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ABSTRACT
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Master’s Thesis
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November 2019

Image-based localization aims at estimating the camera position and orientation, briefly re-
ferred as camera pose, from a given image. Estimating the camera pose is needed in several
applications, such as augmented reality, odometry and self-driving cars. A main challenge is to
develop an algorithm for large varying environments, such as buildings or whole cities. During the
past decade several algorithms have tackled this challenge and, despite the promising results,
the task is far from being solved. Several applications, however, need a reliable pose estimate; in
odometry applications, for example, the camera pose is used to correct the drift error accumulated
by inertial sensor measurements. Based on this, it is important to be able to assess the confi-
dence of the estimated pose and manage to discriminate between correct and incorrect poses
within a prefixed error threshold. A common approach is to use the number of inliers produced
in the RANSAC loop to evaluate how good an estimate is. Particularly, this is used to choose the
best pose from a given image from a set of candidates. This metric, however, is not very robust,
especially for indoor scenes, presenting several repetitive patterns, such as long textureless walls
or similar objects. Despite some other metrics have been proposed, they aim at improving the ac-
curacy of the algorithm, by grading candidate poses referred to the same query image; they thus
recognize the best pose among a given set but cannot be used to grade the overall confidence of
the final pose. In this thesis, we formalize confidence estimation as a binary classification prob-
lem and investigate how to quantify the confidence of an estimated camera pose. Opposed to the
previous work, this new research question takes place after the whole visual localization pipeline
and is able to compare also poses from different query images. In addition to the number of in-
liers, other factors such as the spatial distributions of inliers, are considered. A neural network is
then used to generate a novel robust metric, able to evaluate the confidence for different query
images. The proposed method is benchmarked using InLoc, a challenging dataset for indoor pose
estimation. It is also shown the proposed confidence metric is independent of the dataset used
for training and can be applied to different datasets and pipelines.
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Kuvapohjainen paikannus pyrkii estimoimaan kameran sijainnin ja asennon annetusta kuvas-
ta. Tätä voidaan soveltaa esimerkiksi lisättyyn todellisuuteen, odometriaan tai automatisoituihin
autoihin. Estimointi osoittautuu haastavaksi muuttuvissa ympäristöissä, kuten kaupungeissa tai
suurissa sisätiloissa ja viime vuosien nopeasta kehittymisestä huolimatta kuvapohjainen paikan-
nus on edelleen avoin tehtävä. Sovellukset vaativat kuitenkin luotettavaa estimointia, sillä esi-
merkiksi odometriassa estimoituja kameran sijaintia ja asentoa käytetään inertiasensoreiden mit-
tauksista kasaantuneen virheen korjaamiseen. Tämän johdosta kyky arvioida estimoinnin luo-
tettavuutta on olennainen tehtävä. Tähän mennessä mittarina on monesti käytetty RANSAC-
algoritmissa esiintyvää malliin sopivien pisteiden (inliers) määrää. Tämä mittari ei kuitenkaan
sovellu esimerkiksi sisätilapaikannukseen, jossa kuvioiden toistuvuuden takia epätarkalla esti-
moinnilla voi olla myös suuri määrä malliin sopivia pisteitä. Tässä opinnäytetyössä luottamuksen
estimointia formuloidaan binäärisenä luokittelutehtävänä ja kehitetään neuroverkkopohjaista me-
netelmää, jolla kvantisoida estimoidun kameran sijainnin ja asennon luotettavuutta. Menetelmä
opetetaan ja testataan InLoc-datasetin avulla, joka on haastava sisätilapaikannukseen tarkoitettu
datasetti. Työssä osoitetaan myös, että kehitetty menetelmä on opetuksessa käytetystä datase-
tistä riippumaton ja sitä voidaan soveltaa myös muihin datasetteihin.

Avainsanat: Luottamuksen Estimointi, Kuvapohjainen Paikannus, Konenäkö, InLoc, Neuroverkot
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1 INTRODUCTION

We, human beings, are able to extract information about our environment simply relying
on what we see. For centuries people have been able to orient themselves using just
a map and their eyes. This leads to the question Could machines do the same? Given
a camera and some information about the environment, can a computer orient itself?
In the field of computer vision, i.e. the automatic analysis of images, this question is
known as image-based localization (or visual localization, or camera pose estimation)
[25]. In a more formal way, image-based localization aims at computing the camera
position and orientation, together shortly referred as camera pose, from a given image
when the environment is known. Mathematically, knowing the environment means to
know the coordinates of the 3D points in it and computing the pose of a camera means
to find a mapping between the 3D points of the environment and the 2D points in the
image. In pose estimation problems, it is also assumed that the internal parameters of
the camera are known.

An accurate camera pose estimation is necessary in several applications. In robotics,
autonomous vehicles need to keep track of the path they have travelled. This motion
tracking problem, known as odometry [51], is generally tackled with inertial sensor mea-
surements. Nevertheless, inertial sensors accumulate measurement errors, which makes
the estimated position too inaccurate after a few minutes of motion. To overcome this
problem, a reliable external signal, measuring the position of the device, must be used
to correct the accumulated error. In outdoor environment, this task is accomplished by
GNSS/GPS [9]. As GNSS signals are not detectable inside buildings, new solutions are
needed for indoor odometry. Together with RF based (e.g. WiFi) positioning [21, 55],
visual localization offers appealing possibilities for inertial odometry, as some state-of-
the-art algorithms can already be run in real-time on mobile devices [26, 27]. Augmented
Reality (AR) also requires information about the camera pose [31]. As objects are per-
ceived differently in shape and size depending on the point of view of the observer, adding
realistic-looking objects requires knowledge about the camera position and orientation.

In a typical pose estimation pipeline, the environment is known to the machine through a
large database of images, for which the original 3D coordinates of the pixels, and hence
also the camera pose, are known. When a query image in fed into the algorithm, it will
first retrieve the most similar images from the database, form correspondences between
points in the query and database images and then use the correspondences to compute
the camera pose. As multiple database images are retrieved for a single query image,
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multiple candidate poses will be produced. Computing the camera pose is generally an
ill-posed problem, meaning after the computation only some correspondences will agree
with the proposed camera. These correspondences are called inliers. The pose with
the highest number of inliers will be chosen as the best candidate and outputted as final
result.

Despite the improvements achieved in the past years [35, 36, 48], image-based localiza-
tion is still far from being solved. High accuracies are achieved for simple stationary cases
[17, 23], where the environments are relatively small and do not undergo big changes.
However, realistic applications, such as self-driving cars, require pose estimation in large
varying environments, such as whole cities or buildings. Clearly, the same square will
appear completely different in winter or in summer, or even during different hours of the
same day. Consequently, retrieving similar database images and forming correspon-
dences will be challenging. On the other side, large environments have generally certain
redundancy. For example, the same windows may appear on opposite sides of a building,
which may introduce some wrong correspondences between query and database image.
Indeed, sometimes estimating the pose may not be even possible. Let us consider the
case of indoor visual localization and suppose our query image shows only a light switch
on a white wall, without any additional details. Clearly, this picture cannot be used to
reliably estimate the pose. A building can have hundreds of identical light switches and
knowing which one of them is in the picture is impossible without further details. Still,
our algorithm will compute a pose and it may also return a high number of inliers if an
identical light switch is found from a database image.

The previous paragraph opens the question How reliable my estimate is? Research so
far has focused on finding the best pose from a set of candidates and several metrics,
also more robust than the number of inliers, have been developed. Still, these metrics do
not answer our question, as the best pose among a set of candidates can still be wrong.
For this reason, confidence estimation, investigated in this thesis, is a relevant research
question. Failure is just something to cope with and for an algorithm being able to critically
analyze the results and recognize unreliable estimates is just as important as giving an
accurate one. Our philosophy to tackle the confidence estimation problem can be divided
into two steps: first, in the analysis step, we try to identify what factors particularly affect
the success of pose estimation, starting from empirical observations from state-of-the-art
datasets. Next, in the synthesis step, we seek for an algorithm that can combine the
knowledge obtained from observations, producing a measure of the confidence of the
pose.

This thesis is structured as follows: in Chapter 2 we review the mathematical foundations
of geometric computer vision, i.e. how to model image formation and how to parametrize
the camera, particularly focusing on how to represent its pose. In Chapter 3 the visual
localization task is presented, as well as an analysis of the algorithms used to solve it.
A typical visual localization pipeline is dissected, analyzing the implementations of its
core elements, which are common to most state-of-the-art approaches. We also present
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the main modern pipelines used to solve the problem. The pipelines are presented in a
comparative way, focusing on the strengths and weaknesses of each of them. In Chapter
3 the Inloc dataset and algorithm are also introduced, as they are later used to benchmark
the proposed confidence estimation algorithm. Chapter 4 is dedicated to confidence
modelling. First, singular factors affecting the success of the estimate are presented,
using images from InLoc to show why they are relevant from a confidence estimation
point of view. Next, it is described how these factors can be brought together to obtain a
final confidence estimation measure. In Chapter 5 the executed numerical experiments
are described, together with the used evaluation metrics. In Chapter 6 the results are
then presented and discussed. Finally, in Chapter 7 the results and the main points of
the thesis are summarized and an overview of possible future work is given.
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2 GEOMETRIC COMPUTER VISION

In this chapter we review the theoretical background behind geometric computer vision,
needed to understand the key issues of this thesis. First, we introduce the projective
space, which is the mathematical structure used to describe the geometrical properties
of images. The description will be short and focused on the results needed later. The
purpose is to make the reader understand why the abstract concepts of projective spaces
capture the geometric essence of computer vision. Next, we will introduce the pinhole
camera model, the simplest mathematical model describing image formation. Finally, we
will extend this model to describe real world cameras, obtaining a complete framework
to mathematically describe image formation, needed to understand later the problem of
visual localization.

2.1 Projective space

The space we live in can be modelled as a vector space, called Euclidean space R3. This
means the position of each point can be expressed by a vector of three real numbers
[X,Y, Z]T , called Cartesian coordinates. A picture taken with a camera is a 2D repre-
sentation of 3D objects. In other words, taking a picture means to project points from a
3D space into a 2D space. This 3D-2D double nature of images is not described well by
Euclidean spaces. We introduce thus a fundamental tool used in computer vision, the
projective space [8].
Definition 2.1. Given an Euclidean space Rn, the projective space Pn is Pn ⊆ Rn+1\{0}
equipped with the equivalence relation ∼ so that x ∼ y ⇔ ∃λ ̸= 0 : x = λy1. The
coordinates of a point in the projective space are called homogeneous coordinates.

Let us now dissect this definition to understand its meaning. The first part tells us the
dimension of the space, so a point in the 2D-projective space P2 will have three coor-
dinates and a point in the 3D-projective space P3 will have four coordinates. Also, the
point with all zeros coordinates is not allowed. The second part tells us that points in
the projective space are unique up to scale, meaning in P2 the coordinates [1, 2, 3]T and
[2, 4, 6]T represent the same point. Cartesian coordinates can be converted to homoge-

1This actually means that the projective space is a quotient space, and we could compactly write
Pn =

(
Rn+1\{0}

)
/ ∼, with ∼ defined as before.
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neous coordinates and vice versa with equations (2.1) and (2.2), respectively.

