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Abstract—Sparse Matrix Vector multiplication (SpMV) is an
important kernel in many scientific applications. In this work we
propose an architecture and an automated customisation method
to detect and optimise the architecture for block diagonal sparse
matrices. We evaluate the proposed approach in the context of
the spectral/hp Finite Element Method, using the local matrix
assembly approach. This problem leads to a large sparse system
of linear equations with block diagonal matrix which is typically
solved using an iterative method such as the Preconditioned
Conjugate Gradient. The efficiency of the proposed architecture
combined with the effectiveness of the proposed customisation
method reduces BRAM resource utilisation by as much as 10
times, while achieving identical throughput with existing state of
the art designs and requiring minimal development effort from
the end user. In the context of the Finite Element Method, our
approach enables the solution of larger problems than previously
possible, enabling the applicability of FPGAs to more interesting
HPC problems.

I. INTRODUCTION

Sparse Matrix Vector multiplication (SpMV) is an important
kernel in many scientific applications such as the Finite
Element Method [1]. Typical challenges associated with the
SpMV kernel are related to the indirect memory access pattern
which leads to poor resource utilisation and compute efficiency
on modern architectures [2], [3]. In this regard, FPGAs may
have a considerable advantage compared to general purpose
architectures: the fine degree of customisation available can
be used to directly and carefully orchestrate data movement
on and off-chip resulting in good performance on the SpMV
kernel [4]–[6]. Furthermore, when using FPGAs there is great
potential for application and domain driven customisation:
wordlengths, reduction circuits, memory controller infrastruc-
ture can all be optimised to direct resources to the most critical
component [7]–[11].

However, fine-tuned FPGA implementations can take
months to develop and seldom incorporate all state of the art
techniques required to exceed the raw performance of CPU and
GPU systems [6]. The challenge therefore is to automate the
customisation process, and explore the design space effectively
while capturing more problem specific information, such as
sparsity pattern. A high level, automated approach to cus-
tomisation can make high-performance FPGA cores directly
available to end users with limited to no effort.

In this work we propose an automated method to detect
and optimise a sparse matrix vector multiplication unit for
a floating point, variable size dense block diagonal matrix

vector multiplication. Our approach is based on the following
contributions:

1) optimised architecture and implementation on a com-
mercial FPGA system for mixed-precision sparse block-
diagonal matrix vector multiplication;

2) resource constrained performance model to guide the
tuning process of the proposed architecture on user
provided matrix instances;

3) automated method for customising the proposed ar-
chitecture based on a given matrix and the resource
constrained performance model;

4) evaluation of the proposed method on a classical HPC
problem: the Finite Element Method (FEM). At the core
of the method an iterative linear solver is used which
requires a large number of matrix-vector multiplications
to be performed where the sparse matrix has dense block
diagonal structure.

II. BACKGROUND AND RELATED WORK

Sparse matrix vector multiplication (SpMV) refers to the
multiplication of a sparse matrix A to a vector x to produce
a result vector b: A × x = b. A matrix is considered sparse
if sufficient entries are zero and this fact can be exploited by
adequate representation and algorithms to reduce the storage
size or reduce the execution time of various operations [12].

The most generic optimised storage format for sparse matri-
ces is Compressed Sparse Row (CSR) storage which encodes
the value and position of each nonzero in the matrix. While
efficient and generic, CSR does not take advantage of any
properties of the sparsity pattern. For instance, matrices with
banded structure or where nonzeros are grouped in (almost)
dense blocks occur often in practice. This insight can be used
to create more optimised block-based storage formats [13],
where only the position of nonzero blocks needs to be stored.
This reduces the amount of metadata to store and increases the
computational efficiency due to the dense local structure. In
this work we focus on a sparse block storage format where the
dense blocks are placed on the main diagonal. This constraint
leads to further optimisation possibilities, since we only need
to encode the size of each block. For more details on these
formats we refer the reader to canonical texts such as [12],
[14].

While important, SpMV is hardly ever used in isolation.
Typical algorithms require a combination of dense and sparse



basic linear algebra subroutines (BLAS). For example many
numerical and scientific codes, such as the Conjugate Gradient
Method [12], [15], follow this structure. An important property
of iterative methods is that they do not update the input sparse
matrix. This is a critical aspect in large scale problems (such
as those typically solved in FEM), because explicit formation
of updated matrix representation in memory, as well as the fill-
in factor typically associated with direct methods can increase
the storage and computational requirements by several orders
of magnitude, depending on the problem instance.

