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ABSTRACT 

Autonomous vehicle technology is a promising development for improving the 

safety, efficiency and environmental impact of on-road transportation systems. However, 

the task of guiding an autonomous vehicle by rapidly and systematically accommodating 

the plethora of changing constraints, e.g. of avoiding multiple stationary and moving 

obstacles, obeying traffic rules, signals and so on as well as the uncertain state observation 

due to sensor imperfections, remains a major challenge. 

This dissertation attempts to address this challenge via designing a robust and 

efficient predictive motion planning framework that can generate the appropriate vehicle 

maneuvers (selecting and tracking specific lanes, and related speed references) as well as 

the constituent motion trajectories while considering the differential vehicle kinematics of 

the controlled vehicle and other constraints of operating in public traffic. The main 

framework combines a finite state machine (FSM)-based maneuver decision module with 

a model predictive control (MPC)-based trajectory planner. Based on the prediction of the 

traffic environment, reference speeds are assigned to each lane in accordance with the 

detection of objects during measurement update. The lane selection decisions themselves 

are then incorporated within the MPC optimization.  

The on-line maneuver/motion planning effort for autonomous vehicles in public 

traffic is a non-convex problem due to the multiple collision avoidance constraints with 

overlapping areas, lane boundaries, and nonlinear vehicle-road dynamics constraints. This 

dissertation proposes and derives some remedies for these challenges within the planning 

framework to improve the feasibility and optimality of the solution. Specifically, it 
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introduces vehicle grouping notions and derives conservative and smooth algebraic models 

to describe the overlapped space of several individual infeasible spaces and help prevent 

the optimization from falling into undesired local minima. Furthermore, in certain 

situations, a forced objective selection strategy is needed and adopted to help the 

optimization jump out of local minima.  

Furthermore, the dissertation considers stochastic uncertainties prevalent in 

dynamic and complex traffic and incorporate them with in the predictive planning and 

control framework. To this end, Bayesian filters are implemented to estimate the 

uncertainties in object motions and then propagate them into the prediction horizon. Then, 

a pair-wise probabilistic collision condition is defined for objects with non-negligible 

geometrical shape/sizes and computationally efficient and conservative forms are derived 

to efficiently and analytically approximate the involved multi-variate integrals. The 

probabilistic collision evaluation is then applied within a vehicle grouping algorithms to 

cluster the object vehicles with closeness in positions and speeds and eventually within the 

stochastic predictive maneuver planner framework to tighten the chanced-constraints given 

a deterministic confidence margin. It is argued that these steps make the planning problem 

tractable for real-time implementation on autonomously controlled vehicles. 
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CHAPTER 1  

INTRODUCTION 

The autonomous vehicle is right on the road of development to change our future 

mobility. It has a huge potential for boosting the safety of driving and freeing the driver 

from driving efforts due to the advanced sensing equipment and control algorithm [1] [2] 

[3]. It’s also likely to improve the efficiency of road transportation systems via safe 

increases in traffic density, minimize pollutions and energy waste through reducing 

congestion and help the disable people for daily transportation.  

 

Figure 1-1: The compounding problems that can be potentially solved by autonomous 

vehicle 
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1.1 Overview of the Control Problem for Autonomous Vehicle 

The basic problem for the control of autonomous vehicle is to determine the 

mapping from the sensing data to the control signal of the actuators that ensures a reliable, 

safe, legal and comfortable drive from the starting place to the final target place. The 

sensing data are obtained from the perception sensors like camera, li-dar, radar that 

responsible for environment detection and the monitor sensors like inertial motion sensor 

and GPS that observes the ego vehicle states. The actuators are manipulated by the drive 

by wire system that includes steering, braking and throttle control of the vehicle.  

Recently, there exists two main approaches in different direction to solve the 

problem defined above: 1) Learning based control, 2) Planning based control. 

 

Figure 1-2: Control problem of the autonomous vehicle 
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Learning based control uses supervised learning method to train a neural network 

(NN), which is a policy function, based on the pair data records of input (sensing 

data/machine vision results) and output (driver’s control signal) to the test vehicle, and then 

apply the NN on the ego vehicle for control purpose. This approach dates back from 1980s 

and it tries to imitate a human driver’s reaction according to the sensing input, therefore 

it’s also called imitation learning. 

Planning based control primarily originates from the robotics field and follows a 

manually designed decision making pattern of the vehicle motion based on the navigation 

and situation understanding information from the navigation system and environment 

perception system to control the ego vehicle. The approach is widely applied in the 

development of the autonomous vehicle.  

These two approaches will be described in detail in the following sections. 

1.1.1 Learning Based Control 

Based on the preprocessing level of the sensing data, the imitation learning can be 

divided in to two categories: 1) End to end learning and 2) Perception based learning.  

In the end to end learning, a direct and simple mapping from the sensory input, such 

as a front face camera, to actuations necessary for driving, like the angle of steering input, 

 

Figure 1-3: Illustration of end to end learning (a) and perception based learning (b) 



4 

braking and throttle. This idea dates back to the late 1980s, when [4] uses a NN that takes 

input from a front facing camera and a range detect sensor and returns a quantized steering 

wheel angle. The training data was collected form simulation. A similar approach was 

taken later by [5] in 2005 to train a convolutional NN (CNN) to drive an off-road mobile 

robot. Recently, [6] used similar but deeper CNN for steering control in lane following 

with three front camera input in training process and single camera in application. The 

performance is demonstrated via real road test. [7] proposed a query efficient way to 

improve the training performance for CNN based on the data collected from a racing video 

game. In this approach, full and direct information will be taken into training, which causes 

global performance and less process steps. But the redundant information unrelated to the 

driving will also increase the difficulty of CNN in recognition. Moreover, there is no clue 

of the inner decision making, it’s hard to analyze the key factors that influence the actuation 

generation.  

In the perception based learning, the sensing data will be processed by an learning 

based perception module to identify the key indicators of the local relation between the ego 

 

Figure 1-4: Training process of the CNN in end to end learning  
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vehicle and environment, which can be either a space description of the world model [8] 

[9] like lanes, traffic signals, object cars and pedestrians or the affordance but meaning full 

indicators [10] such as the heading angle error between the vehicle and road, the distance 

to the lane mark and the distance to the surrounding object cars. Then a simpler CNN can 

be used to map those indicators to the actuations. The perception module increases the 

processing steps but reduce the effort of CNN. The performance of this approach is highly 

limited by the perception accuracy. 

There is no strong evidence that which approach is better as they all have their own 

pros and cons as mentioned. However, as they all trying to imitate a human driver, the 

perception based learning approach is more close to a human decision on which the 

influence of the driving related indicators are considered as input of the policy function in 

NN. Even though it seems like a permanent solution for the autonomous vehicle that an 

artificial human driver replace a real human driver, there is still a long way for this 

approach to overcome the challenge from tremendous data collection, diversity of driving 

style, reliability under complex scenarios.  

1.1.2 Planning Based Control 

Aside from the learning based control, planning based control follows a more 

reasonable and feasible pattern that relied on the decision making in a sequence of activities 

required to achieve a desired goal. This approach generally includes the following 

components between the sensors and actuators: 1) Perception, 2) Planner and 3) Executor. 

Similar like the perception module introduced in the learning based approach, it’s 

responsible for transforming the raw sensor data into a cognitive world model that helps 
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the planner to make a planning decision. The perception consist of the environment 

detection [11] [12] such as identifying the lane, traffic signals and the object tracking of 

the cars and pedestrians as well as the ego vehicle condition observation [13] [14]such as 

localization and vehicle state estimation. The challenges are reliable perception algorithm 

design and handling the uncertainties in sensor measurement.  

The planner is responsible for the decision making on the feasible activities planned 

to satisfy the desired goals. Depending on the level of the goal, the planner can be design 

in to a hierarchical fashion: 

 Global/long term planning: route planning [15] [16] 

 Local/short term planning: motion planning 

    

 

Figure 1-6: Illustration of planning based control 

 

Figure 1-5: A typical perception results from the sensing data by Google 
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In the higher level, the route planning works like navigation system that intends to 

find the best way points from position A to B in the global sense based on the digital map, 

traffic and localization information. It doesn’t consider the detail information of the traffic 

but only the roads selected to connect A and B, In the lower level, the motion planning 

aims to plan the motion trajectory in a short future horizon of the vehicle in the local 

environment with limited information to abbey the constrains like following the traffic 

rules, yield to obstacle to avoid a collision, satisfying the vehicle dynamics and so on. The 

motion plan will be update fast enough to accommodate the dynamics change of the 

environment. This proposal focus on improving the solution of motion planning problem, 

details will be introduced in the next chapter.  

The executor ties generating the desired control signal that can guide the vehicle to 

follow the decision of the planner. It’s usually a tracking controller that considering the 

vehicle dynamics like the normal vehicle dynamics controller. In some cases, the executor 

will be integrated inside the planner that the control signal also become part of the plan. 

   

Figure 1-7: Illustration of route planning (left) and motion planning (right) 
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Overall, the planning based control makes decision on the motion and control plans 

based on the pre-programmed algorithm according to information from the pre-stored map 

data and perception. Its performance is limited to the quality of the perception and the 

planning algorithm as well as the dynamic uncertainties of the environment and the ego 

vehicle. 

1.2 Motion Planning for Autonomous Vehicle  

1.2.1 Problem Definition 

As mentioned, the motion planning aims to plan the motion trajectory in a short 

future horizon of the vehicle in the local environment with limited information to satisfy 

several constrains, like following the traffic rules, yield to obstacle to avoid a collision, 

satisfying the vehicle dynamics and so on. The literature about this problems will be 

reviewed and summarized to find the gap/motivation of this dissertation work. 

1.2.2 State of the Art 

The majority of the existing researches in motion planning are found in the robotics 

field, where various algorithms are proposed to find collision-free trajectories under static 

and dynamic constraints in the available space. In this discussion, the word motion is used 

to mean state trajectories (including both discrete state like the maneuvers acceleration, 

deceleration, steering and the continuous state, at a minimum, position or path and speed) 

for the controlled vehicle. The state of the art in planning methods roughly falls into three 

groups: 1) Sampling based method, 2) Decomposed method 3) Mathematical programming 

based method. 
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In the sampling-based methods, the state and/or input space is discretized or 

randomly sampled in lattices and then efficient heuristics for deterministic or stochastic 

searching, such as the A* graph search or RRT* algorithm are applied to find the best 

collision free trajectory based on an objective function [17]. This approach can be used to 

design the maneuver-based motion planning/maneuver automaton, which is a currently 

popular method for guidance of robotic vehicles as it accommodates the practical vehicle 

maneuvers and simplifies the planning work with low on-line computational time by 

searching from a finite number of quantized motion primitives in a pre-defined library [18]. 

The motion primitives contain a library of steady-state and transient state trajectories [19] 

[20] connecting two steady-states. These primitives are generated by numerically solving 

the nonlinear vehicle dynamics model. Either random or deterministic searching methods, 

such  as rapidly exploring random tree* based algorithm [21], particle swarm optimization 

algorithm [22]or greedy search algorithm [23], can be applied in real-time to construct a 

periodic planning law from the library, ensuring some robustness in a disturbance 

environment. However, the flexibility and effectiveness of the control strategy is a function 

 

Figure 1-8: Illustration of motion primitive selection under different velocities and 

steering [20]  
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of the resolution and size of the library. Moreover, the complexity of finding the best 

maneuver increases with the resolution of the library.  

In decoupling methods, the planning problem is usually decomposed into two easier 

sub-problems: first, applying a path planner (could be based on cell decomposition as in 

[24], or a sampling-based method) to find the waypoints in the configuration space, 

considering the shape of the ACV, and then using a close-loop controller to track those 

waypoints. The differential constraints are typically only applied to the latter sub-problem. 

Nevertheless, it’s hard to prove the existence and the optimality of the collision-free 

solution, especially in the presence of uncertainties.  

A third group of planning algorithms involve mathematical constrained 

optimization formulations which offer some guarantees of conditional existence and 

optimality of the solution based on the convexity of the problem formulation and the 

quality of initial guesses. In this group, receding horizon control (RHC) or model predictive 

control (MPC)-based motion planning generates optimal trajectories by repeatedly solving 

 

Figure 1-9: Illustration of MPC based motion planning [29]. 
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constrained optimization problems in a receding prediction horizon [25]. It is very 

attractive because it naturally handles multiple constraints and modeled nonlinearity in the 

full space region. When applying MPC to vehicle guidance problems a tradeoff is usually 

made between the model fidelity and the computational complexity. In [26], the 

computational burden of using complex vehicle nonlinear dynamics as well as the 

tightened constraints such as needed for obstacle avoidance was found troublesome. Model 

simplification was then adopted to reduce the complexity of solving the planning problem. 

A linear time-variant (LTV) vehicle model was used in [27] to approximate the vehicle 

dynamics, which showed feasibility for real time application at the cost of reduced 

prediction accuracy. In [28] [29] a two-stage hierarchical nonlinear MPC (NMPC) 

framework was proposed, where a low-fidelity nonlinear point-mass vehicle model is used 

in the top level MPC for motion planning with the global constraints like obstacle 

avoidance, friction ellipse, while the lower level MPC uses a high-fidelity vehicle 

dynamics model with local constraints like tire dynamics or actuator limits. This allows the 

nonlinear dynamics of the basic vehicle motion to be considered, but the scheme relies on 

model parameters that are likely to change (e.g. vehicle mass, inertia, tire properties). To 

improve the adaptability of the planning framework in public traffic, in [30] [31] a 

nonlinear particle motion model expressed in reference path frame is used to design a high-

level MPC for motion planning. The reference path is defined by its curvature in 

polynomial form. Either the predicted control output or the predicted state trajectories were 

configured to be tracked using traditional vehicle dynamics controllers at the lower level. 

This approach showed good performance in dynamic path tracking and obstacle avoidance, 
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and the optimization problem can be overcome by efficient real-time optimization method 

[32] [33].  

The MPC method mentioned above are independently implemented for specific 

maneuvers (e.g. ACC, path tracking or collision avoidance). However, a practical ego 

vehicle needs to have a maneuver planning framework to handle different situations. For 

instance, the ego vehicle should have the ability to decide whether to make an active lane 

change to pass a vehicle in front of it if there is available adjacent lane or merely follow 

the vehicle in front if not, otherwise some undesired behavior will happen. But these 

discrete decisions are too complex to implement in a single nonlinear MPC setup as the 

required computations have then to deal with hybrid system optimizations, which generally 

result in mixed integer programming problems and can require significant computation 

time [34] [35]. Some approach needs to be develop to solve this problem. 

1.3 Research Motivation and Contributions 

According to the literature review and our previous work on the MPC-based motion 

guidance system, the motion planning approach used in autonomous road vehicle is more 

Figure 1-10: Illustration of a trapped ego vehicle with MPC based lane tracking and 

obstacle avoidance system 
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comprehensive in a hybrid (combined discrete maneuver planning and continuous 

trajectories planning and the interaction between them) manner. Unfortunately, the 

optimization problem of such a system (combining maneuver planning with motion 

planning) results in a mixed integer programming problem that is not feasible for real time 

application. Also, the non-convex configuration space make it hard for gradient based 

optimization method to find a better local minimum. Furthermore, when multiple object 

vehicles as well as the state uncertainties are involved, the original problem become 

intractable to solve. The dissertation is motivated by these problems.  

The main contributions in this dissertation include: 

 Propose a hybrid control framework that modelling the maneuvers of ego vehicle 

(tracking a specific reference speed on a specific lane) with particle description 

under predictive control as a hybrid control system 

 Predictive reference speed assignment is applied in the system to improve the 

optimality of maneuver selection and based on the prediction of the object and ego 

vehicle states, thus realizing the maneuver planning. 

 A relaxation method is applied to transform the mixed-integer programming 

problem into a nonlinear programming problem, which realizes the optimization 

based maneuver (for lane change) selection in real-time application. 

 Propose an obstacle filtering algorithm to reduce the motion planning effort of the 

MPC and improve its optimality by generating a more conservative collision field 

for the group of object vehicles with close proximity, which helps to exclude the 

undesired local minima.  
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 Applied an evolution model to track the structure, state and boundary of the object 

vehicle group by consider the state distribution of each detected object vehicle.  

 Derived the probabilistic collision/closeness criteria between any two individual 

object vehicles with non-negligible geometric size and shape information based on 

their state estimation via Bayesian tracking.  

 Based on the closeness evaluation, a density-based method is applied to 

group/cluster the IOVs without a prior guess about the number of groups. 

 Developed a constraint tightening strategy by deriving an analytical solution for the 

fundamental dimensions of the collision area according to the specified confidence 

threshold and the uncertainty distribution. 

 Implemented and illustrated the constraint tightening method to a multi-vehicle 

grouping frame work and solved the stochastic MPC based motion planning 

problem for collision avoidance and traffic interaction. 

1.4 Dissertation Organization 

The dissertation is organized as follows. In Chapter 2, a hybrid predictive trajectory 

guidance and control framework is introduced to show the availability of the autonomous 

vehicle in switching among different maneuvers to accommodate the dynamic environment. 

In Chapter 3, the predictive maneuver planning and control framework is described to 

improve the optimality of selecting the maneuver in a predictive and optimized way. The 

relaxation method to convert the mixed integer programming to a nonlinear programming 

is also described in this chapter. In Chapter 4, obstacle filtering and vehicle grouping 

algorisms is design to facilitate the predictive maneuver planning via excluding the 
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undesired local minimums. In Chapter 5, a probabilistic framework for tracking the 

formation and evolution of multi-vehicle groups is introduced. The probabilistic 

collision/closeness criteria between any two individual object vehicles with non-negligible 

geometric size is derived. In Chapter 6, a constraint tightening approach is proposed to 

transfer the probabilistic collision avoidance constraint with a specified confidence 

threshold into a relevant deterministic constraint. The approach is then implemented to the 

multiple vehicle grouping framework and to solve the predictive maneuver planning 

problem with probabilistic collision avoidance constraint. Conclusion and future work are 

included in the final chapter. 
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CHAPTER 2  

HYBRID PREDICTIVE TRAJECTORY GUIDANCE AND CONTROL 

FRAMEWORK 

2.1 Abstract 

In this chapter, a hybrid predictive trajectory guidance and control framework is 

proposed that enables the safe operation of autonomous vehicles considering the 

constraints of operating in dynamic public traffic. The core modules of the framework 

includes a nonlinear model predictive trajectory guidance (PTG) module that uses a 

computationally expedient curvilinear frame for the description the road and of the motion 

of the vehicle and other objects and an assigner module above it. The assigner module not 

only enforces constraints generated from information about obstacles/other 

vehicles/objects, public traffic rules for speed limits and lane boundaries, and the limits of 

the vehicle's dynamics, but also switches the references, e.g. reference lane and reference 

speed for the PTG module to follow based on the scenario or situation the ego vehicle is 

involved in. Therefore, the entire framework becomes a hybrid system. The performance 

of most aspects of the proposed scheme are illustrated by considering various simulations 

of the control framework application in typical public driving events, such as intersections, 

passing, emergency braking and collision avoidance. The feasibility of the proposed 

control framework for real-time application is highlighted with discussions of the 

computational execution times observed for these various scenarios. 
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2.2 Introduction 

The basic problem in autonomous vehicle guidance is the planning and control of 

the motion trajectory to achieve the goal of moving from one location to another while 

fulfilling a number of constraints, which include: staying on the roadway, avoiding 

collisions with static or dynamic obstacles, obeying traffic rules, minimizing occupant 

discomfort from undesirable maneuvers [18]. An autonomously controlled vehicle (ACV) 

needs to rapidly and systematically accommodate these constraints and other 

environmental uncertainties. 

