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Abstract

We are concerned with numerical methods which give weak approximations for stiff
Itô stochastic differential equations (SDEs). It is well known that the numerical
solution of stiff SDEs leads to a stepsize reduction when explicit methods are used.
However, there are some classes of explicit methods that are well suited to solv-
ing some types of stiff SDEs. One such class is the class of stochastic orthogonal
Runge-Kutta Chebyshev (SROCK) methods. SROCK methods reduce to Runge-
Kutta Chebyshev methods when applied to ordinary differential equations (ODEs).
Another promising class of methods is the class of explicit methods that reduce to
explicit exponential Runge-Kutta (RK) methods when applied to semilinear ODEs.
In this paper, we will propose new exponential RK methods which achieve weak
order one or two for multi-dimensional, non-commutative SDEs with a semilinear
drift term, whereas they are of order one, two or three for semilinear ODEs. We
will analytically investigate their stability properties in mean square, and will check
their performance in numerical examples.



1 Introduction

For stiff ordinary differential equations (ODEs), there are some classes of explicit methods
that are well suited to solving them. One such class is the class of Runge-Kutta Chebyshev
(RKC) methods. They are useful for stiff problems whose eigenvalues lie near the negative
real axis. van der Houwen and Sommeijer [26] have constructed a family of first order
RKC methods. Abdulle and Medovikov [3] have modified it and have proposed a family of
the second order RKC methods. Another suitable class of methods is the class of explicit
exponential Runge-Kutta (RK) methods for semilinear problems [9, 11, 12, 13, 19, 22].
Although these methods were proposed many years ago, until recently they have not been
regarded as practical because of the cost of calculations for matrix exponentials, especially
for large problems. In order to overcome this problem, new methods have been proposed
[11, 12, 13].

Similarly, for stochastic differential equations (SDEs) explicit RK methods who have
excellent stability properties have been developed. Abdulle and Cirilli [1] have proposed
a family of explicit stochastic orthogonal Runge-Kutta Chebyshev (SROCK) methods
with extended mean square (MS) stability regions. Their methods have strong order one
half and weak order one for non-commutative Stratonovich SDEs, whereas they reduce to
the first order RKC methods when applied to ODEs. Abdulle and Li [2] have proposed
SROCK methods of the same order for non-commutative Itô SDEs. Komori and Burrage
[17] have developed these ideas and have proposed weak second order SROCK methods
for non-commutative Stratonovich SDEs. If the methods are applied to ODEs, they
reduce to the second order RKC methods of Abdulle and Medovikov [3]. Komori and
Burrage [18] have also proposed strong first order SROCK methods for non-commutative
Itô and Stratonovich SDEs, which reduce to the first or second order RKC methods for
ODEs. The weak second order SROCK methods given by Komori and Burrage [17] have
an advantage that the stability region is large along the negative real axis, but they still
have a drawback, that is, their stability region is not so wide. In order to overcome the
drawback, Abdulle, Vilmart and Zygalakis [4] have proposed a new family of weak second
order SROCK methods for non-commutative Itô SDEs, in which another family of second
order RKC methods is embedded.

On the other hand, Shi, Xiao and Zhang [25] have proposed an exponential Euler
scheme for the strong approximation of solutions of SDEs with multiplicative noise driven
by a scalar Wiener process. Adamu [5] has proposed exponential integrators for stochas-
tic partial differential equations with a semilinear drift term and multiplicative noise.
Komori and Burrage [16] have proposed another explicit exponential Euler scheme for
non-commutative Itô SDEs with a semilinear drift term, which is of strong order one half
and A-stable in MS.

In the present paper, we devote ourselves to deriving stochastic exponential Runge-
Kutta (SERK) methods for the weak approximation of solutions of non-commutative Itô
SDEs with a semilinear drift term. We will achieve it on the basis of a stochastic Runge-
Kutta (SRK) family proposed by Rößler [24] and explicit exponential RK methods for
ODEs proposed by Hochbruck and Ostermann [12]. In Section 2 we will briefly introduce
explicit exponential RK methods for ODEs. In Section 3 we will derive our SERK meth-
ods, and in Section 4 we will give their stability analysis. Section 5 will present numerical
results and Section 6 our conclusions.
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2 Explicit exponential RK methods for ODEs

We consider autonomous semilinear ODEs given by

y′(t) = Ay(t) + f(y(t)), t > 0, y(0) = y0, (2. 1)

where y is an Rd-valued function on [0,∞), A is a d × d matrix and f is an Rd-valued
nonlinear function on Rd or a constant vector. By the variation-of-constants formula, we
have

y(tn+1) = eAhyn +

∫ tn+1

tn

eA(tn+1−s)f(y(s))ds (2. 2)

if y(tn) = yn. Here, yn denotes a discrete approximation to the solution y(tn) of (2. 1)

for an equidistant grid point tn
def
= nh (n = 1, 2, . . . ,M) with step size h (M is a natural

number). By interpolating f(y(s)) at f(yn) only, we obtain the simplest exponential
scheme for (2. 1) [13]:

yn+1 = eAhyn + hϕ1(Ah)f(yn), (2. 3)

where ϕ1(Z)
def
= Z−1(eZ − I) and I stands for the d× d identity matrix. This is called the

explicit exponential Euler scheme.
In addition, higher order exponential RK methods have been proposed in [12, 13]. The

following is a second order exponential RK method [13]:

Y 1 = ec2hAyn + c2hϕ1(c2hA)f(yn),

yn+1 = ehAyn + h

{
ϕ1(hA) − 1

c2
ϕ2(hA)

}
f(yn) +

1

c2
hϕ2(hA)f(Y 1),

(2. 4)

where c2 is a parameter and ϕ2(Z)
def
= Z−2(eZ − I − Z). The following is a third order

exponential RK method [12]:

Y 1 = ec2hAyn + c2hϕ1(c2hA)f(yn),

Y 2 = ec3hAyn + h {c3ϕ1(c3hA) − ξ(hA)}f(yn) + hξ(hA)f(Y 1),

yn+1 = ehAyn + h

{
ϕ1(hA) − γ + 1

γc2 + c3
ϕ2(hA)

}
f(yn)

+
1

γc2 + c3
hϕ2(hA) {γf(Y 1) + f(Y 2)} ,

(2. 5)

where c2, c3 and γ are parameters satisfying

2(γc2 + c3) = 3
(
γc22 + c23

)
and ξ(Z)

def
= c2

γ
ϕ2(c2Z)+

c23
c2
ϕ2(c3Z) (It should be noted that there is a typographical error

in (5.9) of [12]).

3 Weak order SERK methods

We derive SERK methods of weak order one or two by utilizing some results in SRK
methods. For this, we give a brief introduction to SRK methods in the first subsection.
After it, we will derive and show SERK methods in the second and third subsections.
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3.1 SRK methods

Similarly to the case of ODEs, we are concerned with autonomous SDEs with the semi-
linear drift term given by

dy(t) = (Ay(t) + f(y(t)))dt+
m∑

j=1

gj(y(t))dWj(t), t > 0, y(0) = y0, (3. 1)

where gj, j = 1, 2, . . . ,m are Rd-valued functions on Rd, the Wj(t), j = 1, 2, . . . ,m are
independent Wiener processes and y0 is independent of Wj(t) −Wj(0) for t > 0.