Algorithm 1 Preconditioned Conjugate Gradient method
1: function CGM(M, P, b, y, tol, Nmax)
2: ~x← 0, ~r ← b
3: ~w ← P~r . Applying preconditioner
4: ~s← M~w . Matrix-vector multiply
5: ε← (~r, ~r), µ← (~w,~s), ρ← (~w,~r), α← ρ/µ, β ← 0
6: while (Nstep ≤ Nmax) & (ε < tol2) do
7: ~p← ~w + β~p, ~q ← ~s+ β~q . Vector arithmetic
8: ~x← ~x+ α~p, ~r ← ~r − α~q
9: ~w ← P~r . Applying preconditioner

10: ~s← M~w . Matrix-vector multiply
11: ε← (~r, ~r), µ← (~w,~s), ρnew ← (~w,~r) . Dot products
12: β ← ρnew/ρ, α← ρnew/ (µ− ρnewβ/α)
13: ρ← ρnew

14: end while
15: end function

Due to the associated challenges, SpMV has received much
attention in the FPGA community. Earlier approaches focused
on increasing the utilisation of on-chip resources, particu-
larly for floating point SpMV. [16] proposes one of the first
parametric designs for floating point SpMV and demonstrates
how the flexibility of FPGAs can be used to achieve good
performance compared to general purpose systems. More
recently, the focus has shifted to efficient use of on-chip
memory resources and DRAM bandwidth utilisation [5], [7],
[9]. Recently, compression techniques have been proposed to
improve the performance on memory bound matrices [8], [17]

The constant sparsity structure in the context of iterative
methods has also been exploited to optimise FPGA architec-
tures for SpMV [18]. Static one-off pre-processing techniques
are cost-effective for FPGA implementations if they can lead
either to a simplified architecture [5], [7], [19] or reduced
communication overhead [8], [17]. Linear or log-linear pre-
processing techniques with good performance in practice,
such as the method used in this work for extracting matrix
properties, have been found to be effective.

Recently, instance specific design methods have been pro-
posed to explore FPGA specific optimisations more systemat-
ically: column based accelerators [4], instance specific meth-
ods for tuning architectural parameters [6] and compressing
nonzero values [8] or metadata [17].

In this work we focus on high-level methods which take into
account the sparsity pattern of the given matrix. The technique
of tuning SpMV kernels based on the sparsity pattern of the
input matrix has also been explored on CPU systems with
promising results [14], however it can have a much higher

impact on reconfigurable FPGA based systems where we can
adapt not only the algorithm and storage format but also the
architecture itself to maximise performance. This is exactly
what we investigate in this work.

III. ARCHITECTURE

We propose to exploit the flexibility of the FPGA to enable
the acceleration of sparse matrix vector multiplication with
block diagonal matrix structure in the context of iterative
methods. The strategy is to use an optimised and customisable
FPGA architecture in conjunction with corresponding resource
and performance models (Section IV) and automated cus-
tomisation techniques (Section V) to achieve high throughput,
resource efficient designs for particular problem instances,
starting from a characteristic input matrix, supplied by a
domain expert.

The input matrix is a variable size, dense block diagonal
sparse matrix: all nonzero elements can be grouped in dense
matrix blocks, of potentially different orders, positioned along
the main matrix diagonal, as shown in Figure 1. To support
such matrices efficiently, the proposed architecture has three
novel features:

1) customisable trade-off between data and task level par-
allelism, which enables efficient implementations for
both large and small matrix blocks;

2) independently customisable input and output types, com-
pute types and mixed precision processing, which enable
careful balancing of I/O bandwidth, on-chip resources
and computational accuracy;

3) efficient partitioning and distribution strategy for matrix
blocks, which enables both the simplification of the
proposed architecture and efficient, linear access pattern
in off-chip memory.
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Fig. 1. Example block diagonal sparse matrix; matrix and vector blocks Ai,
xi, bi are distributed to MPEs, as shown in Figure 2 and Figure 3

In this section we study the design space for the matrix-
vector multiplication unit (MVMU) to identify resource ef-
ficient, high throughput implementations. We will illustrate
these concepts on an FEM matrix, for which the size of
each matrix block is induced by the geometric shape and
polynomial order of its corresponding mesh element as shown



in Table I. We start from an efficient, parametric and cus-
tomisable baseline implementation which facilitates design
space exploration. By applying domain-specific customisation
and instance specific design [6] we achieve a substantial
improvement of resource efficiency compared to state of the art
implementations [19]. In the case of our FEM case study, this
increases the maximum supported problem size beyond what
was previously possible on commercially available FPGAs.