In recent times, Model Predictive Control (MPC) has received significant attention 

for ACV motion planning due to its ability to readily handle input and state constrained 

optimizations on a prediction horizon that can then be implemented in a receding horizon 

scheme. Perhaps the simplest implementations of MPC designs in this area are those 

presented in [36], which primarily focused on the longitudinal dynamics and stability with 

adaptive cruise control (ACC) without considering the lateral vehicle dynamics. The works 

in [27] dealt with predictive trajectory/path tracking via single axle active steering inputs 

using nonlinear and linearized vehicle models, respectively. Only constant speed scenarios 

were considered; the longitudinal dynamics were ignored. A hierarchical two-level MPC 

framework was proposed in [28] to do predictive path tracking. A low fidelity model is 

used in the upper level MPC, and high-fidelity vehicle dynamics model was used in the 

lower level MPC. More stable results were observed in this case compared to applying only 

the lower-level MPC because of the already feasible trajectory reference generation by the 



18 

upper level MPC. This framework was later applied to achieve collision avoidance (CA) 

in [29], combining longitudinal and lateral vehicle dynamics control. 

The MPC works mentioned above are independently designed for specific 

maneuvers (e.g. ACC, path tracking or CA). However, a practical ACV needs to have a 

multi-functional control framework to handle different situations. For instance, the ACV 

should decide to make an active lane change to pass a vehicle in front of it or merely follow 

the vehicle in front to obey public traffic rules. These discrete decisions are too complex 

to implement in a single nonlinear MPC setup as the required computations have then to 

deal with hybrid system optimizations, which generally result in mixed integer 

programming problems and can require significant computation time [37]. This could make 

them unsuitable for scenarios with fast dynamics. 

One approach to address this is offered by considering a hierarchical framework 

where the discrete decisions of selecting maneuvers are relegated to an assigner module 

and a versatile MPC formulation handles the trajectory guidance in all or most possible 

maneuvers. The MPC in this PTG module integrates information about obstacles/other 

vehicles/objects and of public traffic rules for speed limits and lane boundaries, as well as 

limits of the vehicle’s dynamics, in its constrained optimization. Therein, the assigner 

module is merely assumed to be available as an information filter that processes and 

delivers the data from the environmental information and vehicle dynamics sensors to the 

PTG. 

In this chapter, we detail the functionality of the assigner module as one that 

manages the control setup of the MPC in the PTG. Here, the assigner is made a decision-
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making module that guides the PTG to a specific maneuver state. A hybrid control 

framework is proposed with a (set of) finite state machine(s) (FSMs) designed for the 

assigner module, where the maneuver states are taken as the discrete states. The FSMs help 

the assigner to complete the task of not only processing external information but also 

choosing the desired maneuver state of the ACV. Then, the MPC of the PTG will be 

responsible to follow the chosen maneuver and generate the control input for the actuators 

available on the vehicle (steering, brake, traction). 

A hybrid controller design for autonomous vehicles could be found in plenty of 

previous works. A hierarchical FSM concept with meta-state machine for different 

scenarios and a sub-state machine for vehicle maneuver states was designed in [38]. This 

FSM structure was further detailed by [39] with rule-based or Hidden Markov Method-

based switching conditions to estimate human driver decisions. In [40], a rule-based 

automaton (FSM) was designed to regulate the longitudinal motion of ACVs to avoid 

collision under cruising and merging scenarios. A game theory method was used in [41] to 

design a robust hybrid controller, which guarantees safety under some uncertainties in 

vehicle platooning. The method was applied later by [42] with non-deterministic 

automaton to regulate an intersection problem. However, those works above were not 

interfaced with MPC-based trajectory guidance as we propose here. 

The advantages of such a hybrid system view of the assigner are two-fold: First, 

with an exhaustive list of the maneuver states, one could cover all the basic functional 

behavior of the ACV to robustly react to environmental uncertainties [38], [41]. Second, 

as an agent of the transportation system, ACV can be made to react properly and 
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predictably with other vehicles via a proper and unified maneuver switching condition 

designed to preserve traffic order and efficiency [40], [41], [42]. 

2.3 Framework Design 

Figure 2-1 shows a schematic of the proposed hierarchical hybrid control 

framework for an autonomous road vehicle. It consists of four modules: the route navigator 

module, the environment recognition module, the higher-level maneuver selection module 

and the lower-level maneuver execution modules. The details of Navigation and 

 

Figure 2-1: Hierachical control framework 
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environment perception module are beyond the scope of the work and their output 

information is simply assumed available to the maneuver planner.  

The assigner module is responsible for processing the information from the route 

navigator and environment recognition and then provide the necessary information, e.g., 

parameters (p), references (r), and constraints (c), for the MPC formulation. Further 

description of these pieces of information can be found in [31]. More importantly, the 

maneuver automatons/FSMs are also designed and stored in this module. Based on the 

scenario the ACV is in, a relevant FSM will be chosen. The maneuvers are defined as 

tracking a suit of references such as a reference speed on a reference lane via recursive loop 

of MPC. The switching strategies for the maneuver/reference selection will be defined in 

some rules based on the current situation from perception. When the trajectory for the 

maneuver is generated by PTG, the first step of the control sequence will be sent to the 

lower-level controllers of the continuous vehicle dynamics for execution via the available 

lower-level vehicle dynamics controllers (VDC), whose discussion is omitted here. The 

reader is referred to [30] and other standard references for this topic. 

2.3.1 Assigner/Maneuver Status 

As mentioned above, the assigner module could consist of several finite state 

machines (FSMs), based on the scenario the ACV is in, a relevant FSM will be chosen. In 

each FSM, the ACV can switch among different maneuvers each of which have associated 

setups of the MPC in the PTG. These setup actions may include: 

 Filtering the nearby vehicles or moving objects as target obstacles. 

 Selecting the reference states or state constraints for the vehicle to obey. 
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 Tuning the weighting matrices in the objective functions or even change the 

formation of the objective function for the MPC 

The MPC setup guides the PTG to complete a specific maneuver like following the 

front vehicle or leading the rear vehicle within a safe gap in the longitudinal direction; 

keeping a lane or changing a lane laterally; or controlling the vehicle in both directions. A 

typical case of the vehicle states for highway maneuvers are described by the FSMs 

depicted in Figure 2-2. The transitions between different maneuvers are determined by the 

switching rules shown in Table 2-1. 

 

Figure 2-2: The FSM for basic highway maneuvers in the assigner  
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In Table 2-1, vf and vr represent the speeds of the detected front vehicle and rear 

vehicle, respectively, as observed from the autonomously controlled vehicle (ACV) in the 

same lane. vt is the speed of the ACV. vlcl and vlch are customizable lower and higher bounds 

of satisfactory speeds that may be selected by occupants of the ACV. If these speed ranges 

are violated, i.e. vt > vlch or vt< vlcl, a lane change will be triggered. Furthermore, vlcl and 

vlch must not violate the hard traffic speed limits [v, v] for the lane as v≤vlcl≤vlch≤v . 

Table 2-1: Switching rules for the transition conditions 

Condition Rules Assignment 

C1 vf ≤ vt vt,r = vf, otherwise vt,r = vref  

C2 vr ≥ vt vt,r = vr, otherwise vt,r = vref 

C3 Merge or Exit Required 

Potentially ye,r = ye,tl,  

depends on the availability 

 of the target lane 

E1 vt < vlcl 

E2 vt > vlch 

F1 Lane Change is allowed 

 

vt,r and ye,r  are the reference speed and lateral position error that will be assigned to 

the MPC. The complementary set of “Lane Change is allowed” in F1 is defined by:  

 , ,
tl tlo t r lcl lchss s d v v v                                      (2.1) 

sotl
 is the arc length of the object vehicle at the target lane. ds is a safety headway distance 

between the ACV and the preceding OV. vt,rtl
 is the reference speed of the target lane after 

checking the availability of the lane.  
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Figure 2-3 illustrates the maneuver states and references assignment. Here vref is the 

reference speed for ACV and vref = (vlcl +vlch)/2. The red dash dot line shows the reference 

lane needs to be followed. The blue rectangle illustrates the sensing range of the distance 

sensors. When the front OV and rear OV are too far away (outside the sensing range) or 

not approaching the ACV (vf > vt or vr < vt), the ACV is in the state of S1: Normal Tracking. 

At this state, ACV tracks the vref and the current reference lane. If the front OV is 

approaching ACV (vf < vt), to avoid collision, ACV will switch from S1 to S2: Following. 

When the rear OV is approaching (vr > vt), ACV will switch to S3: Leading. In these two 

states, ACV keeps the original lane and track the speed of the approaching vehicle (vf or 

vr). However, if vf and vr go beyond the speed range [vlcl, vlch], vt will finally stay outside 

the satisfied speed range, due to the speed matching requirement. 

To keep vt satisfied the customized speed bound, once vt,r violates [vlcl, vlch], ACV 

will switch to S4: Lane Change, if it’s allowed to make a lane change based on the lane 

marks and the availability of the adjacent lanes. After the lane change, the state will 

 

Figure 2-3: Highway maneuver states of ACV 
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automatically switch back to S1. If lane change is not allowed, ACV will keep in the 

original states even though vt violates the limit speed. For instance, if front OV stops, ACV 

will stop behind the front OV. In addition, ACV could also switch to S4 if it tends to merge 

in or leave the highway. 

2.3.2 Vehicle Models for Predictive Trajectory Guidance 

A 2D curvilinear particle motion model for ACV motion description in motion 

planning is used here. The reference path defined in the Frenet frame as well as the vehicle 

states are shown in Figure 2-4. The motion of the particle/vehicle with respect to the local 

reference path (lane centerline) is given by the angular alignment error ψe and lateral error 

ye. The following equations summarize the resulting nonlinear dynamics model describing 

the motion of the ACV:  

 t tv a   (2.2) 

 
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 sine t ey v                                                   (2.5) 

where vt is the forwarding speed of the particle vehicle, which is controlled by 

acceleration at, s is arc length of the ACV according to the reference path coordinate. The 

reference path is defined by its curvature κ(s) as a function of arc length s and is assumed 
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to be known based on the map information. p  is the yaw rate that used to control the 

angular error ψe. Therefore, the control inputs for the particle dynamics involve at and p . 

In additional, assuming the (lower-level) closed-loop vehicle dynamics exhibits a 

first-order lag behavior, the generation of control inputs to the particle dynamics can be 

approximate by a first order dynamics system given by: 

 ,

t

t d t

t

a

a a
a

T


                                                           (2.6) 
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t p d p

p

v

T

  


  
                                                (2.7) 

where Tat, Tψp are the time-constants of the first-order approximation of the 

longitudinal and lateral dynamics of the vehicle (masked by available VDC). Therefore, 

the desired acceleration at,d and the desired deviation from the reference yaw rate ,p d  

are treated as the final inputs used to control the particle along the reference path [43]. 

 

Figure 2-4: Particle motion description for the vehicle 
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 As for the object vehicle (OV) shown in Figure 2-5, given the current measurement 

of the longitudinal velocity vt
s
,oi longitudinal acceleration at

s
,oi, lateral velocity vn

s
,oi and 

lateral acceleration an
s
,oi as well as the position soi,0, ye,oi,0 of the ith OV resolved in the path 

coordinate, one can predict the future position of object i at time t in the prediction horizon 

using:  

2

,0 , ,

1

2i ii i

s s

o o t o t os s v t a t                                            (2.8) 

2

, , ,0 , ,

1

2i ii i

s s

e o e o n o n oy y v t a t                                         (2.9) 

Here, the at
s
,oi and an

s
,oi are held constant for the prediction horizon, but are to be 

renewed at each MPC update. These update times are set to be in the order of 100-150ms, 

which is sufficiently fast to overcome the error due to this assumption of constant 

accelerations.  

 

Figure 2-5: Object vehicle motion and collision avoidance constraint definition in 

reference path frame  



28 

2.3.3 Constraints for Predictive Trajectory Guidance 

As shown in Figure 2-5, the constraint to keep a safe distance between the ACV 

and any nearby object i is modeled by the elliptic inequality: 

2 2

,

, , ,

1i i

i

e e o o

e o o ss Do Do

y y s s

y s f 

    
          

                             (2.10) 

ζDo is a slack variable that allows the solver to find a feasible solution in emergency 

situations with auxiliary dynamics given by: 

DoDo u                                                    (2.11) 

fζ,Do is an optional tuning parameter (has a unit of time). Δye,oi and Δso,ss are 

calculated by incorporating the geometry (length and width) of the objects and the ACV. 

These are assumed available from sensing and/or V2V communication. The longitudinal 

safe distance ds is defined by the major axis: 

, ,o ss Do Dosd s f                                           (2.12) 

The control input must also be limited to the physical constraint of the acceleration 

according to the friction ellipse of a real vehicle’s tire/road contact: 

       
2 22

, , ,/t t p r n gg t d H ggv s v a a g                              (2.13) 

Here, μH is the limiting tire-road friction coefficient, g is the gravitational constant. 

an,gg∈[0,1] is the scaling of the ellipse for lateral acceleration. The slack variable ζgg enables 
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the formulation of the limit value of the combined accelerations as a soft constraint with 

auxiliary dynamics defined by: 

gggg u                                                      (2.14) 

Other state constraints like lane boundaries, speed limits and the minimum turning 

radius, etc. are also considered; for complete details, please refer to [31]. 

2.3.4 MPC Formulation for the Predictive Trajectory Guidance 

The objective function of the MPC weighs the reference tracking error and control 

efforts as follow: 
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subject to :          ,x f x u u U  x X 

0(0)x x 

 0 ,c x u 

:
T

t e e t pt gg Dowhere x v y s a                                 (2.19) 

, , Do ggt d p du a u u   
 

                                        (2.20) 

T

t e gg Do ty v y v                                             (2.21) 

, , , ,do

T

t r e r gg r rr v y e                                           (2.22) 

Here, k ∈ (0, 1, …, Np ) is the discretized prediction step number, where Np is the prediction 

step length. The prediction horizon Hp is defined by Hp = Np ΔT and ΔT is the sample and 
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update time of the MPC. x covers all the state variables of the ACV particle motion model 

given by (2.2)~(2.7) and the slack variables in (2.11) and (2.14). X represents the state-

space for x. x0 denotes the current/initial state (measured). The system outputs, namely the 

speed vt and lateral position ye of the ACV as well as the slack variable output ζDo, ζgg are 

grouped in vector y. U denotes the admissible set for input u, which includes the input to 

ACV motion model and selection variables. P and R are the weighting matrices for tracking 

error and control efforts. Pt is used to weight the terminal cost in tracking error. All the 

inequality constraints like (2.10), (2.13) and other constraints are included in (2.18). 

The MPC formulated above is implemented using the ACADO Toolkit and 

accompanying Code Generation Tool from [44] [33] [45]. Therein, a sequential-quadratic 

programming (SQP) algorithm generates a quadratic approximation of the nonlinear 

problem and solves it with an online active-set QP solver from the open-source library 

qpOASES. Some restrictions and facilities in the tool influenced the formulation of the 

MPC model adopted here more than others. For example, instead of formulating the 

obstacles to avoid as polygons, each of which are in turn defined by intersections and 

unions of regions defined by linear constraints, the elliptic constraint formulation allows 

one to use few analytical functions to describe each obstacle. The drawback is this could 

lead to some conservatism in describing the avoidance area. In our analysis, we used the 

multiple shooting horizon discretization option and a 4th order explicit Runge-Kutta 

integrator. For details on the toolbox, the interested reader is referred to [45] and the 

references therein. 
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While it is not possible to give upper bounds on the number of iterations needed to 

arrive at the optimal solution of the nonlinear optimization problem with active set QP 

solvers, some computational scalability bounds can be given for a single QP iteration. 

Following discussions in [44], it can be shown that the computational complexity of one 

QP iteration of the active set solver selected is O(Nx
3+Nu

2+Np
2+(NuNp)

2+NuNpNc), where 

Nx is the number of states, Nu is the number of control inputs, Np the length of the prediction 

horizon, Nc is the number of constraints. Thus, the additional control inputs, states and 

constraints we added for the slack variables lead to an increase of the computational load. 

However, these additions are deemed acceptable as they make the problem more tractable.  

2.4 Simulation Results and Conclusions 

2.4.1 Simulation Results 

In this section, several cases are simulated to illustrate the performance of the 

proposed control framework in autonomous driving. The PTG uses the motion model and 

MPC formulation detailed in the previous sections implemented with the ACADO code 

generated solver described above. Unless specified otherwise, the following MPC settings 

are used: the prediction model is discretized with ΔT = 0.15s and Np= 40, thus Hp= 6s the 

MPC is updated with Tmpc = 0.05s (This is higher than all execution times tested). The other 

parameters chosen are listed in Table 2-2. 



32 

First, we consider a scenario where the ACV needs to follow only one reference 

path through an intersection with a left turn in the presence of two other vehicles (object 

vehicles), see Figure 2-6. The ACV is restricted with ±0.75m tolerance along its reference 

path. The traffic light in front of it turns red at t= 5s when s = 90 m and it turns green at t= 

20s. Suppose object vehicle 2 (OV2) violets the red light it faces at t= 20s and keeps going 

through the intersection from left to the right. Suppose also that Object vehicle 1 (OV1, 

driven by an attentive driver) yields to OV2 and starts moving forward at t= 27s. The 

predicted and updated plans for the ACV are shown in Figure 2-6. Before t= 5s, PTG plans 

to slow down the ACV and make a left turn and go through the intersection, therefore, the 

lateral acceleration an magnitude increases in the planning/prediction. After detecting the 

red light, the plan changes to a further deceleration and finally, a complete stop in front of 

the traffic light, constrained by s = 90m. When the light turns green, when the arc length 

Table 2-2: MPC parameters 

Parameter Value Parameter Value 

vlch [m/s] 28 μ
H

 1 

vlcl [m/s] 23 𝑃𝑣𝑡
 1.1 

Tat [s] 13.3 P𝑦𝑒
 3 

Tψ̇p
 [s] 5 P𝜁𝑔𝑔

 20 

Δy
e,oi

 [m] 5.3 P𝜁𝑑𝑜
 20 

fζ,Do 1 R𝑎𝑡
 20 

Δs𝑜,𝑠𝑠 [m] 2.3 RΔ𝜓̇𝑝
 250 
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restriction is softened to allow the ACV to accelerate. However, as OV2 doesn't obey its 

traffic light, PTG plans to yield to it to avoid collision and wait till OV2 has crossed the 

intersection. Then, the PTG guides the ACV to reduce its acceleration to let OV1 pass the 

intersection. 

