184 research outputs found

    User Intent Detection and Control of a Soft Poly-Limb

    Get PDF
    abstract: This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.Dissertation/ThesisMasters Thesis Biomedical Engineering 201

    Modular soft pneumatic actuator system design for compliance matching

    Get PDF
    The future of robotics is personal. Never before has technology been as pervasive as it is today, with advanced mobile electronics hardware and multi-level network connectivity pushing âsmartâ devices deeper into our daily lives through home automation systems, virtual assistants, and wearable activity monitoring. As the suite of personal technology around us continues to grow in this way, augmenting and offloading the burden of routine activities of daily living, the notion that this trend will extend to robotics seems inevitable. Transitioning robots from their current principal domain of industrial factory settings to domestic, workplace, or public environments is not simply a matter of relocation or reprogramming, however. The key differences between âtraditionalâ types of robots and those which would best serve personal, proximal, human interactive applications demand a new approach to their design. Chief among these are requirements for safety, adaptability, reliability, reconfigurability, and to a more practical extent, usability. These properties frame the context and objectives of my thesis work, which seeks to provide solutions and answers to not only how these features might be achieved in personal robotic systems, but as well what benefits they can afford. I approach the investigation of these questions from a perspective of compliance matching of hardware systems to their applications, by providing methods to achieve mechanical attributes complimentary to their environment and end-use. These features are fundamental to the burgeoning field of Soft Robotics, wherein flexible, compliant materials are used as the basis for the structure, actuation, sensing, and control of complete robotic systems. Combined with pressurized air as a power source, soft pneumatic actuator (SPA) based systems offers new and novel methods of exploiting the intrinsic compliance of soft material components in robotic systems. While this strategy seems to answer many of the needs for human-safe robotic applications, it also brings new questions and challenges: What are the needs and applications personal robots may best serve? Are soft pneumatic actuators capable of these tasks, or âusefulâ work output and performance? How can SPA based systems be applied to provide complex functionality needed for operation in diverse, real-world environments? What are the theoretical and practical challenges in implementing scalable, multiple degrees of freedom systems, and how can they be overcome? I present solutions to these problems in my thesis work, elucidated through scientific design, testing and evaluation of robotic prototypes which leverage and demonstrate three key features: 1) Intrinsic compliance: provided by passive elastic and flexible component material properties, 2) Extrinsic compliance: rendered through high number of independent, controllable degrees of freedom, and 3) Complementary design: exhibited by modular, plug and play architectures which combine both attributes to achieve compliant systems. Through these core projects and others listed below I have been engaged in soft robotic technology, its application, and solutions to the challenges which are critical to providing a path forward within the soft robotics field, as well as for the future of personal robotics as a whole toward creating a better society

    Towards a Universal Modeling and Control Framework for Soft Robots

    Full text link
    Traditional rigid-bodied robots are designed for speed, precision, and repeatability. These traits make them well suited for highly structured industrial environments, but poorly suited for the unstructured environments in which humans typically operate. Soft robots are well suited for unstructured human environments because they them to can safely interact with delicate objects, absorb impacts without damage, and passively adapt their shape to their surroundings. This makes them ideal for applications that require safe robot-human interaction, but also presents modeling and control challenges. Unlike rigid-bodied robots, soft robots exhibit continuous deformation and coupling between structure and actuation and these behaviors are not readily captured by traditional robot modeling and control techniques except under restrictive simplifying assumptions. The contribution of this work is a modeling and control framework tailored specifically to soft robots. It consists of two distinct modeling approaches. The first is a physics-based static modeling approach for systems of fluid-driven actuators. This approach leverages geometric relationships and conservation of energy to derive models that are simple and accurate enough to inform the design of soft robots, but not accurate enough to inform their control. The second is a data-driven dynamical modeling approach for arbitrary (soft) robotic systems. This approach leverages Koopman operator theory to construct models that are accurate and computationally efficient enough to be integrated into closed-loop optimal control schemes. The proposed framework is applied to several real-world soft robotic systems, enabling the successful completion of control tasks such as trajectory following and manipulating objects of unknown mass. Since the framework is not robot specific, it has the potential to become the dominant paradigm for the modeling and control of soft robots and lead to their more widespread adoption.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163062/1/bruderd_1.pd

