Exploiting Domain Knowledge in Making
Delegation Decisions

Chukwuemeka David Emele!, Timothy J. Norman!,
Murat Sensoy', and Simon Parsons?

! University of Aberdeen, Aberdeen, AB24 3UE, UK
2 Brooklyn College, City University of New York, 11210 NY, USA
{c.emele, t.j.norman,m.sensoy}@abdn.ac.uk
parsons@sci.brooklyn.cuny.edu

Abstract. In multi-agent systems, agents often depend on others to act
on their behalf. However, delegation decisions are complicated in norm-
governed environments, where agents’ activities are regulated by policies.
Especially when such policies are not public, learning these policies be-
come critical to estimate the outcome of delegation decisions. In this
paper, we propose the use of domain knowledge in aiding the learning of
policies. Our approach combines ontological reasoning, machine learning
and argumentation in a novel way for identifying, learning, and modeling
policies. Using our approach, software agents can autonomously reason
about the policies that others are operating with, and make informed
decisions about to whom to delegate a task. In a set of experiments, we
demonstrate the utility of this novel combination of techniques through
empirical evaluation. Our evaluation shows that more accurate models
of others’ policies can be developed more rapidly using various forms of
domain knowledge.

1 Introduction

In many settings, agents (whether human or artificial) engage in problem solving
activities, which often require them to share resources, act on each others’ behalf,
communicate and coordinate individual acts, and so on. Such problem-solving
activities may fail to achieve desired goals if the plan is not properly resourced
and tasks delegated to appropriately competent agents. Irrespective of the field of
endeavour, the overall success of problem-solving activities depends on a number
of factors; one of which is the selection of appropriate candidates to delegate tasks
to (or share resources with). However, successful delegation decisions depend on
various factors. In norm-governed environments, one of the factors for making
successful delegation decisions is the accuracy of the prediction about the policy
restrictions that others operate with.

In multi-agent environments, agents may operate under policies, and some
policies may prohibit an agent from providing a resource to another under cer-
tain circumstances. Such policies might regulate what resources may be released
to a partner from some other organisation, under what conditions they may be

2 Emele et al.

used, and what information regarding their use is necessary to make a decision.
In addition, policies may govern actions that can be performed either to pursue
individual goals or on behalf of another. In Emele et al. [1], we show that intel-
ligent agents can determine what policies others are operating within by mining
the data gathered from past encounters with that agent (or similar agents) as
they collaborate to solve problems. This prior research uses a novel combination
of argumentation-derived evidence (ADE) and machine learning in building sta-
ble models of others’ policies. Here we explore the question that given agents
may have access to some background (or ontological) domain knowledge, how
can we exploit such knowledge to improve models of others’ policies? To do this,
we propose the use of ontological reasoning, argumentation and machine learn-
ing to aid in making effective predictions about who to approach if some other
collaborator is to be delegated to perform a task on the behalf of another.

The rest of this paper is organised as follows. Section 2 discusses delegation
in norm-gorverned environments. Section 3 presents our approach for learning
policies. Section 4 reports the results of our evaluations. Section 5 summarises
our findings, discusses related work and outlines future directions.

2 Delegating in Norm-governed environments

Task delegation, in general, is concerned with identifying a suitable candidate
(or candidates) to transfer authority to act on one’s behalf [4]. In other words,
we are concerned with finding candidate agents that will achieve a given goal
on our behalf. Implicitly, this model is based on experience gathered from past
encounters. In a norm-governed multi-agent system where each agent is regulated
by a set of rules, referred to as policies (or norms), the policies could determine
what actions an agent is (or is not) allowed to perform. Delegation, in this case,
is not just a matter of finding agents that possess the appropriate expertise
(or resource); if an agent has the required expertise but is operating under a
policy that prohibits the performance of that action, it may not take on the
delegated task. Nevertheless, delegation in such settings entails finding agents
who possess the required expertise (or resources), and whose policies permit
the performance of the required action (or provide the required resource). If an
agent is allowed to perform an action (according to its policy) then we assume
it will be willing to perform it when requested, provided it has the necessary
resources and/or expertise, and that doing so does not yield a negative utility.
In our framework, an agent that has been assigned a task is solely responsible
for that task. However, an agent can delegate an aspect of a task to another. For
example, agent x is responsible for performing task T, but could delegate the
provision of some resource R, required to fulfill 7, to another agent y;. Provided
agent y; has resource R,, and does not have any policy that forbids the provision
of R, then we assume y; will make R,. available to z.