The matrix-vector multiplication unit (MVMU) multiplies a
block diagonal sparse matrix by a dense vector. This kernel is
required on Line 10 of Algorithm 1. The MVMU architecture
proposed in this section can be efficiently implemented on
commercial FPGA architectures. The design is fully streaming
and leads to a deep, fully pipelined architecture which maps
well to the FPGA fabrics. The design is resource efficient
and makes effective use of C-slowing for the high latency
double precision floating point accumulation operation. It also
makes effective use of available on-chip resources and memory
bandwidth by exploiting both data parallelism, through vec-
torisation, and task parallelism, through independent Matrix
Processing Units or MPEs. Finally, the design is customisable:
the number of MPEs (NMPE), the vector width of each MPE
(MPEwidth), the depth of the accumulation buffer (MPED),
and the input-output and compute types can be customised
independently to support effective design space exploration.
The benefits of this approach are illustrated in detail in the
following section.
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Fig. 2. Example matrix multiplier architecture with
NMPE = 2,MPEwidth = 4,MPED = 16. Matrix blocks
The blocks of the original matrix are reordered and assigned to each MPE
on the CPU.

The architecture and operation of the MVMU are illustrated
in Figure 2 and Figure 3. The operation is split among multiple

MPEs as shown in Figure 2. Each MPE multiplies one block
with the corresponding elements of the vector. The MPE
processes the block in column major order. Each MPE may
process multiple columns of the same block concurrently. This
increases the utilisation of the DRAM bandwidth, without
requiring additional independent computation streams. We
refer to the number of columns processed by an MPE as
the width of the MPE (MPEwidth). This is a compile time
parameter in our design.

To enable the MPEs to process their assigned blocks in
column major order, each block is partitioned in vertical stripes
as shown in Figure 3. The necessary reordering is performed
on the CPU as described below. The width of a stripe is equal
to MPEwidth, which in the example of Figure 3 is 2. The
final stripe may require zero padding, if the block size is
not a multiple of MPEwidth. This is a potential source of
inefficiency in our design, and choosing an MPEwidth which
minimises the amount of padding is an important optimisation
goal of the design space exploration process.
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Fig. 3. Example distribution strategy for an architecture with
MPEwidth = 2, NMPE = 1

Since matrix block sizes are different for each mesh el-
ement’s geometric shape and polynomial order, the MVMU
needs to be generic, efficiently supporting various matrix sizes.
Therefore the partial sums of each row are accumulated in a
variable depth FIFO. To function correctly this design requires
that the maximum depth of the FIFO, MPED, is larger than
the largest possible block. Additionally the effective depth of
the FIFO must be configurable at runtime since it needs to
exactly match the block size. This is achieved by updating the
write and read address generators to wrap around based on
the block size, instead of the statically configured MPED.
This design functions correctly when the block size is smaller
than MPED but greater than or equal to the floating point
accumulator latency. The former is directly controllable by
the method proposed in Section V, and the latter is the case
for most problems of real practical interest. For example, for
the Finite Element Method problem used as a case study in
section VI, the block sizes already exceed 34 for all element
types of practical interest.

To simplify the architecture, matrix data are pre-processed



on the CPU. To interface with CPU host code (such as
open source implementations for the FEM method like Nek-
tar++ [20]), we provide a method to add matrix blocks as they
are being constructed. Our implementation creates a local copy
of the block and prepares it for execution on the FPGA, as
follows:

1) the block is padded, to ensure its size is a multiple of
the MPEwidth;

2) the block is reordered so that the row-major access pat-
tern is transformed to the striped access pattern required
for MPE (as shown in Figure 3);

3) blocks are copied to on-board DRAM to utilise high
bandwidth local interconnect;

4) after all blocks have been added, and a call to solve the
resulting system is made, each block is distributed to the
corresponding MPE.

