11,172 research outputs found

    High order explicit exponential Runge-Kutta methods for the weak approximation of solutions of stochastic differential equations

    Get PDF
    We are concerned with numerical methods which give weak approximations for stiff Ito stochastic differential equations (SDEs). It is well known that the numerical solution of stiff SDEs leads to a stepsize reduction when explicit methods are used. However, there are some classes of explicit methods that are well suited to solving some types of stiff SDEs. One such class is the class of stochastic orthogonal Runge-Kutta Chebyshev (SROCK) methods. SROCK methods reduce to Runge-Kutta Chebyshev methods when applied to ordinary differential equations (ODEs). Another promising class of methods is the class of explicit methods that reduce to explicit exponential Runge-Kutta (RK) methods when applied to semilinear ODEs. In this paper, we will propose new exponential RK methods which achieve weak order one or two for multi-dimensional, non-commutative SDEs with a semilinear drift term, whereas they are of order one, two or three for semilinear ODEs. We will analytically investigate their stability properties in mean square, and will check their performance in numerical examples

    Computer solution of non-linear integration formula for solving initial value problems

    Get PDF
    This thesis is concerned with the numerical solutions of initial value problems with ordinary differential equations and covers single step integration methods. focus is to study the numerical the various aspects of Specifically, its main methods of non-linear integration formula with a variety of means based on the Contraharmonic mean (C˳M) (Evans and Yaakub [1995]), the Centroidal mean (C˳M) (Yaakub and Evans [1995]) and the Root-Mean-Square (RMS) (Yaakub and Evans [1993]) for solving initial value problems. the applications of the second It includes a study of order C˳M method for parallel implementation of extrapolation methods for ordinary differential equations with the ExDaTa schedule by Bahoshy [1992]. Another important topic presented in this thesis is that a fifth order five-stage explicit Runge Kutta method or weighted Runge Kutta formula [Evans and Yaakub [1996]) exists which is contrary to Butcher [1987] and the theorem in Lambert ([1991] ,pp 181). The thesis is organized as follows. An introduction to initial value problems in ordinary differential equations and parallel computers and software in Chapter 1, the basic preliminaries and fundamental concepts in mathematics, an algebraic manipulation package, e.g., Mathematica and basic parallel processing techniques are discussed in Chapter 2. Following in Chapter 3 is a survey of single step methods to solve ordinary differential equations. In this chapter, several single step methods including the Taylor series method, Runge Kutta method and a linear multistep method for non-stiff and stiff problems are also considered. Chapter 4 gives a new Runge Kutta formula for solving initial value problems using the Contraharmonic mean (C˳M), the Centroidal mean (C˳M) and the Root-MeanSquare (RMS). An error and stability analysis for these variety of means and numerical examples are also presented. Chapter 5 discusses the parallel implementation on the Sequent 8000 parallel computer of the Runge-Kutta contraharmonic mean (C˳M) method with extrapolation procedures using explicit assignment scheduling Kutta RK(4, 4) method (EXDATA) strategies. A is introduced and the data task new Rungetheory and analysis of its properties are investigated and compared with the more popular RKF(4,5) method, are given in Chapter 6. Chapter 7 presents a new integration method with error control for the solution of a special class of second order ODEs. In Chapter 8, a new weighted Runge-Kutta fifth order method with 5 stages is introduced. By comparison with the currently recommended RK4 ( 5) Merson and RK5(6) Nystrom methods, the new method gives improved results. Chapter 9 proposes a new fifth order Runge-Kutta type method for solving oscillatory problems by the use of trigonometric polynomial interpolation which extends the earlier work of Gautschi [1961]. An analysis of the convergence and stability of the new method is given with comparison with the standard Runge-Kutta methods. Finally, Chapter 10 summarises and presents conclusions on the topics discussed throughout the thesis

    Rational Approximation Method for Stiff Initial Value Problems

    Get PDF
    While purely numerical methods for solving ordinary differential equations (ODE), e.g., Runge–Kutta methods, are easy to implement, solvers that utilize analytical derivations of the right-hand side of the ODE, such as the Taylor series method, outperform them in many cases. Nevertheless, the Taylor series method is not well-suited for stiff problems since it is explicit and not A-stable. In our paper, we present a numerical-analytical method based on the rational approximation of the ODE solution, which is naturally A- and A(α)-stable. We describe the rational approximation method and consider issues of order, stability, and adaptive step control. Finally, through examples, we prove the superior performance of the rational approximation method when solving highly stiff problems, comparing it with the Taylor series and Runge–Kutta methods of the same accuracy order

    Multi-Adaptive Time-Integration

    Full text link
    Time integration of ODEs or time-dependent PDEs with required resolution of the fastest time scales of the system, can be very costly if the system exhibits multiple time scales of different magnitudes. If the different time scales are localised to different components, corresponding to localisation in space for a PDE, efficient time integration thus requires that we use different time steps for different components. We present an overview of the multi-adaptive Galerkin methods mcG(q) and mdG(q) recently introduced in a series of papers by the author. In these methods, the time step sequence is selected individually and adaptively for each component, based on an a posteriori error estimate of the global error. The multi-adaptive methods require the solution of large systems of nonlinear algebraic equations which are solved using explicit-type iterative solvers (fixed point iteration). If the system is stiff, these iterations may fail to converge, corresponding to the well-known fact that standard explicit methods are inefficient for stiff systems. To resolve this problem, we present an adaptive strategy for explicit time integration of stiff ODEs, in which the explicit method is adaptively stabilised by a small number of small, stabilising time steps

    A class of implicit-explicit two-step Runge-Kutta methods

    Get PDF
    This work develops implicit-explicit time integrators based on two-step Runge-Kutta methods. The class of schemes of interest is characterized by linear invariant preservation and high stage orders. Theoretical consistency and stability analyses are performed to reveal the properties of these methods. The new framework offers extreme flexibility in the construction of partitioned integrators, since no coupling conditions are necessary. Moreover, the methods are not plagued by severe order reduction, due to their high stage orders. Two practical schemes of orders four and six are constructed, and are used to solve several test problems. Numerical results confirm the theoretical findings

    Extrapolation-based implicit-explicit general linear methods

    Full text link
    For many systems of differential equations modeling problems in science and engineering, there are natural splittings of the right hand side into two parts, one non-stiff or mildly stiff, and the other one stiff. For such systems implicit-explicit (IMEX) integration combines an explicit scheme for the non-stiff part with an implicit scheme for the stiff part. In a recent series of papers two of the authors (Sandu and Zhang) have developed IMEX GLMs, a family of implicit-explicit schemes based on general linear methods. It has been shown that, due to their high stage order, IMEX GLMs require no additional coupling order conditions, and are not marred by order reduction. This work develops a new extrapolation-based approach to construct practical IMEX GLM pairs of high order. We look for methods with large absolute stability region, assuming that the implicit part of the method is A- or L-stable. We provide examples of IMEX GLMs with optimal stability properties. Their application to a two dimensional test problem confirms the theoretical findings
    • …
    corecore