[x1, x2, . . . , xn]
T ↦→ [x1, x2, . . . , xn, 1]

T , (2.1)

[x1, x2, . . . , xn, w]
T ↦→

[x1
w
,
x2
w
, · · · , xn

w

]T
. (2.2)

We will now highlight some important geometrical properties of projective spaces, which
will help understand later why projective geometry is a suitable model for computer vision.
We will describe these properties using P2 as an example, but the same concepts can be
extended to P3 as well.

First, we analyze the points in the form [x, y, 0]T , with x ̸= 0 or y ̸= 0. According to
Equation (2.2), this point will map to

[
x
0 ,

y
0

]T
= [∞,∞]T . For this reason, points of the

form [x, y, 0] are called points at infinity. It can be proved that these points lie on the same
line, which is called line at infinity. With this new concept the following fundamental result
can be proved:

• Parallel lines in R2 are incident in P2 and their intersection point is on the line at
infinity.

x

z

yx1

λ1x1

λ2x1

x2

λ1x2

λ2x2

Figure 2.1. Geometric interpretation of homogeneous coordinates.

We give now a geometrical interpretation to the equivalence relation in the definition of
projective space. Let x ∈ P2, all points in the form λx, λ ̸= 0 will correspond to the same
point. If we interpret the homogeneous coordinates in P2 as Cartesian coordinates in R3,
the set of points λx forms a line going through the origin, as depicted in Figure 2.1. This
means that a point in P2 can be interpreted as a line through the origin in R3, noting that
by definition of projective space the origin of R3 is excluded. This can be summarized as
the following fundamental result:

• There is a one-to-one correspondence between points in P2 and lines passing
through the origin in R3\{0}.
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2.2 Pinhole camera model

Mathematically speaking, taking a picture means mapping points in the 3D space to
points in a 2D plane, thus it can be described as an operator P : R3 → R2. The coordinate
system in the 3D space is called real world coordinate system and its points real world
points. Similarly, the 2D plane where the image is formed is called image plane, its
coordinate system image coordinate system and its points image points.

Z

Y

X

x

y
x

X

C p

f

Figure 2.2. Illustration of the pinhole camera model.

The simplest model describing this operator is the pinhole camera model [15], illustrated
in Figure 2.2. To be able to analyze this and further models, some terms need to be
defined:

• Camera center C: position of the camera in the real world coordinate system,

• Principal point p: Center of the image plane,

• Focal length f : distance between principal point and camera center,

• Ray: line connecting a real-world point and the camera center,

• Principal axis: ray connecting camera center and principal point.

In this model, a point in the real world coordinate system X is mapped to a the point x,
obtained as the intersection between the image plane and the ray passing through X. If
the image plane were infinite, all points in the 3D space could be mapped to the image
plane. However, cameras have a limited aperture, meaning the image plane will be finite.

The pinhole camera model models a camera under several strict assumptions. These
assumptions can be divided into two groups: those regarding how the coordinate systems
are defined and those regarding camera internal properties. The first set of assumptions
requires that the origin of the real world coordinate system is at the camera center and the
origin of the image coordinate system is at the principal point. Furthermore, the X and Y
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axes of the real world coordinate system are aligned with the x and y axes of the image
coordinate system. The second set of assumptions regards the technical properties of
the camera, namely that pixels are squares, the image plane is rectangular and straight
lines are not distorted when projected. If these assumptions hold, it can be derived that

P :

⎡⎢⎢⎢⎣
X

Y

Z

⎤⎥⎥⎥⎦ ↦→

⎡⎣fX
Z

fY
Z

⎤⎦ . (2.3)

Equation (2.3) shows that P is a nonlinear operator. It can be noticed that this mapping
introduces some loss of information. First, information about the 3D point depth (i.e. Z-
coordinate) is lost. It can also be shown that ratios of lengths, angles between lines and
parallelism is not preserved, as shown in Figure 2.3. Several tasks in computer vision
consist in retrieving knowledge about 3D structures, such as depth, distances, shapes,
from 2D images. Due to the loss of information, these tasks are usually ill-posed, meaning
that the existence and uniqueness of the solution cannot be guaranteed.

Figure 2.3. Parallelism is not preserved during 3D-2D mapping.

From Figures 2.2 and 2.3 two interesting properties can be noticed. First, each point in
the image plane lies on only one ray, meaning there is a one-to-one correspondence be-
tween 2D points and 3D lines passing through the camera center. Second, parallel lines
in the Euclidean space intersect each others when projected into the image plane. Fur-
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thermore, the intersection points are all on the same line. Both of these properties were
already encountered in the previous section, when the projective space was introduced.
Based on this, the projective space seems to capture those geometrical properties that
could not be formalized in Euclidean space. Rewriting the operator as a mapping be-
tween projective spaces, P : P3 → P2 Equation (2.3) becomes

P :

⎡⎢⎢⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦ ↦→

⎡⎢⎢⎢⎣
fX

fY

Z

⎤⎥⎥⎥⎦ . (2.4)

Equation (2.4) is indeed correct because points in homogeneous coordinates are unique

up to scale, hence [fX, fY, Z]T ∼
[
fX
Z , fYZ , 1

]T
, as in (2.3). Using homogeneous coor-

dinates leads also to another important result. Let X = [X,Y, Z, 1]T and x = [x, y, w]T

corresponding 3D and 2D points in homogeneous coordinates, now (2.4) becomes

x =

⎡⎢⎢⎢⎣
f 0 0 0

0 f 0 0

0 0 1 0

⎤⎥⎥⎥⎦
  

=P

X = PX, (2.5)

where the matrix P is called the projection matrix. Equation (2.5) shows that when using
homogeneous coordinates the operator P is actually linear and can be defined as a
matrix. This is a fundamental result, which allows us to exploit linear algebra tools in
numerical applications. Problems involving linear operators are also numerically simpler
to solve. Due to their advantages and wide use in computer vision, in this thesis we will
assume all points are in homogeneous coordinates, unless explicitly stated differently.
The most important exception being the camera center C, which will always be assumed
to be in euclidean coordinates.

2.3 Real camera model

So far we have analyzed the idealized pinhole camera model. As seen, it requires several
strict assumptions, which hardly ever hold in real-life applications. In this section we will
investigate how our model changes when these assumptions do not hold, until reaching
a more general real camera model, which replaces the pinhole camera model in real life
applications.
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2.3.1 Intrinsic parameters

Intrinsic parameters describe camera internal properties. A first assumption says that
pixels are square. Pixels shape needs to be taken into account because pixels are the
unit of measure in image points coordinates. Practically this means that the focal length
in (2.5), whose unit is naturally meters, needs to be converted to pixels. If the pixel is not
square, the focal length will scale differently in horizontal and vertical directions, leading
to two different focal lengths fx = αxf and fy = αyf , where αx and αy are respectively
the reciprocals of pixel width and height in meters.

Another assumption was the origin of the image coordinate system being on the principal
point. As pixel indexing generally starts either from the left-most upper corner, with the
y-axis pointing down or from the left-most lower corner, with the y-axis pointing up, this
assumption does not hold. This means the principal point will not be at the origin of
the image coordinate system, but it will have an offset (px, py), i.e. the projected point
has to be translated by the offset to have the right coordinates. With these observations
Equation (2.5) becomes

x =

⎡⎢⎢⎢⎣
fx 0 px 0

0 fy py 0

0 0 1 0

⎤⎥⎥⎥⎦X. (2.6)

The last assumptions were the image plane being rectangular, meaning the image coordi-
nate system is orthogonal, and straight lines being preserved when projected. If these do
not hold, the model can be further generalized taking into account camera skew [13] and
lens distortion [11]. For the case studies considered in this thesis, however, we can as-
sume those assumptions to hold and hence we will not discuss them any further. Finally,
the process of determining camera intrinsic parameters is known as camera calibration
[16]. A camera is said to be calibrated if its intrinsic parameters are known.

2.3.2 Extrinsic parameters

Extrinsic parameters describe camera position and orientation, i.e. the camera pose,
with respect to the real world coordinate system. In the pinhole model, it was assumed
that real world and image coordinate systems were aligned and that the origin of the real
world coordinate system was in the camera center. As the real world reference system
a fixed inertial frame is generally used, breaking this assumption. To model this, let us
define the camera coordinate system as the reference frame obeying the pinhole model,
i.e. with origin on C and axes aligned with image axes, as shown in Figure 2.4. Given a
real world point X, a change of coordinates has to be performed before applying equation
(2.6), i.e. we must first convert X to XC whose coordinates are expressed in the camera
coordinate system
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X

Y

XC

Z

ZC

YC

Real World
Coordinates

C

Camera
CoordinatesR, t

Figure 2.4. Camera general pose.

The camera coordinate system frame can be obtained from the original frame with a
rotation to align the axes and a translation to align the origins. Thus, to obtain the point
XC in camera coordinates, we need to apply the euclidean transformation⎡⎢⎢⎢⎣

XC

YC

ZC

⎤⎥⎥⎥⎦ = R

⎡⎢⎢⎢⎣
X

Y

Z

⎤⎥⎥⎥⎦+ t, (2.7)

where R is a rotation matrix and t is a translation vector. Equation (2.7) can be written in
homogeneous coordinates as

XC =

⎡⎣ R t

03×1 1

⎤⎦X. (2.8)

The rotation matrix R aligns the axes of the coordinate frames. Intuitively, axes alignment
can be done aligning one axis at a time, i.e. by a combination of three rotations around
axes X Y and Z of the real world coordinate systems with angles α, β and γ respectively.
The rotation matrices around the axes of a given angle are defined as

Rx(α) =

[
1 0 0

0 cosα − sinα

0 sinα cosα

]
, Ry(β) =

[
cos β 0 sin β

0 1 0

− sin β 0 cos β

]
, Rz(γ) =

[
cos γ − sin γ 0

sin γ cos γ 0

0 0 1

]
, (2.9)

where the notation Re(θ) indicates a rotation around axis e of angle θ. The total rotation
matrix can thus be written as

R = Rx(α)Ry(β)Rz(γ), (2.10)

meaning we will first rotate around the z-axis, then around the y-axis and finally around
the x-axis. Equation (2.10) reveals that the rotation matrix, despite having nine elements,
has only three degrees of freedom, represented by the angles α, β and γ, which are
called Euler angles [15].

Furthermore, it can be proved that a combination of rotations is still a rotation, meaning
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that the rotation matrix R describes also a single rotation around the axis e of angle θ,
i.e. the frames can be aligned with a single rotation. The existence of the rotation axis e

implies
Re = e, (2.11)

because the rotation axis does not change during the rotation. Equation (2.11) gives a
way to compute the rotation axis, as it says e is the eigenvector of R corresponding to
the eigenvalue λ = 1. The existence of e also implies we can construct a frame in which
R is in one of the forms in equation (2.9), which leads to equation (2.12) to compute the
rotation angle

θ = arccos

(
tr(R)− 1

2

)
. (2.12)

Vice versa, given the rotation axis e and angle θ the rotation matrix can be computed with
equation (2.13), which is called Rodrigues rotation formula

R = I + sin θ

⎡⎢⎢⎢⎣
0 −ez ey

ez 0 −ex

−ey ex 0

⎤⎥⎥⎥⎦+ (1− cos θ)

⎡⎢⎢⎢⎣
0 −ez ey

ez 0 −ex

−ey ex 0

⎤⎥⎥⎥⎦
2

. (2.13)

Based on the analysis so far, a 3D rotation can be described by a 3x3-matrix, by three
euler angles or by an axis and an angle. This last result implies that rotations can be
represented as a quadruple. Given the axis e and angle θ we define the associated
quadruple

q =
[
cos
(
θ
2

)
ex sin

(
θ
2

)
ey sin

(
θ
2

)
ez sin

(
θ
2

)]T
. (2.14)

The quadruple in equation (2.14) is called quaternion [28]. The analysis of algebraic
properties of quaternions is beyond the scope of this thesis. For our purposes, it is
enough to define the norm of a quaternion as in equation (2.15)

∥q∥ =
√
a2 + b2 + c2 + d2, (2.15)

where a, b, c, d are the components of the quaternion q.