From the above example, we see that agent x needs to find effective ways of
delegating the provision of resource R,. In order to delegate a task successfully,
we need to find out the agent whose policy constraints will most likely, according

Exploiting Domain Knowledge in Making Delegation Decisions 3

to a chosen metric, permit it to execute the delegated task. In our framework,
whenever there is a task to be delegated, policy predictions are generated along-
side the confidence of those predictions from the policy models that have been
learned over time. Confidence values of favourable policy predictions are easily
compared to determine which candidate to delegate the task to. In our case, con-
fidence values range from 0 to 1, with 0 being no confidence in the prediction,
and 1 being complete confidence.

The delegating agent explores the candidate space to identify suitable can-
didates to whom it can delegate a task. In these terms, our delegation problem
is concerned with finding potential candidates whose policies permit to perform
the delegated task, and thereafter, selecting the most promising candidate from
the pool of eligible candidates. Borrowing ideas from economics, we assume that
some payment will be made to an agent for performing a delegated task (e.g.
payment for the provision of a service).

Example 1 Consider a situation where an agent x is collaborating with a num-
ber of agents, y1,y2,ys3, and y4, to solve an emergency response problem. Let us
assume that agent x does not have a helicopter in its resource pool, and that
each of agents y1,vy2,ys, and y4 can provide helicopters, jeeps, vans, bikes, fire
extinguishers, and unmanned aerial vehicles (UAVs).

Agent x in Example 1 has to decide which of the potential providers, y1, y2, y3,
and y4 to approach to provide the helicopter. Let us assume that the four
providers advertise similar services. Agent x, at this point, attempts to predict
the policy of the providers with respect to task delegation (or resource provision).
This prediction is based on policy models built from past experience with these
providers (or similar agents). Assuming the predictions are as follows: (i) y1 will
accept to provide the helicopter with 0.6 confidence; (il) y2 will accept with 0.9
confidence; (iii) y3 will accept with 0.7 confidence; and (iv) yq will decline with
0.8 confidence. If the decision to choose a provider is based on policy predictions
alone, then ys is the best candidate.

3 Learning agent policies

The framework we propose here enables agents to negotiate and argue about
task delegation, and use evidence derived from argumentation to build more ac-
curate and stable models of others’ policies. The architecture of our framework,
sketched in Figure 1, enables agents to learn the policies and resource availabil-
ities of others through evidence derived from argumentation, and improve those
models by exploiting domain knowledge. The dialogue manager handles all com-
munication with other agents. The learning mechanism uses machine learning
techniques to reason over the dialogue and attempts to build models of other
agents’ policies and resource availabilities based on arguments exchanged during
encounters. The arguments include the features that an agent requires in order
to make a decision about accepting a task delegation or not. The agent attempts
to predict the policies of others by reasoning over policy models (built from

4 Emele et al.

past experience). Such reasoning is further improved by exploiting background
domain knowledge and concept hierarchies in an ontology (see Section 3.4).