In order to deal with weak approximations for (3. 1), let g0(y) be Ay + f(y) and let
us consider the following SRK method with the stage number s and r ≤ s [15], which is
based on the SRK framework proposed by Rößler [24]:

yn+1 = yn +
s∑

i=1

αihg0

(
H

(0)
i

)
+

s∑
i=r

m∑
j=1

β
(1)
i 4Ŵjgj

(
H

(j)
i

)
+

s∑
i=r

m∑
j=1

β
(2)
i η̃(j,j)gj

(
H

(j)
i

)
+

s∑
i=r

m∑
j=1

β
(3)
i 4Ŵjgj

(
Ĥ

(j)

i

)
+

s∑
i=r

m∑
j=1

β
(4)
i

√
hgj

(
Ĥ

(j)

i

)
,

(3. 2)

where

H
(0)
i = yn +

i−1∑
k=1

A
(0)
ik hg0

(
H

(0)
k

)
(1 ≤ i ≤ r),

H
(0)
i = yn +

i−1∑
k=1

A
(0)
ik hg0

(
H

(0)
k

)
+

i−1∑
k=r

m∑
l=1

B
(0)
ik 4Ŵlgl

(
H

(l)
k

)
(r < i ≤ s),

H (j)
r = yn +

r∑
k=1

A
(1)
rk hg0

(
H

(0)
k

)
,

H
(j)
i = yn +

i∑
k=1

A
(1)
ik hg0

(
H

(0)
k

)
+

i−1∑
k=r

B
(1)
ik

√
hgj

(
H

(j)
k

)
(r < i ≤ s),

Ĥ
(j)

i = yn +
s∑

k=1

A
(2)
ik hg0

(
H

(0)
k

)
+

s∑
k=r

m∑
l=1
l 6=j

B
(2)
ik η̃

(j,l)gl

(
H

(l)
k

)
(r ≤ i ≤ s)

for j = 1, 2, . . . ,m and where the αi, β
(ra)
i , A

(rb)
ik , and B

(rb)
ik (1 ≤ ra ≤ 4 and 0 ≤ rb ≤ 2)

denote the parameters of the method. The random variables involved in the method are

given by η̃(j,j) def
= ((4Ŵj)

2 − h)/(2
√
h),

η̃(j,l) def
=

{
(4Ŵj4Ŵl −

√
h4W̃j)/(2

√
h) (j < l),

(4Ŵj4Ŵl +
√
h4W̃l)/(2

√
h) (j > l),

the 4W̃l (1 ≤ l ≤ m − 1) are independent two-point distributed random variables with
P (4W̃j = ±

√
h) = 1/2 and the 4Ŵj (1 ≤ j ≤ m) are independent three-point dis-

tributed random variables with P (4Ŵj = ±
√

3h) = 1/6 and P (4Ŵj = 0) = 2/3 [14, p.
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Table 1: Butcher tableau for (3. 2) with r = s− 2

A
(0)
21
...

. . .

A
(0)
s−1,1 · · · A

(0)
s−1,s−2 B

(0)
s−1,s−2

A
(0)
s,1 · · · A

(0)
s,s−2 A

(0)
s,s−1 B

(0)
s,s−2 B

(0)
s,s−1

A
(1)
s−2,1 · · · A

(1)
s−2,s−2

A
(1)
s−1,1 · · · A

(1)
s−1,s−2 A

(1)
s−1,s−1 B

(1)
s−1,s−2

A
(1)
s,1 · · · A

(1)
s,s−2 A

(1)
s,s−1 A

(1)
s,s B

(1)
s,s−2 B

(1)
s,s−1

A
(2)
s−2,1 · · · A

(2)
s−2,s−2 A

(2)
s−2,s−1 A

(2)
s−2,s B

(2)
s−2,s−2 B

(2)
s−2,s−1 B

(2)
s−2,s

A
(2)
s−1,1 · · · A

(2)
s−1,s−2 A

(2)
s−1,s−1 A

(2)
s−1,s B

(2)
s−1,s−2 B

(2)
s−1,s−1 B

(2)
s−1,s

A
(2)
s,1 · · · A

(2)
s,s−2 A

(2)
s,s−1 A

(2)
s,s B

(2)
s,s−2 B

(2)
s,s−1 B

(2)
s,s

α1 · · · αs−2 αs−1 αs β
(1)
s−2 β

(1)
s−1 β

(1)
s β

(2)
s−2 β

(2)
s−1 β

(2)
s

β
(3)
s−2 β

(3)
s−1 β

(3)
s β

(4)
s−2 β

(4)
s−1 β

(4)
s

225]. If we assume r = s− 2, for example, (3. 2) is characterized by the Butcher tableau
in Table 1.

Let CL
P (Rd,R) be the family of L times continuously differentiable real-valued functions

on Rd, whose partial derivatives of order less than or equal to L have polynomial growth.
Whenever we deal with weak convergence of order q, we will assume the following on
SDEs [14, p. 474] (also see [6, p. 113]):

Assumption 3.1 All moments of the initial value y0 exist and gj (j = 0, 1, . . . ,m) are

Lipschitz continuous with all their components belonging to C
2(q+1)
P (Rd,R).

Then, we can give the definition of weak convergence of order q [14, p. 327]:

Definition 3.1 When discrete approximations yn are given by a numerical scheme, we

say that the scheme is of weak (global) order q if for all G ∈ C
2(q+1)
P (Rd,R), constants

C > 0 (independent of h) and δ0 > 0 exist, such that

|E[G(y(tM)] − E[G(yM)]| ≤ Chq, h ∈ (0, δ0).

In order to consider numerical schemes of weak order q, Rößler [23] has made use of the
following theorem due to Milstein [21], which is stated with an appropriate notation.

Theorem 3.1 In addition to Assumption 3.1, suppose that the following conditions hold:

(1) for sufficiently large r, the moments E[‖yn‖2r] exist and are uniformly bounded with
respect to M and n = 0, 1, . . . ,M ;

(2) for all G ∈ C
2(q+1)
P (Rd,R), the local error estimation∣∣E[f(y(tn+1))] − E[f(yn+1)]

∣∣ ≤ K(yn)hq+1

holds if y(tn) = yn, where K ∈ C0
P (Rd,R).
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Then, the scheme that gives yn (n = 0, 1, . . . ,M) is of weak (global) order q.

The second condition concerning the local error in the theorem provides us order condi-
tions for SRK methods of weak order q. For further information, see [23].

If we want to derive a scheme of weak order one from (3. 2), for example, we need to
find a set of parameter values satisfying the following nine order conditions [24]:

1.
s∑

i=1

αi = 1, 2.
s∑

i=r

β
(4)
i = 0, 3.

s∑
i=r

β
(3)
i = 0, 4.

(
s∑

i=r

β
(1)
i

)2

= 1,

5.
s∑

i=r

β
(2)
i = 0, 6.

s∑
i=r+1

β
(1)
i

(
i−1∑
k=r

B
(1)
ik

)
= 0, 7.

s∑
i=r

β
(4)
i

(
s∑

k=1

A
(2)
ik

)
= 0,

8.
s∑

i=r

β
(3)
i

(
s∑

k=r

B
(2)
ik

)
= 0, 9.

s∑
i=r

β
(4)
i

(
s∑

k=r

B
(2)
ik

)2

= 0.

We will refer to these in the next subsection.
In the case of weak order two we have 59 order conditions including the above nine

order conditions, and we need three stages at least to satisfy them [24]. Let us suppose
s = 3. In order to solve the order conditions in a simple way, we can assume

β
(1)
1 =

−1 + 2
(
B

(1)
21

)2

2ε1

(
B

(1)
21

)2 , β
(1)
2 = β

(1)
3 =

1

4ε1

(
B

(1)
21

)2 , β
(2)
1 = 0,

β
(2)
2 = −β(2)

3 =
1

2B
(1)
21

, β
(3)
1 = − 1

2ε1b22
, β

(3)
2 = β

(3)
3 =

1

4ε1b22
, β

(4)
1 = 0,

β
(4)
2 = −β(4)

3 =
1

2b2
, B

(0)
32 = 0, B

(1)
31 = −B(1)

21 , B
(1)
32 = 0,

B
(2)
11 = B

(2)
12 = B

(2)
13 = 0, B

(2)
23 = B

(2)
22 , B

(2)
31 = −B(2)

21 , B
(2)
32 = B

(2)
33 = −B(2)

22 ,

A
(1)
21 = A

(1)
31 , A

(1)
22 = A

(1)
32 = A

(1)
33 = 0, A

(2)
1,k = A

(2)
2,k = A

(2)
3,k (1 ≤ k ≤ 3)

(3. 3)

when B
(1)
21 , B

(2)
21 and B

(2)
22 are given [15]. Here, ε1

def
= ±1 and b2

def
= B

(2)
21 + 2B

(2)
22 . Then,

only the following three order conditions remain to be solved [15]:

10.
3∑

i=2

αi

(
B

(0)
i,1

)2

=
1

2
, 11.