Secondly, we consider a series of highway scenarios with two lanes. The initial 

conditions for the straight lane scenarios are shown in Figure 2-7(top). The forward 

 

 

Figure 2-6: Results for an intersection scenario 
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directions of the two lanes are the same. Figure 2-7 and Figure 2-8 show the results for an 

unsuccessful passing of the ACV due to the narrow space available for ACV to pass. We 

consider cases with (Figure 2-7) and without (Figure 2-8) the FSM assigner invoked. If the 

assigner is not invoked, velocity reference vt,r and lateral distance error reference ye,r will 

not change in (2.22), thus only normal tracking maneuver (S1), which can nominally avoid 

obstacles, will be chosen. In this Scenario, as Obj1 and Obj2 share the same speed and stay 

close to each other, their elliptical regions overlap with each other and block the road, as 

shown in Figure 2-8 (top), which results in a local minimum for the cost function at the 

 

 

Figure 2-7: Initial condition(top) and results(bottom) for an straight  highway scenario 

with FSM assigner invoked 
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intersection of the two boundaries. As the MPC tries to minimize the cost function in (2.15), 

the ACV without the FSM assigner will try to overtake Obj 1 and then be trapped at this 

local minimum point and deviate from the original centerline, as depicted in Figure 2-8. 

This behavior is undesired because the ACV would (nearly) occupy two lanes 

simultaneously. This situation can be avoided by assigning a new reference speed to the 

MPC objective with the FSM assigner. In this case, the ACV with FSM (Figure 2-7) will 

keep following the front vehicle starting at t=1s without any lateral deviation. 

A more complex scenario where the ACV tries to overtake two slow vehicles on an 

S-shaped highway is shown in Figure 2-9. In this case, the two vehicles/objects are initially 

 

 

Figure 2-8: Final condition(top) and results(bottom) for an straight  highway scenario 

without FSM assigner invoked 
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in front of the ACV in different lanes. The ACV will change lane to overtake Obj1 and 

then repeat the maneuver to pass Obj2. A sudden lane change of Obj2 is pre-defined before 

the ACV tries to pass it. Therefore, the ACV has to avoid Obj2 twice. Figure 2-9 shows 

the results for this case. In this complex scenario, the ACV exhibits higher lateral 

acceleration ay levels compared with the straight lane scenarios discussed above. The 

procedure of passing Obj1 is similar as in previous cases. In addition, the system makes 

good plans for emergency handling when dealing with Obj2 as its sudden lane change is 

initiated. The ACV slows down and steers in advance of Obj2 reaching the right lane to 

 

 

Figure 2-9: Initial condition(top) and results(bottom) for an S-shape highway scenario 
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avoid entering the danger area (S1).Then it tries to follow Obj2 (S2) before the satisfactory 

speed vlcl is violated, which triggers the final lane change (S4). Finally the ACV overtakes 

Obj2 in the left lane.  

2.4.2 Conclusions 

In this chapter, a hybrid predictive trajectory guidance framework is outlined for 

autonomous vehicle control (ACV). In particular, an assigner module is detailed with 

several maneuver states to guide an MPC-based predictive trajectory guidance (PTG) 

module. The maneuver states are organized through a finite state machine (FSM) with 

specified transition conditions. Each maneuver state is related to a setup of the MPC 

references, hard constraints or weighting matrices, which will be assigned to the PTG for 

execution if the related maneuver state is chosen by the assigner. The PTG is based on a 

particle motion model for the vehicle dynamics and the path expressed in a curvilinear 

coordinate frame. The control inputs are generated by satisfying constraints describing 

dynamic public traffic, and vehicle-road friction limits. To illustrate the performance of the 

framework, a finite state machine of intersection and highway maneuvers are designed and 

simulated. The ACV under this hybrid controller design showed good performance and 

proper behaviors in various scenarios. 

However, the maneuver selection is neither optimized nor predictively conducted, 

therefore the switching time from one maneuver to another might not be the best. Also the 

switch transient process could be uncomfortable with jerk. Furthermore, the uncertainties 

in the state observation is not considered. In next chapter, a predictive maneuver planning 

framework with observer design is introduced to address these issues.
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CHAPTER 3  

PREDICTIVE MANEUVER PLANNING AND CONTROL FRAMEWORK 

3.1 Abstract 

In this chapter, a predictive planner is proposed that combines maneuver planning 

and trajectory planning in a short future horizon in the presence of uncertainties. Based on 

the predicted likely motion of the autonomous vehicle and other object vehicles, a 

predictive reference speed pre-planning is operated for each lane at each time step of the 

prediction horizon. Then, an optimization problem is configured that computes safe, sub-

optimal plans for the trajectories of both the states (and inputs) and maneuver references 

for the prediction horizon. While a first formulation of this results in a mixed-integer 

nonlinear programming (MINP) problem, it is shown that a relaxation can be adopted that 

reduces the computational complexity of the optimization solver to a low-order polynomial 

time nonlinear program which can be solved efficiently at real time. The proposed 

predictive maneuver planning method is illustrated through simulation of a series of multi-

lane highway scenarios and compared with a one-maneuver planning approach and an 

adaptive cruise control approach. 

3.2 Introduction 

Autonomous driving is a promising technology for improving the safety, efficiency 

and environmental impact of on-road transportation systems. Despite the existence of 

elegant algorithms [46] for route or global path planning from position A to B, the task of 

guiding an autonomous vehicle to rapidly and systematically accommodate the plethora of 
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changing constraints for local motion planning in public traffic is a challenge problem. 

These constraints arise from tire/road friction conditions, avoiding stationary and moving 

obstacles, obeying the traffic rules, signals and so on. One of the core problems is designing 

robust and computationally efficient trajectory planning algorithms that can generate the 

appropriate vehicle maneuvers as well as the constituent motion trajectories while 

considering the differential vehicle dynamics of the controlled vehicle and the listed 

constraints in public traffic with measurement noise and other uncertainties. Plenty of 

methods have been proposed to deal with this problem, as also summarized in [47] and 

[48]. They roughly fall into three groups: sampling-based planning methods, path-velocity 

decomposition methods and numerical optimization methods. 

Sampling-based planning methods are popular methods for trajectory guidance of 

robotic vehicles. The methods discretize/sample the state space of the motion into a library 

of quantized motion primitives/lattices [49], obtained from numerically solving the steady 

state or transient vehicle dynamic motion models. As each primitive/lattice indicates a 

maneuver, the methods are also called maneuver-based planning methods [18]. Then, 

efficient heuristics for deterministic or stochastic searching, such as the A* algorithm [50] 

or RRT* based algorithm [51], can be applied in real-time to construct a periodic planning 

law from the library, ensuring some robustness and safety in a disturbance environment. 

However, the completeness and optimality of these methods depends strongly on the 

resolution of the library. The complexity of finding the best trajectory increases with the 

resolution of the library. Also, the resulting non-continuous trajectory induces jerky, 

uncomfortable motions.  
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Path-velocity decomposition methods decompose the planning work into two sub-

problems: local path planning and path-tracking. Graph-search based method like 

Dijkstra’s Algorithm [52] and A* algorithm [53] or interpolating curves like clothoid 

curves [54], polynomial curves [55] and Bezier curves [56] are used in the local path 

planner design to generate the way points in the 2D configuration space. Then, a closed-

loop controller is applied to track the path while satisfying the constraints in work space.  

However, as the planned path is not often given as a function of time, collision-free motion 

is not guaranteed by following the path. Therefore, the robustness and safety of the 

decomposition methods highly depend on the quality of the path-tracking controller.  

On the other hand, the numerical optimization methods find the best trajectory by 

solving constrained optimization problems. These methods can naturally handle multiple 

constraints and uncertainties but they suffer from the computational burden of optimizing 

the motion state over a future horizon from a current time step. Therefore, in practical 

applications, these methods usually follow a receding horizon pattern with a limited 

horizon length in a scheme also known as model predictive control (MPC). These use fast 

real-time solvers [33] [32] to periodically solve the optimization problems, where only a 

first section (step) of the input trajectory is executed and the process is repeated in receding 

prediction horizons. MPC, which initially was applied to modeling human-driver like 

control in various traffic situations [57], it now appears in many works as a reactive planner 

for autonomous and semi-autonomous vehicle control [58, 59, 31]. To apply MPC for 

trajectory planning requires the knowledge of global route waypoints as references to 

follow. For the on-road scenario, the centerline of each lane from the perception or map 
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information [60, 61] can be used as the reference path. For off-road scenarios, this method 

can be incorporated in the path tracking level the path-velocity decomposition methods 

[62]. In addition, specific terminal costs and constraints could be designed to circumvent 

limitations of robustness and stability that arise from the use of finite horizons [63, 64].  

In MPC-based trajectory planning, the expected states of the autonomously 

controlled vehicle (ACV or ego vehicle) and other object vehicles (OVs) are model-

predicted for the duration of the prediction horizon based on the current measurements. 

This allows the ACV to assess the risk of having a collision with other OVs and then to 

determine a collision-free trajectory. Different models used for motion prediction of OVs 

are summarized in [65], including physics-based models, maneuver-based models and 

interaction-aware models. Physics-based models [66, 67] simply assume constant velocity 

or constant accelerations and thus they can only be used in motion prediction for a short 

term (less than 1 second). Maneuver-based models [68, 69] predict the motion based on 

the estimation of maneuver intentions. Interaction-aware models [70, 71] also consider the 

inter-dependencies between the individual vehicles’ maneuvers. The latter two models 

allow longer-term prediction compared to physics-based models. The interaction-aware 

model is more reliable than maneuver-based models, but it’s also much-more 

computationally expensive, difficult to fully characterize, and is not compatible for real-

time risk assessment [65]. Maneuver-based models remain the viable options for real-time 

long-term motion prediction (more than a second). 

The planning problem naturally involves uncertainties due to modeling error, 

sensor imperfections or environmental disturbances, as summarized in [72]. In prediction 
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of the motion of the OVs for risk assessment, the uncertainties can be handled by either 

using reachability analysis [73, 74, 75] (estimating the propagation of the uncertainty 

bounds) or using stochastic reachability analysis [76, 77] (estimating the propagation of 

the uncertainty distribution). In the reachability analysis case, the worst case of the 

uncertainty is considered thus leading to a very conservative solution for the planning 

problem. However, for stochastic reachability analysis, the reachable set as well as the risk 

of collision can be assessed by probabilities. If the state uncertainties are Gaussian 

distributed, the stochastic reachability analysis can be implemented via filtering techniques, 

e.g., Kalman filter (KF) series [78, 79] for motion prediction of one maneuver and 

Interactive Multi Model (IMM) KF or Switching KF  [80] for different possible maneuvers. 

Therein, the computational process for solving for the collision free trajectory of the ACV 

in the MPC with filtering techniques is similar to applying stochastic reachability analysis 

applied to find a fail-safe trajectory [77].  

Also, due to the sub-optimality caused by the nonconvex configuration space, and 

the warm start strategy usually applied, an ACV with static or pre-configured optimization 

setups cannot handle the complex scenario and could get trapped at undesired local minima. 

Therefore in last chapter, a predictive control framework which can switch from a 

combination of rule-based discrete maneuver decisions is applied. With these rule-based 

decisions, the planned trajectories are can switch among different maneuver to 

accommodate complex traffic and be forced out of undesired local minima. To improve 

the optimality of the maneuver decisions, the main contribution in this chapter, we 

configure these decisions of the assigner module to be selected optimally and predictively 
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so as to change the maneuver states as frequently as necessary for the prevailing driving 

scenario. However, the optimization of such a problem involves solving for the discrete 

maneuvers as well as the local motion trajectories [81]. This leads to a mixed-integer 

nonlinear programming problem (MINP) [35], which requires specific heuristic-based 

solvers to find a solution. To overcome this problem, another contribution of this chapter 

is the introduction of relaxation constraints to transform the MINP into a regular nonlinear 

programming which can be efficiently solved in real time. We also compare the 

computational complexity of the naive MINP formulation with the proposed relaxation 

technique for the specific active set solver adopted. Here, we explicitly include 

uncertainties in the estimation and prediction of the states of the ACV and of the OVs as 

well as in determining the evolution of the tightened MPC constraints to explicitly 

accommodate uncertainties. The performance of the proposed predictive maneuver 

planning is illustrated via the simulation results in comparison with the one maneuver 

selection approach and a regular adaptive cruise control (ACC) approach under several 

complex scenarios on a highway.  

3.3 Framework Design 

Figure 3-1 shows a schematic of the proposed predictive maneuver planning and 

control framework for an autonomous road vehicle in a uncertained public traffic 

environment. At the top the assigner module integrates/fuses the information from the 

environment perception module (lane detection, traffic sign and signals, object tracking…), 

the navigator/path planner module (route navigator for on-road situation and path planner 

for off-road situation), the vehicle dynamics sensing/estimation modules (planer and yaw 
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motion of the ACV) and motion prediction module (both ACV and tracked OVs). Here, 

we assume the states of the ACV xa and OV xo are fully observed/estimated. The fused 

information will be provided to some pre-defined finite state machines (FSMs)/maneuver 

automatons and then the decisions on configurations, e.g., parameters (p), references (r), 

and constraints (c), for the MPC formulation will be made and assigned to the predictive 

trajectory guidance (PTG) module. Further description of these pieces of information can 

be found in [31] and will be also briefly mentioned in Section III.  

The maneuver automatons/FSMs designed and stored in the assigner module are 

scenario-based. Once the possible maneuvers for a scenario are captured, like cruising, 

following, leading and lane change for highway scenario [82] (see Figure 3-2), or going 

 

Figure 3-1: Hierarchical predictive maneuver planning and control framework 
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left/right/straight and stop for intersection scenario [83],  the relevant FSM can be easily 

extended for the same scenario or to other scenarios [38]. The candidate maneuvers in the 

FSMs are related to their own references, e.g. desired speed and lane. At each prediction 

interval of the MPC, the references are pre-selected according to the predicted motion of 

the ACV and the surrounding OVs via filtering techniques. Then, the optimized maneuver 

sequence as well as the optimized relevant control output trajectory u for the whole horizon 

are solved simultaneously by the PTG system, according to the objective function and 

constraints to be detailed later. When the maneuver planning is done, the first interval of 

u, i.e., u0 is sent to the lower-level controllers of the continuous vehicle dynamics for 

execution via the available lower-level vehicle dynamics controllers (VDC), whose 

discussion is omitted here. The reader is referred to [30] [31] and other standard references 

for this topic.  

3.3.1 Vehicle Models and Filtering Design 

The similar particle model for motion description of ACV and OV used in Chapter 

2 (2.2)~(2.9) are used here with the consideration of uncertainties. For convenience, we 

shall present here the continuous time models of the state dynamics even if computations 

are ultimately to be done in discrete time form. Adding process uncertainties (random 

disturbances and uncertainties) and measurement noise, the nonlinear dynamic model 

describing the motion of the ACV can be written as:  
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(3.1) 

The additive Gaussian process noise w = [  
t daw w  ] are used to model disturbances (e.g. 

wind, road, unmolded dynamics) affecting the generation of longitudinal acceleration at 

and yaw rate p of the ACV. For the system outputs, we consider that the available 

measurements are positions s, ye  (e.g., from GPS) and the inertial states at, p  (e.g., from 

IMU) with assumed Gaussian sensor noise v =[    
e t ps y av v v v ]T.  

For an OV, its motion is also defined in the Frenet frame as a particle. To consider 

its maneuver intention for better motion prediction, we assume each OV to follow closed-

form dynamics that describe longitudinal motion like cruising at a specific speed or speed 

change and lateral motion like tacking a specific lane or lane change. One possible form is: 
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(3.2) 

where, so and ye,o  are the arc length and lateral position error of the OV; 
,

s

t ov  and 
,

s

n ov  are 

the tangential speed and normal speed  of the OV along its reference lane. Ks1 and Ks2 are 

the proportional and integral gains of a controlled OV tracking the reference speed 
, ,

s

t o refv  

with assumed Gaussian process noise ,s ow . Ky1 and Ky2 are the proportional and integral 

gains of a controlled OV tracking its reference lane ye,o,ref with assumed Gaussian process 

noise ,y ow . These gains can be identified from the human-driver data to emulate different 

driving habits, e.g. either aggressive or conservative [84]. For system outputs, only the 

positions so and ye,o are assumed measured with associated Gaussian sensor noises ,s ov  and 

,y ov  (e.g., from on-board range sensors like radars on the ACV). 

Given the nonlinear system model in (3.1), we adopt Unscented Kalman Filter 

(UKF) [85] to estimate the motion states of ACV in the presence of process and 

measurement uncertainty/noise. Given the linear dynamics motion models for the OVs 

(3.2), a regular KF can be used for state estimation of one maneuver (tracking a specific 

lane and speed). To account for other possible maneuvers of the OVs, the Interactive Multi-
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Model KF algorithm [80, 86] can be applied for OV state estimation. Here, we assume the 

gains are well captured from the driving data for the drivers of all OVs of all maneuvers. 

Given the current estimates of the ACV and OV states, one can predict the evolution 

of the mean and covariance of the states for the whole length of the prediction horizon of 

the MPC. Here, we propagate uncertainty in the predicted states (for both ACV and OV) 

using the filtering techniques (UKF/KF) based on (3.1) and (3.2) with the notion of the 

most likely measurement. This notion is based on the assumption that the future 

measurements in the update of the filter recursions is approximated well by the prediction. 

This assumption is motivated by the fact that future measurements are unavailable. Even 

though the updated covariance is not directly affected by the value of the measurement, as 

the measurement information is considered (via the only assumption that same sensors and 

models are to be used), the uncertainties in the likely state are reduced. It is shown in [78] 

that the most likely measurement will not introduce bias in the system, thus it is useful to 

constrain the uncertainty propagation. Finally, note that the future inputs used in the motion 

prediction of the ACV will be taken from the previous planning results of the MPC.  

The above models for motion prediction of OVs and the ACV do not explicitly 

consider the interactions between vehicles, particularly those that would exist in mixed-

traffic involving other human-driven vehicles. As alternatives, other motion prediction 

approaches such as interactive multi-model filtering, Bayesian Networks, and Hidden 

Markov Models trained on human-driver data are all possible options [71] [87]. While any 

of these approaches may be used for motion prediction and incorporated with the maneuver 

planning framework presented in this chapter, as we point out later, for multiple OVs in 
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multi-lane scenarios, the computational complexity of using even linear motion models for 

the OVs needs to be handled with care. 

3.3.2 Maneuver Automaton 

The hybrid system notion is straightforward to apply to the motion of a road vehicle, 

since basic maneuvers, like accelerating, cruising or decelerating in the longitudinal 

direction and steering to the left or right in the lateral direction can be identified from the 

vehicle’s motion [82, 83]. For the ACV, these maneuvers can be designed via tracking 

 

Figure 3-2: Maneuver automaton example for 3-lane highway scenario. Rule-based 

switch sets are denoted by R. 