PROVIDER RESOURCE
AVAILABILITY

rl
r2
r3

POLICIES LEARNED Learning Resource
\ P
[;f;ozIDER 2 —> Mechanism Availability
an] FOLICIES LEARNED Models

TH) PROVIDER 1
IF IF resource=rl ¢
AND purpose=p8

THEN YES (0.75)

5 -

;ﬁ IF resource=r2 N Plan Resourcing
mf o 0.8 ’\;’O("'C?’ Strategy

3 resource=r. - lodels i
;; MO purne Mechanism
Tp| THEN NO (0.66)
ay| IF resource=rl Dialogue strategy
7| AND purpose=p4

AND location=11
& THEN YES (0.9)

IF resource=r2 . . . Dialogue

AND purpose=p5 — Dialogical episodes Man ag er

THEN NO (0.86) 9

- T

T
_ Argumentation-based _
plan resourcing dialogues

Fig. 1. Agent reasoning architecture.

3.1 Policies

In this framework, agents have policies that govern how resources are deployed
to others. In our model, policies are conditional entities (or rules) and so are
relevant to an agent under specific circumstances only. These circumstances are
characterised by a set of features, e.g., vehicle type, weather conditions, etc.

Definition 1 (Features). Let F be the set of all features such that f1, fa,... €
F. We define a feature as a characteristic of the prevailing circumstance under
which an agent is operating (or carrying out an activity).

Our concept of policy maps a set of features into an appropriate policy deci-
sion. In our framework, an agent can make one of two policy decisions at a time,
namely (1) grant, which means that the policy allows the agent to provide the
resource when requested; and (2) deny, which means that the policy prohibits
the agent from providing the resource.

Definition 2 (Policies). A policy is defined as a function II : F- {grant,deny},
which maps feature vectors of agents, F, to appropriate policy decisions.

In order to illustrate the way policies may be captured in this model, we
present an example. Let us assume that f; is resource, fo is purpose, f3 is
weather report (with respect to a location), fy is the affiliation of the agent, and
f5 is the day the resource is required, then Py, Py, and P3 in Figure 2 will be
interpreted as follows:

Exploiting Domain Knowledge in Making Delegation Decisions 5

Policy Id f1 f2 f3 f4 f5 Decision
h

Py trm grant
Py av ve deny
Ps i grant
Py c Ve | XX grant

P, ql|yy |w|xx|z| deny

Fig. 2. An agent’s policy profile.

P;: You are permitted to release a helicopter (h), to an agent if the helicopter
is required for the purpose of transporting relief materials (trm);

Ps: You are prohibited from releasing an aerial vehicle (av) to an agent in
bad weather conditions - e.g. volcanic clouds (vc);

P3: You are permitted to release a jeep (j) to an agent.

In the foregoing example, if helicopter is intended to be deployed in an area
with volcanic clouds then the provider is forbidden from providing the resource
but might offer a ground vehicle (e.g. jeep) to the seeker if there is no policy
prohibiting this and the resource is available. Furthermore, whenever a seeker’s
request is refused, the seeker may challenge the decision, and seek justifications
for the refusal. This additional evidence is beneficial, and could be used to im-
prove the model, hence, the quality of decisions made in future episodes.

3.2 Argumentation-based Negotiation

Figure 3 illustrates the protocol employed in this framework, which guides dia-
logical moves. Our approach in this regard is similar to the dialogue for resource
negotiation proposed by McBurney & Parsons [3].

CHALLENGE

REJECT

COUNTER-

PROPOSE ASSERT

OPEN- CLOSE-
DIALOGUE PROPOSE >| ACCEPT *| DIALOGUE

QUERY

Fig. 3. The negotiation protocol.

To illustrate the sorts of interaction between agents, consider the example
dialogue in Figure 4. Let x and y be seeker and provider agents respectively.