3∑
i=2

αiB
(0)
i,1 =

ε1

2
, 12.

3∑
i=1

β
(1)
i A

(1)
i,1 =

ε1

2
.

3.2 SERK methods

As preparations, we start with a simple case. Let us assume s = r = 1 in (3. 2) and
consider

H
(0)
1 = yn, H

(j)
1 = yn + hg0

(
H

(0)
1

)
(1 ≤ j ≤ m),

yn+1 = yn + hg0

(
H

(0)
1

)
+

m∑
j=1

4W̃jgj

(
H

(j)
1

)
,

(3. 4)

which means
A

(1)
11 = α1 = β

(1)
1 = 1, β

(2)
1 = β

(3)
1 = β

(4)
1 = 0.
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Table 2: Butcher tableau of (3. 4)

0 0
1 0
0 0
1 1 0

0 0

Because Conditions 1 to 9 are satisfied, (3. 4) is of weak order one. Here, note that 4W̃j

is available for weak order one instead of 4Ŵj. The Butcher tableaux of (3. 4) is given
in Table 2.

Incidentally, since the Euler scheme and (2. 3) are of order one for (2. 1),∥∥∥eAhyn + ϕ1(Ah)f(yn)h−
(
yn + hg0

(
H

(0)
1

))∥∥∥ = O(h2)

as h → 0. For this, the replacement of yn + hg0

(
H

(0)
1

)
with eAhyn + ϕ1(Ah)f(yn)h in

(3. 4) does not violate the weak order of convergence. Thus, we can obtain the following
SERK scheme of weak order one:

H
(j)
1 = eAhyn + hϕ1(Ah)f(yn) (1 ≤ j ≤ m),

yn+1 = eAhyn + hϕ1(Ah)f(yn) +
m∑

j=1

4W̃jgj

(
H

(j)
1

)
.

(3. 5)

It is remarkable that (3. 5) reduces to (3. 4) if A goes to the zero matrix, whereas
they have the same weak order. Taking this into account, now let us consider a way of
finding SERK methods who achieve weak order q (= 1, 2) when (3. 2) is of the same weak
order q. The following lemma will be helpful for us to do this.

Lemma 3.1 Assume that yn+1 is given by (3. 2) and another approximation ŷn+1 is
given by

ŷn+1 = ỹn+1 +
s∑

i=r

m∑
j=1

β
(1)
i 4Ŵjgj

(
H̃

(j)

i

)
+

s∑
i=r

m∑
j=1

β
(2)
i η̃(j,j)gj

(
H̃

(j)

i

)
+

s∑
i=r

m∑
j=1

β
(3)
i 4Ŵjgj

(
H̄

(j)
i

)
+

s∑
i=r

m∑
j=1

β
(4)
i

√
hgj

(
H̄

(j)
i

)
,

(3. 6)

where H̃
(j)

i , H̄
(j)
i (i = 1, 2, . . . , s and j = 1, 2, . . . ,m) and ỹn+1 satisfy the deterministic

conditions ∥∥∥H̃ (j)

i − H
(j)
i

∥∥∥ = O(hq),
∥∥∥H̄ (j)

i − Ĥ
(j)

i

∥∥∥ = O(hq+1/2),∥∥∥∥∥ỹn+1 −

{
yn +

s∑
i=1

αihg0

(
H

(0)
i

)}∥∥∥∥∥ = O(hq+1/2),
(3. 7)

the expectation condition∥∥∥∥∥E
[
ỹn+1 −

{
yn +

s∑
i=1

αihg0

(
H

(0)
i

)}]∥∥∥∥∥ = O(hq+1) (3. 8)
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and the covariance conditions∥∥∥E [4Ŵj

(
H̃

(j)

i − H
(j)
i

)]∥∥∥ = O(hq+1),∥∥∥E [η̃(j,j)
(
H̃

(j)

i − H
(j)
i

)]∥∥∥ = O(hq+1)
(3. 9)

as h → 0 for a given q = 1 or 2 under the condition that yn is given. Then, for all

G ∈ C
2(q+1)
P (Rd,R)

|E[G(ŷn+1) −G(yn+1)]| = O(hq+1)

as h→ 0 under the condition that yn is given.

Proof. From (3. 2), (3. 6), (3. 7) and (3. 8), we have∥∥E [ŷn+1 − yn+1

]∥∥ ≤

∥∥∥∥∥E
[

s∑
i=r

m∑
j=1

β
(1)
i 4Ŵj

∂gj

∂y

(
H

(j)
i

)(
H̃

(j)

i − H
(j)
i

)]∥∥∥∥∥
+

∥∥∥∥∥E
[

s∑
i=r

m∑
j=1

β
(2)
i η̃(j,j)

∂gj

∂y

(
H

(j)
i

)(
H̃

(j)

i − H
(j)
i

)]∥∥∥∥∥+O(hq+1).

Here, ∥∥∥∥E [4Ŵj

∂gj

∂y

(
H

(j)
i

)(
H̃

(j)

i − H
(j)
i

)]∥∥∥∥
=

∥∥∥∥E [4Ŵj

∂gj

∂y
(yn)

(
H̃

(j)

i − H
(j)
i

)]∥∥∥∥+O(hq+1)

because of (3. 2) and (3. 7). This and (3. 9) lead to∥∥∥∥E [4Ŵj

∂gj

∂y

(
H

(j)
i

)(
H̃

(j)

i − H
(j)
i

)]∥∥∥∥ = O(hq+1)

under the condition that yn is given. Similarly,∥∥∥∥E [η̃(j,j)
∂gj

∂y

(
H

(j)
i

)(
H̃

(j)

i − H
(j)
i

)]∥∥∥∥ = O(hq+1).

Hence, we have ∥∥E [ŷn+1 − yn+1

]∥∥ = O(hq+1) (3. 10)

under the condition that yn is given.
On the other hand, ∥∥ŷn+1 − yn+1

∥∥ = O(hq+1/2)

because of (3. 2), (3. 6) and (3. 7). For all G ∈ C
2(q+1)
P (Rd,R), thus,

G
(
ŷn+1

)
−G

(
yn+1

)
=
∂G

∂y

(
yn+1

) (
ŷn+1 − yn+1

)
+O(h2q+1)

=
∂G

∂y
(yn)

(
ŷn+1 − yn+1

)
+O(hq+1).

Consequently, because of (3. 10) we obtain

E
[
G
(
ŷn+1

)
−G

(
yn+1

)]
= O(hq+1)

as h→ 0 under the condition that yn is given. 2

This lemma and Theorem 3.1 give us a way of finding SERK methods. That is, if
yn+1 given by (3. 2) is of weak order q and ŷn+1 given by an SERK method satisfies the
assumption in the lemma, then ŷn+1 is also of weak order q.
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3.3 Examples of SERK methods

In Subsection 3.2 we have derived (3. 5), which is of weak order one. In the present
subsection we will derive other SERK methods by utilizing the results in the previous
subsection.