50 

different reference speeds and reference paths/lanes, as we proposed in Chapter 2. This 

results in a hybrid system model involving tracking of two-dimensional discrete references 

(speed and lane) and the underlying continuous vehicle motion trajectories. To construct 

the maneuver planning for a prediction horizon with low complexity, the switching among 

the discrete maneuvers can be done hierarchically (see Figure 3-2, for example): 1) Firstly, 

the switching of the reference speeds assigned for each lane based on pre-defined rules 

(rule-based switch sets) is executed at each prediction step in the horizon. This is called 

rule-based switch. 2) Then, an optimization problem is solved for the whole horizon to find 

the optimized switching sequence for the reference lanes. This is called optimization-based 

switch. For different scenarios, the maneuvers and the rule-based switch sets can be 

specifically designed and stored in different FSMs of the assigner module, e.g., single lane, 

intersection, etc.  

Considering the interaction of the vehicle with the surrounding dynamic 

environment, e.g. the traffic sign, signals and OVs, for example, when approaching a slow 

front OV, a normal reaction of the vehicle will be either slowing down to follow it or simply 

changing lane to overtake it. Those intentions can be reflected by the reference speed 

assignment to the ACV. Specifically, on lane l, a relevant reference speed vt,r,l will be 

assigned to the ACV to follow, depending on the detection of approaching or close by 

object vehicles, as shown in . The detection condition (3.3) and approaching condition (3.4) 

are defined by: 

,
ˆ ˆ

i to refds s T v                                                   (3.3) 
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  , ,
ˆ ˆ ˆ 0

i it re of t

s

os s v v                                              (3.4) 

where Td is the detection preview time (set from specifications of the perception module, 

its value should be larger than the predictive horizon Hp to prevent the ignorance of an 

abrupt event from the surrounding traffic for MPC). Here, and in the following, the usual 

hat (^) notation is used to denote the respective estimated states. The ith OV occupying lane 

l is denoted by:  

, , ,, ˆ
ie o e l e ly y y 

 
                                                 (3.5) 

where ye,oi is the lateral position of OV i in the path coordinate and the lane l is demarked 

by the lateral position bounds 
, ,, e l e ly y 

 
.  

 

Figure 3-3: Reference speed assignment for ACV in 2 lane scenario.  
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Accordingly, the cruising maneuver is defined as tracking a desired cruise speed 

vt,ref on lane l (lane 2 in Figure 3-3)  without detecting any approaching OVs on the same 

lane. The corresponding speed relation and reference speed assignment is given by: 

, , ,t r l t refv v                                                      (3.6) 

The following or leading maneuver refers to tracking the speed vt
s
,oi of a detected 

approaching OV on lane l in the front or rear by assigning: 

, , ,
ˆ

it r l t

s

ov v                                                       (3.7) 

Remark 3-1: Given a prediction horizon of length Np steps, the rule-based reference 

speed automaton is applied for every lane at every prediction interval. This means a 

reference speed sequence with Np elements will be generated for each lane, thus effectively 

constructing a two-dimensional pre-plan of the references in both the longitudinal and 

lateral directions. This will be used later in the MPC to find the best sequence of reference 

selections for the whole horizon that minimize an objective function. Note that there is a 

possible loss of performance from the non-optimality of the reference speed assignment 

rules; but these are discrete rules done outside of the MPC; the optimization of such 

assignment rules is beyond the scope of this chapter. 

Generally, the ACV is expected to track the desired cruise speed vt,ref within the 

acceptable speed range [vt,cl, vt,ch] with positive speed tolerance Δvt: 

, ,

, ,

t cl t ref t

t ch t ref t

v v v

v v v

  


  

                                                 (3.8) 
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However, as argued in [88], by following the optimization-based reference lane 

automaton introduced in the next section, the ACV can be “trapped” in one lane in a 

following or leading maneuver due to the formulation of MPC objective function with a 

lane selection variable (to be described later). In such situations, a forced lane change is 

necessary to help the ACV jump out of the trap. Therefore, we extend the rules used in [89] 

to guide the ACV to an adjacent empty lane or to one with the assigned speed closest to 

the desired cruise speed via reference speed adjustment. If the assigned reference speed of 

the ACV in the current lane l goes outside of this speed range: 

, , , ,
ˆ ,t r l t cl t chv v v                                             (3.9) 

and adjacent lane(s) are unoccupied or are with assigned speeds closest to vt,ref , with 

complementary sets defined by:  

, , 1 , ,

, , 1 , , , ,

ˆ ˆ ˆ or ,  

ˆ ˆor min , [1,..., ]

tl s t r l t cl t ch

t r l t ref t r i t ref

o

l

s s d v v v

v v v v i N





    

   
               (3.10) 

then a forced lane change will be assigned. Here, ds is a safe headway distance between the 

ACV and the preceding OV which will be defined in the next section (see equation (3.13)). 

A forced lane change is activated by adjusting the assigned speed for those lanes with 

following or leading maneuver outside the acceptable speed range. The adjustment is given 

by: 

,max

, , , , , ,

,

ˆ ˆ, , ,  0,
ˆj

i

j

t

t r j l t t t cl t c

s s

o o sh

o

l

t

v
v k v v v v k

v

 
      

  
                       (3.11) 
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where kl is the adjustment factor and vt,max is the maximum speed of the ACV. kl 

can be selected to generate a high value of the objective function associated with tracking 

the adjusted reference speed of specific lanes. This will then force the MPC to track other 

lanes with closer assigned reference speed to the desired cruising speed vt,ref  with lower 

values of the objective function. An example of the reference speed assignment and 

adjustment for multiple-lane scenario is shown in Figure 3-4.  

In summary, the configurations of rule-based reference speed automatons for FSMs 

are listed as in Table I. In the rule description, the symbol “ ∩” represents intersection, “ ∪” 

means union, and the superscript “C” represents complement.  

 

Figure 3-4: Prediction of reference speed assignment and adjustment 
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3.3.3 MPC based Maneuver Planning 

The MPC is configured in this section with the ability to conduct predictive lane 

change maneuver planning and guidance, with advance knowledge of the predicted 

reference speed assignment as described above.  

The constraint to keep a safe distance between the ACV and any nearby OV i with 

the predicted uncertainties is tightened by the following elliptic inequality: 

2 2

,

, ,

ˆ ˆ
2i i

i

e e o o

e o y y s

y y s s

y f d 

   
         

                              (3.12) 

, , ,o ss s ss Do Dod s f f                                        (3.13) 

This constraint is depicted in Figure 3-5. A rectangular region is inscribed in the 

ellipse. Its dimensions Δye,oi and Δso,ss are calculated by incorporating the geometry (length 

and width) of OV i and the ACV. σs = σs,ACV + σs,oi and σy = σy,ACV + σy,oi are the combined 

Table 3-1: Configuration of the Rule-Based Reference Speed Automaton for Lane l 

Switch Set Rule Description 

1, 2l lR  (3.3)∩(3.4)∩(3.5) 

2, 1l lR  (3.3)C∪(3.4) C or (3.9)∪(3.10) 

1, 3l lR  (3.3)∩(3.4)∩(3.5) 

3, 1l lR  (3.3)C∪(3.4) C or (3.9)∪(3.10) 

3 2,l lR  (3.3)∩(3.4)∩(3.5) 
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covariances of, respectively, the arc length and lateral position error of ACV and OV i, 

based on the predicted covariances from the motion prediction module. fσ,s and fσ,y define 

the cross-belief region of the combined states. For example, fσ,s=fσ,y=3 approximates a 99% 

cross-belief region between the arc length and lateral position. ζDo is a slack variable that 

allows the solver to find a feasible solution in emergency situations, e.g., full braking, see 

[31] for detailed discussions of this. Its reference value is vt and we give it the auxiliary 

dynamics: 

DoDo u                                                       (3.14) 

In (3.13), fζ,Do is an tuning parameter (has a unit of time, typically fζ,Do >Tmpc). To ensure a 

safety headway distance (exclude extreme events between MPC update intervals Tmpc) the 

following constraint should be satisfied: 

,/  Do mpc t DoT v f                                              (3.15) 

Other state constraints like friction ellipse of a real vehicle’s tire/road contact, lane 

boundaries, speed limits and the minimum turning radius, etc. are also considered with 

uncertainties, for complete details, please refer to [31]. 

 

Figure 3-5: Elliptical boundary for collision avoidance with combined  uncertainties σs, 

σy of ACV and OV  



57 

As uncertainties are considered, the lane selection maneuver planning problem to 

be solved over the prediction horizon [0, Hp] results in a stochastic MPC problem that is 

formulated by: 

 
21

1
2 2 2

, 1, 1, , 2, 2,
,

1 1 1 0

min
p p pl

k k

N N NN

l k k l k k k k RPPx u
k l k k

E z y r y r u



   

 
    

 
                    (3.16) 

 subject to :           , ,x f x u w , x X , u U , w W                                   (3.17) 

0(0)x x                                                           (3.18) 

    
1

1, 0,1 ,   1,...,
lN

l l

l

lz z l N


                                         (3.19) 

  1Pr , 0c x u                                                  (3.20) 

 2 , 0c x u                                                          (3.21) 

Here, the cost function minimizes the expectation of state tracking error and control efforts. 

x covers all the state variables of the ACV particle motion model given by (3.1), the slack 

variables in (3.14) and lane selection variables z1~ zNl whose dynamics is described below 

in (3.23). X represents the state-space for x. x0 denotes the current/initial state (measured 

and estimated). The estimation of the system outputs, namely the speed vt and lateral 

position ye of the ACV are grouped in vector y1, and the slack variable outputs ζDo  is in y2. 

r1,l, r2, are, respectively, the candidate output references for lane l and references for the 

slack variables (corresponding respectively to y1 and y2). P1, P2 and R are the weighting 

matrices for the candidate maneuver tracking error, slack variable reference tracking error 
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and control efforts, respectively. In (3.17), U denotes the admissible set for input u, which 

includes the input to ACV motion model and selection variables. W is the state space for 

noise/disturbance w defined in (3.1). All the nonlinear inequality constraints with uncertain 

states such as the collision avoidance are included in the probabilistic constraint to satisfy 

a belief coefficient δ, denoted by (3.20). These constraints need to be tightened into 

deterministic constrain for calculating the solution, for example (3.12) is the tightened 

collision avoidance constraint and fσ,s, fσ,y can be writen in a function of δ based on 

accumulated Gaussian distribution [78, 86]. Other deterministic inequality constraint like 

(3.15) are included in (3.21). The continuous model (3.17) is eventually discretized in 

sample steps ∆T, ∆T= Hp/Np and Hp is the horizon length.  

In order to realize the optimization-based lane selection, we utilize a suite of selection 

variables zl in (3.19) to coordinate the consideration of tracking different lanes and their 

corresponding assigned reference speeds (by the pre-planning described in the previous 

section). The constraint (3.19) comes from an approximation method we proposed in [88] 

to relax the original MINP problem with the integrality constraint  

   
1

1,   0,1 ,   1,...,
lN

l l

l

lz z l N


                                  (3.22) 

which assumes a binary lane selection of either 0 or 1. Here, with the relaxed formulation 

(3.22), the selection variables zl are regarded as additional states with the auxiliary 

dynamics (included in (3.17)): 
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                                 (3.23) 

Remark 3-2: To solve a MINP problem efficiently at real time, two fundamental 

approximation methods can be applied in tandem: relaxation and constraint enforcement 

[35]. The relaxation approach is to extend the feasible solution set of the problem, by 

relaxing or neglecting certain constraints, e.g., relaxing the integrality constraint from (3.22) 

to (3.19). Afterwards, constraint enforcement can be sought to exclude the solutions that 

are feasible under the relaxation but not for the original problem. For our problem 

formulation, the constraint enforcement is deemed optional as the relaxation of the 

integrality constraint will not affect the global minimum of (3.16). The optimization will 

naturally converge to tracking only one of the lanes if the configuration space is convex. If 

it is not, we have the following case. 

Remark 3-3: With the relaxation of the lane selection variable involved in the integrality 

constraint, the ACV is no longer strictly guided to track only one of lanes. This may lead 

to undesired behaviors of the ACV in complex traffic scenarios with few available lanes, 

where the ACV may laterally approach an adjacent OV and stay in between two lanes until 

the OV is overtaken, as shown in our previous results [88]. More rules designed in the 

reference speed automaton for these situations may help to improve or exclude such 

behavior. The proposed rule-based speed assignment over the whole prediction horizon is 

meant to address this issue. 
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The computational complexity of our MPC formulations can be estimated. For our 

purposes, we solved the nonlinear programming problem above using the ACADO Toolkit 

[90] which implements qpOASES, a one-iteration SQP algorithm employing an active set 

strategy. From [44], the computational complexity of solving the MPC problem for 

tracking only one reference lane and reference speed with a prediction horizon length Np is 

at most O(g(Nx, Nu, Np, Nc)), where: 

  2 23 2 ( ), , ,x u p c x u p u p c u pg N N N N N N N N N N N N                     (3.24) 

which is in low-order polynomial time. Here, Nx is the number of states, Nu is the number 

of control inputs, Np is the length of the prediction horizon, Nc is the number of constraints. 

The computational complexity of solving the MINP problem is then (Nl
Npg(Nx, Nu, Np, Nc)), 

which is in high-order polynomial time, since Np is typically in the order of 40 or more for 

the present application. The computational complexity of the resulting NLP problem with 

the approximation method is at most O(g(Nx+Nl, Nu+Nl-1, Np, Nc+Nl+1)), which is in low-

order polynomial time. Therefore, by adopting the approximation method, the complexity 

of solving the MINP problem can be significantly reduced to an NLP problem with much 

less computational burden. As we comment in the next section, the resulting execution 

times are feasible for real-time implementation in the many scenarios we have tested. 

3.4 Simulation Results and Conclusion 

3.4.1 Simulation Results 

To illustrate the performance of the predictive maneuver planning approach, we 

consider a straight six-lane highway where the ACV faces sequentially connected scenarios, 
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like overtaking, following and collision avoidance in the presence of eight nearby object 

vehicles (OVs), as shown in Figure 3-6. The situations progress from those requiring 

simple responses (lane change) to aggressive ones that push the vehicle dynamics and the 

control to the limit. The proposed approach, hereafter labeled OSM (for optimized 

sequence of maneuvers within a prediction horizon), will be compared with the previous 

approach in [88] where only one optimized maneuver (labled OOM) is selected for the 

entire prediction horizon. We also compare the results to a common adaptive cruise control 

(ACC) scheme to show the advantage of two-dimensional maneuver planning. The 

assumed uncertainties for the ACV and OVs motion models are given in Table 3-2, where 

the disturbances/noises are modelled by normal distribution N(μ,σ2) with mean μ and 

covariance σ2. The parameters selected for the  MPC formulation are listed in Table 3-3. 

Table 3-2: Uncertainties and Parameters for Estimation of ACV and OV 

Vehicle Parameter Value Vehicle Parameter Value 

ACV 

taw [m/s2] N(0,0.01) 

OV 

(1~8) 

,s ow [m/s] N(0,25) 

d
w  [rad/s2] N(0,10-4) ,y ow [m] N(0,1) 

sv  [m] N(0,0.01) ,s ov [m] N(0,25) 

eyv [m] N(0,0.01) ,y ov [m] N(0,1) 

tav [m/s2] N(0,0.01) 1sK  2.5 

p
v [rad/s2] N(0, 10-4) 2sK  2 

  1yK  2.5 

  2yK  2 
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The longitudinal speeds of the OVs are set to be constant at values to be discussed below 

for the various scenarios. The measurement sampling time/MPC update time Tmpc is set to 

150ms. The state trajectories for the whole scenario are shown in Figure 3-6 and Figure 

3-7.  

3.4.1.1 Preceding OVs detected at Cruising (In the first 20 s) 

In this scenario, the ACV initially occupies lane 1 (right most lane) at its 

reference/desired speed of 30 m/s. Then, it faces two slower vehicles OV1 and OV2, going 

in parallel in lane 1 and lane 2 at speed of 25 m/s. At around time of 7 seconds, the ACV 

under OSM starts a lane change to lane 3, which is the closest available lane, to overtake 

Table 3-3: Main Parameters Selected 

Parameter Value 

 

Parameter Value  Parameter Value 

vt,ref [m/s] 30 Δso,ss [m] 5.3 2, gg
P   20 

Δvt [m/s] 2.5 Δy
e,oi

 [m] 2.3 2, do
P   

20 

Δye [m] 1.85 g [m/s2] 9.8 
taR  50 

Tat [s] 0.075 Np 40 
p

R   250 

Tψp [s] 0.2 ΔT [s] 0.15 
do

uR
  0.001 

Td 7s kv 0.8 
gg

uR
  0.001 

fζ,Do 0.5 P1,ye 3 
zluR  100 

,sf , , yf  3 P1,vt 2   
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OV1 and OV3. However, for the case with OOM, the lane change to lane 3 happens around 

10 seconds. But the ACV under ACC will only slow down starting from 3 second to follow 

OV1 as lane change is not available under this setting. This also shows the potential 

undesired local minimum for maneuver planning. The predictive speed assignment in the 

OSM case considers reference speed change on lane 1 as well as the potential reference 

speed change on lane 2. This can be also seen in Figure 3-8 which shows the computed 

trajectories for the prediction horizon at t=11.1s, including the planned relative position, 

the reference speed assignment and the lane selection variables. We can see when ACV 

approaches OV2 (at 11+2= 13s), the reference speeds of the OSM case in the prediction 

horizon (set via the rule-based reference speed automaton) for lane 2 vary from the desired 

cruise speed to those of speed of the OV2. This is done as soon as the gaps between the 

ACV and these OVs are predicted to be smaller than the threshold defined in equation 

 

Figure 3-6: Relative position of ACV and OVs in the simulation  
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Figure 3-7: State evolutions for the whole duration under the different manuever 

planners and ACC. 



65 

(3.10). For the same horizon, the OOM case switched only the reference speed for lane 1. 

The changes of the speed references in the prediction horizon are captured via the switching 

of vt,r,1, vt,r,2 and vt,r,2 at the left column. These changes gradually increase the value of the 

objective function and force the ACV to either slow down to follow OV2 or change lane. 

The weighting parameters listed in Table III promote a lane change maneuver if an open 

lane is available. The ACV is predictively controlled to steer to lane 3 in this case. The pre-

 
Figure 3-8:  Trajectory examples for the predictive horizon at t=11.1s 
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planning of the reference speed changes helps to consider changes in the environment from 

the beginning and helps the MPC to generate more smooth trajectories.  

Note that during the lane change, the rise of z2 is observed in Figure 3-7, this is due 

to the fact that ACV needs to go across lane 2 to reach lane 3 and the rise of z2 actually 

reduces the value of the objective function. However, z2 will not rise to 1 because settling 

down in lane 2 is not the local minimum for that moment. The MPC update continues to 

predictively change lane to lane 3 further reducing the objective function to zero.  