6 Emele et al.

Suppose we have an argumentation framework that allows agents to ask for and
receive explanations (as in Figure 4, lines 11 and 12), offer alternatives (counter-
propose in Figure 3), or ask and receive more information about the attributes
of requests (lines 4 to 9 in Figure 4), then x can gather additional information
regarding the policy rules guiding y concerning provision of resources.

| Dialogue Sequence Locution Type
1 |x: Start dialogue. OPEN-DIALOGUE
2 |y: Start dialogue. OPEN-DIALOGUE
3 |z: Can I have a helicopter for $0.1M reward? |[PROPOSE
4 |y: What do you need it for? QUERY
5 |x: To transport relief materials. INFORM
6 |y: To where? QUERY
7 |x: A refugee camp near Indonesia. INFORM
8 |y: Which date? QUERY
9 |z: On Friday 16/4/2010. INFORM
10|y: No, I can’t provide you with a helicopter. REJECT
11|z: Why? CHALLENGE
12|y: I am not permitted to release a helicopter ASSERT
in volcanic eruption.
13|z: There is no volcanic eruption near Indonesia.| CHALLENGE
14|y: I agree, but the ash cloud is spreading, and |ASSERT
weather report advises that it is not safe
to fly on that day.
15|x: Ok, thanks. CLOSE-DIALOGUE

Fig. 4. Dialogue example.

Negotiation for resources takes place in a turn-taking fashion. The dialogue
starts, and then agent x sends a request (propose in Figure 3) to agent y, e.g. line
3, Figure 4. The provider, y, may respond by conceding to the request (accept),
rejecting it, offering an alternative resource (counter-propose), or asking for more
information (query) such as in line 4 in Figure 4. If the provider agrees to provide
the resource then the negotiation ends. If, however, the provider rejects the
proposal (line 10, Figure 4) then the seeker may challenge that decision (line
11), and so on. If the provider suggests an alternative then the seeker evaluates
it to see whether it is acceptable or not. Furthermore, if the provider agent needs
more information from the seeker in order to make a decision, the provider agent
would ask questions that will reveal the features it requires to make a decision
(query, inform/refuse). The negotiation ends when agreement is reached or all
possibilities explored have been rejected.

3.3 Learning from past experience through dialogue

When an agent has a collection of experiences with other agents described by
feature vectors (see Section 3.1), we can make use of existing machine learn-
ing techniques for learning associations between sets of discrete attributes (e.g.

Exploiting Domain Knowledge in Making Delegation Decisions 7

f1, f2, ... fn € F) and policy decisions (i.e., grant and deny). In previous research
we investigated three classes of machine learning algorithms: (i) instance-based
learning (using k-nearest neighbours); (ii) rule-based learning (using sequential
covering); and (iii) decision tree learning (using C4.5). Figure 5 shows an ex-
ample decision tree representing a model of the policies of some other agent
learned from interactions with that agent. Nodes of the decision tree capture
features of an agent’s policy, edges denote feature values, while the leaves are
policy decisions.

fi=¢ f1=j

deny grant
deny grant

deny grant

Fig. 5. Example decision tree.

The machine learning algorithms were chosen to explore the utility of dif-
ferent classes of learning techniques. Instance-based learning is useful in this
context because it can adapt to and exploit evidence from dialogical episodes
incrementally as they accrue. In contrast, decision trees, and rule learning are
not incremental; the tree or the set of rules must be reassessed periodically as
new evidence is acquired.? Learning mechanisms such as sequential covering,
decision trees do have a number of advantages over instance-based approaches;
in particular, the rules (or trees) learned are more amenable to scrutiny by a
human decision maker.

The training examples used in each learning mechanism are derived from
plan resourcing episodes (or interactions), which involves resourcing a task ¢ us-
ing provider y and may result in (ﬁw grant) or (F;, deny). In this way, an agent
may build a model of the relationship between observable features of agents and
the policies they are operating under. Subsequently, when faced with resourcing
a new task, the policy model can be used to obtain a prediction of whether
or not a particular provider has a policy that permits the provision of the re-
source. In this paper, we take this aspect of the research further by investigating
semantic-enriched decision trees (STree), which extend C4.5 decision trees us-
ing ontological reasoning to explore how much domain knowledge can improve
learning.