We note that since all the operations above are performed
locally to a matrix block (which is in practice small), they
exhibit good locality of reference and their implementation
is therefore efficient. The distribution heuristic is beyond the
scope of the paper, so we leave this as an interesting future
work opportunity. In the current implementation, we use a
simple round robin based heuristic, where blocks are assigned
in a circular order to each MPE. This heuristic is illustrated
in Figure 2 where the first and third block are assigned to
the first MPE and the second and fourth are assigned to the
second MPE.

We implemented several optimisations to reduce the re-
source utilisation. Our design supports mixed precision com-
putation: the type of the input vector and matrix to the
design, the type used for vector operations and the types used
for the reduction operation are all customisable. Since the
implementation only operates at a reduced clock frequency
(which is sufficient to utilise the available DRAM bandwidth),
less aggressive pipelining is used which leads to substantial
reduction in BRAM and Flip Flop resources.

IV. RESOURCE CONSTRAINED FORMULATION

The flexibility of the baseline design enables domain and
instance specific optimisations which leads to more efficient
resource utilisation. In particular the following aspects of the
baseline design are customisable and present interesting trade-
off opportunities (parameters are also highlighted in Figure 2):

• NMPE – increasing the number of MPEs allows us to
saturate memory bandwidth while maintaining a reduced
vector width, which could lead to increased efficiency;
however since each MPE is connected to independent
regions in memory, different data and command streams
are required for each MPEs which leads to increased
resource utilisation. This aspect is discussed in more
detail in Section VI;

• MPEwidth – the vector width of each MPE must be
adjusted carefully to maximise the efficiency and DRAM
bandwidth utilisation: too narrow vector units lead to poor
DRAM bandwidth utilisation, too wide units may lead to

low arithmetic efficiency depending on the block size.
This aspect is discussed in more detail in Section VI;

• MPED – the depth of the accumulation buffer can be
customised to support variable block sizes efficiently.

Based on these parameters, we propose a resource con-
strained analytical model for optimising the MVMU archi-
tecture for a particular matrix. The proposed model can be
used to find optimised values for the architecture parameters
based on the characteristics of a given matrix: BSi, the size
of the blocks it contains and NBi the number of blocks of
each size.

First, as noted in Section III the depth of the accumulation
buffer must be larger than or equal to the largest block size,
for the C-slowed implementation to perform correctly:

∀i MPED ≥ BSi (1)

In addition, the memory bandwidth constraint must be taken
into account: MPEs should not request more words per clock
cycle than the width of the memory interface, B, for efficiency
reasons:

NMPE ×MPEwidth ≤ B (in words) (2)

We note that this equation ignores the transfer cost of the
multiplicand and result vectors. The data size associated with
each of these components is small: for every component of
CG vectors, BSi matrix components are streamed for each
MPE, with BSi reaching the value of several hundred for
large polynomial orders.

The MVMU uses a streaming design so we assume the
pipeline latency is negligible compared to the total number
of cycles. The total number of cycles required to process
a matrix in the MVMU is given by the number of cycles
to process a block Bi, multiplied by the number of parallel
block multiplication tasks available for that particular block
size BSi:

NCycles=
∑
i

CyclesPerBlock(Bi)× Tasks(Bi) (3)

=
∑
i

(⌈
BSi

MPEwidth

⌉
×BSi

)
×
⌈

NBi

NMPE

⌉
(4)

This equation accounts for the fact that the block size BSi

may not be a multiple of the MPEwidth, in which case
additional cycles are required to process the stripe padding.

Finally, the resource usage model for the MVMU can be
derived based on the cost of an adder R+, a multiplier RX ,
the accumulation buffer RB , the width and depth of command
and data FIFOs to and from DRAM for each MPE, RDRAM ,
and the static resource utilisation for components such as PCIe
and DDR3 interface and controllers Rstatic:

R = RStatic+ (5)
NMPE × (MPEwidth × (R+ +RX) +RB +RDRAM )

As we discuss in Section VI, RDRAM itself is influenced
by MPEwidth as the additional buffering introduced between
the DRAM interface and the kernel interface is directly



proportional to the lowest common multiple (LCM) of the
two:

RDRAM ∝ FIFOwidth×FIFOdepth

×LCM(Burst Size,MPEwidth)

Therefore, the problem of optimising the MVMU for a
particular mesh configuration reduces to the problem of finding
the values of NMPE , MPEwidth and MPED to minimise
Ncycles from Eq. 4, subject to the functional constraints given
by Eq. 1 and Eq. 2 and the resource utilisation constraint based
on Eq. 5: R ≤ SResources, where SResources represents the
spare resources available for the MVMU.