The axes being aligned, we want next to bring the origin of the rotated frame to the cam-
era center. Let C the camera center euclidean coordinates in the real world coordinate
system. After the rotation the new coordinates will be RC. To bring this point to the origin
we need to apply a translation with vector

t = −RC. (2.16)

The vector in equation (2.16) is in euclidean coordinates and it has three degrees of
freedom. It can be concluded that the camera pose has six degrees of freedom, three
arising from the rotation matrix and three arising from the translation vector. This result
is in accordance with classical mechanics, which says a rigid body in the 3D euclidean
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space has six degrees of freedom in total. Finally, equations (2.6) and (2.8) can be
combined obtaining

x =

⎡⎢⎢⎢⎣
fx 0 px 0

0 fy py 0

0 0 1 0

⎤⎥⎥⎥⎦
⎡⎣ R t

03×1 1

⎤⎦X =

⎡⎢⎢⎢⎣
fx 0 px

0 fy py

0 0 1

⎤⎥⎥⎥⎦
  

:=K

[
R t

]
X

= K
[
R t

]
X

= K
[
R −RC

]
X.

(2.17)

Equation (2.17) gives the real camera model. The matrix K models camera intrinsic pa-
rameters and hence it is called intrinsic matrix and matrix

[
R t

]
models camera extrinsic

parameters, i.e. position and orientation and it is called camera pose.
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3 IMAGE-BASED LOCALIZATION

So far we have developed a mathematical model to describe how a camera transforms
3D coordinates into 2D coordinates. This framework helps us understand the problem
of image-based localization also known as camera pose estimation or visual localization.
Formally, the visual localization problem can be expressed as follows Given a query im-
age, what was the pose of the camera?, i.e. what was its position and orientation, when
the image was taken? A visualization of this question is given in Figure 3.1: a query
image is taken with a smartphone and the algorithm infers the position and orientation
of the camera and is able to locate it in a map of the environment (indicated with a red
pyramid).

Figure 3.1. Visualization of the pose estimation problem [19].

Visual localization is a calibrated problem, meaning that the intrinsic parameters of the
cameras used are known. Furthermore, visual localization algorithms require a "map" of
the environment where the query image was taken. This map can be either a database
of images for which the original 3D coordinates of most of the pixels are known or a 3D
dense model of the environment. Further information about how these can be constructed
can be found e.g. in [53] and [37]. In a traditional visual localization pipeline two main
steps can be identified: formation of correspondences between 2D and 3D coordinates
and pose estimation from points correspondences. In this chapter we first analyze these
two phases, focusing on the methodologies used. Next, we present the structure of some
typical state of the art approaches. Finally, we analyze more in details InLoc, a pipeline
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for indoor visual localization, which will serve as case study in this thesis.

3.1 Pose Estimation from points correspondences

Let the correspondence (x,X) and intrinsic matrix K. Equation (2.17) can be simplified
introducing the normalized coordinates corresponding to x, defined as u = K−1x =

[u, v, w]T . Thus, the correspondence equation becomes

λu =
[
R t

]
X, (3.1)

where the parameter λ ̸= 0 was introduced because homogeneous coordinates are
unique up to scale, meaning a pose satisfying the mapping X ↦→ λu is still a solution
of the original problem. First, we investigate what is the smallest number of correspon-
dences needed for the problem to have a finite number of solutions. Equation (3.1) can
be written as

λ

⎡⎣u
v

⎤⎦ =

⎡⎢⎢⎢⎣
r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
X

Y

Z

1

⎤⎥⎥⎥⎥⎥⎥⎦

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λu = r11X + r12Y + r13Z + tx

λv = r21X + r22Y + r23Z + ty

λw = r31X + r32Y + r33Z + tz

,

(3.2)

we can now divide the first and second equation by the third one in (3.2) obtaining⎧⎨⎩ u
w = r11X+r12Y+r13Z+tx

r31X+r32Y+r33Z+tz

v
w =

r21X+r22Y+r23Z+ty
r31X+r32Y+r33Z+tz

. (3.3)

Equation (3.3) shows that for each point correspondence we get two independent nonlin-
ear equations. It was shown in the previous chapter that the camera pose has six degrees
of freedom, hence at least three point correspondences are needed to solve the system
in Equation (3.3).

3.1.1 Perspective-n-Point

The family of algorithms used to estimate the camera pose from n point correspondences
are referred as Perspective-n-Point solvers (PnP), where the parameter n indicates the
number of correspondences used. Based on the previous discussion, n ≥ 3 is needed for
the system to be determined. Next, we investigate the uniqueness of the solution. This is
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addressed exploiting Gao’s formulation of the P3P problem [54], which is widely used in
several software implementations.

C
X′

3

X′
1

X′
2

u3

u2

u1

z

y

x
a

b

c

ϕ

θ

ψ

Figure 3.2. Geometrical formulation of the P3P.

The setup for Gao’s solver is shown in Figure 3.2. Let the correspondences (u1,X
′
1),

(u2,X
′
2) and (u3,X

′
3) between image points in normalized homogeneous coordinates

and real world points in Euclidean coordinates. By the law of cosines we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
a2 = x2 + y2 − 2xy cos θ

b2 = y2 + z2 − 2yz cosϕ

c2 = x2 + z2 − 2xz cosψ

, (3.4)

where x = ∥X1−C∥, y = ∥X2−C∥ and z = ∥X1−C∥. The cosines can be computed from
the 2D points coordinates, e.g. cos θ = u1·u2

∥u1∥·∥u2∥ . The system (3.4) is the formulation of
P3P algorithm used in Gao’s solver, several algebraic techniques have been proposed to
efficiently solve the system [56]. Once x, y and z have been solved, the camera position
C can be found by trilateration, that is computing the intersection of the spheres centered
on X′

1, X
′
2 and X′

3 and with radii x, y and z respectively. From Figure 3.2, it is clear that
this intersection is C. Next, equations (3.1) and (2.16) can be combined obtaining

λiui = R(X′
i −Ci), (3.5)

from which follows
|λi|∥ui∥ = ∥X′

i −C∥, (3.6)

The value of λ can now be found from equation (3.6). We can safely drop the absolute
value and assume λ is positive, as the sign can be corrected later. Finally, the rotation
matrix can be computed from (3.5) – first we find the rotation axis e =

ui×(X′
i−C)

∥ui×(X′
i−C)∥ and

the rotation angle θ as the angle between ui and (X′
i −C). The rotation axis and angle

can be determined by any of the three points correspondences. Finally, the Rodrigues
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formula can be applied to obtain R. It should be noticed that for the obtained matrix holds
det(R) = ±1. The rotation matrix, however, requires det(R) = 1, hence if det(R) = −1,
R and λ should be corrected changing their sign.

The system (3.4) has degree eight, meaning that it admits up to eight distinct solutions.
The amount of solutions can be reduced introducing physical constraints. It can be proved
that four of these solutions place the camera center on the wrong side of the image plane.
After discarding physical unacceptable candidates the P3P leads to four possible camera
poses. Further constraints can be generated requiring invariant properties of projective
geometry to be preserved, leading finally to a unique solution. Alternatively, the ambi-
guity in the P3P algorithm can be removed introducing further point correspondences.
In the P4P algorithm, for example, the solving system is derived from four points corre-
spondences. This leads to a unique solution if the four 3D points lie on the same plane,
otherwise it leads to five feasible solutions. The P6P algorithm leads to a unique so-
lution, moreover P6P algorithm allows to solve the elements of the rotation matrix and
translation vector directly from (3.2), making the problem linear.

In general, introducing further correspondences reduces the degree of the solving equa-
tion, reducing ambiguity. Also, a higher number of correspondences produces faster
solvers. Despite maybe sounding controversial at the beginning, introducing more points
correspondences produces more geometrical knowledge about the system, which can be
exploited to reduce the final degree of the solving equation; for example, the P3P solver
led to a system of degree eight, whereas in the P6P solver the solving system is linear.
Furthermore, as more points correspondences reduce ambiguity, less postprocessing is
needed to identify the correct solution. However, it should be beared in mind that our
discussion so far assumed the points coordinates and the correspondences to be exact.
In practical applications this does not hold. First, due to noise points coordinates them-
selves contain some uncertainty, hence the coordinates cannot be assumed to be exact.
Second and more important, as we will discuss in the next section, forming points corre-
spondences is the most challenging part in visual localization pipelines and a significant
amount of wrong matches is introduced. Feeding bad matches to a PnP solver leads to
absurd results. As discussed in the next subsection, solvers are generally iterated sev-
eral times to deal with wrong matches and using a smaller number of correspondences
increases the probability to pick only good matches at least once. The more correspon-
dences are used, the smaller this probability and consequently, despite being the inner
solver faster, the number of iterations needed increases, resulting in an overall slower
algorithm.

3.1.2 RANSAC algorithm

The main problem with PnP solvers is their sensibility to input data. A small error in
points correspondences can lead to a completely different camera pose. State-of-the-
art approaches still introduce a significant amount of wrong correspondences, which are
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called outliers. Consequently, pose estimation algorithms need to be robust to outliers.
A popular choice to estimate parameters with outliers is the Random Sample Consen-
sus (RANSAC) algorithm [10]. Given N correspondences (u,X), we randomly pick k of
them and estimate the camera pose P̂ . Next, we compute the number of inliers, i.e the
number of correspondences for which d(u, P̂X) ≤ t, where d(·, ·) and t are chosen dis-
tance measure and threshold. The process is iterated and at the end the model with the
highest number of inliers is outputted. The parameters to be adjusted are the distance
function, the threshold and the maximum number of iterations. In image-based local-
ization applications a popular choice for the distance measure is the angular distance
d(u, P̂X) = ∠(u, P̂X) with a threshold of a few degrees, e.g. t = 1◦. The maximum num-
ber of iterations is chosen so that at least once the k randomly picked correspondences
contain only inliers with probability p (e.g. p = 0.99). Let e the outliers ratio, the number of
maximum iterations satisfying this property can be computed as Nmax = log(1−p)

log(1−(1−e)k)
. In

practical applications the outlier ratio is not known, hence it is estimated and updated dur-
ing the RANSAC algorithm. The pseudocode of the RANSAC algorithm with P3P solver
is shown in Figure 3.3.

Figure 3.3. Pseudocode of RANSAC algorithm.

During the years several modifications of the basic RANSAC algorithm have been pro-
posed to improve its performances [33]. A popular variation used in visual localization
is the locally optimized-RANSAC (LO-RANSAC) [6], which introduces a smaller inner
RANSAC loop. Once a pose hypothesis and its inliers are computed (line 8 in Figure
3.3), a new RANSAC is started, sampling now only from the current set of inliers. Clearly,
this reduces the probability of picking an outlier, hence in the inner RANSAC it is not
strictly necessary to use the minimum amount of samples. The new hypothesis and the
number of inliers are computed and the process is then iterated, keeping as best model
the one with the highest number of inliers. Differently from the outer loop, the inner loop
is generally iterated a fixed amount of times. At the end, the best model hypothesis,
together with the new set of inliers are outputted from the inner loop, substituting the
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original ones computed in the outer loop.