3 For these algorithms we define a learning interval, ¢, which determines the number
of plan resourcing episodes (or interactions) an agent must engage in before building
(or re-building) its policy model.

8 Emele et al.

3.4 Learning from domain knowledge

In this paper, we argue that domain knowledge can be used to improve the
performance of machine learning approaches. Specifically, in this section, we will
describe how we can exploit domain knowledge to improve C4.5 decision trees.

Fig. 6. A simple ontology for vehicles and weather conditions. Ellipsis and rectangles
represent concepts and their instances respectively.

Domain Knowledge Domain knowledge consists of such background infor-
mation that an expert (in a field) would deploy in reasoning about a specific
situation. Semantic Web technologies allow software agents to use ontologies to
capture domain knowledge, and employ ontological reasoning to reason about
it [2]. Figure 6 shows a part of a simple ontology about vehicles and weather
conditions. The hierarchical relationships between terms in an ontology can be
used to make generalisation over the values of features while learning policies as
demonstrated in Example 2. Policies are often specified using numerical features
(e.g., vehicle price) and nominal features (e.g., vehicle type). Each nominal fea-
ture may have a large set of possible values. Without domain knowledge, the
agent may require a large training set containing examples with these nominal
values. However, domain knowledge allows agents to reason about to the terms
unseen in the training set and learn more general policies with fewer number of
training examples.

Example 2 Suppose agent x in Example 1 has learned from previous interac-
tions with agent y1 that there is a policy that forbids vy, from providing a heli-
copter when the weather is rainy, foggy, snowy, or windy. In addition, suppose
agent x has learned from previous experience that agent y1 is permitted to provide
a jeep in these conditions. This information has little value for x if it needs a he-
licopter when the weather is not rainy, foggy, snowy, or windy but volcanic clouds
are reported. On the other hand, with the help of the ontology in Figure 6, agent
x can generalise over the already experienced weather conditions and expect that
“agent y1 is prohibited from providing helicopters in bad weather conditions”.
Such a generalisation allows x to reason about y1’s behavior for the cases that
are not experienced yet. That is, with the help of the domain knowledge, agent
x can deduce (even without having training examples involving volcanic clouds
directly) that agent y1 may be prohibited from providing a helicopter if there is
an evidence of volcanic clouds in the region.

Exploiting Domain Knowledge in Making Delegation Decisions 9

C4.5 Decision Tree Algorithm In this section, we shortly describe the in-
duction of C4.5 decision trees. Then, in the following section, we describe how
domain knowledge can be exploited during tree induction.

The well-known C4.5 decision tree algorithm [6] uses a method known as
divide and conquer to construct a suitable tree from a training set S of cases.
If all the cases in S belong to the same class C;, the decision tree is a leaf
labeled with C;. Otherwise, let B be some test with outcomes {b1,ba,...,b,}
that produces a partition of S, and denote by .S; the set of cases in .S that has
outcome b; of B. The decision tree rooted at B is shown in Figure 7, where
T; is the result of growing a sub-tree for the cases in S;. The root node B is
based on an attribute that best classifies S. This attribute is determined using
information theory. That is, the attribute having the highest information gain

is selected.

b1 bz bs b,
T1 T, Ta -

Ta

Fig. 7. Tree rooted at the test B and its branches based on its outcomes.

Information gain of an attribute is computed based on information content.
Assume that testing an attribute A in the root of the tree will partition S into
disjoint subsets {51, 52, ...,St}. Let RF(C;,S) denote the relative frequency of
cases in S that belong to class C;. The information content of S is then computed
using Equation 1. The information gain for A is computed using Equation 2.

1(S) = — 3" RE(C..5) log(RF(C:, 5) (1)
G(S, A) = 1(S) — Xt: 'él"' X I(S)) @)

i=1
Once the attribute representing the root node is selected based on its information
gain, each value of the attribute leads to a branch of the node. These branches
divide the training set used to create the node into disjoint sets {57, S, ..., St}
Then, we recursively create new nodes of the tree using these subsets. If .S; con-
tains training examples only from the class C;, we create a leaf node labeled with
the class C;; otherwise, we recursively build a child node by selecting another
attribute based on S;. This recursive process stops either when the tree perfectly
classifies all training examples, or until no unused attribute remains.