3.3.1 Another method of weak order one

When we set s = r = 2 and β
(2)
2 = β

(3)
2 = β

(4)
2 = 0 in (3. 2), we have

yn+1 = yn + α1hg0

(
H

(0)
1

)
+ α2hg0

(
H

(0)
2

)
+

m∑
j=1

β
(1)
2 4W̃jgj

(
H

(j)
2

)
, (3. 11)

where
H

(0)
1 = yn, H

(0)
2 = yn + A

(0)
21 hg0

(
H

(0)
1

)
,

H
(j)
2 = yn + A

(1)
21 hg0

(
H

(0)
1

)
+ A

(1)
22 hg0

(
H

(0)
2

)
for j = 1, 2, . . . ,m. When α1 + α2 = β

(1)
2 = 1, this method is of weak order one because

Conditions 1 to 9 are satisfied. Here, note that 4W̃j is available for weak order one

instead of 4Ŵj.
Taking this and (2. 4) into account, let us consider the following SERK method

yn+1 = ỹn+1 +
m∑

j=1

β
(1)
2 4W̃jgj

(
H̃

(j)

2

)
, (3. 12)

where
H̃

(0)

1 = yn, H̃
(0)

2 = eA
(0)
21 hAyn + A

(0)
21 hϕ1

(
A

(0)
21 hA

)
f
(
H̃

(0)

1

)
,

H̃
(j)

2 = ehAyn + h

{
ϕ1(hA) − 1

A
(0)
21

ϕ2(hA)

}
f
(
H̃

(0)

1

)
+

1

A
(0)
21

hϕ2(hA)f
(
H̃

(0)

2

)
, ỹn+1 = H̃

(j)

2

for j = 1, 2, . . . ,m. When A
(1)
21 = α1 and A

(1)
22 = α2 as well as

α1 = 1 − 1

2A
(0)
21

, α2 =
1

2A
(0)
21

, (3. 13)

we have∥∥∥H̃ (j)

2 − H
(j)
2

∥∥∥ = O(h3),

∥∥∥∥∥ỹn+1 −

{
yn +

2∑
i=1

αihg0

(
H

(0)
i

)}∥∥∥∥∥ = O(h3).

Moreover, if β
(1)
2 = 1, (3. 12) is of weak order one because (3. 11) is of weak order one,

whereas (3. 12) is of order two for (2. 1). After all, the Butcher tableaux of (3. 11) is
given in Table 3 when both of (3. 11) and (3. 12) are of weak order one.
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Table 3: Butcher tableau of (3. 11) when it and (3. 12) are of weak order one

A
(0)
21 0

1 − 1

2A
(0)
21

1

2A
(0)
21

0

0 0 0

1 − 1

2A
(0)
21

1

2A
(0)
21

1 0

0 0

3.3.2 A method of weak order two

Let us suppose s = 3, r = 1 and α3 = A
(2)
11 = A

(2)
13 = 0 in (3. 2) as well as (3. 3), and

consider

yn+1 = yn + α1hg0

(
H

(0)
1

)
+ α2hg0

(
H

(0)
2

)
+

3∑
i=1

m∑
j=1

β
(1)
i 4Ŵjgj

(
H

(j)
i

)
+

m∑
j=1

β
(2)
2 η̃(j,j)gj

(
H

(j)
2

)
+

m∑
j=1

β
(2)
3 η̃(j,j)gj

(
H

(j)
3

)
+

3∑
i=1

m∑
j=1

β
(3)
i 4Ŵjgj

(
Ĥ

(j)

i

)
+

m∑
j=1

β
(4)
2

√
hgj

(
Ĥ

(j)

2

)
+

m∑
j=1

β
(4)
3

√
hgj

(
Ĥ

(j)

3

)
,

(3. 14)

where
H

(0)
1 = yn, H

(j)
1 = yn + A

(1)
11 hg0

(
H

(0)
1

)
,

H
(0)
2 = yn + A

(0)
21 hg0

(
H

(0)
1

)
+

m∑
l=1

B
(0)
21 4Ŵlgl

(
H

(l)
1

)
,

H
(j)
i = yn + A

(1)
i,1hg0

(
H

(0)
1

)
+B

(1)
i,1

√
hgj

(
H

(j)
1

)
,

Ĥ
(j)

1 = yn + A
(2)
12 hg0

(
H

(0)
2

)
,

Ĥ
(j)

i = yn + A
(2)
i,2hg0

(
H

(0)
2

)
+

3∑
k=1

m∑
l=1
l 6=j

B
(2)
ik η̃

(j,l)gl

(
H

(l)
k

)
for i = 2, 3 and j = 1, 2, . . .m.
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Corresponding to this and (2. 4), let us suppose the following SERK method

yn+1 = ỹn+1 +
3∑

i=1

m∑
j=1

β
(1)
i 4W̃jgj

(
H̃

(j)

i

)
+

m∑
j=1

β
(2)
2 η̃(j,j)gj

(
H̃

(j)

2

)
+

m∑
j=1

β
(2)
3 η̃(j,j)gj

(
H̃

(j)

3

)
+

3∑
i=1

m∑
j=1

β
(3)
i 4W̃jgj

(
H̄

(j)
i

)
+

m∑
j=1

β
(4)
2

√
hgj

(
H̄

(j)
2

)
+

m∑
j=1

β
(4)
3

√
hgj

(
H̄

(j)
3

)
,

(3. 15)

where

H̃
(0)

1 = yn, H̃
(j)

1 = eA
(1)
11 hAyn + A

(1)
11 hϕ1

(
A

(1)
11 hA

)
f
(
H̃

(0)

1

)
,

H̃
(0)

2 = eA
(0)
21 hAyn + A

(0)
21 hϕ1

(
A

(0)
21 hA

)
f
(
H̃

(0)

1

)
+

m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
,

H̃
(j)

i = eA
(1)
i,1 hAyn + A

(1)
i,1hϕ1

(
A

(1)
i,1hA

)
f
(
H̃

(0)

1

)
+B

(1)
i,1

√
hgj

(
H̃

(j)

1

)
,

H̄
(j)
1 = eA

(2)
12 hAyn + A

(2)
12 hAϕ1

(
A

(2)
12 hA

) m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
+ A

(2)
12 hϕ1

(
A

(2)
12 hA

)
f
(
H̃

(0)

2

)
,

H̄
(j)
i = eA

(2)
i,2 hAyn + A

(2)
i,2hAϕ1

(
A

(2)
i,2hA

) m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
+ A

(2)
i,2hϕ1

(
A

(2)
i,2hA

)
f
(
H̃

(0)

2

)
+

3∑
k=1

m∑
l=1
l 6=j

B
(2)
ik η̃

(j,l)gl

(
H̃

(l)

k

)

ỹn+1 = ehAyn +
1

A
(0)
21

hAϕ2(hA)
m∑

l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
+ h

{
ϕ1(hA) − 1

A
(0)
21

ϕ2(hA)

}
f
(
H̃

(0)

1

)
+

1

A
(0)
21

hϕ2(hA)f
(
H̃

(0)

2

)
for i = 2, 3 and j = 1, 2, . . .m.

From these,∥∥∥∥H̃ (j)

1 −
{

H
(j)
1 +

1

2

(
A

(1)
11 h
)2

A (Ayn + f(yn))

}∥∥∥∥ = O(h3),∥∥∥∥H̃ (j)

i −
{

H
(j)
i +

1

2

(
A

(1)
i,1h
)2

A (Ayn + f(yn))

}∥∥∥∥ = O(h5/2)
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for i = 2, 3 and j = 1, 2, . . .m. Again, let us assume (3. 13). Then, we have∥∥∥∥∥ỹn+1 −

{
yn +

2∑
i=1

αihg0

(
H

(0)
i

)
+

1

6A
(0)
21

h2A

(
A+

∂f

∂y
(yn)

) m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)}∥∥∥∥∥ = O(h3).

