co-design approaches, high-level synthesis methods, specific customized compilers, and methodologies for design space exploration, modeling, and simulation. These methodologies aim to maximize the exploitable parallelism and minimize data movement to achieve high performance and energy efficiency. This survey provides a holistic review of the most influential design methodologies and EDA tools proposed in recent years to implement Deep Learning accelerators, offering the reader a wide perspective in this rapidly evolving field. In particular, this work complements the previous survey proposed by the same authors in [203], which focuses on Deep Learning hardware accelerators for heterogeneous HPC platforms

    Optimising Sparse Matrix Vector multiplication for large scale FEM problems on FPGA

    Get PDF
    Sparse Matrix Vector multiplication (SpMV) is an important kernel in many scientific applications. In this work we propose an architecture and an automated customisation method to detect and optimise the architecture for block diagonal sparse matrices. We evaluate the proposed approach in the context of the spectral/hp Finite Element Method, using the local matrix assembly approach. This problem leads to a large sparse system of linear equations with block diagonal matrix which is typically solved using an iterative method such as the Preconditioned Conjugate Gradient. The efficiency of the proposed architecture combined with the effectiveness of the proposed customisation method reduces BRAM resource utilisation by as much as 10 times, while achieving identical throughput with existing state of the art designs and requiring minimal development effort from the end user. In the context of the Finite Element Method, our approach enables the solution of larger problems than previously possible, enabling the applicability of FPGAs to more interesting HPC problems
    corecore