Figure 8 lists 10 training examples, where Type, Age, and Price are the
only features. C4.5 decision tree algorithm makes induction only over numerical
attribute values. However, it could not make induction or generalisation over the
nominal attribute values (i.e., terms). For instance, a decision node based on the

10

Emele et al.

Type Age Price Class
1 Van 10 10,000 grant
2 Van 5 20,000 grant
3 Car 8 5,000 grant
4 Car 15 1,000 grant
5 Coach 2 200,000 grant
6 Yacht 20 300,000 deny
7 Yacht 2 500,000 deny
8 Speedboat 4 8,000 deny
9 Speedboat 15 2,000 deny
10 Cruiser 10 100,000 deny

Fig. 8. Training examples.

price test in Figure 9 can be used to classify a new case with price $250, 000, even
though there is no case in the training examples with this price value. However,
a new case with an unseen type, for instance a submarine, cannot be classified
using the decision node based on the attribute T'ype.

{1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10}

Price >= 100,000 ?
2 75
S/

/'SG'

S
N

/
{5.6,7,10} {1,2,3,4,8,9}

car Van Coach

/ / / Yacht Speed

{1.2} {3.4} {5}

Cruiser

{6,7} {8,9} {10}

Fig. 9. Decision nodes created using the tests on Type (on left) and Price (on right).

Semantic-enriched decision trees Here, we propose semantic-enriched de-
cision trees (STree) built upon the subsumptions relationships between terms
in the ontology. These relationships can be derived automatically using an off-
the-shelf ontology reasoner [2]. The main idea of STree is to replace the values
of nominal attributes with more general terms iteratively during tree induction,
unless this replacement results in any decrease in the classification performance.

Algorithm 1 summarises how the values of A are generalised for S. First,
we compute the original gain G(S, A) (line 3). Second, we create a set called
banned, which contains the terms that cannot be generalised further (line 4).
Initially, this set contains only the top concept Thing. Third, we create the set
T that contains A’s values in S (line 5). While there is a generalisable term
t € T (lines 6-18), we compute its generalisation ¢’ using ontological reasoning
(line 8) and create the set T” by replacing more specific terms in 7" with ¢’ (line
9). If this term is an instance of a concept, then the generalisation of the term
is the concept, e.g., Boat is generalisation of Yacht. If the term is a concept, its
generalisation is its parent concept, e.g., SeaVessel is generalisation of Boat. For
instance, let S be the data in Figure 8, then T would contain Yacht, Speedboat,
Cruiser, Van, Car, Coach, and Cruiser. If Car is selected as t, ¢ would be

Exploiting Domain Knowledge in Making Delegation Decisions 11

GroundV ehicle. In this case, T’ would contain Yacht, Speedboat, Cruiser, and
GroundV ehicle. Next, we check if the generalisation leads to any decrease in the
information gain. This is done by creating a temporary training set s from S by
replacing A’s values in S with the more general terms in 7" (line 10) and then
comparing G(s, A) with the original gain g (line 11). If there is no decrease in
the information gain, S and T are replaced with s and T respectively; otherwise
t is added to banned. We iterate through until we cannot find any term in T to
generalise without any decrease in the information gain.

Algorithm 1 Generalising values of nominal attribute A in training set S.