3.2 Forming points correspondences

So far we have discussed how to estimate the camera pose given 2D-3D correspon-
dences, in this section we will analyze the problem of how to form these correspondences.
Suppose we have a picture and a dense 3D model of the environment where the picture
was taken, a point in the image will correspond to a point in the 3D model if they corre-
spond to the same point in the real world. Ideally, each point in the image corresponds
to exactly one point in the 3D model. In practical applications, however, this is not possi-
ble, nor useful. First of all, a query image taken with a common smartphone can easily
have millions of pixels, which would make matching every point extremely time consum-
ing. Second, some zones of the image carry almost no information and are not useful for
finding correspondences, for examples pixels in a flat homogeneous zone. Based on this,
we first want to identify good points from the image and then find their corresponding 3D
coordinates. Once the set of good points has been identified, a method to compare points
has to be defined. Intuitively, corresponding points will represent the same object, such
as the same corner of the same monitor, or the same eye of the same person. Coordi-
nates however only tell where the points are but have no information about their meaning.
For this reason we need to create a semantical representation of the points, in which in-
formation about the content of the image is embedded. Practically, this means that a
function f : Pn → Rk has to be designed. This function, called descriptor, associates to
a given point a k-ary vector, called feature vector which models the semantic meaning of
the point. As points are adimensional, descriptors generally consider the neighbourhood
of a point. Finally, finding the corresponding point means to find the most similar vector,
i.e. a distance measure to compare feature vectors is needed. Based on this discussion,
the correspondences forming problem can be formulated as a Nearest Neighbour (NN)
problem [7], as in Equation (3.7).

X = argmin
Xi

d(f(x), g(Xi)), (3.7)

where x and X are corresponding 2D and 3D points, f and g are descriptors and d(·, ·)
is a distance function. As feature vectors are vectors in the Euclidean space, a popular
distance function is the Euclidean distance.

The described approach, despite being correct and giving state-of-the-art accuracies, is
not very efficient, as 3D models are generally dense and hence have billions of points.
Despite efficient search methods have been developed, solving the NN problem is still
too time consuming, especially if the algorithm is required to run real time on a mobile
device. For this reason an alternative approach is to perform 2D-2D matching. The dense
model is replaced by a database of images for which the 3D coordinates of the pixels are
known. For a given query image, the most similar database images are retrieved and
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points correspondences are formed between pixels in the query and database images.
The NN problem in (3.7) is hence modified as in (3.8)

xdb = argmin
xi

d(f(xq), f(xdb)), (3.8)

where xq and xdb are now points in the query and database image, respectively. Since
we are now comparing two 2D images, the same descriptor f is generally used for both.
As this approach has become far more popular and can be also applied to a several
range to tasks, beyond visual localization, we will describe here some popular descriptors
and distance functions for 2D-2D matching. A brief overview of descriptors for 2D-3D
matching will given in 3.3.1 where an example of direct matching pipeline is analyzed.
Here we assume that relevant database images have already been retrieved, how the
retrieval process works is discussed in 3.3.2.

3.2.1 Traditional descriptors

In order to solve the NN problem of Equation (3.8) first the interest points need to be found
and then the descriptor f as well as the distance measure d need to be defined. Ideally,
f(x1) = f(x2) if and only if x1 and x2 correspond to each others. The semantic content
of the image is taken into account by observing the neighbourhood of the pixels, which
allows to capture local properties of points. Particularly, relevant semantic information can
be detected by computing the gradients of the pixel. Suppose to have a flat black zone
in the image, all pixels in that area will be indistinguishable from each others and hence
they will not be good feature points. Mathematically, these pixels have zero directional
derivatives in each direction. On the other hand, pixels with accentuated changes in their
neighbourhoods will contain more information and hence work nicely as feature points.
Interest points can thus be found by looking for pixels with strong intensity gradients.
Based on this analysis, the following problem arises: the interest points detector depends
on the scale of the image, as zooming closer would attenuate the gradients. To overcome
this problem, the search is done at different resolutions, i.e. consecutively downsampling
the image and performing the search at each resolution level [4]. A common algorithm to
detect interest points is the Harris corner detector and its implementation details can be
found in [47].

Once the interest points have been detected, a meaningful descriptor has to be applied to
it. A popular choice is the Scale-Invariant Feature Transform (SIFT) descriptor [29]. Simi-
larly to features detection, SIFT descriptor relies on the assumption that gradients can be
used to model semantic meaning. The SIFT descriptor can be computed as follows: for
a given feature point, a 16x16 neighbourhood around it is formed. This neighbourhood
is then divided into sixteen 4x4 smaller cells. In each cell, the gradient for each pixel is
computed. We then consider the eight main directions, spaced by 45◦, i.e. similarly to
the directions of a compass. Each computed gradient is then aligned to its closest main
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direction and aligned gradients are summed, obtaining eight gradients for each cell, as
depicted in Figure 3.4. The magnitudes of these form an 8-ary array called histogram of
oriented gradients for each cell. Each so obtained array is circularly shifted so that the
strongest gradient is the first element of the array. As the original neighbourhood was
divided into sixteen cells and eight gradients were computed in each cell, the final result
is a 128-ary array, which is the final descriptor associated with the considered interest
point. The SIFT descriptor is translation invariant, as gradients are computed and scale
invariant, as interest points were detected at different resolutions. Furthermore, circularly
shifting the arrays in each cell introduces also rotation invariance.

(a) Original gradients. (b) Clustered gradients.

Figure 3.4. Visualization of SIFT descriptor.

Once SIFT descriptors have been computed for both query and database images, a
distance measure has to be defined to match points from query and database images.
As SIFT descriptor is a vector in the R128 space, vectors can be compared by simply
using the euclidean distance as distance measure. It can be proved, however, that better
performances are achieved using the Hellinger distance defined as

H(v,u) = ∥
√
v −

√
u∥2, (3.9)

where
√
v indicates the element-wise square root of the array. The popularity of Hellinger

distance led to a modified version of SIFT, known as rootSIFT, which is obtained as fol-
lows: given a SIF descriptor v, it is first L1-normalized, i.e. each element is divided by
the sum of the absolute values of the elements, then the square root of each element
is taken and finally the so obtained array is normalized by its euclidean norm. The so
obtained rootSIFT descriptors can then be compared by the normal Euclidean distance,
i.e. rootSIFT descriptors with Euclidean distance is equivalent to using SIFT descriptors
with Hellinger distance in (3.9) [3]. We have now a recipe to solve the NN problem in
(3.8), once all descriptors have been computed they can be stored in appropriate data
structures for efficient search algorithms, such as kd trees [43].

The presence of redundancy and noise in both database and query images can lead to
wrong matches when applying the NN algorithm. Particularly, if several similar descriptors
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are found, the nearest is not necessarily the correct one. To improve the robustness of
the algorithm, given a feature vector in the query image v, the two closest neighbours
u1 and u2 are retrieved from the database image, with d(v,u1) < d(v,u2), i.e. u1 is the
closest match. Next, the correspondence (v,u1) is accepted only if

d(v,u1)

d(v,u2)
< γ, (3.10)

where γ is a predetermined threshold, generally around 0.7 or 0.8. Equation (3.10) is
known as Lowe’s ratio test [30] at it makes sure that only the most confident inliers are
kept.

Despite Lowe’s ratio test improves the robustness, a relatively high number of wrong
matches is generally still returned. A further improvement is to use a verification step,
given a set of points {xq1,xq2, . . . ,xqN} from the query image and the corresponding
points {xdb1,xdb2, . . . ,xdbN} from the database image, all in homogeneous coordinates,
we try to fit a transformation H : xqi ↦→ xdbi, λxdbi = Hxqi. The transformation H

between projective planes is called homography and it can be computed with algorithms
similar to pose estimation within a RANSAC loop [15]. Once the best homography is
computed, the inliers outputted from RANSAC form the final set of correspondences.

3.2.2 Deep learning based descriptors

The approaches described so far for points matching were human-reasoning based,
meaning first the algorithm designer fixes what properties a good interest point and a
good descriptor should have and then derives a mathematical formulation to compute
them. Feature vectors have thus a physical interpretation, understandable to humans.
For example, the SIFT descriptor extracts the gradients in a neighbourhood of an interest
point, because gradients characterize the shape of the neighbourhood and hence cap-
ture its semantical meaning. Deep learning methods, on the other hand, let the computer
"learn" by itself what a good descriptor should look like and how to compute it. This is
implemented exploiting neural networks, which can be regarded as black boxes, taking
images as input and outputting interest points and the corresponding feature vectors.
Opposed to traditional methods, a human-understandable explanation of why those are
considered good points and why descriptors are computed that way cannot generally
be given. The interest for neural networks has exponentially risen in the past decade,
reaching state-of-the-art solutions for several artificial intelligence problems, also beyond
computer vision.

In the context of computer vision, and image processing in general, Convolutional Neural
Networks (CNN) are particularly attractive [42], as the mathematical definition of 2D con-
volution allows to capture local and global properties of images. The constitutive unit of
a convolutional neural network is generally composed by three layers: convolutional, ac-
tivation and pooling. The convolutional layer consists of a set of K 2-dimensional filters,
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each applied to the input image. If the input size is H ×W × 3 (hence a RGB image),
the output will have size H × W × K, such multidimensional structures are generally
called tensors. The activation step applies a nonlinear function to each element of the
previous tensor. Popular activation functions are, for example, arctanh or the Rectified
Linear Unit (ReLU) ReLU(x) = max(0, x), the activation layer does not change the size
of the tensor. The pooling layer performs downsampling in the first two dimensions, for
example keeping every other element, outputting a tensor of size H/2×W/2×K. A CNN
is obtained stacking several times the described units. The tensors outputted after each
unit are called feature maps and in visual localization pipelines they are used to perform
points matching. Before it can be used, the network needs to learn to produce relevant
feature maps. Practically, this means that the coefficients of the filters in the convolutional
layers need to be determined. To train a neural network, the last feature map is first flat-
tened into a N -ary array which is, possibly after some intermediate layers, mapped to
a scalar through a function L, called loss function. The parameters of the networks are
determined minimizing the loss function. Designing and training neural networks is a field
of its own, for our purpose it is enough to understand the basic structure of a CNN and
how it relates to visual localization. There is plenty of literature about neural networks
and further information about their structure and training algorithms can be found e.g. in
[14].

In the context of features matching, the feature map of size H×W ×K can be interpreted
as a set of H ·K interest points, each associated with a K-ary feature vector. Matching
can now be done with a NN algorithm, i.e. for each feature vector in the query feature
map the most similar is found from the database image feature map. Points matching
with feature maps is generally referred as dense matching. As discussed, several feature
maps are produced by the intermediate layers of a CNN. As they are consequently down-
sampled, they become sparser and sparser as they propagate through the network. This
rises the question What feature map should be used? Using a too sparse feature map
will weaken the accuracy of interest points coordinates and using a very fine feature map
will, on the other side, result into a significantly time consuming process, unacceptable
for e.g., real-time applications. To solve this, coarse-to-fine matching is used, where two
feature maps of sizes H1 ×W1 × K1 and H2 ×W2 × K2 are used, with K1 > K2 and
W1 > W2, i.e. the first one is the fine feature map and the second one is coarse feature
map. Point matching is first done with the coarse feature maps. Once the correspon-
dences are found, the corresponding points in the fine maps are taken and the matching
accuracy is improved performing NN search in their neighbourhoods.