In addition, because∥∥∥∥H̄ (j)
i − Ĥ

(j)

i −
(

1

2
A

(2)
i,2 − A

(0)
21

)
A

(2)
i,2h

2A (Ayn + f(yn))

∥∥∥∥ = O(h5/2)

for i = 1, 2, 3, let us assume

A
(2)
12 = A

(2)
22 = A

(2)
32 = 2A

(0)
21 . (3. 16)

Thus, if (3. 14) is of weak order two when (3. 13) and (3. 16) hold, (3. 15) is also weak
order two.

We can find a solution for (3. 14) to achieve weak order two as follows. The substitu-

tion of α3 = 0 into Conditions 10 and 11 yieldsB
(0)
21 = ε1 and α2 = 1

2
, which means A

(0)
21 = 1

due to (3. 13). Taking into account that B
(0)
21 , β

(1)
i and β

(3)
i (i = 1, 2, 3) are multiplied by

4Ŵj (1 ≤ j ≤ m) in (3. 14), we can suppose ε1 = 1 without loss of generality. Because

of (3. 3), we have B
(1)
21 = ±√

γ0 from Condition 12 if γ0
def
= (A

(1)
21 − A

(1)
11 )/(1 − 2A

(1)
11 ) > 0.

The Butcher tableaux of this method will be given in the next section.

3.3.3 Another method of weak order two

Let us suppose s = 3, r = 1 and A
(2)
11 = A

(2)
13 = 0 in (3. 2) as well as (3. 3), and consider

yn+1 = yn +
3∑

i=1

αihg0

(
H

(0)
i

)
+

3∑
i=1

m∑
j=1

β
(1)
i 4Ŵjgj

(
H

(j)
i

)
+

m∑
j=1

β
(2)
2 η̃(j,j)gj

(
H

(j)
2

)
+

m∑
j=1

β
(2)
3 η̃(j,j)gj

(
H

(j)
3

)
+

3∑
i=1

m∑
j=1

β
(3)
i 4Ŵjgj

(
Ĥ

(j)

i

)
+

m∑
j=1

β
(4)
2

√
hgj

(
Ĥ

(j)

2

)
+

m∑
j=1

β
(4)
3

√
hgj

(
Ĥ

(j)

3

)
,

(3. 17)

where

H
(0)
1 = yn, H

(j)
1 = yn + A

(1)
11 hg0

(
H

(0)
1

)
,

H
(0)
2 = yn + A

(0)
21 hg0

(
H

(0)
1

)
+

m∑
l=1

B
(0)
21 4Ŵlgl

(
H

(l)
1

)
,

H
(j)
2 = yn + A

(1)
21 hg0

(
H

(0)
1

)
+B

(1)
21

√
hgj

(
H

(j)
1

)
,

H
(0)
3 = yn + A

(0)
31 hg0

(
H

(0)
1

)
+ A

(0)
32 hg0

(
H

(0)
2

)
+

m∑
l=1

B
(0)
31 4Ŵlgl

(
H

(l)
1

)
,

H
(j)
3 = yn + A

(1)
31 hg0

(
H

(0)
1

)
+B

(1)
31

√
hgj

(
H

(j)
1

)
,
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Ĥ
(j)

1 = yn + A
(2)
12 hg0

(
H

(0)
2

)
,

Ĥ
(j)

i = yn + A
(2)
i,2hg0

(
H

(0)
2

)
+

3∑
k=1

m∑
l=1
l 6=j

B
(2)
ik η̃

(j,l)gl

(
H

(l)
k

)
for i = 2, 3 and j = 1, 2, . . .m.

Corresponding to this and (2. 5), let us suppose the following SERK method

yn+1 = ỹn+1 +
3∑

i=1

m∑
j=1

β
(1)
i 4W̃jgj

(
H̃

(j)

i

)
+

m∑
j=1

β
(2)
2 η̃(j,j)gj

(
H̃

(j)

2

)
+

m∑
j=1

β
(2)
3 η̃(j,j)gj

(
H̃

(j)

3

)
+

3∑
i=1

m∑
j=1

β
(3)
i 4W̃jgj

(
H̄

(j)
i

)
+

m∑
j=1

β
(4)
2

√
hgj

(
H̄

(j)
2

)
+

m∑
j=1

β
(4)
3

√
hgj

(
H̄

(j)
3

)
,

(3. 18)

where

H̃
(0)

1 = yn, H̃
(j)

1 = eA
(1)
11 hAyn + A

(1)
11 hϕ1

(
A

(1)
11 hA

)
f
(
H̃

(0)

1

)
,

H̃
(0)

2 = eA
(0)
21 hAyn + A

(0)
21 hϕ1

(
A

(0)
21 hA

)
f
(
H̃

(0)

1

)
+

m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
,

H̃
(j)

2 = eA
(1)
21 hAyn + A

(1)
21 hϕ1

(
A

(1)
21 hA

)
f
(
H̃

(0)

1

)
+B

(1)
21

√
hgj

(
H̃

(j)

1

)
,

H̃
(0)

3 = ec
(0)
3 hAyn + A

(0)
32 hAϕ1(A

(0)
32 hA)

m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
+ h

{
c
(0)
3 ϕ1(c

(0)
3 hA) − ξ(0)(hA)

}
f
(
H̃

(0)

1

)
+ hξ(0)(hA)f

(
H̃

(0)

2

)
+

m∑
l=1

B
(0)
31 4W̃lgl

(
H̃

(l)

1

)
,

H̃
(j)

3 = eA
(1)
31 hAyn + A

(1)
31 hϕ1

(
A

(1)
31 hA

)
f
(
H̃

(0)

1

)
+B

(1)
31

√
hgj

(
H̃

(j)

1

)
,

H̄
(j)
1 = eA

(2)
12 hAyn + A

(2)
12 hAϕ1

(
A

(2)
12 hA

) m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
+ A

(2)
12 hϕ1

(
A

(2)
12 hA

)
f
(
H̃

(0)

2

)
,

H̄
(j)
i = eA

(2)
i,2 hAyn + A

(2)
i,2hAϕ1

(
A

(2)
i,2hA

) m∑
l=1

B
(0)
21 4W̃lgl

(
H̃

(l)

1

)
+ A

(2)
i,2hϕ1

(
A

(2)
i,2hA

)
f
(
H̃

(0)

2

)
+

3∑
k=1

m∑
l=1
l 6=j

B
(2)
ik η̃

(j,l)gl

(
H̃

(l)

k

)
,
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ỹn+1 = ehAyn +
γB

(0)
21 +B

(0)
31

γA
(0)
21 + c

(0)
3

hAϕ2(hA)
m∑

l=1

4W̃lgl

(
H̃

(l)

1

)
+ h

{
ϕ1(hA) − γ + 1

γA
(0)
21 + c

(0)
3

ϕ2(hA)

}
f
(
H̃

(0)

1

)
+ h

1

γA
(0)
21 + c

(0)
3

ϕ2(hA)
{
γf
(
H̃

(0)

2

)
+ f

(
H̃

(0)

3

)}
for i = 2, 3 and j = 1, 2, . . .m as well as

c
(0)
3

def
= A

(0)
31 + A

(0)
32 , ξ(0)(Z)

def
=
A

(0)
21

γ
ϕ2

(
A

(0)
21 Z

)
+

(c
(0)
3 )2

A
(0)
21

ϕ2

(
c
(0)
3 Z

)
.

