10 research outputs found

    Exploiting 2D Floorplan for Building-scale Panorama RGBD Alignment

    Full text link
    This paper presents a novel algorithm that utilizes a 2D floorplan to align panorama RGBD scans. While effective panorama RGBD alignment techniques exist, such a system requires extremely dense RGBD image sampling. Our approach can significantly reduce the number of necessary scans with the aid of a floorplan image. We formulate a novel Markov Random Field inference problem as a scan placement over the floorplan, as opposed to the conventional scan-to-scan alignment. The technical contributions lie in multi-modal image correspondence cues (between scans and schematic floorplan) as well as a novel coverage potential avoiding an inherent stacking bias. The proposed approach has been evaluated on five challenging large indoor spaces. To the best of our knowledge, we present the first effective system that utilizes a 2D floorplan image for building-scale 3D pointcloud alignment. The source code and the data will be shared with the community to further enhance indoor mapping research

    InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

    Get PDF
    We seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data

    Can You Trust Your Pose? Confidence Estimation in Visual Localization

    Full text link
    Camera pose estimation in large-scale environments is still an open question and, despite recent promising results, it may still fail in some situations. The research so far has focused on improving subcomponents of estimation pipelines, to achieve more accurate poses. However, there is no guarantee for the result to be correct, even though the correctness of pose estimation is critically important in several visual localization applications,such as in autonomous navigation. In this paper we bring to attention a novel research question, pose confidence estimation,where we aim at quantifying how reliable the visually estimated pose is. We develop a novel confidence measure to fulfil this task and show that it can be flexibly applied to different datasets,indoor or outdoor, and for various visual localization pipelines.We also show that the proposed techniques can be used to accomplish a secondary goal: improving the accuracy of existing pose estimation pipelines. Finally, the proposed approach is computationally light-weight and adds only a negligible increase to the computational effort of pose estimation.Comment: To appear in ICPR 202

    Beyond Controlled Environments: 3D Camera Re-Localization in Changing Indoor Scenes

    Full text link
    Long-term camera re-localization is an important task with numerous computer vision and robotics applications. Whilst various outdoor benchmarks exist that target lighting, weather and seasonal changes, far less attention has been paid to appearance changes that occur indoors. This has led to a mismatch between popular indoor benchmarks, which focus on static scenes, and indoor environments that are of interest for many real-world applications. In this paper, we adapt 3RScan - a recently introduced indoor RGB-D dataset designed for object instance re-localization - to create RIO10, a new long-term camera re-localization benchmark focused on indoor scenes. We propose new metrics for evaluating camera re-localization and explore how state-of-the-art camera re-localizers perform according to these metrics. We also examine in detail how different types of scene change affect the performance of different methods, based on novel ways of detecting such changes in a given RGB-D frame. Our results clearly show that long-term indoor re-localization is an unsolved problem. Our benchmark and tools are publicly available at waldjohannau.github.io/RIO10Comment: ECCV 2020, project website https://waldjohannau.github.io/RIO1

    InLoc: Indoor Visual Localization with Dense Matching and View Synthesis

    Get PDF
    International audienceWe seek to predict the 6 degree-of-freedom (6DoF) pose of a query photograph with respect to a large indoor 3D map. The contributions of this work are three-fold. First, we develop a new large-scale visual localization method targeted for indoor environments. The method proceeds along three steps: (i) efficient retrieval of candidate poses that ensures scalability to large-scale environments, (ii) pose estimation using dense matching rather than local features to deal with textureless indoor scenes, and (iii) pose verification by virtual view synthesis to cope with significant changes in viewpoint, scene layout, and occluders. Second, we collect a new dataset with reference 6DoF poses for large-scale indoor localization. Query photographs are captured by mobile phones at a different time than the reference 3D map, thus presenting a realistic indoor localization scenario. Third, we demonstrate that our method significantly outperforms current state-of-the-art indoor localization approaches on this new challenging data

    Pose Normalization of Indoor Mapping Datasets Partially Compliant with the Manhattan World Assumption

    Get PDF
    In this paper, we present a novel pose normalization method for indoor mapping point clouds and triangle meshes that is robust against large fractions of the indoor mapping geometries deviating from an ideal Manhattan World structure. In the case of building structures that contain multiple Manhattan World systems, the dominant Manhattan World structure supported by the largest fraction of geometries is determined and used for alignment. In a first step, a vertical alignment orienting a chosen axis to be orthogonal to horizontal floor and ceiling surfaces is conducted. Subsequently, a rotation around the resulting vertical axis is determined that aligns the dataset horizontally with the coordinate axes. The proposed method is evaluated quantitatively against several publicly available indoor mapping datasets. Our implementation of the proposed procedure along with code for reproducing the evaluation will be made available to the public upon acceptance for publication

    Confidence Estimation in Image-Based Localization

    Get PDF
    Image-based localization aims at estimating the camera position and orientation, briefly referred as camera pose, from a given image. Estimating the camera pose is needed in several applications, such as augmented reality, odometry and self-driving cars. A main challenge is to develop an algorithm for large varying environments, such as buildings or whole cities. During the past decade several algorithms have tackled this challenge and, despite the promising results, the task is far from being solved. Several applications, however, need a reliable pose estimate; in odometry applications, for example, the camera pose is used to correct the drift error accumulated by inertial sensor measurements. Based on this, it is important to be able to assess the confidence of the estimated pose and manage to discriminate between correct and incorrect poses within a prefixed error threshold. A common approach is to use the number of inliers produced in the RANSAC loop to evaluate how good an estimate is. Particularly, this is used to choose the best pose from a given image from a set of candidates. This metric, however, is not very robust, especially for indoor scenes, presenting several repetitive patterns, such as long textureless walls or similar objects. Despite some other metrics have been proposed, they aim at improving the accuracy of the algorithm, by grading candidate poses referred to the same query image; they thus recognize the best pose among a given set but cannot be used to grade the overall confidence of the final pose. In this thesis, we formalize confidence estimation as a binary classification problem and investigate how to quantify the confidence of an estimated camera pose. Opposed to the previous work, this new research question takes place after the whole visual localization pipeline and is able to compare also poses from different query images. In addition to the number of inliers, other factors such as the spatial distributions of inliers, are considered. A neural network is then used to generate a novel robust metric, able to evaluate the confidence for different query images. The proposed method is benchmarked using InLoc, a challenging dataset for indoor pose estimation. It is also shown the proposed confidence metric is independent of the dataset used for training and can be applied to different datasets and pipelines
    corecore