As a final remark, deep learning based descriptors generally produce more robust cor-
respondences compared to traditional descriptors. Nevertheless, the final result may still
and probably will contain several wrong matches, due to the challenging and ill-posed
nature of the problem. From an accuracy point of view, forming correspondences is gen-
erally the bottle-neck of visual localization pipelines.
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3.3 Typical image-based localization pipelines

As shown in the previous section, designing a pose estimation pipeline leaves the pro-
grammer some freedom, such as choosing the matching strategy or the kind of the de-
scriptors. To concretize the previous discussion, we present here some popular state of
the art pipelines, that have been recently developed to address long-term visual localiza-
tion.

3.3.1 Direct matching

In direct matching approaches, points correspondences are directly formed between the
2D query image and the 3D model. Several approaches have been proposed to compute
descriptors of 3D point clouds. For example, it is possible to generalize the SIFT de-
scriptor to the 3D case considering a volumetric neighbourhood of a given interest point
and considering the gradients orientation in the 3D space [41]. However, 3D models are
generally computed using Structure From Motion (SfM) techniques, where the 3D coor-
dinates of the point cloud are computed from a large database of images [20, 40]. A
more popular approach is thus to associate 3D points to corresponding 2D descriptors.
Suppose the point X in the 3D space corresponds to the points x1,x2 in some images
of the database used to compute the point cloud. SIFT descriptors d1,d2 can now be
computed as described before and the point X will be associated with the descriptors
{d1,d2}.

Figure 3.5. Active search pipeline.

Theoretically, given the descriptors of the interest points in the query image {d1, . . . ,dN},
points correspondences can be formed with a NN-search. However, a point clouds can
have millions of points and hence an exhaustive search would be too time consuming.
An efficient search strategy, called active search, was proposed in [36]. The pipeline of
active search is shown in Figure 3.5. The idea is to perform NN-search in a hierarchical
way, saving significantly computation time. In the offline phase, descriptors associated
with 3D points are computed. These descriptors are then clustered and each cluster
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is associated with a global descriptor, called visual word [45]. For example, if k-means
clustering is performed, the mean of each cluster will represent a visual word. In the
online phase, given a descriptor in the query image d, the corresponding visual word D

is computed. Next, the most similar descriptor d3d is retrieved only from those descriptors
corresponding to the same visual word D. Iterating this for each interest point in the query
image, a set of correspondences {(d1,d

3d
1 ), . . . (dN ,d

3d
N } is obtained.

The correspondences were obtained performing 2D-to-3D matching, meaning interest
points were detected from the 2D image and matched to the points in the 3D model. To
refine the correspondences, a 3D-to-2D matching is introduced. In this step, descriptors
for all pixels in the query image are computed and eacg previously retrieved descriptor
from the 3D model d3d is matched to the most similar descriptor from the query image.
Again, this NN-search can be sped up considering only those descriptors in the image
belonging to the same visual word of d3d. This 3D-to-2D matching is performed for each
3D-descriptor computed in the 2D-to-3D matching, obtaining the final correspondences
{(d′

1,d
3d
1 ), . . . (d′

N ,d
3d
N }. Finally, the camera pose can be computed using PnP-RANSAC,

as described before.

Direct matching approaches allow to reach highly accurate camera poses. Particularly,
it was shown in [36] that the introduced 3D-to-2D step can improve the accuracy. As
a drawback, these approaches are slow and in most cases not suitable for real-time
applications.

3.3.2 Retrieval based approach

As stated before, the greatest weakness of direct matching is the high computation time
required. Furthermore, in some situations a dense 3D model is not available and the
environment is described only by a large database of images. These lead to retrieval
based approaches, where the direct 2D-3D matching is replaced by 2D-2D matching. A
typical pipeline of retrieval based approaches is shown in Figure 3.6.
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Figure 3.6. Typical pipeline of image retrieval based localization.

First, features from the query image are detected and extracted. In retrieval based ap-
proaches we have two kinds of features: those for image retrieval and those for points
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matching. In image retrieval, given a query image we retrieve the N most similar images
from the database. While in points matching we compare neighbourhoods of pixels, in
image retrieval whole pictures are compared. For this reasons the features extracted for
points matching are generally not directly suitable, as they describe local properties of
some pixels, whereas in image retrieval we want global descriptors, in which information
about a wider area is embedded. Similarly to active search, local descriptors can be
clustered into visual words. In the context of image retrieval visual words are generally
computed as follows: in the offline phase local features, i.e. the same features used
for points matching, are computed for all database images. The local features are then
clustered and each cluster represents a visual word. Each local feature in the original
images can now be mapped onto a visual word, i.e. more features can correspond to
the same word. If after clustering m distinct visual words are identified, the feature vector
associated to an image I will be d = [d1, d2, . . . , dm], where each element di tells how
many times the ith visual word occurs in the image. To speed up the retrieval process, in
the offline phase we compute also a look-up table which, for each visual words, stores in
what images the current visual word is present.

In the retrieval step, given a query image Iq, we compute the corresponding global de-
scriptor dq. Next, for each visual word in Iq the corresponding database images are
retrieved from the reversed index, obtaining the relevant database images. Finally, we
need to measure how similar the query image Iq and the relevant database images are.
A popular metric to measure similarity is the cosine similarity, defined as

sim(Iq, Idb) =
dq · ddb

∥dq∥∥ddb∥
, (3.11)

where ddb is the feature vector corresponding to a relevant database image Idb. It is
good to remark that the formula in (3.11) is a similarity measure and not a distance mea-
sure, meaning a higher value means a higher similarity. Having computed the similarity
between the query image and each relevant database image, the N best matches can
be retrieved. The next steps, dense matching and pose estimation, are performed as
described in the previous section.

Retrieval based approaches are considered state-of-the-art at the moment. First, they
are significantly faster than Direct Matching approaches, being able to meet also real-
time applications requirements on mobile devices. Furthermore, recent developments
in deep learning for features extraction, as long as more sophisticated post-processing
techniques to choose the best candidate pose have allowed retrieval-based approaches
to reach promising results in challenging visual localization tasks, such as localizing the
camera in a whole city.
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3.3.3 Learning based approaches

In the methods analyzed so far neural networks were utilized only to extract features from
images and point clouds and then points matching and pose estimation was performed
with classical approaches, such as NN and PnP. Motivated by the increasing success
of neural networks, learning based approaches replace one or both or the classical al-
gorithms by a neural network. Here we will briefly discuss two cases: Coordinates re-
gression approach, where points matching is performed through deep learning and Pose
regression approach, where the whole end-to-end pipeline is carried out by a neural net-
work.

In coordinate regression methods, instead of matching points from query and database
images or from query image and 3D model by NN, a network is trained to directly compute
the 3D coordinates of the points from a given query image. Finally, the pose is estimated
from the computed correspondences by traditional PnP-RANSAC. An example of coordi-
nates regression algorithms is the full-frame coordinates regression pipeline proposed in
[23], whose architecture is depicted in Figure 3.7.

Figure 3.7. Full-frame coordinate regression [23].

In this architecture, a convolution-deconvolution network is used to predict the coordi-
nates of a given query image. The first part of the network is similar to traditional CNN,
combining convolution with downsampling. The second half performs then deconvolution
followed by upsampling multiple times. Deconvolution is the inverse operation of convo-
lution, i.e. given an image I and filter K, the output O of a convolutional layer will be
K ∗ I, where ∗ denotes the convolution operation. In a deconvolutional layer, the output
is instead solved from the equation K ∗ O = I. In order to train such architectures, a
database of images with annotated 3D coordinates is needed, similar to retrieval based
approaches. The choice of the loss function is also particularly critical [24], a common
choice is to minimize the sum of distances between ground truth coordinates and pre-
dicted coordinates.

In pose regression approaches the whole end-to-end pipeline is replaced by a deep-
learning algorithm, which is trained to directly predict the pose from a given query image
[17]. Here, the pose is generally parametrized as the 7-ary array

[
t q

]
, where t is the



27

translation vector of the camera pose and q is the quaternion corresponding to the ro-
tation matrix. The loss function for pose regression networks is generally in the form
L = ∥t − t̂∥ + β∥q − q̂∥, where

[
t q

]
is the ground truth pose and

[
t̂ q̂

]
is the pose

predicted by the network. Different network architectures, such as CNN or convolution-
deconvolution networks have been experimented, with the latter giving slightly better re-
sults. Still, coordinate regression approaches outperform pose regression networks [32].
Overall, learning based approaches, despite being generally faster, cannot reach the
same accuracy of retrieval based approaches and they are not yet suitable for visual
localization in challenging environments [38].

3.4 Case study: InLoc

To conclude this chapter we analyze more in depth a retrieval based pipeline for indoor
visual localization: InLoc. This pipeline and the corresponding dataset are also used to
benchmark the confidence estimation algorithm proposed in the next chapter.

3.4.1 InLoc dataset

The InLoc dataset was designed to benchmark indoor long-term visual localization algo-
rithms, it consists of a set of database images, a set of query images and a dense 3D
model. Database images were collected from two different buildings, from now on re-
ferred as DUC and CSE, from Washington university. The images from the DUC building
were taken from two different floors and the images from the CSE building from three
different floors and the original 3D coordinates are known for almost every pixel. Further
information about how the 3D coordinates were obtained for the database images can be
found in [53]. Query image were collected with an iPhone only from the DUC building.
The dense 3D model of both buildings was obtained with a laser scanner. Tables 3.1 and
3.2 present further technical details. Some examples of query and database images from
the dataset are shown in Figure 3.8.

Table 3.1. Dataset properties per image group.

# images Resolution (pixels) focal length (pixels)

Database images 9972 1600× 1200 1430

Query images 329 4032× 3024 1320
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Table 3.2. Dataset properties per floor.

Floor ID # query images # database images 3D model coverage

DUC1 198 1800 98%

DUC2 131 2880 100%

CSE3 0 252 85%

CSE4 0 2700 93%

CSE5 0 2340 66%

(a) Database images. (b) Query images.

Figure 3.8. Example pictures from the dataset.

This dataset presents several challenges for indoor visual localization. Both database
and query images are taken under different environment conditions, such as different
illumination and different disposition of objects or people. Also, query images were taken
only from the DUC building, the data from the CSE building are included to increase the
challenge in the image retrieval step.

3.4.2 InLoc algorithm

The InLoc algorithm was proposed by Taira et al. in 2018 [48] and it addresses indoor
visual localization under changing conditions. The salient points of the algorithm are the
use of dense matching instead of sparse matching and the addition of a pose verification
step at the end of the process. The pipeline of InLoc is depicted in Figure 3.9.
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Figure 3.9. Pipeline of InLoc algorithm.

