1,018 research outputs found

    Learning an Approximate Model Predictive Controller with Guarantees

    Full text link
    A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g. neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding's Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.Comment: 6 pages, 3 figures, to appear in IEEE Control Systems Letter

    Model-based control for automotive applications

    Get PDF
    The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex mechatronic system. However, control design for such systems, in practice, often comes down to time-consuming online tuning and calibration techniques, rather than a more systematic, model-based control design approach. The main goal of this thesis is to contribute to a corresponding paradigm shift, targeting the use of systematic, model-based control design approaches in practice. This implies the use of control-oriented modeling and the specification of corresponding performance requirements as a basis for the actual controller synthesis. Adopting a systematic, model-based control design approach, as opposed to pragmatic, online tuning and calibration techniques, is a prerequisite for the application of state-of-the-art controller synthesis methods. These methods enable to achieve guarantees regarding robustness, performance, stability, and optimality of the synthesized controller. Furthermore, from a practical point-of-view, it forms a basis for the reduction of tuning and calibration effort via automated controller synthesis, and fulfilling increasingly stringent performance demands. To demonstrate these opportunities, case studies are defined and executed. In all cases, actual implementation is pursued using test vehicles and a hardware-in-the-loop setup. • Case I: Judder-induced oscillations in the driveline are resolved using a robustly stable drive-off controller. The controller prevents the need for re-tuning if the dynamics of the system change due to wear. A hardware-in-the-loop setup, including actual sensor and actuator dynamics, is used for experimental validation. • Case II: A solution for variations in the closed-loop behavior of cruise control functionality is proposed, explicitly taking into account large variations in both the gear ratio and the vehicle loading of heavy duty vehicles. Experimental validation is done on a heavy duty vehicle, a DAF XF105 with and without a fully loaded trailer. • Case III: A systematic approach for the design of an adaptive cruise control is proposed. The resulting parameterized design enables intuitive tuning directly related to comfort and safety of the driving behavior and significantly reduces tuning effort. The design is validated on an Audi S8, performing on-the-road experiments. • Case IV: The design of a cooperative adaptive cruise control is presented, focusing on the feasibility of implementation. Correspondingly, a necessary and sufficient condition for string stability is derived. The design is experimentally tested using two Citroën C4’s, improving traffic throughput with respect to standard adaptive cruise control functionality, while guaranteeing string stability of the traffic flow. The case studies consider representative automotive control problems, in the sense that typical challenges are addressed, being variable operating conditions and global performance qualifiers. Based on the case studies, a generic classification of automotive control problems is derived, distinguishing problems at i) a full-vehicle level, ii) an in-vehicle level, and iii) a component level. The classification facilitates a characterization of automotive control problems on the basis of the required modeling and the specification of corresponding performance requirements. Full-vehicle level functionality focuses on the specification of desired vehicle behavior for the vehicle as a whole. Typically, the required modeling is limited, whereas the translation of global performance qualifiers into control-oriented performance requirements can be difficult. In-vehicle level functionality focuses on actual control of the (complex) vehicle dynamics. The modeling and the specification of performance requirements are typically influenced by a wide variety of operating conditions. Furthermore, the case studies represent practical application examples that are specifically suitable to apply a specific set of state-of-the-art controller synthesis methods, being robust control, model predictive control, and gain scheduling or linear parameter varying control. The case studies show the applicability of these methods in practice. Nevertheless, the theoretical complexity of the methods typically translates into a high computational burden, while insight in the resulting controller decreases, complicating, for example, (online) fine-tuning of the controller. Accordingly, more efficient algorithms and dedicated tools are required to improve practical implementation of controller synthesis methods

    Traffic Control via Connected and Automated Vehicles: An Open-Road Field Experiment with 100 CAVs

    Full text link
    The CIRCLES project aims to reduce instabilities in traffic flow, which are naturally occurring phenomena due to human driving behavior. These "phantom jams" or "stop-and-go waves,"are a significant source of wasted energy. Toward this goal, the CIRCLES project designed a control system referred to as the MegaController by the CIRCLES team, that could be deployed in real traffic. Our field experiment leveraged a heterogeneous fleet of 100 longitudinally-controlled vehicles as Lagrangian traffic actuators, each of which ran a controller with the architecture described in this paper. The MegaController is a hierarchical control architecture, which consists of two main layers. The upper layer is called Speed Planner, and is a centralized optimal control algorithm. It assigns speed targets to the vehicles, conveyed through the LTE cellular network. The lower layer is a control layer, running on each vehicle. It performs local actuation by overriding the stock adaptive cruise controller, using the stock on-board sensors. The Speed Planner ingests live data feeds provided by third parties, as well as data from our own control vehicles, and uses both to perform the speed assignment. The architecture of the speed planner allows for modular use of standard control techniques, such as optimal control, model predictive control, kernel methods and others, including Deep RL, model predictive control and explicit controllers. Depending on the vehicle architecture, all onboard sensing data can be accessed by the local controllers, or only some. Control inputs vary across different automakers, with inputs ranging from torque or acceleration requests for some cars, and electronic selection of ACC set points in others. The proposed architecture allows for the combination of all possible settings proposed above. Most configurations were tested throughout the ramp up to the MegaVandertest

    Optimal speed trajectory and energy management control for connected and automated vehicles