Because this ỹn+1 comes from (2. 5), we assume

2
(
γA

(0)
21 + c

(0)
3

)
= 3

{
γ(A

(0)
21 )2 + (c

(0)
3 )2

}
. (3. 19)

From these,∥∥∥∥H̃ (j)

1 −
{

H
(j)
1 +

1

2

(
A

(1)
11 h
)2

A (Ayn + f(yn))

}∥∥∥∥ = O(h3),∥∥∥∥H̃ (j)

i −
{

H
(j)
i +

1

2

(
A

(1)
i,1h
)2

A (Ayn + f(yn))

}∥∥∥∥ = O(h5/2)

for i = 2, 3 and j = 1, 2, . . .m. Because if

1

2

(
A

(0)
21

γ
+

(c
(0)
3 )2

A
(0)
21

)
= A

(0)
32 (3. 20)

then ‖H̃ (0)

3 − H
(0)
3 ‖ = O(h2) holds, let us assume (3. 20). In addition, assume

α1 = 1 − γ + 1

2(γA0
21 + c

(0)
3 )

, α2 =
γ

2(γA0
21 + c

(0)
3 )

, α3 =
1

2(γA0
21 + c

(0)
3 )

. (3. 21)

Then, we have∥∥∥∥∥ỹn+1 −

{
yn +

3∑
i=1

αihg0

(
H

(0)
i

)
+
γB

(0)
21 +B

(0)
31 − 3A

(0)
32 B

(0)
21

6
(
γA

(0)
21 + c

(0)
3

) h2A

(
A+

∂f

∂y
(yn)

) m∑
l=1

4W̃lgl

(
H̃

(l)

1

)
∥∥∥∥∥∥

= O(h3).

Further again, let us assume (3. 16) because this leads to∥∥∥H̄ (j)
i − Ĥ

(j)

i

∥∥∥ = O(h5/2)
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for i = 1, 2, 3. From Lemma 3.1, thus, if (3. 17) is of weak order two when (3. 19), (3.
20) and (3. 21) hold, (3. 18) is also of weak order two.

We can find a solution for (3. 17) to achieve weak order two as follows. For simplicity,
let us set γ at 1. The substitution of γ = 1 into (3. 19) and (3. 20) and simplification
yield

A
(0)
21 =

2A
(0)
32

1 + (3A
(0)
32 − 1)2

, A
(0)
31 =

−A(0)
32 (3A

(0)
32 − 2)2

1 + (3A
(0)
32 − 1)2

.

Because α2 = α3 from γ = 1 and (3. 21), Conditions 10 and 11 give us

B
(0)
21 =

ε1 ±
√
−1 + 4α2

4α2

, B
(0)
31 =

ε1 ∓
√
−1 + 4α2

4α2

(double sign in same order) if −1+4α2 ≥ 0. Taking into account that B
(0)
21 , B

(0)
31 , β

(1)
i and

β
(3)
i (i = 1, 2, 3) are multiplied by 4Ŵj (1 ≤ j ≤ m) in (3. 17), we can suppose ε1 = 1

without loss of generality. Because of (3. 3), we have B
(1)
21 = ±√

γ0 from Condition 12 if
γ0 > 0. The Butcher tableaux of this method will be given in the next section.

4 MS stability analysis for SERK methods

Let us investigate stability properties for our SERK methods. We consider the following
test scalar SDE [10]:

dy(t) = λy(t)dt+
m∑

j=1

σjy(t)dWj(t), t > 0, y(0) = y0, (4. 1)

where y0 6= 0 with probability one (w. p. 1) and where λ and σj (1 ≤ j ≤ m) are complex
values and they satisfy

2<(λ) +
m∑

j=1

∣∣σj

∣∣2 < 0. (4. 2)

Because of (4. 2), the solution of (4. 1) is MS stable (limt→∞E[|y(t)|2] = 0) [10].
If we apply (3. 5) to (4. 2), then, we have

yn+1 =

(
1 +

m∑
j=1

σj4W̃j

)
ehλyn.

From this, the MS stability function R̂ of (3. 5) is given by

R̂(pr, q)
def
= E

∣∣∣∣∣
(

1 +
m∑

j=1

σj4W̃j

)
ehλ

∣∣∣∣∣
2
 = (1 + q)e2pr ,

where pr
def
= <(λ)h and q

def
=
∑m

j=1 |σj|2h. Because we can rewrite (4. 2) by

2pr + q < 0, (4. 3)

we have
R̂(pr, q) < (1 − 2pr)e

2pr .
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The function in the right-hand side is less than 1 for any pr < 0. Thus,

R̂(pr, q) < 1, ∀pr < 0

under the condition (4. 3). Consequently, (3. 5) is A-stable in MS [10]. In addition, if
we apply (3. 12) to (4. 2), we have the same one as the above R̂. Thus, (3. 12) is also
A-stable in MS.

If we apply (3. 15) to (4. 2) and utilize (3. 3), then, we have

yn+1 = R

(
hλ,
{
4Ŵj

}m

j=1
,
{
4W̃l

}m−1

l=1
, {σj}m

j=1

)
yn

for which

R

(
hλ,
{
4Ŵj

}m

j=1
,
{
4W̃l

}m−1

l=1
, {σj}m

j=1

)
def
= ehλ +

m∑
j=1

4Ŵjdj +
m∑

j=1

η̃(j,j)
√
hvjj +

m∑
j=1

m∑
l=1
l 6=j

η̃(j,l)
√
hvjl,

dj
def
= σj

{
B

(0)
21 (ehλ − 1 − hλ)

A
(0)
21 hλ

eA
(1)
11 hλ + β

(1)
1 eA

(1)
11 hλ + 2β

(1)
2 eA

(1)
21 hλ

}
,

vjl
def
=

{
σ2

j e
A

(1)
11 hλ (j = l),

2β
(4)
2 σjσl

(
B

(2)
21 eA

(1)
11 hλ + 2B

(2)
22 eA

(1)
21 hλ

)
(j 6= l).

Similarly to (3.5) in [15], we have

E
[
|R|2

]
= |ehλ|2 +

m∑
j=1

h|dj|2 +
1

2

m∑
j=1

h2|vjj|2 +
1

2

m∑
j=1

m∑
l=1
l 6=j

h2|vjl|2. (4. 4)

If =(λ) = 0, thus,

E[|R|2] = e2pr + q

(
(epr − 1 − pr)

pr

eA
(1)
11 pr +

−1 + 2γ0

2γ0

eA
(1)
11 pr +

1

2γ0

eA
(1)
21 pr

)2

+
1

2

m∑
j=1

q2
j e

2A
(1)
11 pr

+
1

2

m∑
j=1

m∑
l=1
l 6=j

qjql

(
B

(2)
21 eA

(1)
11 pr + 2B

(2)
22 eA

(1)
21 pr

B
(2)
21 + 2B

(2)
22

)2

, (4. 5)

where qj
def
= h|σj|2, due to (3. 3) and the last paragraph in Subsection 3.3.2. In addition,

let us assume B
(2)
22 = 0. Then, we obtain the following stability function for (3. 15):

R̂(pr, q)
def
= E[|R|2]

= e2pr + q

(
(epr − 1 − pr)

pr

eA
(1)
11 pr +

−1 + 2γ0

2γ0

eA
(1)
11 pr +

1

2γ0

eA
(1)
21 pr

)2

+
1

2
q2e2A

(1)
11 pr .
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pr

q

Figure 1: MS stability region for (3. 15)

For simplicity and stability, let us assume γ0 = 1/2. Because this leads to A
(1)
21 =

1/2 6= A
(1)
11 , thus,

R̂(pr, q) = e2pr + q

(
1

pr

(epr − 1 − pr)e
A

(1)
11 pr + epr/2

)2

+
1

2
q2e2A

(1)
11 pr .

The application of (4. 3) to this and simplification yield

R̂(pr, q) < eprψ1(pr),

where

ψ1(pr)
def
= epr − 2pr (ψ2(pr)/pr + 1)2 + 2p2

re
(2A

(1)
11 −1)pr ,

ψ2(pr)
def
= (epr − 1 − pr)e

(2A
(1)
11 −1)pr/2.