Features extraction for image retrieval is executed through the NetVLAD network [1],
which is composed by the VGG network [44], computing features map, on top a which
an additional layer, called VLAD layer [2], is added. This last layer aggregates local de-
scriptors of feature maps into global descriptors to perform image retrieval, as described
in Chapter 3. In this step, for each query image the 100 best matching database im-
ages are retrieved. In the next step, 2D-2D correspondences between query image and
database images are formed using dense matching in a coarse-to-fine manner. Feature
maps are obtained from the VGG network, particularly the coarse map is obtained after
the fifth convolutional layer and the fine map after the third convolutional layer. As VGG
is part of NetVLAD, features computation can be done only once for the whole pipeline.
The computed correspondences are verified fitting a homography between query and
database images. The 100 candidates database images are ranked based on the num-
ber of inliers and only the ten best candidates are kept. Pose estimation is then performed
using P3P-LO-RANSAC and the candidate poses are ordered in decreasing number of
inliers.

The final step in the Inloc pipeline is pose verification (PV), whose purpose is to choose
the best pose among the ten previously computed ones. In this phase, a view is synthe-
sized from the point cloud data using an estimated pose. RootSIFT descriptors are then
extracted from both synthesized views and original query image. Finally a verification
score is computed as

ver.score =
1

median(∥dq
1 − ds

1∥, . . . ∥d
q
n − ds

n∥)
, (3.12)

where dq
1, . . . ,d

q
n and ds

1, . . . ,d
s
n are RootSIFT descriptors from the query and synthe-

sized image, respectively. The verification score in Equation (3.12) is compute for each
candidate pose and used to rerank in descending order the ten candidate poses and the
pose with the highest verification score is outputted as final result.

As an evaluation metric, translation and rotation error are used, which can be computed
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with equation (3.13).

ϵtr = ∥c− ĉ∥,

ϵrot = arccos

(
tr(R̂RT )− 1

2

)
, (3.13)

where
[
R̂ −R̂ĉ

]
is the estimated camera pose and

[
R −Rc

]
the corresponding ground

truth. A query image is considered correctly localized if both errors are below a predeter-
mined threshold.

Figure 3.10 shows the accuracy, i.e. the percentage of correctly localized query images,
as a function of the translation threshold keeping the angular threshold at 10◦. Table 3.3
shows the measured computation times of the pipeline using two GeForce GTX Titan X
GPU. The authors of InLoc provided only the results of the image retrieval step, but not
the codes to perform it. For this reason, the image retrieval step could not be profiled.
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Figure 3.10. Accuracy as a function of translation threshold, angular threshold being 10◦.
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Table 3.3. Computation times of different steps for a single query image.

Step Computation Time

Features extraction 1 s

Dense Matching 100 s

Pose Estimation 5 s

Pose Verification 47 s

As can be noticed from Figure 3.10, pose verification improves the performance of the
algorithm. However, the overall accuracy is still low, if e.g. compared to outdoor localiza-
tion applications [35]. Using as thresholds 1 m and 10◦ the algorithm localized correctly
only 70% of the images. Still, this is a state-of-the-art result for the proposed dataset.
Furthermore, from Table 3.3 it can be noted that InLoc is still not suitable for real-time
or mobile applications. Particularly, dense matching is the most time-consuming step in
the pipeline. This same step, however, is crucial for the pipeline to work and the authors
prove in their paper that sparse matching leads to a significantly lower accuracy [48].
The whole pipeline for a single query image takes approximately 2.5 minutes (excluding
the retrieval step), indicating the InLoc pipeline is still not suitable for real-time or mobile
applications.
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4 CONFIDENCE MODELLING IN VISUAL
LOCALIZATION

In this chapter the confidence estimation problem for visual localization is formalized and
the proposed solution is described. In the presented approach, we first analyze several
factors affecting the success of pose estimation and then propose an algorithm to merge
the different parameters into a final confidence measure, regarded as the probability of
the pose to be correct.

4.1 Related work

The number of inliers outputted by RANSAC is the most popular confidence estimator
in pose estimation [22, 35], as well as in other model estimation problems in computer
vision [39, 52]. A deeper analysis of the limitations of the number of inliers is given in
the Section 3.3. In [50], an alternative version of RANSAC, called MLESAC is proposed.
In MLESAC, the best estimate is chosen maximizing a likelihood function, instead of the
mere number of inliers. Some alternative RANSAC implementations [5, 34] model how
the error propagates during the RANSAC algorithm and propose a modified version and
use this information to compute a confidence interval of the estimated parameters.

In [12] it was shown that dropout layers [46] can be exploited to modify a neural network
into a Bayesian neural network, which estimates a confidence interval instead of giving
a point estimate. In the context of visual localization, Bayesian neural networks were
applied in [18] to compute a probabilistic distribution of the camera pose parameters,
which was used to achieve better accuracies. The InLoc pose verification step itself
can be considered a confidence estimation algorithm, as the verification score quantifies
which candidate pose is most likely to be correct.

As a final remark, the confidence estimation approaches described take place in interme-
diate steps of the pipeline, either inside RANSAC or immediately after before outputting
the final result. Thus these approaches focus on a single query image and aim at esti-
mating a more accurate camera pose. In this work, a wider problem is considered. The
proposed confidence estimator takes place after the final result is computed and aims at
quantifying how reliable it is. The proposed confidence measure is thus used to compare
the confidence of poses from different query images.
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4.2 Problem formulation

The confidence estimation problem can be formalized as a binary classification problem,
i.e. given an estimated camera pose P̂ , we want to classify it as correct (output 1) or
incorrect (output 0). Ideally, the classifier f : P̂ ↦→ y ∈ {0, 1} will have the properties
f(P̂ ) = 1 if and only if P̂ is correct and f(P̂ ) = 0 if and only if P̂ is incorrect. Clearly, a
perfect classifier is generally not achievable. A classifier is said to be linear if it has the
form

y =

⎧⎨⎩1, γ ≥ γ0

0, γ < γ0
, (4.1)

where γ is a called discriminator and γ0 is a predetermined threshold. Geometrically, a
problem is solvable with a linear classifier if the boundary between the classes can be
represented as a linear function. The choice of the threshold γ0 depends on the specific
application. In some applications, such as self-driving cars, it is crucial to be able to trust
the estimated pose and hence a higher threshold may be set. Some other applications
on the other hand may have more relaxed requirements and a lower threshold may be
accepted. The discriminator γ can be regarded as a confidence measure, the higher it is,
the more likely the estimated pose will be correct. Independently from the value of γ0, a
good discriminator should be able to properly rank several estimated poses. The rest of
this chapter is dedicated to the computation of γ.

4.3 Number of inliers

The number of inliers obtained during the RANSAC-PnP algorithm has been the standard
metric to quantify the confidence of the pose in most visual localization algorithms. In the
RANSAC loop we hypothesize a pose from 2D-3D or 2D-2D correspondences, next we
compute how many correspondences can be modelled by the proposed pose, obtaining
the number of inliers. The number of inliers hence measures how many evidences we
have to sustain our hypothesis and is used to determine the best pose among a set of
candidates. However, a higher number of inliers does not always imply a better pose, as
InLoc and others show in their experiments. Furthermore, a high number of inliers does
not imply a correct estimation either. An example of this is shown in Figure 4.1, where a
pair of query and database images from the InLoc dataset are reported, presenting 1921
inliers in total but still leading to an incorrect pose using 1m and 10◦ as error threshold.
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Figure 4.1. Example of an inaccurate estimate with a high number of inliers.

The main factor leading to a wrong estimate with a high number of inliers is the presence
of repetitive patterns in the images. Referring to Figure 4.1, both images present, e.g.
multiple times the same windows, several identical chairs and, most importantly, walls
present a significant amount of redundancy, as they are made of identical bricks. Thus,
despite the overall clusters of inliers in query and database image appear to be in the
same area, the matches between single inliers are wrong, leading to an inaccurate pose.
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Figure 4.2. Number of inliers distributions.

The histograms reported in Figure 4.2 help visualizing how well a parameter can be
used to discriminate between successful and unsuccessful camera pose estimates. The
poses are divided into two classes: correct and incorrect. For both classes we plot the
histograms approximating the probability distributions of the number of inliers. As can be
noticed, the class of correct poses has a longer tail, meaning if the number of inliers is
very high (over 2000) then it is highly probable that the pose is correct. This easy cases,
however, appear to be relatively rare, as the mass of most classes lies between zero and
1000, where the distributions present a significant overlapping, leading to the conclusion
that the number of inliers alone is not a robust metric to discriminate between correct and
incorrect poses.

4.4 Inliers distribution

A main challenge in visual localization is the presence of recurrent patterns in the en-
vironment. As an example, the same window could be present at the opposite sides of
the same building. In database-based pose estimation algorithms, this means the same
pattern can be present in both database and query image, even though they represent
completely different places. An example of this is demonstrated in Figure 4.3, taken from
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the Aachen dataset [37]. The two images (query image on the left and database image
on the right) present two different scenes with a similar car in both. The algorithm seems
to conclude the images represent the same scene and computes the camera posed re-
lying only on the car and ignoring the background, as can be noticed by the inliers being
concentrated on a small zone. This leads us to investigate whether the inliers spatial
distribution is relevant.

Figure 4.3. Failure due to a repetitive pattern [35].

To take into account inliers spatial distribution, we propose to compute a coverage map of
the image. We say a pixel is covered if there is at least one inlier in its neighborhood. With
coverage maps, we can quantify the inliers distribution using a coverage score, defined
as the number of covered pixels divided by the total number of pixels in the image. To
compute coverage maps, one first needs to fix the definition of neighborhood, namely
its shape (square, circle) and size. Particularly crucial is the choice of the size of the
neighborhood, as using a size to small would be equivalent to counting the number of
inliers; on the other side a neighbourhood an excessively big neighborhood would give
a too optimistic coverage score. Here, we simply define the neighbourhood of a pixel
as a rectangle, centered on the pixel, whose dimensions are 1/15 of the dimensions of
the image. In other words, we divide our picture in a grid with twenty cells per side and
mark all pixels in the cells that contain at least one inlier. The size of the neighbourhood
was chosen by visual inspection of the obtained coverage maps. Despite it could have
been optimized by grid search, numerical experiments revealed small variations in the
neighbourhood size did not affect significantly the final results. The coverage score is
then computed dividing the number of marked pixels by the total number of pixels in the
image. This is formalized in Equation (4.2). Let I be the image, p a pixel and J the set of
inliers and B(p) the neighborhood of p as defined above, then the coverage score η is

η =
|{p ∈ I|∃j ∈ J : j ∈ B(p)}|

|I|
, (4.2)

where score|·| denotes the cardinality of a set and hence |I| denotes the number of pixels
in the image.
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(a) Query images. (b) Database images.

Figure 4.4. Coverage scores distributions.

To investigate how well the coverage score performs as discriminator, we plot in Figure
4.4 the classes distribution as a function of η. As the histograms reveal, the coverage
scores seem to distinguish the classes better than the number of inliers, despite some
significant overlapping is still present. A small coverage score seems to be a necessary
but not sufficient condition for incorrect poses, as correct estimations can be achieved
also with relatively small coverage scores. These occur mainly when a correct estimation
is achieved with a small number of inliers if, for example, only few good points correspon-
dences have been formed.



38

(a) Query image and coverage map, η = 15.5%.

(b) Database image and coverage map, η = 15.3%.

Figure 4.5. Incorrect estimate with many inliers covering a small area.