1: Input : S, A

2: Output: T

3: g=G(S,A)

4: banned = {Thing}

5: T = get AttributeValues(S, A)

6: while true do

7: if 3t such that t € T At ¢ banned then

8: t' = generalise(t)

9: T' = replaceWithMoreSpeci ficTerms(T,t")
10: s = replace AttributeValues(S, A, T")
11: if G(s,A) = g then
12: S=sand T =1T"

13: else

14: banned = banned U {t}
15: end if

16: else

17: break

18: end if

19: end while

The output of the algorithm would be {SeaVessel, GroundVehicle} for the
examples in Figure 8, because any further generalisation results in a decrease in
information gain. Hence, a decision node based on Type attribute would be as
shown in Figure 10 (left hand side). A new test case (11, Submarine, 40years,
$800,000) would be classified as deny using this decision node, because a sub-
marine is a sea vessel and all known sea vessels are labeled as deny. If the actual
classification of the case is grant instead of deny, the decision node would be up-
dated as seen in Figure 10 (right hand side), because generalisation of Submarine
or Cruiser now results in a decrease in the information gain.

{1,2,3,4,5,6,7,8,9,10} {1,2,3,4,5,6,7,8,9,10,11}
GroundVehicle SeaVessel GroundVehicle Boat Cruiser Submarine
/ AN -
{1,23,4,5) {6,7,8,910} {1,2,3,4,5} {6,7,8,9} {10} {11}

Fig. 10. Decision nodes using the generalisation of cases in Figure 8 (left hand) and
after the addition of a new case (11, Submarine, 40, 800,000, grant) (right hand).

12 Emele et al.

4 Evaluation

In evaluating our approach, we employed a simulated agent society where a set
of seeker agents interact with a set of provider agents with regard to resourcing
their plans over a number of runs. Each provider is assigned a set of resources.
Providers also operate under a set of policy constraints that determine under
what circumstances they are permitted to provide resources to seekers. In the
evaluation reported in this section, we demonstrate that it is possible to use
domain knowledge to improve models of others’ policies, hence increase their
predictive accuracy, and performance. To do this, we consider two experimental
conditions (i.e. closed and open). There are five features that are used to capture
agents’ policies, namely resource type, affiliation, purpose, location, and day.
In the open scenario, each feature can have up to 20 different values, whereas
only 5 different values are allowed in the closed scenario. In each scenario, six
agent configurations (RS, SM, C4.5, kNN, SC, and STree) are investigated.
In configuration RS, random selection is used. In SM, simple memorisation of
outcomes is used. In C'4.5, C4.5 decision tree classifier is used. In kN N, k-nearest
neighbour algorithm is used. In SC, sequential covering rule learning algorithm
is used. Lastly, in STree, agents use semantic-enriched decision trees to learn
policies of others.

Seeker agents were initialised with random models of the policies of providers.
100 runs were conducted in 10 rounds for each case, and tasks were randomly
created during each run from the possible configurations. In the control condi-
tion (random selection, RS), the seeker randomly selects a provider to approach.
In the SM configuration, the seeker simply memorises outcomes from past in-
teractions. Since there is no generalisation in SM, the confidence (or prediction
accuracy) is 1.0 if there is an exact match in memory, else the probability is 0.5.

100

90

80

Percentage of Correct Policy Predictions (%)
N
3

S -5M
£ -+C45
o g ~@-kNN
—sc
* —— — - .sTree

40

0 100 200 300 400 500 600 700 800

Number of Tasks

Fig. 11. The effectiveness of exploiting domain knowledge in learning policies (closed).

Figure 11 gives a graphical illustration of the performance of six algorithms
we considered in predicting agents’ policies in the closed scenario. The results

Exploiting Domain Knowledge in Making Delegation Decisions 13

show that STree, SC, kNN, C4.5 and SM consistently outperform RS. Further-
more, STree, SC and kNN consistently outperform C4.5 and SM. It is interesting
to see that, with relatively small training set, SM performed better than C4.5.
This is, we believe, because the model built by C4.5 overfit the data. The decision
tree was pruned after each set of 100 tasks and after 300 tasks the accuracy of
the C4.5 model rose to about 83% to tie with SM and from then C4.5 performed
better than SM. Similarly, STree performed much better than SC with relatively
small training set. We believe, this is because STree takes advantage of domain
knowledge and so can make informed inference (or guess) with respect to feature
values that do not exist in the training set. After 400 tasks the accuracy of SC
reached 96% to tie with STree. We believe, at this point, almost all the test
instances have been encountered and so have been learned (and now exist in the
training set for future episodes).