If we set A
(1)
11 = 1, then, by plotting the graph of ψ2(pr) we can clearly see ψ2(pr) <

1
2

(∀pr < 0). This fact and A
(1)
11 = 1 lead to

ψ1(pr) + ψ′
1(pr)

= 2 (ψ2(pr)/pr + 1)
{
ψ2(pr)/pr − pr − 4ψ2(pr) − 2pre

pr/2 − 1
}

+ 2epr + 4pr(pr + 1)epr

≥ 2 (ψ2(pr)/pr + 1) {1/(2pr) − pr − 3}

if pr < −1. From these, we have

{eprψ1(pr)}′ = epr (ψ1(pr) + ψ′
1(pr)) > 0 (∀pr ≤ −3.2).

For any pr ≤ −3.2, thus,

R̂(pr, q) < e−3.2ψ1(−3.2) ≈ 0.228 < 1

holds under the condition (4. 3). For this, we plot the MS stability region only in the
interval (−3.2, 0) of pr. The MS stability region is indicated by the colored part in Figure
1. Here, the other part enclosed by the mesh indicates the region in which the solution
of the test SDE is MS stable. From these results, we can see that (3. 15) is conditionally
A-stable in MS, that is, if =(λ) = 0, it is A-stable. After all, the Butcher tableaux of (3.
14) is given in Table 4 when both of (3. 14) and (3. 15) are of weak order two.
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Table 4: Butcher tableau of (3. 14) when it and (3. 15) are of weak order two

1 1
0 0 0 0
1
1
2

0 1√
2

1
2

0 0 − 1√
2

0

0 2 0 0 0 0

0 2 0 B
(2)
21 0 0

0 2 0 −B(2)
21 0 0

1
2

1
2

0 0 1
2

1
2

0 1√
2

− 1√
2

− 1

2
(
B

(2)
21

)2 1

4
(
B

(2)
21

)2 1

4
(
B

(2)
21

)2 0 1

2B
(2)
21

− 1

2B
(2)
21

pi

pr

q

pi

pr

q = −2pr

Figure 2: MS stability domain (left) and its profile (right) for (3. 14)

On the other hand, if =(λ) 6= 0, by employing (4. 4) we obtain the following stability

function for (3. 15) with A
(1)
11 = 1:

R̃(pr, pi, q)
def
= E[|R|2]

= e2pr +
qepr

p2
r + p2

i

{
(1 + e2pr − 2epr cos pi + 2pr)e

pr

− 2pr

[
e2pr cos pi + epr/2 cos(pi/2) − e3pr/2 cos(3pi/2)

]
−2pi

[
e2pr sin pi + epr/2 sin(pi/2) − e3pr/2 sin(3pi/2)

]}
+ qepr

{
1 + epr − 2epr/2 cos(pi/2)

}
+

1

2
q2e2pr ,

where pi
def
= =(λ)h. Now, we can plot the MS stability domain for (3. 14). The MS

stability domain and its profile are given in Figure 2. The MS stability domain is indicated
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Table 5: Butcher tableau of (3. 17) when it and (3. 18) are of weak order two

2
3

2+
√

2
3

0 2
3

2−
√

2
3

0

1
1
2

0 1√
2

1
2

0 0 − 1√
2

0

0 4
3

0 0 0 0

0 4
3

0 B
(2)
21 0 0

0 4
3

0 −B(2)
21 0 0

1
4

3
8

3
8

0 1
2

1
2

0 1√
2

− 1√
2

− 1

2
(
B

(2)
21

)2 1

4
(
B

(2)
21

)2 1

4
(
B

(2)
21

)2 0 1

2B
(2)
21

− 1

2B
(2)
21

by the colored part in the left of the figure. Here, the other part enclosed by the mesh
indicates the domain in which the solution of the test SDE is MS stable. In the right of the
figure, the colored area indicates the profile of the MS stability domain when q = −2pr,
which is the boundary of the stability region of the test SDE. From these results, we can
see that (3. 14) is not A-stable any more in MS if =(λ) 6= 0.

When we apply (3. 18) to (4. 2), similarly to the case of (3. 15) we have (4. 5) if
=(λ) = 0, due to (3. 3) and the last paragraph in Subsection 3.3.3. Also for (3. 18), thus,

we set B
(2)
22 = 0, A

(1)
11 = 1 and A

(1)
21 = 1/2. Then, we have the same R̃(pr, pi, q) as that of

(3. 15) if =(λ) 6= 0. When we set A
(0)
32 at 2/3 for simplicity, the Butcher tableaux of (3.

17) is given in Table 5. Under this parameter setting, both of (3. 17) and (3. 18) are of
weak order two.

5 Numerical Experiments

In the previous sections, we have derived four SERK schemes or methods. For example,
(3. 5) is of weak order one and deterministic order one. In the sequel, thus, let us call it the

SERKW1D1 scheme. Next, (3. 12) with β
(1)
2 = 1 is of weak order one and deterministic

order two, and it has the free parameter A
(0)
21 . By setting A

(0)
21 at 1 simply, we call it the

SERKW1D2 scheme. If (3. 15) has the same parameter values in Table 4, it is of weak

order two and deterministic order two, and it has the free parameter B
(2)
21 . By setting

B
(2)
21 at 1 simply, we call it the SERKW2D2 scheme. Similarly, if (3. 18) has the same

parameter values in Table 5 and B
(2)
21 = 1, we call it the SERKW2D3 scheme.

In order to confirm the performance of the schemes, we investigate some statistics in
numerical experiments. We also investigate computational costs. In simulation results,

we will indicate Sa
def
= ned + nr, where ne and nr stand for the number of evaluations on

the drift or diffusion coefficients and the number of generated pseudo random numbers,
respectively.
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Figure 3: Log-log plots of the relative error of E[y(1)] versus h or Sa (Thick solid:
SERKW2D3, Solid: SERKW2D2, dash-dotted: SERKW1D2, dotted: SERKW1D1, long
dash: EM, dash: SROCK2)
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Figure 4: Log-log plots of the relative error of the second moment versus h or Sa

(Thick solid: SERKW2D3, Solid: SERKW2D2, dash-dotted: SERKW1D2, dotted:
SERKW1D1, long dash: EM, dash: SROCK2)

As a first example, let us consider the following non-commutative SDE, which is ob-
tained by adding a non-linear term to (36) in [8]:

dy(t) =

{[
−273

512
0

− 1
160

−785
512

+
√

2
8

]
y(t) −

[
(y1(t))

3

(y2(t))
3

]}
dt

+

[ 1
4

0

0 1−2
√

2
4

]
y(t)dW1(t) +

[
1
16

0
1
10

1
16

]
y(t)dW2(t), t > 0, (5. 1)

y(0) = [1 1]> (w.p.1).

We seek an approximation to the expectation of y(1) or to the second moment of each

element of y(1), that is, [E[(y1(1))2] E[(y2(1))2]]
>
. As we do not know the exact solution

of the SDE, we seek numerical approximations by the SRKCL scheme [15] with h = 2−7

and use them instead of the exact expectation and second moment.
In this example, using the Mersenne twister [20] we simulate 4096 × 106 independent

trajectories for a given h. The results are indicated in Figures 3 and 4. As the solution is a
vector, the Euclidean norm is used. The thick solid, solid, dash-dotted, dotted, long dash
or dash lines denote the SERKW2D3 scheme, the SERKW2D2 scheme, the SERKW1D2
scheme, the SERKW1D1 scheme, the Euler-Maruyama (EM) scheme or the SROCK2
scheme with the stage number 3 [4], respectively. The SERKW2D3 scheme shows high
accuracy both in approximations to the expectation and to the second moment.
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Table 6: CPU time to solve (5. 1) for 4 × 106 trajectories (the unit is seconds)

log2 h −1 −2 −3 −4 −5
SERKW2D3 3 4 9 18 36
SERKW2D2 3 4 8 15 31
SERKW1D2 1 2 4 7 13
SERKW1D1 1 1 3 6 12

EM 1 1 3 6 12
SROCK2 2 2 6 11 22

In Table 6, the schemes are compared in terms of CPU time to solve the same SDE.
For 4 × 106 trajectories, it has been measured by Intel C++ Compiler on Windows 7,
Intel Core i7 CPU, 2.80 GHz. From these results, we can see that CPU time depends on
the weak order rather than the deterministic order.