3.4.1.2 Overtaking While Following  

For the next 40s (20~60s), the ACV faces a “traffic jam” consisting of OV3 in lane 

1, OV4 in lane 2, OV5 in lane 3, OV6 in lane 4, OV7 in lane 5 and OV8 in lane 6. Only 

lane 4 is eventually available to go through. However, the ACV has to change lane to follow 

a slower OV6 first, because it occupies lane 4 in front of the ACV. As OV6 is faster than 

the other OVs, it can pass through the “block” together with the ACV. Afterwards, the 

ACV will switch from a following mode (discrete state) to lane change mode in order to 

overtake the OV6. The details of this operation are as shown in Figure 3-6, Figure 3-7 and 

Figure 3-9. 

From Figure 3-9 , we can see the detailed workings of the ACV detects the “traffic 

jam” around time=30.9s. Similar as the previous scenario, the ACV with OSM can predict 

the reference speed switch. The reference speed of the lanes from lane 1 to lane 6, except 

for lane 4 (which tracks a higher speed 27m/s of OV6), in the predictive horizon switch 

from 30m/s to 25m/s at different times when the ACV approaches the jam. While in the 

OOM case only the thresholds of lane 2, 3 and 4 are triggered based on the relative position 
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at that moment. The different speed assignments in the two cases affect their position 

planning, as shown in the top of Figure 3-9. For case of OSM, the ACV plan to change 

lane to lane 4 and follow OV6 with least speed gap to minimize the objective function (zero 

value local minimum can be achieved). However, in the OOM case, the ACV only has a 

sideward movement to OV6 to reduce the object function but not strictly following one 

lane (see the z3 and z4 in Figure 3-9). This lead to the dilemma of the ACV at the joint area 

of the elliptical boundaries of OV6 and OV5 (non-zero local minimum), which further 

 

Figure 3-9: Trajectory examples for the predictive horizon at t=30.9s 
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causes the oscillation of lateral acceleration, lane selection, more speed reduction and slow 

settling of the objective function between 40s and 50s in Figure 3-9. Here we can see the 

predictive maneuver sequence can help achieve a feasible and smoother motion plan which 

manifests as reduced occupant discomfort and mechanical wear. Finally, when OV6 passes 

OV5, the ACV gradually goes back to lane 4. Note that as the elliptical collision boundary 

with 99% uncertainty belief region is not violated during the planning, a collision free 

trajectory is achieved. 

Afterwards, in both cases, the ACV follows the front OV6 until it passes the 

block/jam. When ACV exceed the other OV(3,4,5,7,8), reference speeds of the related 

lanes are then reduced by the coefficient of kl to ensure that tracking these lanes leads to 

more cost. Therefore, the MPC will command another lane change to lane 3 to overtake 

OV6 and increase the ACVs speed to 30m/s. Finally, the reference speed of each lane will 

switch back to the desired cruise speed when ACV passes all the OVs.  

3.4.1.3 Collision Avoidance 

In the last 15 s, OV6 makes an unexpected sudden lane change starting at time=78 

s to the lane occupied by the ACV when the ACV is just overtaking the OV6 from behind. 

To avoid collision with OV6, the ACV needs to plan its trajectories without entering the 

elliptical boundary, which might require either slowing down (or speeding up in other 

situations) in the longitudinal direction and lane change in the lateral direction. The spike 

in the objective function is mainly due to the sudden braking by the ACV. 
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From Figure 3-7, the ACV under OSM and OOM combines both decelerating and 

lane change to the right to avoid the collision. The future trajectory of the OV6 is predicted 

at each sampling time, an example for the prediction horizon at time=78.45 is shown in 

Figure 3-10. Based on this, in OSM case, the lane reference speeds from lane 4 to lane 1 

are assigned with OV6’s speed at the time OV6 is predicted to go across them. The ACV 

in this case plans to change lane to lane 2 to avoid a collision with lowest cost. While the 

OOM case can only assign the reference speed based on the estimation of the current lane 

occupation for OV6, the speed assignment can’t match the position prediction of the OV6, 

 

Figure 3-10: Trajectory examples for the predictive horizon at t=78.45s 
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therefore its planning decision is more naïve than OSM case. In this case, slowing down 

and changing lane to lane 4 to track the speed of OV6 is with the lowest cost. When OV6 

goes across the boundary between lane 3 and lane 4, change lane to lane 2 became the best 

planning decision, which matches the results in Figure 3-6. In both cases, the collision 

probability during the collision avoidance are close to 0% due to the constraint (3.25) 

considering the uncertainties. 

Here, we have to point out that the relative positions between OV6 and the ACV when 

OV6 starts to change lane will affect the maneuver planning results. A closer distance 

requires faster lane change. That’s why the lane change of the ACV in OSM case is more 

aggressive than the ACV in OOM case. With predictive speed assignment, the ACV can 

be better prepared for the change of the environment and then make more appropriate 

planning decisions. If OV6 and ACV are too close to each other, there might be no feasible 

solution in the MPC that avoids entering the collision boundary.  

3.4.1.4 Execution Time 

Finally, we comment on the execution times involved in the above simulations. The 

MPC solver in the ACADO Toolkit is executed on an Intel Dual Core i5-4200M 2.4 GHz 

processor and 4GB RAM. The execution times for the MPC problem for this simulation 

are shown in Figure 3-11. Note that for all the cases compared, the MPC execution times 

are mostly in the order of 90ms or less; increasing when the elliptical inequality constraints 

are engaged, more sharply in the initial part of collision avoidance. 
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3.4.2 Conclusions 

This chapter outlined, a predictive maneuver planning and control framework that 

integrates both discrete maneuver planning and motion trajectory planning for an 

autonomous controlled vehicle in the presence of uncertainties (disturbances and sensor 

noise). Within the prediction horizon, a rule-based assignment of reference speeds for each 

reference lane is applied in each interval of the horizon based on the predicted motion of 

the autonomous vehicle and other object vehicles. Then, the sequence of maneuvers is 

incorporated in a relaxed stochastic MPC formulated to simultaneously generate the 

optimized reference selections and control input trajectories that minimize an objective 

function subjected to traffic constraints and rules involving other objects that are prevalent 

in public traffic. A series of simulation experiments showed that, the maneuver planning 

helps the autonomous vehicle to better accommodate the environment. Also, the 

modification in the reference speed assignment improves the optimality and the robustness 

 
Figure 3-11:. History of MPC execution time 
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of the maneuver decision in trajectory planning without adding computational complexity 

to the optimization problem.  
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CHAPTER 4  

OBSTACLE FILTERING AND VEHICLE GROUPING ALGORITHM FOR 

AUTONOMOUS DRIVING 

4.1 Abstract 

This chapter presents an obstacle filtering algorithm and vehicle grouping 

algorithm that mimics human driver-like grouping of objects within a model predictive 

control scheme for an autonomous road vehicle. In the algorithm, a time to collision criteria 

is first used as risk assessment indicator to filter the potentially dangerous obstacle object 

vehicles in the proximity of the autonomously controlled vehicle. Then, the filtered object 

vehicles with overlapping elliptical collision areas put into groups. A hyper elliptical 

boundary is regenerated to define an extended collision area for the group. This grouping 

serves to compute the time varying areas that are to be occupied by vehicle groups in the 

predicted motion plan so that those areas including the undesired local minimums can be 

excluded for the non-convex motion planning problem. To minimize conservatism, the 

parameters for the tightest hyper ellipse are determined by solving an optimization problem. 

To reduce the computational burden of the grouping and boundary generation for online 

implementation, supervised learning methods are applied to train the neural networks that 

compute the optimal boundary of the group (s) that maximizes the available planning field. 

The proposed algorithm is incorporated in a predictive guidance scheme and its 

performance and computational details are illustrated via simulations of an autonomously 
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controlled vehicle in public highway traffic scenarios involving multiple other object 

vehicles. 

4.2 Introduction 

In the march towards autonomous driving, the task of guiding the controlled vehicle 

to rapidly and systematically accommodate the plethora of changing constraints in public 

traffic, from tire/road friction conditions to avoiding stationary and moving obstacles, 

while obeying the traffic rules, signals and so on, remains a major challenge. Recently, 

there are two main research directions being pursued to address the control problem of 

autonomous driving: learning based control and planning based control. Learning based 

control uses supervised learning methods to train a complex policy function such as a 

convolutional neural network (CNN), based on the paired data records of input s(sensing 

data [4, 5, 6] /machine vision [10, 9]) and outputs (driver’s control signals) of the test 

vehicle, and then apply the trained CNN on the autonomously controlled vehicle (ACV) or 

ego vehicle. However, performance of this approach suffers from the large size of the 

training data needed to represent a variety of driving scenarios in order to approach 

‘guaranteed’ safety.  

The planning based control replaces the NN with a hierarchical control scheme 

combining a motion planner and a controller. The planner uses the perception information 

to plan the motion of the ACV while the controller controls the vehicle to follow the plan. 

In this category, model predictive control (MPC) is receiving significant attention, not only 

because the problem formulation can naturally accommodate the changing constraints in 

public traffic, but also because its finite receding horizon optimization scheme models 
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human drivers very well [57]. In [65], MPC is applied for static obstacle avoidance and 

works in [29] formulates it as a local reactive controller for trajectory planning to 

simultaneously track the path and avoid dynamic obstacles. In [43] [31], the motion 

planning and guidance of ACVs are formulated for general public traffic scenarios by 

adopting lane centerlines as reference paths and uniformly expressing the motion of the 

controlled vehicle and all other objects, traffic rules/signs, lane limits, and road friction 

limits within the prediction horizon. The framework is extended later by this  chapter to 

the case of multi-lane scenarios by first structuring the controlled vehicle’s maneuvers in 

finite state machines which lead to a hybrid system framework, where rule-based [89] and 

optimal maneuver selections [88] are then sought.  

The performance of MPC applied to autonomous driving relies on the constraint 

descriptions involving the motion of the ACV as well as of the other object vehicles 

(obstacles). Under some practical assumptions and an appropriate physics-based model of 

the motion of object vehicles and the information from perception, the expected evolution 

of the motion of the object vehicles can be predicted for a certain future horizon [65]. For 

instance, physics-based motion models assuming constant velocity/acceleration can be 

used to predict the motion of object vehicles for a short future horizon (order of 1 second). 

Moreover, by taking advantage of frequent update of the MPC (5~10Hz), such models can 

also be used for longer term predictions (4~6s) [31], provided computations can be 

completed sooner. Other proposed models includes maneuver-based [69, 68] and 

interaction-aware [70, 71] motion prediction models under the consideration of the driver’s 

maneuver intention and the inter-dependencies between the individual vehicles’ maneuvers. 
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These latter models are complex and require lots of real time test data for model 

identification.  

Group tracking is a technique used in multi-object tracking applications (e.g. people 

tracking) that attempts to simplify the data association problem when the position 

measurements for individual objects are very close together [91]. The group formation 

process can reflect the interactions among the objects. Multi-hypotheses tracking [92] is 

one method that can be used to track groups by making hypotheses of group behaviors like 

merging or splitting. In our previous work [93], we proposed a grouping concept to 

describe the collision avoidance constraints of object vehicles that are close to each other 

by proposing an optimization-based group boundary generation. The work showed that for 

the case with crowded object vehicles the group description with proper boundary design 

can help to reduce the efforts of evaluating the constraint avoidance for the MPC problem 

and also to exclude the undesired local minimums at the intersections of the collision 

boundaries of individual object vehicles. The approach also effectively excludes undesired 

maneuver selections for the hybrid predictive planning problem (with both maneuver and 

motion planning). However, in [20] , the group formation model was not introduced 

rigorously. Furthermore, the computational complexity of the optimization used to 

generate the group boundary turned out to be so significant that it can reduce the applicable 

update rate of the MPC and thereby worsen the performance of predictive control with 

physics-based motion prediction models. 

When formulating obstacle avoidance constraints for the prediction horizon, it is 

possible to model the dynamic motion of surrounding obstacle vehicles. However, to do 
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this, one invariably needs to impose some assumptions about the unknown future inputs to 

these obstacle vehicles, inputs which are not generally available to the ACV controlled by 

MPC. However, by using the latest information about obstacles and the environment 

constructed from available sensing via radar, lidar, camera and V2V or V2I 

communications, one can minimize the required complexity of the models needed to 

describe the motions of the object vehicles. This can in turn help to reduce the computations 

of the MPC so that they can be completed fast enough and then take advantage of frequent 

updates. Using the MPC internal time as a state variable and the latest accelerations, speeds 

and positions of obstacle objects obtained by sensing or communication, one can derive 

algebraic descriptions of the motion of the geometries representing obstacle object vehicles 

for the whole prediction horizon [31]. 

There are several ways of modeling the geometric descriptions in the 2D 

configuration space [49], including e.g. polygonal models [94], described by the 

combination of linear curves; semi-algebraic models, like polynomials; or algebraic 

models like circles, ellipses [95] or hyper-ellipses [96]. Algebraic models are more efficient 

in describing obstacles with multi-edges since they generally need fewer parameters to be 

specified. For example, for describing a rectangular obstacle (4 edges), applying linear 

curves requires 8 parameters, while only 4 parameters are required for a conservative 

ellipse or hyper-ellipse. In our previous work [43] [89] [88], ellipses are used to describe 

the geometry of static/dynamic vehicular obstacles for MPC-based motion planning. It can 

be argued that ellipses naturally and conservatively describe the 2D geometry of modern 

road vehicles. However, possible overlaps in the prevailing distribution of the 
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obstacles/ellipses may create undesirable local minima (or global minima for the finite 

horizon planning problem), which may trap the ACV. In addition, in the presence of more 

obstacle object vehicles around the ACV, the total number of evaluations for constraint 

violation/collision detection increases, which increases the complexity of, and the 

execution times needed for solving the optimization problem at each MPC update. 

In this chapter, we propose a concept of obstacle filtering concept and algorithm 

for the prediction of the motion of obstacle vehicle objects around an autonomous vehicle 

in public traffic. The algorithm may mimic human driver like cognitive actions [97] and 

covers three procedures: risk assessment, obstacle grouping and group boundary re-

generation. This algorithm adaptively refines the constrain set to create a configuration 

space that excludes undesired local or global minima from possible overlaps of elliptic 

geometries, thus improving the performance of the MPC optimization solver in finding the 

best solution for the motion plans. Then, based on the group classification method and 

optimization based group boundary generation method, a supervised learning method is 

implemented to train a neural network that can provide the states of the vehicle groups, 

efficiently online, so that they can be used in the MPC for motion guidance. The estimates 

of the training requirements for the approach are also given and illustrate that this approach 

can avoid the computational limitations mentioned above, while retaining the core group 

modeling scheme.  
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4.3 Algorithm Design 

4.3.1 Risk Assesment 

Based on the motion prediction of the detected OVs, The risk here are associated 

with physical collision between the ACV and OVs, which is represented by the ACV 

entering the collision area defined around the OVs. Based on the kinematics model used to 

predict the motion of OVs, we use time to collision (TTC) Tc as an indicator to assess the 

risk of collision with in the detection range sd, of the deployed sensors. Thus, we can define 

a range between ACV and OV i where a collision might happen along the reference path 

within a specified positive time Tc as: 

ioA ds s s                                                           (4.1) 

, ,

0

i

i A

c

t A

o

ot

s s

s s
T

v v


 


                                                    (4.2) 

where sA, vs
t,A are the longitudinal position and velocity of the ACV in the road 

frame. The OVs with their states satisfying both equation (4.1) and (4.2) will be considered 

to enough proximity to have potential danger of collision with the ACV, regardless of 

which lane they occupy. 

4.3.2 Obstacle Grouping 

In obstacle grouping, two step are followed. First, we need to determine if two OVs 

have intersecting collision areas. The sufficient condition for no overlapping of two ellipses 

with their axes (either major axes or minor axes) parallel to each other can be easily derived. 
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Second, this condition is applied to all the OVs filtered by the risk assessment step, to 

identify the groups and OVs belonging to each group.  

Any two ellipses with their axes parallel to each other, as shown in Figure 4-1, can 

be defined by the following standard forms: 

2 2

1 1 1 1

1 1

1E Ex x y y

a b

    
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                                      (4.3) 
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   
                                     (4.4) 

where [xE1, yE1], [xE2, yE2] are the points on the two ellipses. [x1, y1], [x2, y2] are the 

center of the two ellipses. a1, a2 are the half major axes of the two ellipses. b1, b2 represent 

the half minor axes of the two ellipses. 

Starting with external tangentiality condition, it can be shown that the sufficient 

condition for two given ellipses to not overlap with each other is to simultaneously satisfy 

(4.5) and (4.6). See Appendix A for the derivation of these conditions. 

 

Figure 4-1: Definition of two ellipses with their axes parallel to each other 
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Therefore, we can design a function Jo in (4.7) to identify the overlap condition of 

any two OVs i and j by comparing Jo with 2: if Jo≥2, the collision area of OV i and OV j 

don’t overlap; if Jo<2, the collision area of OV i and OV j overlap. 
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Then, we can define the group by the following statement: A group consists of set 

of OVs where for anyone OV in the group, there is another OV with a collision area 

overlapping with it.  

4.3.3 Group Boundary Regeneration 

After identifying the OV groups, a new collision area can be regenerated for the 

group to cover the collision areas of all OVs in the group and systematically exclude the 
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undesired local and global minimums that come from overlapping elliptical intersections 

(Figure 4-2). Here, we use the 4th order hyper ellipse to re-generate the boundary. This 

algebraic geometry requires few parameters to characterize and define a continuous 

boundary for the conservative collision area of the group. Below, we shall seek the tightest 

description of this boundary that doesn’t waste too much collision free space. 

To being with, the 4th order hyper elliptical boundary for the ACV to avoid group i 

is defined as: 
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                             (4.8) 

where sGi
,y

e,𝐺i
 are the center position of the group i, which can be obtained by 

taking the average of the longitudinal and lateral positions of the constituent OVs in the 

group. However, the lateral position y
e,𝐺i

, also depends on the positions of the element OVs. 

If one of the OVs is on the side lane next to the road boundary, y
e,𝐺i

 can be placed on the 

road boundary to guide the ACV to the available lanes on the other side of the road and to 

 

Figure 4-2: Example of 4th order hyper elliptical group boundary regeneration  
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avoid creating local minimums at the intersections of the hyper elliptical boundary and the 

road boundary, as show in Figure 4-2 (left). 
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where NGi is the number of OVs in group i. 

The half minor and half major axes Δy
e,Gi

and ΔsGi
 of the tightest boundary of the 

group can be determined by posing an optimization problem. That is, we seek to find the 

hyper ellipse with minimum area that covers all the collision areas of the constituent OVs. 

As the area of a hyper ellipse is proportional to the product of the length of the major and 

minor axes, the optimization problem can be defined as: 
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where ss,Gi
,y

e,s,Gi
 are the position vectors including the longitudinal and lateral 

positions [ ss,Gi
,y

e,s,Gi
] sampled from the boundary of the hyper ellipse by using the 

parametric equations of a 4th order hyper ellipse: 

  , cos sgn cos
i i is G G Gs s s                             (4.13) 

 , , , ,G sin sgn sin
i i ie s G e G ey y y                           (4.14) 

where θ is a parameter sampled from –π to π.  