    New soft robots really suck: Vacuum-powered systems empower diverse capabilities

    Get PDF
    We introduce a vacuum-powered soft pneumatic actuator (V-SPA) that leverages a single, shared vacuum power supply and enables complex soft robotic systems with multiple degrees of freedom (DoFs) and diverse functions. In addition to actuation, other utilities enabled by vacuum pressure include gripping and stiffening through granular media jamming, as well as direct suction adhesion to smooth surfaces, for manipulation or vertical fixation. We investigate the performance of the new actuator through direct characterization of a 3-DoF, plug-and-play V-SPA Module built from multiple V-SPAs and demonstrate the integration of different vacuum-enabled capabilities with a continuum-style robot platform outfitted with modular peripheral mechanisms. We show that these different vacuum-powered modules can be combined to achieve a variety of tasks—including multimodal locomotion, object manipulation, and stiffness tuning—to illustrate the utility and viability of vacuum as a singular alternative power source for soft pneumatic robots and not just a peripheral feature in itself. Our results highlight the effectiveness of V-SPAs in providing core soft robot capabilities and facilitating the consolidation of previously disparate subsystems for actuation and various specialized tasks, conducive to improving the compact design efficiency of larger, more complex multifunctional soft robotic systems

    Safe and effective physical human-robot interaction: Approaches to variable compliance via soft joints and soft grippers

    Get PDF
    The work described in this thesis focusses on designing and building two novel physical devices in a robotic arm structure. The arm is intended for human-robot interaction in the domestic assistive robotics area. The first device aims at helping to ensure the safety of the human user. It acts as a mechanical fuse and disconnects the robotic arm link from its motor in case of collision. The device behaves in a rigid manner in normal operational times and in a compliant manner in case of potentially harmful collisions: it relies on a variable compliance. The second device is the end-effector of the robotic arm. It is a novel grasping device that aims at accommodating varying object shapes. This is achieved by the structure of the grasping device that is a soft structure with a compliant and a rigid phase. Its completely soft structure is able to mould to the object's shape in the compliant phase, while the rigid phase allows holding the object in a stable way.In this study, variable compliance is defined as a physical structure's change from a compliant to a rigid behaviour and vice versa. Due to its versatility and effectiveness, variable compliance has become the founding block of the design of the two devices in the robot arm physical structure. The novelty of the employment of variable compliance in this thesis resides in its use in both rigid and soft devices in order to help ensure both safety and adaptable grasping in one integrated physical structure, the robot arm.The safety device has been designed, modelled, produced, tested and physically embedded in the robot arm system. Compared to previous work in this field, the feature described in this thesis' work has a major advantage: its torque threshold can be actively regulated depending on the operational situation. The threshold torque is best described by an exponential curve in the mathematical model while it is best fit by a second order equation in the experimental data. The mismatch is more considerable for high values of threshold torque. However, both curves reflect that threshold torque magnitude increases by increasing the setting of the device. Testing of both the passive decoupling and active threshold torque regulation show that both are successfully obtained. The second novel feature of the robot arm is the soft grasping device inspired by hydrostatic skeletons. Its ability to passively adapts to complex shapes objects, reduces the complexity of the grasping action control. This gripper is low-cost, soft, cable-driven and it features no stiff sections. Its versatility, variable compliance and stable grasp are shown in several experiments. A model of the forward kinematics of the system is derived from observation of its bending behaviour.Variable compliance has shown to be a very relevant principle for the design and implementation of a robotic arm aimed at safely interacting with human users and that can reduce grasp control complexity by passively adapting to the object's shape

    Contest-Driven Soft-Robotics Boost: The RoboSoft Grand Challenge

    Get PDF
    This paper reports the design process, the implementation and the results of a novel robotic contest addressing soft robots, named RoboSoft Grand Challenge. Application-oriented tasks were proposed in three different scenarios where soft robotics is particularly lively: manipulation, terrestrial and underwater locomotion. Starting from about sixty expressions of interest submitted by international teams distributed across the world, nineteen robots were eventually selected to participate in the challenge in two of the initially proposed scenarios, i.e. manipulation and terrestrial locomotion. Results highlight both the effectiveness and limitations of state of the art soft robots with respect to the selected tasks. The paper will also focus on some of the advantages and disadvantages of contests as technology-steering mechanisms, including what we called "reductionist design", a phenomenon in which simplistic solutions are devised to purposely tackle the proposed tasks, possibly hindering more general and desired technological advancements

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    • …
    corecore