The second example comes from a stochastic Burgers equation with white noise in
time only. Da Prato and Gatarek [7] have proved the existence and uniqueness of the
global solution of a scalar Burgers equation with multiplicative noise driven by a scalar
Wiener process. Now, we consider an extended version of their equation, that is, the
following stochastic Burgers equation:

du(t, x) =

(
∂2u

∂x2
(t, x) + u(t, x)

∂u

∂x
(t, x)

)
dt+ u(t, x)dW1(t)

+

√
1 +

(
u(t, x)

)2
dW2(t), t > 0, x ∈ [0, 1], (5. 2)

u(t, 0) = u(t, 1) = 0 (w.p.1), t > 0,

u(0, x) = 2 sin(πx) (w.p.1), x ∈ [0, 1].

If we discretize the space interval by N + 2 equidistant points xi (0 ≤ i ≤ N + 1) and

define a vector-valued function by y(t)
def
= [u(t, x1) u(t, x2) · · · u(t, xN)]>, then we obtain

the following non-commutative SDE

dy(t) =
(
Ay(t) + f(y(t))

)
dt+ y(t)dW1(t) + b

(
y(t)

)
dW2(t), t > 0, (5. 3)

y(0) = [2 sin(πx1) 2 sin(πx2) · · · 2 sin(πxN)]> (w. p. 1)

by applying the central difference scheme to (5. 2), where

A
def
= (N + 1)2


−2 1 01 −2 1

. . . . . . . . .

1 −2 1
0 1 −2

 ,

f(y)
def
=
N + 1

2


y1y2

y2(y3 − y1)
...

yN−1(yN − yN−2)
yN(−yN−1)

 , b(y)
def
=


√

1 + y2
1√

1 + y2
2

...√
1 + y2

N

 .
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Figure 5: Log-log plots of the relative error of E[y(1)] versus h or Sa (Thick solid:
SERKW2D3, solid: SERKW2D2, dash-dotted: SERKW1D2, dotted: SERKW1D1, long
dash: SROCK, dash: SROCK2)
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Figure 6: Log-log plots of the relative error of the variance versus h or Sa (Thick solid:
SERKW2D3, solid: SERKW2D2, dash-dotted: SERKW1D2, dotted: SERKW1D1, long
dash: SROCK, dash: SROCK2)

For N = 15 we seek an approximation to the expectation of y(t) or to the variance
of each element of y(t). As we do not know the exact solution of the SDE, we seek
numerical approximations by the SRKCL scheme with h = 2−9 and use them instead of
the exact expectation and variance. Here, note that we cannot choose a larger step size
2−i (1 ≤ i ≤ 8) for the SRKCL scheme to solve the SDE numerically stably.

In this example, we simulate 64× 104 independent trajectories for a given h. Because
the example is a stiff problem, we use the SROCK scheme [2] instead of the EM scheme.
The scheme is a kind of stabilized EM scheme. In order to solve the SDE numerically
stably with reasonable cost by the SROCK2 scheme, we set the stage number of the
scheme at 35, 24, 17, 12 or 8 corresponding to the step size 2−1, 2−2, 2−3, 2−4 or 2−5,
respectively. Similarly, we set the stage number of the SROCK scheme at 35, 24, 16, 11
or 7 corresponding to the step size 2−1, 2−2, 2−3, 2−4 or 2−5. The results are indicated
in Figures 5 and 6. The thick solid, solid, dash-dotted, dotted, long dash or dash lines
denote the SERKW2D3 scheme, the SERKW2D2 scheme, the SERKW1D2 scheme, the
SERKW1D1 scheme, the SROCK scheme or the SROCK2 scheme, respectively.

In Figure 5, we cannot see big differences among the schemes except the SROCK2
concerning the amount of error, but the SERKW1D1 and SERKW1D2 schemes show low
computational cost to achieve the precision. Figure 6 indicates that the SERKW1D1,
SERKW1D2 and SROCK schemes have almost the same amount of error, whereas The
SERKW2D2 and SERKW2D3 schemes have the almost the same amount of error. The
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Table 7: CPU time to solve (5. 3) for 64 × 104 trajectories (the unit is seconds)

log2 h −1 −2 −3 −4 −5
SERKW2D3 2 5 9 17 36
SERKW2D2 2 3 7 13 28
SERKW1D2 0 2 2 5 9
SERKW1D1 0 1 2 3 5

SROCK 1 2 2 3 5
SROCK2 1 3 4 6 12

SERKW2D2 and SERKW2D3 schemes, however, show lower computational cost than
the SROCK scheme. It is remarkable that the SROCK2 is much worse than the other
schemes in both figures.

In Table 7, the schemes are compared in terms of CPU time to solve the same SDE.
Similarly to the previous example, the CPU time strongly depends on not only the weak
order but also the deterministic order. There is no big difference between the SERKW1D1
scheme and the SROCK scheme in the CPU time, although they are different in compu-
tational cost.

6 Conclusions

By utilizing Lemma 3.1 we have constructed SERK methods to achieve weak order one
or two for non-commutative Itô SDEs with a semilinear drift term, and simultaneously
to achieve order one, two or three for ODEs. Using a scalar test SDE with complex
coefficients, we have investigated stability properties for the methods. As a result, we
have derived unconditionally A-stable SERK schemes, that is, they are A-stable in MS
for a test SDE whose drift and diffusion terms have complex coefficients. They are weak
first order schemes, which are of order one or two when applied to ODEs. In addition,
we have also derived conditionally A-stable SERK schemes, that is, they are A-stable in
MS for a test SDE whose drift term has a real coefficient. They are weak second order
schemes, which are of order two or three when applied to ODEs.

In order to check numerical performance of the schemes as well as their stability
properties, we have performed two numerical experiments. In the first experiment, our
SERK schemes have been compared with the EM scheme and the SROCK2 scheme.
The experiment has shown the advantage of our weak second order SERK schemes in
computational accuracy. The second experiment is a stiff problem. In the experiment our
SERK schemes have been compared with the SROCK scheme and the SROCK2 scheme.
All schemes have confirmed their good stability properties, but whereas our weak second
order SERK schemes have shown high accuracy, the SROCK2 scheme has shown poor
accuracy.
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6(4):845–868, 2008.

[3] A. Abdulle and A. A. Medovikov. Second order Chebyshev methods based on or-
thogonal polynomials. Numer. Math., 90:1–18, 2001.

[4] A. Abdulle, G. Vilmart, and K. C. Zygalakis. Weak second order explicit sta-
bilized methods for stiff stochastic differential equations. SIAM J. Sci. Comput.,
35(4):A1792–A1814, 2013.

[5] I. A. Adamu. Numerical approximation of SDEs and stochastic Swift-Hohenberg
equation. PhD thesis, Heriot-Watt University, 2011.

[6] L. Arnold. Stochastic Differential Equations: Theory and Applications. John Wiley
& Sons, New York, 1974.

[7] G. Da Prato and D. Gatarek. Stochastic Burgers equation with correlated noise.
Stochastics Stochastics Rep., 52:29–41, 1995.
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