Applying this model and all proposed optimisations substan-
tially reduces the resource usage for the MVMU, as shown in
Section VI, enabling us to fit larger meshes than previously
possible [19].

V. AUTOMATED CUSTOMISATION METHOD

The parametric architecture presented in Section III to-
gether with the resource constrained optimisation method in
Section IV can be used to automatically generate or select
at runtime the most efficient architecture for the MVMU
based on the properties of the input matrix: the block sizes,
BSi, and number of blocks of each size, NBi. For a block
diagonal sparse matrix, these parameters can be determined
using Algorithm 2. We assume a function rowSpan which can
return the column index of the first and the last nonzeros in a
row. The implementation of rowSpan depends on the storage
format of A. Any sparse storage format can be used which
supports the sortEntries and rowSpan functions efficiently,
such as CSR, CSC etc. Algorithm 2 assumes that the first and
last element in a block are not zero, which is guaranteed by
the block diagonal structure of the matrix.

Algorithm 2 Extract BSi, NBi for the sparse matrix A

1: function EXTRACTBLOCKMATRIXPARAMS(A)
2: SORTENTRIES(A) . Sort by row and column index
3: occ← {} . Dictionary of BSi and NBi

4: for i ∈ 0 ... A.nrows do
5: (first, last)← ROWSPAN(i)
6: bs← last− first . Assume new block size
7: startPosition← i . Upper left corner of block
8: while i− startPosition < bs do
9: if last > startPosition+ bs then

10: ERROR! Not a block diagonal matrix
11: else if first < startPosition then
12: ERROR! Not a block diagonal matrix
13: end if
14: i← i+ 1
15: (first, last)← ROWSPAN(i)
16: end while
17: occ[bs]← occ[bs] + 1 . update block count
18: end for
19: return occ . return the frequency map of block sizes
20: end function

First, the algorithm sorts the nonzeros of A in increasing
order of their row and column index. Sorting is relatively
inexpensive as a one-time pre-processing step, with time

complexity O(Nnnz× log(Nnnz)) where Nnnz is the number
of nonzero elements of A, but even so, it is very common in
practice for sparse matrices to contain entries already ordered
in this fashion, since it is a pre-requisite of efficient access
and manipulation in many algorithms. In this case the sorting
step can be skipped entirely.

Second, the algorithm performs a linear sweep for blocks.
The outer loop finds the dimension of the block bs using the
RowSpan function while the inner loop traverses the next
bs − 1 rows to ensure that no element resides outside the
inferred block size. If an offending element is found residing
outside the inferred block (either before or after the block), the
algorithm quits and assumes the matrix is not block-diagonal.
In this approach explicit zero entries may be stored in the
inferred blocks but there is nothing which can be done in this
regards, if we assume a block-diagonal matrix.

The flow proposed in this work combines the parametric
architecture presented in Section III, the resource constrained
optimisation method shown in Section IV and Algorithm 2
to enable the customisation and runtime selection of problem
specific MVMU architectures. The resulting flow is shown in
Figure 4 and comprises two main stages: tuning and runtime
selection.
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Fig. 4. Overview of the proposed approach

During the tuning stage, the optimal set of architectures
is determined from a set of input block diagonal sparse
matrices, which are considered representative for the problem
or application domain under study. For every sparse matrix in
the benchmark: 1) the matrix parameters BSi and NBi are
extracted, 2) based on these parameters resource constrained
optimisation is applied to determine the optimal architecture
configuration, 3) the optimal architecture is synthesised. Fi-
nally, the generated architectures and a driver program are
packaged as a shared library, available for loading during the
runtime stage.



During the runtime selection stage, the appropriate archi-
tecture must be configured on the FPGA. This requires, again,
to determine the matrix parameters BSi and NBi the cor-
responding optimal values of NMPE , MPEwidth, MPED,
but in this case based on the actual runtime values of the
sparse matrix. As explained, this process is inexpensive, and
the cost is amortised over the long running time for iterative
applications such as the FEM. Finally, the selected architecture
can be loaded on the FPGA using runtime reconfiguration.