This optimization problem can be solved efficiently if good initial guesses are given.  

Figure 4-3 shows the execution time for solving the optimization problem under different 

numbers of OVs located randomly and sampling points on the hyper ellipse. All the 

problems are solved via active-set sequential quadratic programming (SQP) method in 

MATLAB Optimization Toolbox running in a laptop with Intel i5 4200U CPU, 2.4GHz 

and 4G RAM. It can be seen that with more object vehicles and finer sampling of the hyper 

 

Figure 4-3: Estimated execution times for solving the optimization problem 
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ellipse, the execution times can be substantial (order of 40ms with 10 OVs and 500 

samples). We can give an estimate of the complexity of solving these shape optimizations. 

Considering the number of predictive time steps Np, and an interior-point solver (preferred 

for parallel computing implementation) which has a generally cubic complexity in the 

number of states Nx and constraints Nc, then the total computational complexity of 

determine one group shape for the whole predictive horizon is O(Np(Nx
3+Nc

3)). 

Furthermore, multiple groups may be identified in one time step, as shown in Figure 3, 

which raises the complexity of determining the fields of multiple groups to at most 

O(NgNp(Nx
3+Nc

3)), where Ng is the number of identified groups. It should be noted that to 

have a good sampling of the boundary, Nc should usually be much larger than Nx (equal to 

just 2 for shape coordinates, say Nc=200 for a group with four object vehicles. Therefore, 

the approach require significant computational efforts. We had conjectured in [20] that 

GPU parallel computing could be a possible solution to accelerate the optimization, but we 

found in our tests since then that the achieved reduction is not substantial to realize real-

time implementation. To overcome this issue and realize the benefits of the grouping 

scheme for real-time application, we integrate it with the following approach.  

4.3.4 Supervised Learning Approach 

As suggest in [98], a multilayer neural network (NN) with only one hidden layer 

can approximate a continuous function of n real variables arbitrarily well. Also, once it’s 

trained, the complexity of calculating a NN function with one hidden layer is at most O(Nn
2), 

where Nn is the number of the neurons in the hidden layer (Nn can be set to 10~25).  

Considering the length of predictive horizon and the multiple groups, the total complexity 
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will rise to O(NgNp Nn
2), which is much less than the optimization approach described 

above. Therefore, a NN based function can be trained to efficiently approximate the 

optimal Δy
e,Gi

and ΔsGi
 in terms of the parameters of the elliptical areas of the object 

vehicles. This function is written compactly as:   

 , , , , , ,

,

, , ,
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o Gi o Gi e o Gi e o Gi

e Gi

s
f s s y y

y

 
   

 
                        (4.15) 

where Δso,Gi
,Δy

e,o,Gi
 are the half major and half minor axle length sets of the 

elliptical areas of individual object vehicles in group i. See Figure 4-4 for an illustrative 

example.  

Then, the pair training data required includes the input and outputs of the function. 

The half minor axes length Δy
e,o,Gi

 for the regular-sized object vehicles are normally 

constant, thus it can be excluded in the  inputs. For the half major axes length Δso,Gi
, as it 

is proportional to the velocity of the ACV vt, vt can be used instead of Δso,Gi
 as part of the 

inputs. Therefore, the function is rewritten as: 

 

Figure 4-4: Example of relationship between the optimal Δy
e,Gi

and ΔsGi
 and the 

parameters of the elliptical areas of the object vehicles 
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The training data for the function are generated by using the combination of the 

grid samples in the position space for s and ye as well as the ACV velocity vt (with the grid 

sizes denoted by Ns, Ny and Nv). Each sample from the grid will be used in the formulation 

of the optimization problem(4.11) to solve for the optimal Δy
e,Gi

and ΔsGi
, and used as the 

output training data of the function.  

Applying combination theory, we can estimate the training data size requirements. 

A general NN function used to approximate the group shape for an arbitrary number (any 

group size/membership less or equal to) NOV of object vehicles requires Nt pairs of samples 

of the input and output data pairs for function (4.16): 
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Here, we consider that the grid coordinate system is fixed to on one of the object 

vehicle, then the required combinations is reduced from nG to nG-1, which helps to reduce 

the sample data size Nt. 

Alternatively, one can also train a specific NN function for a specific number, i.e. 

NOV, of object vehicles with the number of samples given by: 

1 2

s y s y

t v

G G

N N N N
N N

n n

    
     

     
                                     (4.18) 

Compared to the general NN function, the specific NN function have lower fitting 

complexity and higher accuracy, as it only covers the case with specific number of object 
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vehicles, thus requiring less training data. However, in the latter case, multiple specific NN 

functions will need to be trained independently to cover all possible cases when the number 

of object vehicles in the detection zone changes.  

Once the training data are generated offline using a suitable optimization solver 

software/hardware, they can be used in the training process. Here, we use the neural 

network fitting toolbox in MATLAB to fit the parameters in the NN function. The 

performance of a trained general NN function is illustrated along with comparisons to 

optimization-based results in two examples cases with two and four object vehicle in the 

 

Figure 4-5: Illustration of the good approximation of the optimization results (OP) 

with a general NN function in the case of two and four object vehicles (OV) 
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group, as shown in Figure 4-5. In these example, the NN output is nearly indistinguishable 

from the optimization-based results.  

4.4 Maneuver Planning and control Framework 

We embed the above vehicle grouping algorithm within the constraint formulations 

for the maneuver planning and control framework described in our prior work [88]. The 

control framework is shown in Figure 4-6. The environment recognition module captures 

the environment information, such as lane marks, traffic signs or signals, the size or states 

of moving objects, the state of the ACV and its localization through camera, radar, lidar or 

wireless devices. The route navigator module works as a general GPS navigator, which 

plans the route from initial position to target destination via a map and localization of the 

 

Figure 4-6: Control Framework 
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controlled vehicle. In the following discussions, we assume all the information from 

environment recognition and route navigator are known to the guidance system.  

The predictive maneuver planning module is responsible for the maneuver and 

trajectory planning of the ACV. The multi-objective optimization problem solved at each 

MPC update are described by (3.16)~(3.21), Readers are referred to last chapter for a more 

detailed description. 

4.5 Simulation and Results 

In this section, we include some simulation results to illustrate the benefit of using 

the supervised learning based vehicle grouping algorithm. The interval of the sampling 

time of MPC is 0.15s and the prediction horizon is 6s.  

Figure 4-7 shows part of the trajectory results of scenario 1 where the ACV is 

avoiding a group of slower object vehicles that are running at constant speed of 20m/s in 

 

Figure 4-7: Results of state trajectories for scenario 1 
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the middle of the lane. The relative path profile is used to describe the position of the ACV 

according to the object vehicles. In [93], we showed that without the grouping algorithm, 

the ACV will be trapped in the local minimum created by the elliptical boundaries of the 

front object vehicles. However, with the grouping algorithm, the ACV easily avoids 

entering the field with local minimum.  

Figure 4-8 presents the predicted trajectories for the simulation times at near 2s, 

10s, 15s and 18s. At each simulation time, the predicted positions of the object vehicles as 

well as the related groups are illustrated by the samples taken at 1.5s (red), 3s (blue), 4.5s 

(green) and 6s (yellow). The blue line represents the predicted trajectory of the ACV. We 

can see that, initially(red), in the prediction horizon, the object vehicles are all in group 1 

 

Figure 4-8: Predicted trajectories at different simulation times for scenario 1. In 

each case, 4 instants (at 1.5s, 3s, 4.5s and 6s) of the 6s prediction horizon, which are 

marked in blue for the ACV. 
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(G1) and as the ACV changes lane to pass object vehicles 1 and 4 (see Figure 4-7 for labels), 

the group splits and only vehicle 2 and 3 remain in G1 (yellow). Finally, the group vanishes 

when the ACV passes all the object vehicles. The group behaviors in this scenario are all 

activated by the risk assessment of the object vehicles.  

 

Figure 4-9: Execution time comparison of the predictive control system with 

optimization based(left) and NN based(right) grouping algorithm for scenario 1 

 

Figure 4-10: Results of state trajectories for scenario 2 
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Figure 4-9 shows the significant execution time reduction due to replacing the 

optimization based group parameter determination with NN functions. The maximum total 

time for executing one cycle of the grouping and MPC is around 0.15s, which is now close 

to the sampling time of the MPC. The step change of the execution time of MPC near 5 

seconds and 8 seconds, is due to the engagement of the active constraint of the group in the 

MPC optimization problem when the ACV tries to pass the group.  

The results of another scenario 2 is shown in Figure 4-10. In this case, object vehicle 

4 passes object vehicle 5 and approaches object vehicle 3. The ACV changes lane from the 

most right lane to the middle to avoid the right side vehicle group G1 consist of object 

vehicles 1 and 2. In the predictive trajectories shown in Figure 4-11, we can see the merging 

and splitting of G2 when object 4 pass object 5. As for G1, when the ACV passes the object 

1, G1 vanishes. But a (new) group G1 forms again when object 4 is close to object 3. In the 

 

Figure 4-11: Predicted trajectories at different simulation times for scenario 2.  
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execution time comparisons, shown in Figure 4-12, the time primarily increases and 

decreases due to the group number change from 1 to 2 then back to 1. This is also reflected 

in the slope of the change in the execution time of the grouping algorithm.  

 

4.6 Conclusion  

In this chapter, we proposed a modeling framework for obstacle vehicle groups for 

use in a predictive control of an autonomous vehicle in highway public traffic. A systematic 

group modelling scheme is offered to describe the interaction between the object vehicles 

with merging and splitting behaviors. The proposed grouping algorithm can help to 

optimize the feasible field for the planning work by excluding the local minima created by 

the overlapping of the collision boundaries of multiple object vehicles. For online 

implementation, it is illustrated that a neural network(NN) function approximation can be 

used for group shape  determination to obtain efficient, real time ready processing of the 

detected object vehicles and generating the related constraints for the MPC scheme used 

for motion planning and guidance. 

 

Figure 4-12: Execution time comparison of the predictive control system with 

optimization based(left) and NN based(right) grouping algorithm for scenario 2 
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Continuing work in this direction will consider the generally stochastic 

uncertainties in the object vehicle motion information and the resulting grouping model for 

predictive guidance, which will be introduced in the next chapter.  
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CHAPTER 5  

A PROBABILISTIC FRAMEWORK FOR TRACKING THE FORMATION AND 

EVOLUTION OF MULTI-VEHICLE GROUPS 

5.1 Abstract 

Future self-driving cars and current ones with advanced driver assistance systems 

are expected to interact with other traffic participants, which often are multiple other 

vehicles. Object vehicle tracking forms a key part of resolving this interaction. Furthermore, 

descriptions of the vehicle group behaviors, like group formations or splits, can enhance 

the utility of the tracking information for further motion planning and control decisions. In 

this chapter, we propose a probabilistic method to estimate the formation and evolution, 

including splitting, re-grouping, etc., of object vehicle groups and the membership 

conditions for individual object vehicles forming the groups. A Bayesian estimation 

approach is used to first estimate the states of the individual vehicles in the presence of 

uncertainties due to sensor imperfections and other disturbances acting on the individual 

object vehicles. The closeness of the individual vehicles in both their positions and velocity 

is then evaluated by a probabilistic collision condition. Based on this, a density-based 

clustering approach is applied to identify the vehicle groups as well as the identity of the 

individual vehicles in each group. An estimation of the state of the group as well as of the 

group boundary is also given. Finally, detailed numerical experiments are included, 

including one on real-time traffic intersection data, to illustrate the workings and the 



97 

performance of the proposed approach. The potential application of the approach in motion 

planning of autonomous vehicles is also highlighted. 

5.2 Introduction 

In the march towards (semi-)autonomous driving, the task of guiding the controlled 

vehicle in the presence of other traffic participants remains a challenging problem. Therein, 

tracking of moving objects from sensor information plays a significant role. In particular, 

in public traffic, multiple other vehicles evolve in the traffic scene with changing velocity 

and positions. From the perspective of guidance and control of the individual autonomously 

controlled vehicle (ACV), group tracking can facilitate safe decisions and control actions 

for the current and upcoming maneuvers of the ACV. Group tracking entails the dynamic 

identification and estimation of group formation by merging attributes of individual objects, 

of the evolution of their motion as a group or multiple groups as well as the dissolution of 

groups by splitting [99], [100]. Group tracking information can constrain the nature of the 

interaction between the ACV and the other moving objects (primarily other vehicles in 

traffic). 

For our purposes here, a group of objects is defined as a set of objects that have 

common movement (e.g. similar velocities) and close geometrical proximity. Depending 

on the ambiguity in the available measurement about the objects in the group, two 

categories of approaches to group tracking can be identified: (1) individual object-based 

approach [101] [102], and (2) extended object-based approach. In the first case, the 

measurement of the individual components in the group can be easily differentiated. In the 

second case, a too-close proximity between individual objects or overlapping sensor 
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information makes it hard to continuously distinguish individual objects. In the latter case, 

it’s better to track the group as an extended object modeled with simple geometric shape 

like a circle [103], ellipse [104] [105], rectangle [105] [106] or some arbitrary shape [107] 

[108]. 

The extended object-based approach is usually used to identify the vehicle object 

from sets of measurements, e.g, a sparse laser point cloud. Data association approaches 

like Multi Hypothesis Tracking (MHT) [92], Probabilistic MHT (PMHT) [109], 

Probability Hypothesis Density (PHD) approach [110], Joint Probabilistic Data 

Association (JPDA) approach [111], or Random Finite Sets (RFS) [112] can be used to 

assign the measurements to each identified object vehicle. In addition, by considering the 

knowledge of the geometry of the object vehicle model, for example fused with camera 

images, the detected object vehicle can be represented by an extended object with an 

estimated spatial shape (center and extent parameters) and dynamics (location and velocity) 

[106], [113], [114]. 

For the individual object-based group tracking, interaction among the individual 

components of the group can be modelled by updating the group structure that results from 

behaviors including the occurrence or merging and splitting or vanishing of the group or 

groups. Two types of models have been used to describe the dynamic group structure: 

transition model [102] and evolution model [101]. In the transition model, specified 

Markov transition probabilities are used to represent the possible changes in the group 

structure. In the evolution model, the group association decisions are made based on the 

evaluation of the closeness between the objects within a group as well as the closeness 
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between the groups. The transition model allows a joint estimation of the group structure 

as well as the individual object states [102] [115], while the evolution model follows a 

hierarchical estimation pattern: first estimate the individual object states, then construct the 

group structure. The evolution model tracks the propagation of the closeness information 

which gives more clues about the potential inter-group and intra-group interactions and in 

general, does not require pre-specification of transition probabilities. While either approach 

entails more computational cost at implementation than individual object tracking, the 

hierarchical group tracking approach offers tractable formulations as we outline in this 

chapter. The obtained group structure information can subsequently simplify the motion 

planning problems for autonomous vehicles as we discuss below. 

In our earlier work [93], we proposed a deterministic vehicle grouping method for 

groups of object vehicles that are then used for redefining the obstacle collision constraints 

for model predictive control (MPC) and guidance of an ACV. Therein, we formed groups 

between detected object vehicles based on a distance threshold defined by the overlap of 

their elliptical collision fields. The identified vehicle groups are then represented with the 

tightest/optimal hyper-elliptical boundaries. The results of our computational experiments 

showed that the vehicle group description with proper boundary design can redefine the 

feasible collision-free field to exclude undesired local minimums (for the motion plan) as 

it happens at the intersections of the collision boundaries of individual object vehicles. 

Later in [116], we refined the object vehicle grouping method with a group structure 

evolution model and applied a supervised learning method to reduce the on-line 

computational efforts of generating the optimal vehicle group boundaries. However, in 
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these previous works, uncertainties in the individual object vehicle (IOV) tracking due to 

sensor imperfections and environmental disturbances were not considered. Also, the 

closeness of the velocity of individual objects, which is an indicator of the similarity of 

their motion, was not used in the criteria for group formation. 

In this chapter, we propose a probabilistic multiple vehicle grouping framework to 

track groups of IOVs with consideration of their finite geometric size information and 

closeness evaluation. This framework explicitly models uncertainty in the estimation of the 

states of IOVs and groups. The main contributions of this chapter are: 

 Apply an evolution model to describe the update of object vehicle group (OVG) 

structure. 

 Derive the probabilistic collision/closeness criteria between any two IOVs with 

non-negligible geometric size and shape information based on their state 

estimation via Bayesian tracking. A simplified derivation is also given for the 

case of Gaussian state distributions. 

 Based on the closeness evaluation, a density-based method is applied to 

group/cluster the IOVs without a prior guess about the number of groups. 

 The state of each OVG is determined by the weighted distribution of the state 

of each IOV in the OVG. The boundary of the OVG is calculated via 

approximation of the specific probability contours that consider the distribution 

of each IOV in the OVG.  
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5.3 Multiple Vehicle Grouping Framework Design 

The object vehicle grouping framework follows a hierarchical estimation scheme 

to determine the group structure state G from the state of all detected object vehicles at 

time k. The overall framework is illustrated in Figure 5-1. The set denoted by X contains 

the states and geometrical shapes for all object vehicles. It is obtained by Bayesian IOV 

tracking given the measurement set Z from sensors. Then, a closeness matrix Mc calculated 

via probabilistic collision checking between each pair of object vehicles considering 

uncertainties and their finite geometrical sizes and shapes. Finally, a density-based 

clustering method (DBSCAN) with a threshold ε is used to group/cluster the IOVs and 

determine the group structure state G. Each part of the framework is discussed in further 

detail in the following subsections.  

 

Figure 5-1: Object vehicle grouping framework 
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5.3.1 Modeling of Object Vehicle Group  

Assuming there are IOVs indexed from 1 to NOV (NOV>1) that are being tracked at 

time k, the object vehicle group (OVG) structure state Gk is a collection of labeled vehicle 

groups: 

 1 ,, ,...,
G kk Nk G GG                                       (5.1) 

where NG is the number of identified vehicle groups. A vehicle group i is defined 

as the tuple: 

 , , , , , , , , , ,, , , ,  1,...,i k G i k G i k G i k G i k G kG x S I B i N                    (5.2) 

where xG is the state vector of the group that includes the estimated positions (of a 

representative point, e.g. centroid) and the velocities of the IOVs in the group as well as 

their covariances. SG is a parameters set (or generally, an algebraic function fs,G) that may 

be used to describe the current shape/contour of the group when considered as an extended 

rigid object. IG is the index set of the IOVs that belongs to the group. All the components 

of the state vector XG are determined by the states of the IOVs inside the group. BG is the 

OVG behavior indicating the group structure change from the last time step, which would 

be one of the following three behaviors: 

 Behavior 1: Merge.  It happens when independent object vehicles or sub-groups 

merge in to the current group. 

 Behavior 2: Split. It happens when a group is split into the current sub-group. 

 Behavior 3: Continue. It happens when the group components stay the same. 

