1,940 research outputs found

    Unleashing the power of artificial intelligence for climate action in industrial markets

    Get PDF
    Artificial Intelligence (AI) is a game-changing capability in industrial markets that can accelerate humanity's race against climate change. Positioned in a resource-hungry and pollution-intensive industry, this study explores AI-powered climate service innovation capabilities and their overall effects. The study develops and validates an AI model, identifying three primary dimensions and nine subdimensions. Based on a dataset in the fast fashion industry, the findings show that the AI-powered climate service innovation capabilities significantly influence both environmental and market performance, in which environmental performance acts as a partial mediator. Specifically, the results identify the key elements of an AI-informed framework for climate action and show how this can be used to develop a range of mitigation, adaptation and resilience initiatives in response to climate change

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Learning recommender systems from biased user interactions

    Get PDF
    Recommender systems have been widely deployed to help users quickly find what they need from a collection of items. Predominant recommendation methods rely on supervised learning models to predict user ratings on items or the probabilities of users interacting with items. In addition, reinforcement learning models are crucial in improving long-term user engagement within recommender systems. In practice, both of these recommendation methods are commonly trained on logged user interactions and, therefore, subject to bias present in logged user interactions. This thesis concerns complex forms of bias in real-world user behaviors and aims to mitigate the effect of bias on reinforcement learning-based recommendation methods. The first part of the thesis consists of two research chapters, each dedicated to tackling a specific form of bias: dynamic selection bias and multifactorial bias. To mitigate the effect of dynamic selection bias and multifactorial bias, we propose a bias propensity estimation method for each. By incorporating the results from the bias propensity estimation methods, the widely used inverse propensity scoring-based debiasing method can be extended to correct for the corresponding bias. The second part of the thesis consists of two chapters that concern the effect of bias on reinforcement learning-based recommendation methods. Its first chapter focuses on mitigating the effect of bias on simulators, which enables the learning and evaluation of reinforcement learning-based recommendation methods. Its second chapter further explores different state encoders for reinforcement learning-based recommendation methods when learning and evaluating with the proposed debiased simulator

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Fuzzy Norm-Explicit Product Quantization for Recommender Systems

    Get PDF
    As the data resources grow, providing recommendations that best meet the demands has become a vital requirement in business and life to overcome the information overload problem. However, building a system suggesting relevant recommendations has always been a point of debate. One of the most cost-efficient techniques in terms of producing relevant recommendations at a low complexity is Product Quantization (PQ). PQ approaches have continued developing in recent years. This system’s crucial challenge is improving product quantization performance in terms of recall measures without compromising its complexity. This makes the algorithm suitable for problems that require a greater number of potentially relevant items without disregarding others, at high-speed and low-cost to keep up with traffic. This is the case of online shops where the recommendations for the purpose are important, although customers can be susceptible to scoping other products. A recent approach has been exploiting the notion of norm sub-vectors encoded in product quantizers. This research proposes a fuzzy approach to perform norm-based product quantization. Type-2 Fuzzy sets (T2FSs) define the codebook allowing sub-vectors (T2FSs) to be associated with more than one element of the codebook, and next, its norm calculus is resolved by means of integration. Our method finesses the recall measure up, making the algorithm suitable for problems that require querying at most possible potential relevant items without disregarding others. The proposed approach is tested with three public recommender benchmark datasets and compared against seven PQ approaches for Maximum Inner-Product Search (MIPS). The proposed method outperforms all PQ approaches such as NEQ, PQ, and RQ up to +6%, +5%, and +8% by achieving a recall of 94%, 69%, 59% in Netflix, Audio, Cifar60k datasets, respectively. More and over, computing time and complexity nearly equals the most computationally efficient existing PQ method in the state-of-the-art

    Digital Innovations for a Circular Plastic Economy in Africa

    Get PDF
    Plastic pollution is one of the biggest challenges of the twenty-first century that requires innovative and varied solutions. Focusing on sub-Saharan Africa, this book brings together interdisciplinary, multi-sectoral and multi-stakeholder perspectives exploring challenges and opportunities for utilising digital innovations to manage and accelerate the transition to a circular plastic economy (CPE). This book is organised into three sections bringing together discussion of environmental conditions, operational dimensions and country case studies of digital transformation towards the circular plastic economy. It explores the environment for digitisation in the circular economy, bringing together perspectives from practitioners in academia, innovation, policy, civil society and government agencies. The book also highlights specific country case studies in relation to the development and implementation of different innovative ideas to drive the circular plastic economy across the three sub-Saharan African regions. Finally, the book interrogates the policy dimensions and practitioner perspectives towards a digitally enabled circular plastic economy. Written for a wide range of readers across academia, policy and practice, including researchers, students, small and medium enterprises (SMEs), digital entrepreneurs, non-governmental organisations (NGOs) and multilateral agencies, policymakers and public officials, this book offers unique insights into complex, multilayered issues relating to the production and management of plastic waste and highlights how digital innovations can drive the transition to the circular plastic economy in Africa. The Open Access version of this book, available at https://www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license