VI. EVALUATION

We evaluate our approach in the context of the Finite Ele-
ment Method, a classical HPC problem. We observe significant
variance in throughput, compute efficiency and resource utili-
sation based on matrix block size and architectural parameters.
This insight can be used to optimise the MVMU accordingly,
providing more spare resources for other critical components:
our method automatically detects the optimal values for the
architecture parameters for a particular sparse block diagonal
input matrix. In the case of the Finite Element Method, this
leads to an ability to support larger problem sizes on a sin-
gle device and therefore reduced inter-device communication
volume, which translates to increased performance.

The Finite Element Method [1] is used to solve Partial
Differential Equations (PDE) on large scale geometric do-
mains, which are used in many fields of engineering. The
Finite Element Method operates on meshes which represent
the geometrical domains by splitting them into elements, sim-
ple geometrical shapes (e.g. tetrahedra) with an unstructured
adjacency graph. The solution to the PDE is approximated with
a piece-wise polynomial defined at every element separately.

The spectral/hp FEM method used in our evaluation dis-
cretises the PDE on each element into a dense matrix, whose
size depends on the geometrical shape of the element and the
polynomial order used for approximating the PDE solution.
Due to this discretisation strategy, the whole mesh can be
represented as a block-diagonal matrix with matrix blocks
of variable size. Exact formulae for the block sizes depend
on element shape and polynomial order P , with the typical
dimension of a sparse matrix block ranging between a few
tens and a few hundreds of elements, as shown in Table I.

TABLE I
BLOCK SIZES FOR DIFFERENT POLYNOMIAL ORDERS AND GEOMETRICAL

SHAPES PRESENT IN TYPICAL FEM MESHES

Element type P=1 P=2 P=3 P=4 P=5 P=6
Tetrahedron 4 10 20 34 52 74
Prism 6 18 38 66 102 146
Hexahedron 8 26 56 98 152 218

We use the local matrix approach [1] which represents the
problem with the block-diagonal matrix described above at
every evaluation of a matrix-vector multiply. For higher poly-
nomial orders, where acceleration is most needed, the local
matrix approach becomes more computationally efficient than
other approaches, since it exploits the more regular structure of

the block-diagonal dense matrix storage thus leading to more
efficient memory access and use of parallelism [21].

We implement the proposed architecture using Maxeler
MaxCompiler 2015.2 and the MaxJ dataflow language. All
resource utilisation results correspond to post place and route
resource usage annotations provided by the Maxeler MaxCom-
piler. We provide a CPU interface in C++11 which allows the
addition and pre-processing of matrix blocks as described in
Section III.

We use a Maxeler MPCX Dataflow node. The system
properties are summarised in Table II. It consists of a CPU
node and a DFE node. The two are connected via Infiniband
through a Mellanox FDR Infiniband switch.

TABLE II
SYSTEM PROPERTIES

CPU Dual Intel Xeon E5-2640
CPU Cache 15 MB

CPU DRAM Bandwidth 42.6 GB/s (Peak)
CPU DRAM Capacity 64GB DDR3-1333

FPGA Stratix V 5SGSMD8N1F45C2
FPGA DRAM Bandwidth 58 GB/s (Achieved)

FPGA DRAM Capacity 48 GB
CPU to FPGA Bandwidth 2 GB/s

We illustrate the benefits of the optimisations and design
method proposed in Section III by providing a study of
customisation opportunities on the NACA 1L FEM mesh [22]
which has been used as a benchmark in previous work [19],
[23]. The NACA 1L mesh is an unstructured mesh with 58728
tetrahedral elements of block size 20x20 and 11549 prismatic
elements of block size 38x38 (at polynomial order P = 3).
In practice, larger values of P are used for large scale case
studies (typically 4–7), which as explained would make our
approach even more resource efficient, due to the large block
sizes. However for this section we use P = 3 to provide a
comparison with prior work [19], [23]. We study both the
computational efficiency and the resource efficiency of the
proposed design.

From the computational efficiency perspective, we notice a
complex interaction between DRAM bandwidth utilisation, re-
source utilisation and compute efficiency induced by problem
specific properties such as block order and required accuracy.
For example higher vector widths may lead to better bandwidth
utilisation but reduced compute efficiency for small blocks.