Figure 4.5 presents an example of a query-database image from the InLoc dataset and
the corresponding coverage maps. The pair contains 1084 inliers, which are however all
focused in a small area, covering only 15% of the pictures. By Figure 4.2, 1084 inliers
strongly suggests that the pose is correct. Figure 4.4, however, shows that η = 15% is at
the boundary between the two distributions and hence is more likely to be classified as
incorrect.
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4.5 Cameras similarities

In retrieval based approaches we first extract the most similar database images to a given
query image. Intuitively, if two images are similar, the two cameras are close to each oth-
ers and point in the same directions as it is quite unlikely that cameras pointing in opposite
directions will see the same scene, as well as cameras being close to each others are
more likely to see the same scene. Motivated by this intuition, we investigate whether tak-
ing into account the difference between camera poses can help the confidence estimation
task.

First, a mathematical formalization of the "pose difference" is needed. Particularly, we
want to model both the difference of positions and the difference of viewpoints (orienta-
tions) of the cameras. Similarly to (3.13), the position difference ∆c and angular differ-
ence ∆θ can be computed as

∆c = ∥cq − cdb∥,

∆θ = arccos

(
tr(RqR

T
db)− 1

2

), (4.3)

where
[
Rq −Rqcq

]
is the query image camera pose and

[
Rdb −Rdbcdb

]
is the database

image camera pose. Figure 4.6 shows how the two classes depend on the poses differ-
ences.

(a) Translation difference. (b) Angular difference.

Figure 4.6. Cameras similarities distributions.

Figure 4.6 confirms that correct estimates tend to have database and query image cam-
eras close to each others, as their distance is at maximum 10 m. However, the assump-
tion about angular distance does not hold as strongly. It is shown, indeed, that despite
correct estimates tend to have a smaller angular distances, 90◦ at most, there can also
be few cases where a good estimate is achieved when cameras are pointing in nearly
opposite directions. This can be understood thinking of cameras at opposite sides of a
room, seeing the same scene in the middle. Also, a small pose difference, especially for
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translation difference, appears to be a necessary but not sufficient condition for a correct
estimate as wrong estimates span a wide range of both translation and angular distance.

4.6 Neural networks for confidence estimation

Based on the previous discussion, none of the parameters alone can be used to discrim-
inate between successful and unsuccessful estimates. Nevertheless, the histograms in
the previous sections show a correlation between the success of the estimate and the
parameters analyzed. The next step is to learn how to weight those parameters to obtain
the final confidence measure γ.

In the proposed method, we let an Artificial Neural Network (ANN) learn itself the pattern.
During the experiments, other approaches, such as decision trees and support vector
machines were also considered, however they gave inferior performances and hence
ANN was chosen. The network, given a pair of query image with estimated pose and
database image with corresponding pose, will predict the probability that the estimated
pose is correct. As network input parameters we use the number of inliers obtained after
the PnP-RANSAC, the coverage scores of query and database images and the cameras
translation and angular differences. Figures 4.7 shows the architecture of the network.

Figure 4.7. Proposed network architecture.

As we use a relatively small amount of input parameters (5 scalars) and the amount
of data available is relatively small, we choose to keep the network architecture small,
namely we use five fully connected layers with five neurons each. As nonlinear activation
function, tanh is used in the hidden layers and the logistic function is used in the output
layer. The internal parameters of the network are learnt minimizing the cross-entropy L,
computed with Equation (4.4)

L = −y log(p)− (1− y) log(1− p), (4.4)

where y is the label (0 or 1) and p is the probability of the estimate to be correct.
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5 EXPERIMENTS

In this chapter we describe the experimental setup used to benchmark our algorithm.
Particularly, we describe how the InLoc dataset is used to train and test our neural net-
work. The metrics used to evaluate the performances of our confidence estimator are
also presented.

5.1 Network training

Our confidence estimation algorithm can be applied after the camera pose has been
estimated, meaning the 329 InLoc query images have to be used to both train and test
our method. To overcome the problems stemming from the small amount of training
data, we produce an extended dataset as follows: for each query image, all 10 candidate
database images provided by the InLoc pipeline are taken into account, obtaining 3290
query and database image pairs, each associated with an estimated camera pose. Out
of these, we remove those pairs that have less than 3 point correspondences, as they
represent a trivial case of failed estimation. For each pair, the coverage scores can be
computed from the inlier positions produced by RANSAC. Each estimated pose is labelled
as correct (1) if the error is below the threshold of 1m, 10◦ and as incorrect (0) otherwise.
As a result, our extended dataset presents 2368 estimated poses, out of which 75% are
used as training data and the rest as test data. The training-test splitting is done so that all
the image pairs related to the same query image are either in the training set or test set,
but not in both. Overall, our training dataset contains 1765 query-database images pairs,
related to 230 distinct query images and the test dataset contains 603 query-database
image pairs, corresponding to 99 distinct query images.

5.2 Evaluation metrics

In this section the metrics used to evaluate our algorithm are presented. As discussed be-
fore, the confidence estimation problem is formulated as a binary classification problem,
given a query image with the corresponding estimated pose, classify whether the pose
is correct or incorrect. We call true positives (TP) those samples whose pose is correct
and that are classified as correct. Similarly, those samples whose pose is not correctly
estimated but are still classified as correct are called false positives (FP) and those which
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have a correct pose but are classified as incorrect are referred as false negatives (FN).
This terminology is helpful to define two widely used metrics in classification problems:
precision and recall, whose definition are given in Equations (5.1) and (5.2)

p =
TP

TP + FP
, (5.1)

r =
TP

TP + FN
. (5.2)

Using only one of the above metrics to asset the performance of a classification algorithm
is not very informative, as it is possible to have a high precision and poor recall and
vice versa. Moreover, both metrics depend on the chosen value of the threshold γ0 in
Equation (4.1) and hence they can be improved arbitrarily. As an example, setting a very
low threshold the algorithm will classify all samples as correct and hence it will have r = 1,
as FN = 0, but the precision will be low, due to the high number of false positives. On
the other side, setting a very high threshold the algorithm will classify most samples as
incorrect having a high precision but a poor recall.

To asset the performance of a classification algorithm, we want a measure taking into
account both precision and recall and independent of the threshold value. A way to
achieve this is to compute both precision and recall for several values of γ0 and plot the
precision as a function of the recall. The obtained curve is called precision-recall curve
(PR-curve). An evaluation metric for the classification problem can now be obtained
taking the Area Under Curve (AUC), which can be formally defined as

AUC =

∫ 1

0
p(r)dr, (5.3)

where p(r) is the precision as a function of the recall.
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Figure 5.1. PR-curve of InLoc using the number of inliers as discriminator.

An example of Precision-Recall curves is shown in Figure 5.1, obtained from using the
number of inliers as discriminator and 1m, 10◦ as error threshold for correct poses. The
left-most part of the curve, having high precision and low recall, corresponds to a high
γ0, i.e. only those poses with a very high number of inliers are accepted as correct.
Decreasing the threshold the recall improves but the precision gets worse. Finally, having
recall one means that all poses are accepted as correct and in that case the precision is
equivalent to the accuracy of the algorithm. From Equation (5.3) it can be noticed that the
AUC value can be interpreted as the average precision. Hence, AUC=86% means that
on average 86% of the poses classified as correct are actually correct.



44

6 RESULTS

In this paper we present the results of the quantitative experiments to evaluate the per-
formances of our model. The inclusion of InLoc verification score into our confidence
estimator is also discussed. Next, we show how our model can also be included inside
the InLoc pipeline to achieve more accurate camera poses. Finally, we show how our
model, despite being trained with InLoc, can be applied also to different datasets.

6.1 Confidence estimation in InLoc

In this first set of experiments, we feed to our neural network the number of inliers, cam-
eras differences and the coverage scores of query and database images. The parame-
ters were obtained as discussed in the previous chapter. The network is trained using
the training data of the extended dataset. To evaluate the functionality of our model, the
confidence measures for the test data of the extended dataset are computed and the PR
curve is plotted. The PR-curve is then compared to the one obtained using the number
of inliers as discriminator. The results are shown in Figure 6.1a. The figure shows that
our confidence measure helps indeed in classifying better if an estimate is correct or not.
Particularly, we can notice an improvement in the AUC of roughly 12%.
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(a) Extended dataset test data.
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(b) Only best candidates.

Figure 6.1. Precision-recall curves obtained with our method.

We also investigate how our algorithm performs when tested only on the best candidate
pose for each query image. The results are shown in Figure 6.1b. The figure shows
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that also in this case our algorithm produces a better PR-curve, improving the AUC from
86.9% to 92.2%. This shows that the algorithm works also for realistic pipelines, where
the easier true negatives are already filtered out when choosing the best candidate.

Table 6.1. Performances of the proposed method at different error threshold.

Threshold AUC (inls) AUC (our)

1.5m, 10◦ 87.2% 94.4%

1.0m, 10◦ 86.9% 92.2%

0.5m, 10◦ 68.7% 77.4%

During the training process the error threshold was fixed to 1m, 10◦. In Table 6.1 we show
that the proposed method does not depend from the threshold used for training. The
error threshold used to determine if the pose is correct was changed, without changing
the threshold used to train the model. The experiments were done considering only the
best candidate for each query image. As can be seen in Table 6.1 a stricter threshold
makes the classification problem harder in general, but the proposed method is still more
robust than the inliers count alone.

6.1.1 Ablation study

An interesting question to address is what is the contribution of each single input? or in
other words, Can we obtain a similar PR-curve with less parameters? To answer these
questions, we performs an ablation study on the network, meaning we retrain the network
leaving out one input parameter. This is repeated for each input parameter, to quantify
how much each feature affects the confidence measure. The results of the ablation study
are reported in Table 6.2.
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Table 6.2. Ablation study of the proposed model. The full network contains inliers, cam-
eras differences and cov. scores.

Case AUC

full network 82.8%

only inliers 69.8%

without inliers 76.3%

without cameras difference 77.7%

without translation distance 80.7%

without angular distance 79.8%

without coverage scores 73.3%

without database image coverage score 81.0%

without query image coverage score 75.8%

From Table 6.2 some insights can be extracted. First, it seems that the coverage score
has a particularly important role in the confidence estimation task, as without it the AUC
drops 10%. Particularly, the coverage score of the query image seems to give a major
contribution than the coverage score of the database image. Camera poses difference
has a smaller contribution to the value of the AUC. Particularly, it appears that the poses
difference can be modelled by either translation or angular distance, as removing only
one of them does not affect significantly the AUC.

As shown in Table 6.2, the coverage score, modelling the inliers spatial distribution, im-
proved significantly the AUC of the algorithm. To emphasize the importance of inliers
spatial distribution, we try to classify correct and incorrect poses using only the coverage
score of the query image as discriminator. Figure 6.2 reports the results in three different
cases: using the whole extended dataset (a), using only the best candidate according to
the number of inliers for each query image (b) and using the best candidate according to
the verification score (c). As the coverage score alone does not need to be trained, the
evaluation can be performed on the whole InLoc dataset, meaning 2368 estimated poses
for case (a) and 311 estimated poses for cases (b) and (c).
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(a) All pictures.
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(b) Best candidate w.r.t. inliers score.
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(c) Best candidate w.r.t. verification score.

Figure 6.2. Performances of coverage score as discriminator.

As Figure 6.2 reveals, the coverage score and the number of inliers have a similar per-
formance for the extended dataset. When only the best candidates are taken into ac-
count, however, the coverage score produces a better PR-curve. When taking the best
candidate (using the number of inliers or verification score), we already filter out some
incorrect poses. Among the best matches, those which are truly correct tend to cover a
higher area, making the coverage score a good tie-breaker to classify which among the
best candidates are actually correct.