Therefore, an evolution model of the object vehicle group structure is given by 
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 1,k G k kf G X G                                               (5.3) 

where fG is the grouping function that includes both the closeness evaluation and 

density-based grouping/clustering, see Figure 5-1. An example of the evolution of OVG 

structure is illustrated in Figure 5-2. Note that an individual group Gi,k will be empty if 

there are no object vehicles inside it. 

Behavior 1, or, respectively, Behavior 2, are usually activated by the condition that 

if the calculated probabilistic collision value (after closeness evaluation) between any two 

IOVs is higher, or respectively lower, than a threshold ε (see the dashed edge connecting 

the IOVs in Figure 5-2). The closeness evaluation is introduced in the Section 4.3.3 after 

we discuss the formulation for IOV tracking.  

 

Figure 5-2: Illustration of object vehicle group behaviors (number before dot is 

vehicle index, number after dot is group index, 0 means no group) 



104 

5.3.2 IOV Tracking 

For IOV tracking, we apply a Bayesian approach to estimate the motion states and 

the sizes (by object rigidity assumptions) of all the detected IOVs. By detected IOVs, we 

mean those falling in the range of the sensing system and deemed of interest for the tracking 

and guidance problem. Assuming there are IOVs indexed from 1 to NOV (NOV>1) being 

tracked at time k, the IOV set X is a collection of labeled IOV tuples: 

 , ,1 ,...,
OV kk k NX XX                                       (5.4) 

 , , , ,, ,  1,...,j k j k O k OVV jX x S j N                              (5.5) 

where x is the estimate of the motion state vector of the IOV that includes the 

positions (a representative point, e.g. centroid) and the velocities of the object vehicle as 

well as their covariances. SOV is the parameters set (or an algebraic function fs,OV) used to 

describe the current shape/contour of the object vehicle, e.g. this could be the length and 

width for a rectangular description or the major and minor length for an elliptical 

description. Here, we assume SOV and NOV are already identified and we focus on the 

estimation of the motion state x. Methods to capture SOV, NOV can be found in [105], [106]. 

The general evolution of the motion state and measurement sequence of an IOV I 

can be written as: 

 , ,, 1 , 1,i k i km i kix f x w                                       (5.6) 

 ,, , ,,m ii k i k i kz h x v                                          (5.7) 
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where fm is a (nonlinear) function of the state x and process disturbance/noise 

sequence w. z is the available measurement most likely from observation cameras, or on-

board distance sensors (lidar). hm is a (possibly nonlinear) function of the states x and 

measurement noise sequence v. The uncertainties considered in this chapter are mainly due 

to process noise from environmental disturbances like wind, road or un-modeled dynamics 

acting on the lateral and longitudinal motion of the vehicle and measurement/sensor noise. 

Later on, we will assume that these uncertainties are captured-well with Gaussian 

distributions. 

In the Bayesian approach to tracking the motion state of an IOV i, one attempts to 

estimate the posterior probability density function (PDF) pi(xi,k|zi,1:k) of the state xi 

according to all the measurements zi up to time k. Assuming the initial PDF 

pi(xi,0|zi,0)≡pi(xi,0) is available with no initial measurement z0, then pi(xi,k|zi,1:k) can be 

obtained by a two-step recursive loop: prediction and update.  

In the prediction stage, if the required PDF pi(xk-1|z1:k-1) is known, the prior PDF of 

the state at time k is predicted via the following equation: 

     , ,1: 1 , , 1 , 1 ,1: 1| | |i i k i k i i k i k i i k i k ip x z p x x p x z dx                  (5.8) 

Note that pi(xi,k|xi,k-1)=pi(xi,k|xi,k-1, zi,1:k-1) is obtained from equation (5.8) assuming 

a Markov process and the known statistics of wi,k-1. 

In the update stage, suppose a measurement zi,k is available, it can be used to correct 

the prior PDF via Baye’s rule: 
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 
   
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, , , ,1: 1
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| |
|
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i i k i k i i k i k
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p x z

p z z





                      (5.9) 

Similarly, pi(zi,k|xi,k) is obtained from equation (5.9) and the known statistics of vi,k. 

The denominator term pi(zi,k|zi,1:k-1) is given by: 

     , ,1: 1 , , , ,1: 1| | |i i k i k i i k i k i i k i k ip z z p z x p x z dx                  (5.10) 

Therefore, by following the recursive loop above, the posterior density of the 

motion state x for each IOV can be estimated. For a linear description of the motion and 

measurement system (3.2), the analytical solution for the exact posterior PDF can be 

obtained via the application of Kalman Filter (requiring Gaussian noise v and w,) and Grid-

based Estimator (requiring discrete state space). For a nonlinear description of the system 

(3.1), Extended Kalman Filter or Unscented Kalman Filter, Approximate Grid-based 

Estimator or Particle Filter can be used to approximate the posterior PDF [117].  

Without too much loss of generality, hereafter, x represents the motion state (both 

position and velocity components) for the centroid of the geometric shape of each object 

vehicle. We will also use x to refer to just the position component of the motion state (e.g. 

in illustrations), when there is no ambiguity. 

5.3.3 Closeness Evaluation 

As the state of the IOVs are estimated by the posterior PDF for the centroid of each 

vehicle (including uncertainty), the Euclidean distance metric is not suitable to represent 

the closeness between different IOVs. For such a case, the probability of collision between 

two IOVs can be applied to measure closeness. Let Xi(xi,k) be the state space (position, 
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velocity and shape) occupied by IOV i at time k considering its geometric shape, e.g. an 

area described by an algebraic function fs,OV,i(x). Then, collision between IOV i and IOV j 

is defined by the condition C(xi,k, xj,k): Xi,k(xi,k)∩Xj,k(xj,k)≠Ø. Then, the probability of 

collision between the two IOVs is defined by the integral of the joint state distribution of 

the IOV i and IOV j: 

     , , , , , ,, , ,C i k j k C i k j k ij i k j k i jP Ix x x x p x dxdx x                     (5.11) 

where IC is the collision indicator function defined by: 

 
   , , , ,

, ,

1,  if  

0, other i
,

w se

i k i k j k j k

C i k j kI
x x Ø

x x


 






X X
                (5.12) 

This formulation of probability of collision can be implemented via Monte Carlo 

Simulations (MCS), which are computationally expensive. With assumptions of Gaussian 

distributions, an approximate closed-form solution was given in [118] for pairs of small 

sized objects with one of which can be reduced to a point. Then, the PDF value of the x in 

X(x) are nearly the same as the one in the centroid of X(x). However, in our case, the sizes 

of the IOVs are not negligible and such approximations will not work. Therefore, we 

develop some strategies to approximate the probability of collision between two IOVs with 

non-negligible geometric sizes and shapes.  

The first step is to approximate the collision indicator function with a simpler 

description. Here, we rewrite the definition of the collision condition of two IOVs (with 

indices i and j) with non-negligible geometric sizes at time k as C’(xi,k, xj,k): xi,k∈Xij,k(xj,k), 

where Xij,k(xj,k) is an extended deterministic geometric space occupied by IOV j at time k 
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on which we lump the geometric shapes/sizes of both IOVs (with indices i and j). Therein, 

IOV i is considered as a point. An example of collision in 2D position space between two 

IOVs with rectangular shapes is shown in Figure 5-3. One can also similarly derive the 

extended shape Xij,k(xj,k) for other geometric descriptions like circles or ellipses [93]. Then, 

the collision condition can be represented by an inequality in terms of the relative distance 

between xi,k and xj,k. The collision indicator function can be rewritten as: 

 
 , , ,

, ,

1,  if  

0, otherwise
,

i k ij k j k

C i k j k

x x
xI x

 
 


X
                         (5.13) 

Therefore, (5.11) can be modified as: 

 

Figure 5-3: Example of the collision condition for two IOVs with rectangular shape 

description in 2D (a is half length and b is half width) 
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   
 

 
, , ,

, , , , ,, |
i k ij k j k

C i k j k i k j k i j j k j
x x
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

 
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  
  X

       (5.14) 

As the inner integral of (5.14) constrains the range of xi,k within Xij,k(xj,k), we can 

define a deviation state variable Δxj,k∈Xij,k(0) to replace xi,k:  

 
 

 
 , , , , ,

, , , , , ,
0

| |
i k ij k j k j k ij k

i k j k i i k j k j k j k j
x x x

p d p dx x x x x x x x
  

    X X
   (5.15) 

where Xij,k(0) is the lumped space when xj,k is at the origin. Then, 

   
 

 
, ,

, , , , , , ,
0

, |
j k ij k

C i k j k i k j k j k j k j j j k j
x

P p dx x x x x x x x dxp
 

    
    X

    (5.16) 

This integral can be further simplified when the distributions of the states of IOV i 

and IOV j are Gaussian and independent. 

Proposition 1: Consider IOV i, with a point description with state xi,k and IOV j with 

state xj,k  and an extended deterministic geometry description Xij,k(xj,k)). If the states xi,k and 

xj,k have Gaussian distributions, i.e., xi,k~N(mi,k,Σi,k), xj,k~N(mj,k,Σj,k), and the state tracks of 

IOV i and IOV j are independent, then: 
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 X

(5.17) 

where nx is the dimension of the state x (generally comprising of the position and the 

velocity for each IOV).  



110 

Poof: Let px(m, Σ) denote the PDF of a multivariate Gaussian distribution for IOV 

state x. Given the independence assumption: 
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(5.18) 

Using the fact that the product of two multivariate Gaussian distributions is also a 

multivariate Gaussian [119]: 

     , , , , , , ,, ,,m m m, , ,i k j k i k j k j k c k cx j kx j x jp p c px         (5.19) 

where: 
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(5.20) 

   
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, , ,

1 1 1

, , ,
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,m m mc k i k j k i k i k j k j k
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

                   (5.21) 
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, , ,c k i k j k

 


                                   (5.22) 

Using (5.19)-(5.22) in equation (5.18), we have: 
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(5.23) 

As the inner integral equals to 1, equation (5.17) is proved.  
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Remark 5-1: By following the redefinition of the collision condition and 

Proposition 1, we can see that the problem of evaluating the probability of collision 

between two IOVs with non-negligible geometric sizes/shapes with Gaussian distributed 

and independent states can be transformed into one of calculating the integral of a 

combined multivariate Gaussian density function (defined by equation (5.20)) within a 

specified integral space (defined by Xij,k(0)). Furthermore, if the combined covariance 

Σi,k+Σj,k is diagonal and Xij,k(0) is a combination of closed integral ranges for each variate 

of Δxj,k, a closed-form solution can be found for the probability of collision by evaluating 

(5.17). 

 Remark 5-2: For evaluation of closeness between IOVs via the collision probability, the 

state variates are taken from the IOV tracking. The closeness here includes not only the 

“nearness” in positions but also the “similarities” in velocities between the IOVs. Similar 

to the rectangles used to illustrate the closeness in positons (in Figure 5-3 and discussions 

above), a speed range can also be used to define the closeness in velocities. With x 

interpreted as the motion state vector (position and velocity), both aspects of closeness are 

already considered above, including in the specification of the integral space Xij,k(0). Only 

if the nearness in both positions and velocities are satisfied are any two IOVs considered 

close to each other.  

If the Gaussian distributed motion states of IOV i and IOV j are dependent as is 

possible for cases with mutual interactions, a different result that approximates the collision 

probability equation (5.16) may be sought. However, we do not address these cases in this 

chapter. Some discussions in this direction can be found in [118].  
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Furthermore, for the case of non-Gaussian distributed motion states of IOV i and 

IOV j, whether these are dependent or not, one may have to resort to MCSs to evaluate the 

probability of collision directly from (5.16). 

Finally, by applying the probabilistic closeness/collision evaluation between each 

pair of detected IOVs, a closeness matrix 𝑴c can be assembled: 

   

   

1, 1, 1, ,

, 1, , ,
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 
 
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 
  

C
M                     (5.24) 

This matrix will be used in the grouping of IOVs in the next sub-section.  

5.3.4 Density-Based Grouping/Clustering 

Here, we adopt the Density-based Spatial Clustering of Applications with Noise 

(DBSCAN) approach [120] to group the detected IOVs by processing the closeness matrix 

given by equation (24). The probability of collision (value between 0 and 1) between the 

pairs of IOVs provides a good one-dimensional closeness indicator that be used with 

DBSCAN [121]. DBSCAN is widely applied in machine learning and data mining for 

clustering purposes due to its attractive attributes:  

 The number of clusters/groups in the data set is not required to be pre-specified. 

 Only two parameters are required: the closeness threshold ε in the neighborhood 

of any object i and the minimum number of other objects μ that are within the 

threshold ε of object i.  

 It is suitable for arbitrarily shaped clusters/groups. 
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The key idea we adopt from this approach for vehicle grouping is that for the main 

object components of an OVG, at least a minimum number μ of IOVs should be contained 

in the neighborhood of a given closeness threshold ε (between 0% and 100%). Here, we 

emphasize that selecting an appropriate ε is very important as it’s directly related to the 

success of the grouping algorithm. For example, a too small ε (≈0%) may lead to big groups 

with low-closeness IOVs inside, and a too large ε (≈0%) may fail in grouping the IOVs 

even for those with high closeness. A proper range for ε could depend on the situation 

(urban, highway, intersection, etc). Here, we select ε to be 0.5 (average of the collision 

probability of 0% and 100%) for our illustrations. The selection of μ depends on the density 

of the objects. These main object components in the group are defined as core object 

vehicles (COVs). The closeness threshold ε defines a density connection condition between 

two IOVs: if PC(xi,k, xj,k)≥ε, IOV i and IOV j are said to be density connected with each 

other. There can also be another kind of IOV called border object vehicle (BOV) in the 

 

Figure 5-4:  Illustration of the DBSCAN grouping results (μ=4). The edge means 

there is density-connection between the IOVs. Only the group index of each IOV is 

shown here. 0 means the IOV is SOV with no group index. 
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group that can’t satisfy the minimum number μ requirement for being a COV but can be 

connected with COVs. In addition, there can be IOVs not connected with any COVs. These 

are considered as single object vehicles (SOVs). An illustration of these different kinds of 

objects is given in Figure 5-4.  The algorithm is detailed in [120]. 

Once the clustering/grouping is done, each IOV will be labeled with its updated 

OVG index from 0 to NG. And all the indices of the IOVs in OVG i will be stored in an 

index set as IG,i. Furthermore, the group behavior BG,i can also be determined by evaluating 

the OVG index for each IOV at sequential time steps. 

Although the DBSCAN approach is only applied here to identify the OVGs and 

label the IOVs with their OVG index, the motion state for OVG i xG,i at time k can be 

obtained from the mixed state distribution of those IOVs in the group: 
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where NIG,i,k is the number of elements in the index set IG,i at time k. The weights 

for different IOV distributions can be determined based on the closeness of each IOV to 

other IOVs in the same OVG: 
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Finally, the shape of the OVG i at time k can be described by the boundary of an 

area with a specified joint probability distribution among all the IOVs in the OVG i, i.e. 

the set: 

  ,: ,  0 1k G i kxx P                                    (5.27) 
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According to the inclusion-exclusion principle of set theory, equation (5.28) 

becomes: 
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As calculating the intersection distribution probability among the IOVs in the OVG 

requires multiple integrals (with the order equal to the number of IOVs in the group), it’s 

hard to evaluate the probability of collision via equation (5.29), especially when NIG,i,k had 

a large value. Therefore, we need a tractable approximation to (5.29). If we ignore the 

intersection probability calculation, we obtain a conservative evaluation of the collision 

probability: 
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We say equation (5.30) is a conservative evaluation because the probability is 

overestimated by simply adding the probabilities based on the distribution of each IVO. 

This is known as the Boole’s inequality or union bound [122]: 
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The OVG boundary is then obtained by drawing the probability contour using 

numerical methods: 
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A comparison of the OVG boundaries determined by equation (5.29) and (5.30) is 

illustrated in the example in Figure 5-5. We can see the probability of the group distribution 

is bounded by (5.30).  

 

Figure 5-5: Illustration of the OVG distribution contour in a 2D position space. The 

position states of the three IOVs are assumed to be Gaussian distributed. α=0.1 and 

0.9 contours shown. Solid probability contours are calculated by (5.29) while the dash 

contours come from (5.30).  
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5.4 Numerical Experiment and Discussion 

To illustrate the performance of the proposed object vehicle grouping framework, 

we first include the setup and results of a numerical experiment that represents a complex 

highway scenario. Several methods are compared for use in the closeness evaluation and 

the salient aspects of the group tracking approach are illustrated with this scenario. We then 

present the results of the application of the proposed approach to a real-time traffic 

intersection scenario from the Next Generation Simulation (NGSIM) project database 

available on the Research Data Exchange of the U.S. Department of Transportation’s 

Federal Highway Administration [123]. In both scenarios, we assume a centralized 

surveillance view of the IOVs from the ego-vehicle or roadside infrastructure, and illustrate 

the performance of the vehicle grouping algorithm. 

5.4.1 Complex Highway Scenario 

In the highway scenario, we use a linear kinematic particle motion model defined 

in the Frenet frame with KF for IOV state tracking purposes. This model has been used in 

our previous chapter for motion planning purposes. See (3.2) in section 3.3.1 for details. 

Here, we assume that the measurements are obtained without sensor delay, faults or sensing 

range limitations. With such linear dynamics models for the IOVs, a regular KF can be 

used to estimate the states of the IOVs. Note that even more refined implementations such 

as Interactive Multi-Model KF [80] and higher order models are also possible to use for 

IOV state estimation and integrated with our grouping function/approach as depicted in 

Figure 5-1.  
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As for the closeness calculation, we consider both the closeness in positions and 

velocity in the two scenarios. To calculate the closeness in positions, the geometric shape 

of the IOV is defined as a rectangle with a car-like realistic size (a for half length and b for 

half width). Also, in the numerical experiment, we will add a safety margin csv
s
t,o,i that is 

related to the velocity of the IOV i in its geometric length to mimic human-driver like 

actions that keep a safe distance between a front and rear vehicle, as shown in Figure 5-6.  

For the closeness in velocity, we define a bound [-Δvt, Δvt] for the velocity 

difference between two IOVs. This will factor in following and leading conditions in the 

probabilistic inclusion/exclusion of IOVs in groups. After the closeness evaluation, the 

OVGs will be identified via DBSCAN w.r.t the closeness threshold ε and the minimum 

 

Figure 5-6:  Geometric shape of the IOV i in the numerical simulation (cs is a constant 

time gap to adjust the safety margin) 

Table 5-1: Parameters of IOVs in the numerical experiment 

Parameter Value Parameter Value Parameter Value 

,s ow [m/s] N(0,25) 2sK  2 cs [s] 0.5 

,y ow [m] N(0,1) 1yK  2.5 Δvt [m/s] 1 

,s ov [m] N(0,25) 2yK  2 ε 0.5 

,y ov [m] N(0,1) a [m] 3.75 μ 2 

1sK  2.5 b [m] 1.6 α 0.5 
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number μ. Here we choose μ=2 due to the small numbers of IOVs (low density) in the 

present example, which considers 8 IOVs on a highway scenario (described below). 