More generally, depending on the polynomial order, appro-
priate vector widths can be used to reduce on-chip resource
usage while maintaining throughput, thus increasing overall
resource efficiency. As shown in Figure 5, for the NACA 1L
mesh, the utilisation of vector units varies considerably with
MPEwidth. The compute efficiency can be defined as

E =
Useful Operations
Total Operations

=

∑
i BS2

i ×NBi∑
i

⌈
BSi

MPEwidth

⌉
×MPEwidth ×BSi ×NBi



TABLE III
POST PLACE AND ROUTE RESULTS FOR THE MVMU ON A STRATIX V D8 CHIP USING MAXELER MAXCOMPILER 2015.2. RESOURCES USED ARE

SHOWN BOTH AS A NUMBER AND A PERCENT OF THE TOTAL RESOUCES AVAILABLE (%). DATA TYPES FOR MATRIX INPUT (Min), VECTOR INPUT (Vin)
AND COMPUTE (C) ARE SHOWN AS DOUBLE PRECISION (D), SINGLE PRECISION (S) OR INTEGER / FRACTION BITS FOR FIXED POINTS, OR EXPONENT /

MANTISSA BITS FOR FLOATING POINT

Id NMPE MPEwidth Min Vin C Fixed Logic (U/%) DSP (U/%) BRAM (U/%)
1 3 24 S D S F 97 / 4 72 / 3.67 1058 / 41.22
2 3 24 S S S F 92 / 4 72 / 3.67 1001 / 38.99
3 3 24 S D D F 109 / 4 288 / 14.67 1061 / 41.33
4 3 24 S D 11 32 F 104 / 4 144 / 7.34 1061 / 41.33
5 3 24 6 58 D 6 58 T 86 / 3 576 / 29.34 1094 / 42.62
6 1 8 S D S F 67 / 3 8 / 0.41 551 / 21.46
7 1 10 S D S F 83 / 3 10 / 0.51 1323 / 51.54
8 1 20 S D S F 85 / 3 20 / 1.02 1347 / 52.47
9 1 30 S D S F 87 / 3 30 / 1.53 1371 / 53.41

10 1 48 S D S F 78 / 3 48 / 2.45 570 / 22.20
11 1 96 S D S F 90 / 3 96 / 4.89 686 / 26.72

and it accounts for the fact that vector units within an MPE
may not be processing useful values at all times, but also zero
padding entries. This fact is unavoidable because the block size
varies with the problem specification and even within the same
matrix, blocks of various sizes are used. However the width
of the vector unit remains fixed, in the absence of partial or
run-time reconfiguration.
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Fig. 5. Efficiency and DRAM bandwidth versus MPEwidth for the NACA
1L mesh with P = 3 and block sizes of 20x20, 38x38

Furthermore MPEwidth is also constrained from a resource
utilisation perspective by the strategy used for buffering data
and commands sent to and from DRAM. In the case of
the Maxeler MaxCompiler, the depth of FIFOs used is the
least common multiple of the width of the input request
and the DRAM burst size, by default 384 bytes. This makes
certain input widths inefficient to implement from a resource
utilisation perspective, as shown in Table III: Architecture 10
with MPEwidth = 48 consumes less than half the BRAM
resources of Architecture 7 with MPEwidth = 10. Clearly
there is a substantial resource saving benefit to the latter
option, but the computational efficiency on the NACA 1L mesh
(P = 3, block sizes of 20x20, 38x38) is very poor as illustrated
in Figure 5: 0.5 for an MPEwidth of 48 compared to more
than 0.9 for an MPEwidth of 10.

In addition, Figure 5 illustrates the tension between fully
utilising off-chip memory bandwidth and achieving a good

utilisation for on-chip resources: increasing the vector width
directly increases the utilisation of off-chip bandwidth, but
may lead to reduced efficiency due to extra cycles spent on
processing zeros, when the block size is smaller than the vector
width or the block size is not a multiple of MPEwidth.

From the resource utilisation perspective, it is important
to emphasise that this is not simply a case of aggressively
configuring the MVMU unit to deal with the largest possible
block sizes: as shown in Figure 5 this approach may lead to
inefficient resource utilisation, leaving less on-chip resources
for other application kernels which may eventually result in
reduced overall performance.

