2,060 research outputs found

    Exploiting Domain Knowledge in Making Delegation Decisions

    Get PDF
    @inproceedings{conf/admi/EmeleNSP11, added-at = {2011-12-19T00:00:00.000+0100}, author = {Emele, Chukwuemeka David and Norman, Timothy J. and Sensoy, Murat and Parsons, Simon}, biburl = {http://www.bibsonomy.org/bibtex/20a08b683088443f1fd36d6ef28bf6615/dblp}, booktitle = {ADMI}, crossref = {conf/admi/2011}, editor = {Cao, Longbing and Bazzan, Ana L. C. and Symeonidis, Andreas L. and Gorodetsky, Vladimir and Weiss, Gerhard and Yu, Philip S.}, ee = {http://dx.doi.org/10.1007/978-3-642-27609-5_9}, interhash = {1d7e7f8554e8bdb3d43c32e02aeabcec}, intrahash = {0a08b683088443f1fd36d6ef28bf6615}, isbn = {978-3-642-27608-8}, keywords = {dblp}, pages = {117-131}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, timestamp = {2011-12-19T00:00:00.000+0100}, title = {Exploiting Domain Knowledge in Making Delegation Decisions.}, url = {http://dblp.uni-trier.de/db/conf/admi/admi2011.html#EmeleNSP11}, volume = 7103, year = 2011 }Postprin

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Towards an Indexical Model of Situated Language Comprehension for Cognitive Agents in Physical Worlds

    Full text link
    We propose a computational model of situated language comprehension based on the Indexical Hypothesis that generates meaning representations by translating amodal linguistic symbols to modal representations of beliefs, knowledge, and experience external to the linguistic system. This Indexical Model incorporates multiple information sources, including perceptions, domain knowledge, and short-term and long-term experiences during comprehension. We show that exploiting diverse information sources can alleviate ambiguities that arise from contextual use of underspecific referring expressions and unexpressed argument alternations of verbs. The model is being used to support linguistic interactions in Rosie, an agent implemented in Soar that learns from instruction.Comment: Advances in Cognitive Systems 3 (2014

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Argumentation models and their use in corpus annotation: practice, prospects, and challenges

    Get PDF
    The study of argumentation is transversal to several research domains, from philosophy to linguistics, from the law to computer science and artificial intelligence. In discourse analysis, several distinct models have been proposed to harness argumentation, each with a different focus or aim. To analyze the use of argumentation in natural language, several corpora annotation efforts have been carried out, with a more or less explicit grounding on one of such theoretical argumentation models. In fact, given the recent growing interest in argument mining applications, argument-annotated corpora are crucial to train machine learning models in a supervised way. However, the proliferation of such corpora has led to a wide disparity in the granularity of the argument annotations employed. In this paper, we review the most relevant theoretical argumentation models, after which we survey argument annotation projects closely following those theoretical models. We also highlight the main simplifications that are often introduced in practice. Furthermore, we glimpse other annotation efforts that are not so theoretically grounded but instead follow a shallower approach. It turns out that most argument annotation projects make their own assumptions and simplifications, both in terms of the textual genre they focus on and in terms of adapting the adopted theoretical argumentation model for their own agenda. Issues of compatibility among argument-annotated corpora are discussed by looking at the problem from a syntactical, semantic, and practical perspective. Finally, we discuss current and prospective applications of models that take advantage of argument-annotated corpora

    An ontological model for the reality-based 3D annotation of heritage building conservation state

    Get PDF
    The conservation and restoration of historical monuments require a diagnostic analysis carried out by amultidisciplinary team. The results of the diagnosis include data produced by different techniques andprotocols, which are used by conservation scientists to assess the built heritage. Nowadays, together withthe aforementioned data, a great deal of heterogeneous information is also available, including descriptiveand contextual information, as well as 2D/3D geometrical restitution of the studied object. However, theintegration of these diverse data into a unique information model capable of fully describing the buildingconservation state, as well as integrating future data, is still an open issue within the Cultural Heritagecommunity. It is of paramount importance to correlate these data and spatialize them in order to providescientists in charge of our heritage with a practical and easy means to explore the information usedduring their assessment, as well as a way to record their scientific observation and share them withintheir community of practice. In order to resolve this issue, we developed a correlation pipeline for theintegration of the semantic, spatial and morphological dimension of a built heritage. The pipeline uses anontological model for recording and integrating multidisciplinary observations of the conservation stateinto structural data spatialized into a semantic-aware 3D representation. The pipeline was successfullytested on the Saint Maurice church of Caromb in the south of France, integrating into a unique spatialrepresentation information about material and alteration phenomena, providing users with a means tocorrelate, and more importantly retrieve several types of information

    Ontology evolution: a process-centric survey

    Get PDF
    Ontology evolution aims at maintaining an ontology up to date with respect to changes in the domain that it models or novel requirements of information systems that it enables. The recent industrial adoption of Semantic Web techniques, which rely on ontologies, has led to the increased importance of the ontology evolution research. Typical approaches to ontology evolution are designed as multiple-stage processes combining techniques from a variety of fields (e.g., natural language processing and reasoning). However, the few existing surveys on this topic lack an in-depth analysis of the various stages of the ontology evolution process. This survey extends the literature by adopting a process-centric view of ontology evolution. Accordingly, we first provide an overall process model synthesized from an overview of the existing models in the literature. Then we survey the major approaches to each of the steps in this process and conclude on future challenges for techniques aiming to solve that particular stage

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped upon decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers
    • 

    corecore