    Get PDF
    Connected and automated vehicles (CAVs) emerge as a promising solution to improve urban mobility, safety, energy efficiency, and passenger comfort with the development of communication technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). This thesis proposes several control approaches for CAVs with electric powertrains, including hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs), with the main objective to improve energy efficiency by optimising vehicle speed trajectory and energy management system. By types of vehicle control, these methods can be categorised into three main scenarios, optimal energy management for a single CAV (single-vehicle), energy-optimal strategy for the vehicle following scenario (two-vehicle), and optimal autonomous intersection management for CAVs (multiple-vehicle). The first part of this thesis is devoted to the optimal energy management for a single automated series HEV with consideration of engine start-stop system (SSS) under battery charge sustaining operation. A heuristic hysteresis power threshold strategy (HPTS) is proposed to optimise the fuel economy of an HEV with SSS and extra penalty fuel for engine restarts. By a systematic tuning process, the overall control performance of HPTS can be fully optimised for different vehicle parameters and driving cycles. In the second part, two energy-optimal control strategies via a model predictive control (MPC) framework are proposed for the vehicle following problem. To forecast the behaviour of the preceding vehicle, a neural network predictor is utilised and incorporated into a nonlinear MPC method, of which the fuel and computational efficiencies are verified to be effective through comparisons of numerical examples between a practical adaptive cruise control strategy and an impractical optimal control method. A robust MPC (RMPC) via linear matrix inequality (LMI) is also utilised to deal with the uncertainties existing in V2V communication and modelling errors. By conservative relaxation and approximation, the RMPC problem is formulated as a convex semi-definite program, and the simulation results prove the robustness of the RMPC and the rapid computational efficiency resorting to the convex optimisation. The final part focuses on the centralised and decentralised control frameworks at signal-free intersections, where the energy consumption and the crossing time of a group of CAVs are minimised. Their crossing order and velocity trajectories are optimised by convex second-order cone programs in a hierarchical scheme subject to safety constraints. It is shown that the centralised strategy with consideration of turning manoeuvres is effective and outperforms a benchmark solution invoking the widely used first-in-first-out policy. On the other hand, the decentralised method is proposed to further improve computational efficiency and enhance the system robustness via a tube-based RMPC. The numerical examples of both frameworks highlight the importance of examining the trade-off between energy consumption and travel time, as small compromises in travel time could produce significant energy savings.Open Acces

    Behavior Planning For Connected Autonomous Vehicles Using Feedback Deep Reinforcement Learning

    Full text link
    With the development of communication technologies, connected autonomous vehicles (CAVs) can share information with each other. We propose a novel behavior planning method for CAVs to decide actions such as whether to change lane or keep lane based on the observation and shared information from neighbors, and to make sure that there exist corresponding control maneuvers such as acceleration and steering angle to guarantee the safety of each individual autonomous vehicle. We formulate this problem as a hybrid partially observable Markov decision process (HPOMDP) to consider objectives such as improving traffic flow efficiency and driving comfort and safety requirements. The discrete state transition is determined by the proposed feedback deep Q-learning algorithm using the feedback action from an underlying controller based on control barrier functions. The feedback deep Q-learning algorithm we design aims to solve the critical challenge of reinforcement learning (RL) in a physical system: guaranteeing the safety of the system while the RL is exploring the action space to increase the reward. We prove that our method renders a forward invariant safe set for the continuous state physical dynamic model of the system while the RL agent is learning. In experiments, our behavior planning method can increase traffic flow and driving comfort compared with the intelligent driving model (IDM). We also validate that our method maintains safety during the learning process.Comment: conferenc

    Predictive Maneuver Planning and Control of an Autonomous Vehicle in Multi-Vehicle Traffic with Observation Uncertainty

    Get PDF
    Autonomous vehicle technology is a promising development for improving the safety, efficiency and environmental impact of on-road transportation systems. However, the task of guiding an autonomous vehicle by rapidly and systematically accommodating the plethora of changing constraints, e.g. of avoiding multiple stationary and moving obstacles, obeying traffic rules, signals and so on as well as the uncertain state observation due to sensor imperfections, remains a major challenge. This dissertation attempts to address this challenge via designing a robust and efficient predictive motion planning framework that can generate the appropriate vehicle maneuvers (selecting and tracking specific lanes, and related speed references) as well as the constituent motion trajectories while considering the differential vehicle kinematics of the controlled vehicle and other constraints of operating in public traffic. The main framework combines a finite state machine (FSM)-based maneuver decision module with a model predictive control (MPC)-based trajectory planner. Based on the prediction of the traffic environment, reference speeds are assigned to each lane in accordance with the detection of objects during measurement update. The lane selection decisions themselves are then incorporated within the MPC optimization. The on-line maneuver/motion planning effort for autonomous vehicles in public traffic is a non-convex problem due to the multiple collision avoidance constraints with overlapping areas, lane boundaries, and nonlinear vehicle-road dynamics constraints. This dissertation proposes and derives some remedies for these challenges within the planning framework to improve the feasibility and optimality of the solution. Specifically, it introduces vehicle grouping notions and derives conservative and smooth algebraic models to describe the overlapped space of several individual infeasible spaces and help prevent the optimization from falling into undesired local minima. Furthermore, in certain situations, a forced objective selection strategy is needed and adopted to help the optimization jump out of local minima. Furthermore, the dissertation considers stochastic uncertainties prevalent in dynamic and complex traffic and incorporate them with in the predictive planning and control framework. To this end, Bayesian filters are implemented to estimate the uncertainties in object motions and then propagate them into the prediction horizon. Then, a pair-wise probabilistic collision condition is defined for objects with non-negligible geometrical shape/sizes and computationally efficient and conservative forms are derived to efficiently and analytically approximate the involved multi-variate integrals. The probabilistic collision evaluation is then applied within a vehicle grouping algorithms to cluster the object vehicles with closeness in positions and speeds and eventually within the stochastic predictive maneuver planner framework to tighten the chanced-constraints given a deterministic confidence margin. It is argued that these steps make the planning problem tractable for real-time implementation on autonomously controlled vehicles
    • …
    corecore