77 research outputs found

    Rational minimax approximation via adaptive barycentric representations

    Get PDF
    Computing rational minimax approximations can be very challenging when there are singularities on or near the interval of approximation - precisely the case where rational functions outperform polynomials by a landslide. We show that far more robust algorithms than previously available can be developed by making use of rational barycentric representations whose support points are chosen in an adaptive fashion as the approximant is computed. Three variants of this barycentric strategy are all shown to be powerful: (1) a classical Remez algorithm, (2) a "AAA-Lawson" method of iteratively reweighted least-squares, and (3) a differential correction algorithm. Our preferred combination, implemented in the Chebfun MINIMAX code, is to use (2) in an initial phase and then switch to (1) for generically quadratic convergence. By such methods we can calculate approximations up to type (80, 80) of ∣x∣|x| on [−1,1][-1, 1] in standard 16-digit floating point arithmetic, a problem for which Varga, Ruttan, and Carpenter required 200-digit extended precision.Comment: 29 pages, 11 figure

    Non-iterative computation of Gauss-Jacobi quadrature

    Get PDF
    Asymptotic approximations to the zeros of Jacobi polynomials are given, with methods to obtain the coefficients in the expansions. These approximations can be used as standalone methods for the noniterative computation of the nodes of Gauss--Jacobi quadratures of high degree (n≥100n\ge 100). We also provide asymptotic approximations for functions related to the first-order derivative of Jacobi polynomials which are used for computing the weights of the Gauss--Jacobi quadrature. The performance of the asymptotic approximations is illustrated with numerical examples, and it is shown that nearly double precision relative accuracy is obtained for both the nodes and the weights when n≥100n\ge 100 and −1<α,β≤5-1< \alpha, \beta\le 5. For smaller degrees the approximations are also useful as they provide 10−1210^{-12} relative accuracy for the nodes when n≥20n\ge 20, and just one Newton step would be sufficient to guarantee double precision accuracy in that cases

    High-Order, Stable, And Efficient Pseudospectral Method Using Barycentric Gegenbauer Quadratures

    Full text link
    The work reported in this article presents a high-order, stable, and efficient Gegenbauer pseudospectral method to solve numerically a wide variety of mathematical models. The proposed numerical scheme exploits the stability and the well-conditioning of the numerical integration operators to produce well-conditioned systems of algebraic equations, which can be solved easily using standard algebraic system solvers. The core of the work lies in the derivation of novel and stable Gegenbauer quadratures based on the stable barycentric representation of Lagrange interpolating polynomials and the explicit barycentric weights for the Gegenbauer-Gauss (GG) points. A rigorous error and convergence analysis of the proposed quadratures is presented along with a detailed set of pseudocodes for the established computational algorithms. The proposed numerical scheme leads to a reduction in the computational cost and time complexity required for computing the numerical quadrature while sharing the same exponential order of accuracy achieved by Elgindy and Smith-Miles (2013). The bulk of the work includes three numerical test examples to assess the efficiency and accuracy of the numerical scheme. The present method provides a strong addition to the arsenal of numerical pseudospectral methods, and can be extended to solve a wide range of problems arising in numerous applications.Comment: 30 pages, 10 figures, 1 tabl

    Applying the barycentric Jacobi spectral method to price options with transaction costs in a fractional Black-Scholes framework

    Get PDF
    The aim of this paper is to show how options with transaction costs under fractional, mixed Brownian-fractional, and subdiffusive fractional Black-Scholes models can be efficiently computed by using the barycentric Jacobi spectral method. The reliability of the barycentric Jacobi spectral method for space (asset) direction discretiza-tion is demonstrated by solving partial differential equations (PDEs) arising from pricing European options with transaction costs under these models. The discretization of these PDEs in time relies on the implicit Runge-Kutta Radau IIA method. We conducted various numerical experiments and compared our numerical results with ex-isting analytical solutions. It was found that the proposed method is efficient, highly accurate and reliable, and is an alternative to some existing numerical methods for pricing financial options.Faculty of Natural and Agricultural Science of the University of Pretoria and Mr. Brad Welch.http://www.scirp.org/journal/jmfhb201
    • …
    corecore