2,051 research outputs found

    Architectures for reasoning in parallel

    Get PDF
    The research conducted has dealt with rule-based expert systems. The algorithms that may lead to effective parallelization of them were investigated. Both the forward and backward chained control paradigms were investigated in the course of this work. The best computer architecture for the developed and investigated algorithms has been researched. Two experimental vehicles were developed to facilitate this research. They are Backpac, a parallel backward chained rule-based reasoning system and Datapac, a parallel forward chained rule-based reasoning system. Both systems have been written in Multilisp, a version of Lisp which contains the parallel construct, future. Applying the future function to a function causes the function to become a task parallel to the spawning task. Additionally, Backpac and Datapac have been run on several disparate parallel processors. The machines are an Encore Multimax with 10 processors, the Concert Multiprocessor with 64 processors, and a 32 processor BBN GP1000. Both the Concert and the GP1000 are switch-based machines. The Multimax has all its processors hung off a common bus. All are shared memory machines, but have different schemes for sharing the memory and different locales for the shared memory. The main results of the investigations come from experiments on the 10 processor Encore and the Concert with partitions of 32 or less processors. Additionally, experiments have been run with a stripped down version of EMYCIN

    Some Notes on the Past and Future of Lisp-Stat

    Get PDF
    Lisp-Stat was originally developed as a framework for experimenting with dynamic graphics in statistics. To support this use, it evolved into a platform for more general statistical computing. The choice of the Lisp language as the basis of the system was in part coincidence and in part a very deliberate decision. This paper describes the background behind the choice of Lisp, as well as the advantages and disadvantages of this choice. The paper then discusses some lessons that can be drawn from experience with Lisp-Stat and with the R language to guide future development of Lisp-Stat, R, and similar systems.

    Simulating futures in extended common LISP

    Get PDF
    Stack-groups comprise the mechanism underlying implementation of multiprocessing in Extended Common LISP, i.e., running multiple quasi-simultaneous processes within a single LISP address space. On the other hand, the future construct of MULTILISP, an extension of the LISP dialect scheme, deals with parallel execution. The source of concurrency that future exploits is the overlap between computation of a value and use of the value. Described is a simulation of the future construct by an interpreter utilizing stack-group extensions to common LISP

    Parallelism in declarative languages

    Get PDF
    Imperative programming languages were initially built for uniprocessor systems that evolved out of the Von Neumann machine model. This model of storage oriented computation blocks parallelism and increases the cost of parallel program development and porting. Declarative languages based on mathematical models of computation, seem more suitable for the development of parallel programs. In the first part of this thesis we examine different language families under the declarative paradigm: functional, logic, and constraint languages. Functional languages are based on the abstract model of functions and (lamda)-calculus. They were initially developed for symbolic computation, but today they are commonly used in numerical analysis and many other application areas. Pure lisp is a widely known member of this class. Logic languages are based on first order predicate calculus. Although they were initially developed for theorem proving, fifth generation operating systems are written in them. Most logic languages are descendants or distant relatives of Prolog. Constraint languages are related to logic languages. In a constraint language you define a program object by placing constraints on its structure and its behavior. They were initially used in graphics applications, but today researchers work on using them in parallel computation. Here we will compare and contrast the language classes above, locate advantages and deficiencies, and explain different choices made by language implementors. In the second part of thesis we describe a front end for the CONSUL, a prototype constraint language for programming multiprocessors. The most important features of the front end are compact representation of constraints, type definitions, functional use of relations, and the ability to split programs into multiple files

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    The role of computational logic as a hinge paradigm among deduction, problem solving, programming, and parallelism

    Get PDF
    This paper presents some brief considerations on the role of Computational Logic in the construction of Artificial Intelligence systems and in programming in general. It does not address how the many problems in AI can be solved but, rather more modestly, tries to point out some advantages of Computational Logic as a tool for the AI scientist in his quest. It addresses the interaction between declarative and procedural views of programs (deduction and action), the impact of the intrinsic limitations of logic, the relationship with other apparently competing computational paradigms, and finally discusses implementation-related issues, such as the efficiency of current implementations and their capability for efficiently exploiting existing and future sequential and parallel hardware. The purpose of the discussion is in no way to present Computational Logic as the unique overall vehicle for the development of intelligent systems (in the firm belief that such a panacea is yet to be found) but rather to stress its strengths in providing reasonable solutions to several aspects of the task
    corecore