S

o

2

.2

- - --RS
g -

> 14 -8-SM
S .

g N —C4.5
s,

g ! P L EETTE. T KNN
S 7 -

5 |, - —sC
o R

g P - -STree
£ - e

8

&

Number of Tasks

Fig. 12. The effectiveness of exploiting domain knowledge in learning policies (open).

Figure 12 illustrates the effectiveness of four learning techniques (C4.5, kNN,
SC, and STree) and SM in learning policies in the open scenario. The result
shows that the technique that exploits domain knowledge (STree) significantly
outperforms the other techniques that did not. The decision trees (i.e. STree and
C4.5) were pruned after each set of 100 tasks and after 300 tasks the accuracy
of the STree model had exceeded 82% while that of C4.5 was just over 63%.
These results confirm that exploiting appropriate domain knowledge in learning
policies mean that more accurate and stable models of others’ policies can be
derived more rapidly than without exploiting such knowledge.

5 Discussion

We have proposed an agent decision-making mechanism where models of other
agents are refined through argumentation-derived evidence from past dialogues,
and these models are used to guide future task delegation. Our evaluations show
that accurate models of others’ policies could be learned by exploiting domain

14 Emele et al.

knowledge. We believe that this research contributes both to the understand-
ing of argumentation strategy for dialogue among autonomous agents, and to
applications of these techniques in agent support for human decision-making.
Sycara et al. [5] report on how software agents can effectively support human
teams in complex collaborative planning activities. One area of support that was
identified as important in this context is guidance in making policy-compliant
decisions. This prior research focuses on giving guidance to humans regarding
their own policies. Our work complements the approach of Sycara et al. by allow-
ing agents to support humans in developing models of others’ policies and using
these in decision making. Our approach extends decision trees with ontologi-
cal reasoning. Zhang and Honavar have also extended C4.5 decision trees with
Attribute-value taxonomies [7]. Their approach is similar to STree, but it does
not allow ontological reasoning during tree induction. Unlike their approach, our
approach can directly incorporate existing domain ontologies and exploits these
ontologies during policy learning.

In future, we plan to extend other machine learning methods with domain
knowledge and explore how much this extension improves policy learning and
enhances agents’ support for human decision-making.

Acknowledgements

This research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number W911NF-
06-3-0001. The views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

References

1. Emele, C.D., Norman, T.J., Parsons, S.: Argumentation strategies for plan resourc-
ing. In: Proceedings of AAMAS 2011. p. to appear. Taipei, Taiwan (2011)

2. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

3. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dia-
logues between autonomous agents. Journal of Logic, Language and Information
12(2), 315 — 334 (2002)

4. Norman, T.J., Reed, C.A.: Delegation and responsibility. In: Castelfranchi, C., Les-
perance, Y. (eds.) Intelligent Agents VII, LNAT 1986, volume 1986 of Lecture Notes
in Artificial Intelligence. pp. 136-149. Springer-Verlag (2001)

5. Sycara, K., Norman, T.J., Giampapa, J.A., Kollingbaum, M.J., Burnett, C., Masato,
D., McCallum, M., Strub, M.H.: Agent support for policy-driven collaborative mis-
sion planning. The Computer Journal 53(1), 528-540 (2009)

6.

7.

Exploiting Domain Knowledge in Making Delegation Decisions 15

Witten, [.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco, 2nd edn. (2005)

Zhang, J., Honavar, V.: Learning decision tree classifiers from attribute value tax-
onomies and partially specified data. In: Proceedings of the International Conference
on Machine Learning (2003)