Table 6.3. Coverage score improving InLoc accuracies.

Sorting Method Accuracy

Inliers 57%

Weighted Inliers 61%

Verification Score 69%

To further highlight the importance of the coverage score, we show how it can be used to
improve the accuracy of the algorithm. For a candidate pose, we call weighted number of
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inliers the number of inliers multiplied by the coverage score of the query image. In Table
6.3, we show how sorting the candidates by the weighted number of inliers affects the
accuracy. Despite not reaching the results of the verification score, the weighted number
of inliers gives an improvement compared to the number of inliers alone. This can be
particularly useful for cases where 3D models are not available.

6.1.2 Pose verification for confidence estimation

The analysis so far has been carried out without using the InLoc verification score. Here,
we conduct similar experiments as before, taking into account also the InLoc verification
score. The purpose of this analysis is to both to benchmark the performances of the
verification score itself and to investigate how it compares to our confidence estimation
framework and how it can be integrated into it.

The first natural question is can the verification score alone be used as a confidence
measure? In other words, can we use the verification score as parameter to discriminate
between successful and unsuccessful estimates? As Figure 6.3 shows, the answer is no.
Despite improving the accuracy of the algorithm, the verification score alone is not a good
confidence estimator. This can be understood as follows: as described in the previous
chapter, for each query image the ten candidates are sorted based on their verification
score, i.e. the comparison is done among images related to the same query image,
hence somehow similar to each others. When assessing the parameter performance
as confidence estimator, different query images are compared. The verification score
is hence designed to compare similar images, but fails when applied to different query
images.
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Figure 6.3. Verification score performances as confidence estimator.

As the verification score alone cannot be used as a discriminator alone, we investigate
how it can be integrated in the previously developed confidence estimation model. In
this new version the network will also take the verification score as input parameter, in
addition to the previous ones. The results for the test data of the extended dataset are
depicted in Figure 6.4a. Overall, the AUC improves from 83% to 87%, showing that the
model seems to benefit from the verification score.
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(a) Extended dataset.
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(b) PR-Curves using only the best candidates.

Figure 6.4. Inclusion of InLoc verification score to our method.
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Again, we also investigate how our model performs when tested only on the best candi-
dates for each query image. The results can be seen in Figure 6.4b. Despite the lack
of smoothness due to the few number of test data, the figure shows both model perform
better than the number of inliers. This time, however, the addition of the verification score
does not produce any significant improvement. To investigate what causes this discrep-
ancy between extended and original dataset, we plot the histograms of the verification
score for both datasets, as shown in Figure 6.5.

(a) Extended dataset. (b) Only best candidates.

Figure 6.5. Verification score distributions.

Observing Figure 6.5, in the extended dataset correct and incorrect poses present two
clearly distinct distributions, with some small overlapping. However, when only the best
candidates for each query image are chosen, sampling is done preferring those points
with a higher verification score. This does not preserve the shape of the distributions,
leading to two new indistinguishable histograms.

6.2 Confidence estimation for better accuracies

Our algorithm estimates the probability of the pose to be correct. So far it was applied at
the very end of the pipeline, to classify the final pose of different query images as correct
or incorrect. However, it is also natural to wonder whether our confidence estimator can
be used inside the pipeline to chose the best candidate pose for a given query image. To
have a fair comparison, the accuracies are computed using only those query images that
were not used to train the network. The results are shown in Table 6.4 using 1m and 10◦

as error threshold. In Figure 6.6 the accuracies as a function of the translation threshold
are plotted, keeping the angular threshold fixed to 10◦. Again, the error threshold was
changed only during evaluation, but not during training. The accuracies for InLoc differ
by the ones in the original paper [48] as now only 99 query images are considered.
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Figure 6.6. Comparison of accuracies with our method and with InLoc.

Table 6.4. Accuracies with different candidates sorting methods.

InLoc our

without PV 49% 54%

with PV 65% 68%

Based on the empirical results, our model allows to improve the accuracy in both with
and without the verification score. As Figure 6.6 confirms, our model is not limited by the
threshold used during the training process and higher accuracies are achieved at differ-
ent thresholds. Furthermore, our model without verification score, despite not reaching
InLoc+PV accuracy, gives a significant improvement to InLoc without pose verification,
indicating that it can be used to replace the latter. Computing the verification score re-
quires a dense 3D model of the environment and is relatively time consuming, as was
shown in Table 3.3. Our model is thus an appealing alternative for datasets without 3D
dense models or use case scenarios where a faster computation is required.

In Figure 6.7 we show a couple of examples where choosing the best candidate with
InLoc leads to an incorrect pose, but our method leads to a correct pose. For fairness,
the figure also shows an example where InLoc succeeds in computing the pose but our
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Figure 6.7. Qualitative comparison of best candidate poses with InLoc (left, inliers high-
lighted in blue) and our method (right, inliers highlighted in red), both including PV. First
row: InLoc error: 32m, 3.9◦. Our error: 0.09m, 3.7◦. Second row: InLoc error: 5.3m,
14.3◦. Our error: 0.24m, 2.9◦. Third row: InLoc error: 0.56m, 2.1◦. Our error: 4.4m, 2◦.

model fails. Observing the pictures, it can be noticed that in those cases where InLoc
pose verification fails the inliers are condensed into a small portion of the image. For
example, in the first row all inliers are placed on a single chair. As the chair has been
moved from query to database image, the final pose leads to a translation error of 32m.
In our approach, on the other hand, the area covered by the inliers is also taken into
account. This penalizes the candidate proposed by InLoc and a better one is chosen
instead, leading to final translation error of only 9 cm.

6.3 Generalization to different datasets

In the experiments so far InLoc dataset was used for both training and testing. A good
confidence estimator should however be independent of the dataset, algorithm or er-
ror threshold used for training. For this reason, we investigate here how our approach,
trained on the InLoc dataset and algorithm with 1m and 10◦ error threshold, performs
when applied to unforeseen datasets and pipelines. Particularly, we consider two out-
door visual localization datasets: Cambridge Landmarks [17] and Aachen day/night [37]
and the coordinates regression based pipeline presented in [22]. Since our confidence
estimator trained with InLoc is now required to work on unforeseen datasets, a smaller
network architecture is used, to improve its generality.
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6.3.1 Cambridge Landmarks

Cambridge Landmarks dataset contains several scenes from around Cambridge Univer-
sity. This dataset is not particularly challenging, as query and database images were
taken in similar condition, lacking e.g. strong differences in viewpoints or illumination. In
these experiments, we consider the regression based pipeline presented in [22], where
3D coordinates of the pixels of the query image are computed and the so obtained 2D-3D
correspondences are used to compute the camera pose with a P3P-RANSAC loop. As
there is no image retrieval step, the only parameters available are the number of inliers
and the coverage score of the query image. Given the reduced number of input param-
eters, a tiny neural network, with a single layer and two neurons, is trained on the InLoc
dataset as described before. This network is then used to compute the confidence score
of the estimated poses in Cambridge Landmarks, where the pose is considered correct
using an error threshold of 0.35 m and 5◦. Cambridge Landmark is a fairly simple dataset
and most competitive pipelines can achieve accuracies over 90% [23, 24, 48]. Clearly, if
in a dataset most poses can be assumed to be correct, the importance of the confidence
estimation decreases. The purpose of this experiment is thus not to outperform the inliers
count, but to show that our method is independent of the dataset used for training and
can still be applied to unforeseen data.

Table 6.5. Performances of our InLoc trained algorithm in Cambridge Landmarks dataset.

Scene AUC (inls count) AUC (our)

Great Court 80.08% 83.41%

King’s College 94.88% 95.30%

Old Hospital 89.64% 88.25%

Shop Facade 98.95% 98.96%

St. Mary’s Church 99.80% 99.81%

Total 93.79% 94.75%

Table 6.5 reports the AUC values obtained when classifying poses as incorrect or in-
correct with the number of inliers alone and with our algorithm. As can be noticed, our
confidence estimator gives good performances, even outperforming the standard inliers
count for most scenes.

6.3.2 Aachen

Aachen day/night dataset presents several images from the Aachen city during day- and
night-time. The pipeline used by the authors in [22] combines coordinates regression and
image retrieval techniques. Particularly, for a given query image 10 candidate poses are
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produced. In their original work, the authors choose the best pose based on the number
of inliers. Ground truths for the Aachen dataset are not available and hence the PR-curve
cannot be computed. However, an online evaluation tool [49], computing the accuracy
for the estimated poses is available. The accuracies are computed at three different
thresholds: 0.25 m, 2◦ / 0.5 m, 5◦ / 5m, 10◦ for day scenes and 0.5 m, 2◦ / 1 m, 5◦ / 5m,
10◦ for night scenes. In our experiments, we use our confidence estimation algorithm to
rerank the candidates of each query image. As this approach is retrieval based, we can
use our full model with all five input parameters. Again, we choose to use a smaller neural
network, with two layers and two neurons on each, to improve generalization to different
datasets. The network is trained with InLoc with the standard 1 m, 10◦ error threshold.

Table 6.6. Improved accuracies on Aachen when adding our method to the pipeline of
[22].

Aachen Baseline our

Day 70.9 / 81.9 / 91.6 71.4 / 82.6 / 92.0

Night 32.7 / 43.9 / 64.3 33.7 / 44.9 / 65.3

Table 6.6 shows the accuracies obtained with the baseline algorithm and our method.
Ranking candidate poses with our method reaches higher accuracies at all thresholds
for both day and night scenes, indicating our method, despite being trained with InLoc
at a specific error threshold, can be flexibly integrated into different visual localization
pipelines for better results.
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7 CONCLUSIONS AND FUTURE WORK

This thesis investigated how to asset the confidence of estimated poses in visual localiza-
tion pipelines, using InLoc as case study. We showed that the number of inliers from the
PnP-RANSAC solver, the standard confidence measure, is not particularly robust, espe-
cially for indoor scenes with significant redundancy. The confidence estimation problem
was formalized as a binary classification problem and we proposed a novel confidence
metric, computed by a neural network and taking into account different factors, such as
the number of inliers, their spatial distribution in the cameras similarity. Our confidence
metric outperformed the standard inliers count. Furthermore, we showed the proposed
method can also be used to improve the accuracy of the algorithm, reaching state-of-
the-art results. During the study, it was emphasized the importance of inliers spatial
distribution in query and database images and it was showed how this information can be
effectively exploited to improve both confidence estimation and pose estimation. Finally,
it was shown that the proposed approach does not depend on the data used for training
and can be flexibly applied to different datasets and pipelines.

The proposed confidence estimation algorithm was used as a postprocessing step, quan-
tifying how reliable the final result is. For future development, it can be interesting to mod-
ify the algorithm to predict the achievable reliability of the pose before or at early stages of
the pipeline, e.g. training a convolutional neural network to predict a confidence measure
directly from the query image. This new version, in addition to improving the robustness
of visual localization pipelines, would also allow to save computation time, as query im-
ages classified as too challenging could already be rejected before computing the pose.
In mobile robot applications, where a camera films continuously the environment, this
predictive confidence estimator could be used to choose what frames are more likely to
produce an accurate camera pose. In future development, the proposed confidence mea-
sure could also replace the inliers count inside the PnP-RANSAC loop, to achieve more
accurate camera poses.
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