    Doing Research. Wissenschaftspraktiken zwischen Positionierung und Suchanfrage

    Get PDF
    Forschung wird zunehmend aus Sicht ihrer Ergebnisse gedacht - nicht zuletzt aufgrund der Umwälzungen im System Wissensschaft. Der Band lenkt den Fokus jedoch auf diejenigen Prozesse, die Forschungsergebnisse erst ermöglichen und Wissenschaft konturieren. Dabei ist der Titel Doing Research als Verweis darauf zu verstehen, dass forschendes Handeln von spezifischen Positionierungen, partiellen Perspektiven und Suchbewegungen geformt ist. So knüpfen alle Beitragenden auf reflexive Weise an ihre jeweiligen Forschungspraktiken an. Ausgangspunkt sind Abkürzungen - die vermeintlich kleinsten Einheiten wissenschaftlicher Aushandlung und Verständigung. Der in den Erziehungs-, Sozial-, Medien- und Kunstwissenschaften verankerte Band zeichnet ein vieldimensionales Bild gegenwärtigen Forschens mit transdisziplinären Anknüpfungspunkten zwischen Digitalität und Bildung. (DIPF/Orig.

    Mining Butterflies in Streaming Graphs

    Get PDF
    This thesis introduces two main-memory systems sGrapp and sGradd for performing the fundamental analytic tasks of biclique counting and concept drift detection over a streaming graph. A data-driven heuristic is used to architect the systems. To this end, initially, the growth patterns of bipartite streaming graphs are mined and the emergence principles of streaming motifs are discovered. Next, the discovered principles are (a) explained by a graph generator called sGrow; and (b) utilized to establish the requirements for efficient, effective, explainable, and interpretable management and processing of streams. sGrow is used to benchmark stream analytics, particularly in the case of concept drift detection. sGrow displays robust realization of streaming growth patterns independent of initial conditions, scale and temporal characteristics, and model configurations. Extensive evaluations confirm the simultaneous effectiveness and efficiency of sGrapp and sGradd. sGrapp achieves mean absolute percentage error up to 0.05/0.14 for the cumulative butterfly count in streaming graphs with uniform/non-uniform temporal distribution and a processing throughput of 1.5 million data records per second. The throughput and estimation error of sGrapp are 160x higher and 0.02x lower than baselines. sGradd demonstrates an improving performance over time, achieves zero false detection rates when there is not any drift and when drift is already detected, and detects sequential drifts in zero to a few seconds after their occurrence regardless of drift intervals

    Image-based Decision Support Systems: Technical Concepts, Design Knowledge, and Applications for Sustainability

    Get PDF
    Unstructured data accounts for 80-90% of all data generated, with image data contributing its largest portion. In recent years, the field of computer vision, fueled by deep learning techniques, has made significant advances in exploiting this data to generate value. However, often computer vision models are not sufficient for value creation. In these cases, image-based decision support systems (IB-DSSs), i.e., decision support systems that rely on images and computer vision, can be used to create value by combining human and artificial intelligence. Despite its potential, there is only little work on IB-DSSs so far. In this thesis, we develop technical foundations and design knowledge for IBDSSs and demonstrate the possible positive effect of IB-DSSs on environmental sustainability. The theoretical contributions of this work are based on and evaluated in a series of artifacts in practical use cases: First, we use technical experiments to demonstrate the feasibility of innovative approaches to exploit images for IBDSSs. We show the feasibility of deep-learning-based computer vision and identify future research opportunities based on one of our practical use cases. Building on this, we develop and evaluate a novel approach for combining human and artificial intelligence for value creation from image data. Second, we develop design knowledge that can serve as a blueprint for future IB-DSSs. We perform two design science research studies to formulate generalizable principles for purposeful design — one for IB-DSSs and one for the subclass of image-mining-based decision support systems (IM-DSSs). While IB-DSSs can provide decision support based on single images, IM-DSSs are suitable when large amounts of image data are available and required for decision-making. Third, we demonstrate the viability of applying IBDSSs to enhance environmental sustainability by performing life cycle assessments for two practical use cases — one in which the IB-DSS enables a prolonged product lifetime and one in which the IB-DSS facilitates an improvement of manufacturing processes. We hope this thesis will contribute to expand the use and effectiveness of imagebased decision support systems in practice and will provide directions for future research
    • …
    corecore