Figure 6 shows the throughput per BRAM of two sample
architectures from Table III: Architecture 1 with NMPE =
3,MPEwidth = 24 and Architecture 11 with NMPE =
1,MPEwidth = 96. This captures the scalability of the design
with respect to the bounding resource, BRAMs. It illustrates
the effective trade-off between vector style and task style
parallelism within the MVMU. For smaller block sizes, the
task style parallelism achieves higher efficiency and as a result,
even though the resource utilisation is considerably higher
(1058 BRAMs for Architecture 1 versus 686 BRAMs for
Architecture 11), the task parallel approach achieves a better
utilisation of on-chip resources. For the larger block sizes,
where there is sufficient data parallelism within a row, vector
style parallelism is more efficient from a resource utilisation
point of view since it requires significantly fewer resources
for the memory controller. This fact can also be corroborated
with Figure 5.

An additional possibility for reducing resource utilisation
is the use of wordlength optimisation. For the purpose of
maximising resource efficiency our implementation supports
arbitrary width fixed and floating point inputs as well as
mixed precision computation, with the more critical parts of
the computation, performed in higher precision. The reference
CPU implementation of the Nektar++ framework and our
baseline design uses double precision floating point arithmetic
for all operations. Compared to this baseline design, the 43 bit
double precision implementation, Architecture 4 of Table III,
achieves a substantial reduction in DSP usage: half the number
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of DSPs are used compared to the full double precision
version. While DSP utilisation is not a bounding resource in
the current design, this saving can prove important for other
compute intensive applications. However we note that fixed
point implementation does not represent an entirely viable
option for FEM problems due to the large wordlength required
for convergence. Our numerical experiments with Nektar++
shows that 64-bit fixed point arithmetic is required for the
iterative solver to converge. The large wordlength leads to a
significantly increased DSP utilisation, and a slight increase
in BRAM usage but a slight reduction in logic usage.

Table IV shows that for the NACA 1L mesh for the MVMU
unit a substantial saving can be achieved in resource usage by
deploying the architecture proposed in this work: the MVMU
unit uses almost 10 times fewer BRAMs and about half the
logic resources compared to a similar, state of the art design
implemented in [19]. In fact the unit itself is so optimised
that the overhead for the periphery units, such as PCIe and
Memory Controller, dominate resource utilisation: Table IV
shows the memory controller occupies more than 30 times
the area (in BRAMs) of the MVMU. However, we do not
believe this is a scalability concern since vendors can provide
hardend Memory Controllers to reduce resource utilisation and
to improve throughput for memory interfaces to be on a par
with modern GPU architectures.

TABLE IV
RESOURCE UTILISATION IMPROVEMENTS COMPARED TO PRIOR WORK

Kernel BRAMs LUTs FFs DSPs
MVMU, 3 MPEs [19] 201 105129 145147 288
MVMU, 3 MPEs (this work) 21 54340 61923 288
Memory Controller 652 17165 64581
PCIe 100 6713 7828
FIFOs 184 568 709

Finally, Figure 7 shows the expected impact of applying
the proposed method to an FPGA implementation of the FEM
framework Nektar++ [19], [20]. In addition to the matrix vec-
tor multiplier, in [19], the vector scatter/gather units, precondi-

tioner and linear algebra units require BRAM resources. As a
result, the original design overmaps significantly on BRAMs
for the NACA One Layer mesh. The architecture proposed
in this work and implemented with the same parameters as
in [19] is already close to fitting on chip, as it overmaps by
only 45 BRAMs. However by carefully applying the trade-
off between vector and task level parallelism we can identify
configurations (such as NMPE = 2, MPEwidth = 48) which
fit on chip, and achieve speedup of up to 3 times over an
optimised multi-threaded implementation from the Nektar++
framework [20].
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VII. CONCLUSION

In this work we propose an architecture and an automated
customisation method to detect and optimise the architecture
for sparse matrices with block diagonal structure, which arise
often in practice. We evaluate the proposed approach in the
context of the spectral/hp Finite Element Method, a classic
High Performance Computing problem. The efficiency of the
proposed architecture, combined with the effectiveness of
the proposed customisation method, reduces BRAM resource
utilisation by as much as 10 times, while achieving identical
throughput with existing state of the art designs and requiring
minimal development effort from the end user.

Opportunities for future work include developing a variety
of generic pattern detection methods, including additional
benchmarks for evaluation, and exploring further optimisa-
tions such as compression techniques that improve memory
bandwidth utilisation [8].
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