Therefore, in this case, the BOV and COV are the same. All the parameters used in the 

numerical experiment are given in Table 5-1.  

The highway scenario we constructed is a sequence of typical highway situations, 

like cruising, overtaking, following etc, are specifically selected to illustrate the nuances 

of the group evolution for a span of 90 seconds. The reader is encouraged to look at the 

 

 

Figure 5-7: States of the IOVs in a highway scenario. Top: relative positions, Bottom 

longitudinal velocities. 
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state tracking (estimation) results for all IOVs shown in Figure 5-7 at this point. These are 

elaborated further in the next subsection.  

We compare our proposed approach to closeness evaluation and grouping in the 

highway scenario, we compare our numerical integration (NI) method on the derived 

condition (5.17) with the Monte Carlo Simulations (MCS) using 100000 samples (can 

approximate a probability accuracy up to 0.001%). We also consider the approximation 

method for small sized objects (ASO) proposed in [118] and described earlier. In ASO, the 

collision probability is evaluated by: 

 

Figure 5-8: Group structure evolution for the highway scenario with application of 

either the NI or MSC methods for closeness evaluation. 
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      (5.33) 

where Vs is the volume of Xij,k(0).  

First, we start with a comparison of the closeness evaluation methods. When 

applying NI and MSC (with 100000 samples) in closeness evaluation, the same group 

structure evolution profile is obtained (see Figure 5-8). However, no group structure 

evolution is found in the ASO case (not plotted here); with ASO, the group index of all 

IOVs remain at 0 as individuals. These can be explained by the evaluated closeness profiles 

 

Figure 5-9: Closeness between IOV 3 and some of the other IOVs under the Monte 

Carlo Simulation(MSC) method with 100000 samples, numerical integration (NI) 

method, and the approximation method for small-sized object (ASO). 
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between each pair of IOVs under the three methods, as shown in Figure 5-9 and Figure 

5-10, herein, the closeness evaluated by NI and MSC are almost the same (with accuracy 

up to 0.001%). In addition, the RMS of the errors between the closeness evaluation using 

MSC with different samples and NI, ASO and NI for the IOVs shown in Figure 5-9 and 

Figure 5-10 are given in Table 5-2. As more samples are used, the error between the 

closeness evaluation MSC and NI become smaller, which demonstrate the validity of our 

NI method. However, for ASO, the closeness is always 0 and the RMS error between NI 

and ASO is large. This is due to the fact that the size of the IOV is too large compared with 

the distribution area covered by the uncertainties. From (5.33), it’s obvious that ASO uses 

the probability density value at the center of Xij,k(0) to represent the density value for the 

 

Figure 5-10: Closeness between IOV1 and some of other IOVs under the three methods 
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other locations in Xij,k(0). This only works when the size of object, i.e. the volume of 

Xij,k(0), is small. Otherwise, we obtain zero density value when the two objects are too far 

away relative to the distribution area arising from the uncertainties. Therefore, ASO is not 

suitable to use in cases with non-negligible geometric sizes of the objects involved (i. e, 

real highway vehicles).  

The computational time for evaluating the closeness between a pair of IOVs under 

the three methods are also summarized in Table 5-3 (on a notebook PC with Intel i5-4200M 

2.4 GHz processor and 4GB RAM). ASO is most efficient, but as described above is least 

accurate. The proposed NI gives a reasonably efficient resolution of the closeness 

evaluation when a high accuracy of probability evaluation, e.g. smaller than 0.01%, should 

be ensured. MSC is most accurate but is unlikely to be useable for real-time applications.  

In Figure 5-8, we can see the total number of OVGs identified evolves as 2-1-2-1-

2-3-2-3-2-3-2, as the states for the IOVs evolve differently. Initially, IOVs 1, 2, 5 and 6 are 

all SOVs as they are far away from other IOVs in positions. IOV 1 and IOV 2 are also 

different form other IOVs in velocity, see Figure 5-7. While IOVs 3, 4 are grouped in OVG 

1 (see Figure 5-9 for the closeness values) and IOV 7, 8 are in OVG 2 due to their closeness 

both in positions and velocity.  

As time goes, SOV1 changes lane to overtake IOV 3, 4 around t=10s and then IOV 

3 starts to accelerate and move towards SOV 5 and SOV 6. As a result, OVG 1 splits into 

SOV 3 and SOV 4 around t= 20s, and OVG 2 becomes OVG 1. During the acceleration, 

SOV 3 is caught up by SOV 1 and they temporally merge into the new OVG 1 at t=27s. 

As IOV 1 tries to keep its fast speed, it decides to change lane to follow the faster IOV 2 
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Table 5-2: RMS of the error between other methods and NI in evaluating the 

closeness of two IOVs shown in Figure 5-9 and Figure 5-10. 

RMS Error 

Method 

MCS 

(100000 samples) 

MCS 

(10000 samples) 

MCS 

(1000 samples) 
ASO 

IOV3 and IOV 1  0.00018 0.0005 0.0014 0.1848 

IOV3 and IOV4  0.00033 0.0012 0.0034 0.4402 

IOV3 and IOV5  0.00030 0.0010 0.0030 0.7173 

IOV3 and IOV6  0.00027 0.0009 0.0030 0.7163 

IOV1 and IOV2  0.00041 0.0013 0.0039 0.664 

IOV1 and IOV6  5.52e-6 1.79e-5 6.01e-5 1.02e-5 

IOV1 and IOV7  7.61e-6 2.30e-5 7.46e-5 1.75e-5 

 

Table 5-3: Execution time of the error in evaluating the closeness of two IOVs for 

3168 runs under different methods on a notebook with Intel i5-4200M 2.4 GHz 

processor and 4GB RAM. 

Execution  

Time 

Method 

MCS 

(100000 samples) 

MCS 

(10000 samples) 

MCS 

(1000 samples) 
NI ASO 

Max [ms] 33.9 1.16 0.232 0.762 0.036 

Min [ms] 11.5 0.634 0.116 0.483 0.018 

Mean [ms] 11.7 0.717 0.123 0.495 0.019 
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among the rest of the IOVs to pass through the traffic jam formed by IOVs 5, 6, 7 and 8  

(The details of the motion control decisions are discussed in our other work [124]). 

Therefore, the OVG 1 split again at t=31s and SOV 1 and 2 merge into the new OVG 1 at 

t=33s, see Figure 5-10. Later SOV 3 decelerate to merge with SOV 5 and SOV 6 to form 

a new OVG 2 at t=45s. When a faster IOV passes by a slower IOV through an adjacent 

lane, we can see the rise of closeness between them, for example, the closeness of IOV 1 

and 6 and IOV 1 and 7 rises when IOV1 is passing through the traffic jam as can be seen 

in Figure 5-10. However, as can be seen in Figure 5-7, the longitudinal velocity gap 

between them is too large (two times larger than the specified bound of the velocity 

difference Δvt) to significantly increase the closeness. 

After IOV1 pass through the traffic jam together with IOV 2 in OVG 2, it changes 

lane to overtake IOV 2 and then OVG 2 splits into SOV 1 and SOV 2 at t=74s. However, 

IOV 2 moves laterally towards the lane occupied by IOV 1. To avoid a collision, IOV 1 

decelerates and change lane to the right. When IOV 2 settles down, IVO 1 accelerates to 

overtake it. During this collision avoidance process, we can see the oscillation of the 

closeness value between IOV 1 and IOV 2 in Figure 5-10 between t=74~85s. This is mainly 

due to the rapid velocity change of IOV 1 to avoid a collision and then overtake the slower 

IOV 2.  

We can also generate the group geometry description for this scenario. Figure 5-11 

shows an example for the position description sampled at time t=15 and 60s. Here, we use 

a belief contour with α=0.5 to represent the distribution of the OVGs. The OVG position 

center calculated by applying equations (5.25) is also shown. Each IOV is labeled with 
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their group index behind their IOV index. We can see how the group boundary contour and 

center position changes along with the indices of the IOVs in the OVG from t=15 to 60s, 

as shown in Figure 5-11.  

5.4.2 Application to Real-Time Traffic Intersection Data Set 

For simplicity and to avoid duplication, in the intersection scenario, we only apply 

our grouping function with the NI method of closeness evaluation. We apply the grouping 

function to the vehicle trajectory data generated by the NG-VIDEO software after 

 

(a) t=15s 

 

(b) t=60s 

Figure 5-11: Example of relative position description of OVGs at different time for 

highway scenario. See Figure 5-2 for adopted numbering convention. 
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processing a 15 min overhead camera record of actual traffic in an intersection on 

Lankershim Boulevard in Los Angeles, CA (data from [123]). Here, we chose one segment 

from t = 5min23s to 5min52 to show the typical vehicle grouping results as an example. 

The position description of the OVGs are sampled at 6 frames, as shown in Figure 5-12. 

We can clearly see the group formation (OVG1) of a set of IOVs (IOV2~IOV6) from SOVs 

at t = 5min23s to a unique group at t = 5 min 42 (Figure 5-12 (a)~(c)) when these IOVs 

stop before a red light. The closeness profile between the front and rear IOVs in this case 

are not given here, but it’s similar to the case of IOV 3 and IOV5 or IOV6 in the highway 

scenario above with velocity synchronization (0 m/s) and position proximity at the end. 

Then, more and more IOVs slow down to approach OVG1 with different velocities from 

behind. Among these IOVs, the ones with similar velocities and close distance merge into 

groups, as shown in the group identities in Figure 5-12 (c)~(e). After IOV1 completes its 

left turn, the light turns green, and the set of IOVs start to pass the intersection with some 

distinct or some similar accelerations, therefore, big OVGs split into small OVGs, as shown 

in Figure 5-12 (f). We can see the grouping method successfully identifies the IOVs with 

common and distinct motion and accordingly adjusts the group identities in this 

intersection scenario.  
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(a) t=5min23s                                               (b) t=5min26s 

 

(c) t=5min42s                                             (d) t=5min44s 

 

(e) t=5min48s                                              f) t=5min52s 

Figure 5-12: Example of position description of OVGs at different time for the 

intersection scenario under NI method in closeness evaluation. See Figure 5-2 for the 

adopted numbering convention. 
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5.4.3 Comments on the Application of Grouping to Motion Planning for 

Autonomous Vehicles 

As the group boundary represents the probability of the distribution of the IOVs in 

the OVG, it can be used to re-define the multitude of obstacle avoidance constraints that 

arise in the real-time motion planning of autonomous vehicles in uncertain public traffic 

involving many vehicles. Such planning frameworks were discussed, for example, our 

previous works [31], [124] that discuss predictive control approaches and even those of 

[51]that use rapidly exploring random trees.  

In this chapter, we considered probabilistic collision problems involving IOVs with non-

negligible geometric shapes and derived the condition given in equation (5.16) and given 

a simplified derivation in Proposition 1 for the case of Gaussian distribution of the motion 

states. If we only apply the chanced constraints derived from these results for collision 

avoidance of the Autonomously Controlled Vehicle (ACV or ego-vehicle) with each 

detected IOV, in the numerical optimization problem of predictive motion planning, some 

undesirable local minimums will result the intersections of the collision boundaries of 

IOVs (with some closeness) that will trap the ACV from finding better solutions for its 

motion plan. We have shown earlier that for deterministic planning [93] [116], a good OVG 

algorithm can help to tailor the feasible field to exclude these effects. In principle, one can 

expect this to work for the probabilistic planning case as well since the chanced constraints 

(representing avoidance of IOVs and OVGs) can be numerically transformed to the 

deterministic constraints for the optimization problem to find a solution [125].  
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However, the real-time motion planning problem requires a real-time solution of the 

group boundary generation, like the ASO method. To determine the group contours for the 

illustrations in this chapter, we used numerical methods (integrations or simplified solution 

mentioned in Remark 1) to sample a set of points based on the collision probability 

evaluation. While this represents the true boundary, its computation may not be efficient 

for real-time implementation in all scenarios. Therefore, in our continuing work, we 

approximate the probabilistic collision condition and the contour of the OVGs with 

conservative closed-form results, similar as the OVG boundary for the deterministic case 

in [93] [116], and apply it in stochastic motion planning algorithms for autonomous 

vehicles. 

5.5 Conclusion 

In this chapter, we propose a probabilistic multiple vehicle grouping framework for 

tracking the evolution of groups of individual object vehicles (IOVs) with the consideration 

of their non-negligible geometric sizes and prevalent sensing and motion uncertainties. 

Therein, the closeness between any two IOVs, which is defined by a probabilistic collision 

condition comprising of mutual proximity both in velocities and positions as the main 

criteria for subsequent clustering of detected vehicles into object vehicle groups (OVGs) 

whose states are estimated by the weighted distribution of each IOV in the OVG. The 

workings and performance of our proposed framework are illustrated for a simulated 

complex scenario and a real-time traffic intersection dataset. Comparison of the 

probabilistic collision condition as derived and evaluated via a numerical integration 

method with Monte Carlo Simulations show that it can achieve very good accuracy with 
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about a 20x computational speed up. It is also highlighted that while computationally more 

efficient approaches of closeness evaluation that ignore geometric sizes exist, they could 

not resolve group attributes and are not applicable for road vehicles. 

In next chapter we will focuses on finding better approximations of the closeness 

evaluation to further reduce its computational complexity and on determining the OVG 

boundary so that it can be executed in real-time within stochastic motion planning 

algorithms for autonomous vehicles.  
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CHAPTER 6  

PROBABILISTIC COLLISION AVOIDANCE FOR AN AUTONOMOUS 

VEHICLE IN MULTI-VEHICLE TRAFFIC 

6.1 Abstract 

Self-driving and highly automated vehicles are expected to reliably avoid collision 

with other traffic participants. However, due to uncertainties from sensor imperfections 

and environmental disturbances, collision avoidance conditions are often expressed as 

difficult to resolve probabilistic constraints in the motion planning problem. In this paper, 

we propose a constraint tightening method to progressively transform the probabilistic 

collision condition to a conservative hyper-elliptical condition that can be computed 

efficiently within real-time ready predictive motion planning algorithms. This is done via 

a conservative closed-form transformation of the bivariate integral in the collision 

probability density function and subsequent computable approximations with logistic 

functions. To further facilitate the motion planning these vehicles in multi-vehicle traffic, 

individual object vehicles with similar velocities and with proximity in position can be 

grouped via a clustering scheme that draws on these ideas. Detailed numerical experiments 

are included to illustrate the workings and the performance of the proposed approach when 

incorporated in stochastic model-predictive motion planning methods.   

6.2 Introduction 

In the march towards (semi-)autonomous driving, the task of safely guiding the 

controlled vehicle in the presence of other traffic participants remains a challenging 
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problem. Therein, using the sensors to track/observe the states, like position and velocities 

of the other objects plays a significant role, as it provides the basic but most important 

information for the autonomously controlled vehicle (ACV) to avoid a collision. 

To identify individual object vehicle from sets of measurements, e.g., sparse laser 

point cloud, it’s better to track each vehicle as an extended object with simple geometric 

shapes like circle [103], ellipse [104], rectangle [100]or such arbitrary shapes [107]. Data 

association approaches like Multi Hypothesis Tracking (MHT) [92], Probabilistic MHT 

(PMHT) [109], Probability Hypothesis Density (PHD) approach [110], Joint Probabilistic 

Data Association (JPDA) approach [111], or Random Finite Sets (RFS) [112] can be used 

to assign the measurements to each identified object vehicle. In addition, by considering 

the knowledge of the geometric vehicle model, i.e. fused with camera image, the detected 

object vehicle are finally represented by an estimated geometric/spatial shape (center and 

content parameters) and dynamics (location and velocity) [113] . 

The geometric shapes mentioned above are usually used in the motion planning 

problem to formulate the collision avoidance constraint. However, this problem is 

challenging for the following three principle reasons: 1) the planning problem is non-

convex as the feasible field is defined outside the area occupied by the object vehicles. 2) 

the planning problem naturally involves uncertainties due to model error, sensor 

imperfection or environmental disturbances. 3) the future information of the surrounding 

dynamic traffic is unknown, so is the uncertainty propagation. To address these challenges, 

several approaches are proposed.  
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For the first challenge, polygonal models [126] [94], as a disjunction of linear 

constraints, or algebraic models like circle, ellipses [95] and hyper ellipses [96] are mostly 

used in the sampling based planning method like RRT* algorithm [51]. However, for 

mathematical constrained optimization based planning method like MPC [31], algebraic 

models are better options than polygonal models because the disjunction of linear 

constraint will lead to discontinuity in the state space, which results in the Disjunctive 

Linear Programming problem [127]. This problem is similar as Mixed-Integer 

Programming problem that requires specific solver to find a solution and is not efficient 

for real time planning.  

For the second challenge, the uncertainties can be handled by either considering 

their bounds (non-deterministic case) or distribution (probabilistic case) [128]. In the non-

deterministic case [74], the worst case of the uncertainty is considered in the motion 

planning problem thus leading to a too conservative solution for the planning problem. 

However, in the probabilistic case [126], the conservatism can be flexibly adjusted by 

specifying a chanced constrain with a confidence threshold/coefficient, but the 

computations are often intractable due to the multivariate integrals. Nevertheless, for 

specified confidence threshold/coefficient (e.g. probability of collision less than some 

small value), a solution can be obtained by solving the approximate deterministic motion 

planning problem with either constraint tightening method [86] [129]or sampling-based 

method [126] that account for the uncertainties. By contrast, the sampling-based method 

involves prohibitive computational expense due to the large number of samples for the 

uncertainty and thus is not appropriate for real time application. 
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For the constraint tightening method, a deterministic constrain described by a 

function of the level of confidence and the distribution of the uncertainty is used to replace 

the original chanced constrain. Therefore the key process is to determine the function. With 

assumptions of uncorrelated Gaussian distributions for each state observation, an explicit 

function is easy to obtain due to the single-variate integral [86]. If the state uncertainties 

are correlated, an approximate explicit function for probabilistic collision evaluation was 

given in [118]  for small sized objects (radius smaller than 1 m) on a plane surface. 

However, it doesn’t work for a normal sized vehicle. Thus a numerical method was 

developed in [130] and then efficiently approximated via rotation strategy and logistic 

function in [129] to evaluate the probability of collision between two individual object 

vehicles (IOVs) with non-negligible geometric shapes/sizes. However, the resulting 

explicit function written in the combinations of logistic function is still too complex to be 

involved in the optimization based planning method.  

For the third challenge, the future states of the surrounding traffic can be model-

predicted for a certain prediction horizon based on the current measurements. This allows 

the ACV to assess the risk of having a collision with other IOVs and then to determine a 

collision-free trajectory. Different models used for motion prediction of OVs are 

summarized in [65], including physics-based models [66, 67] for short term prediction(less 

than 1 second), maneuver-based models [68, 69] and interaction-aware models [70, 71] for 

longer-term prediction. When state uncertainties are considered in the prediction horizon, 

several methods are proposed depending on the type of model and uncertainty used in the 

prediction. If the state uncertainties are Gaussian distributed, filtering techniques, e.g., 
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Kalman filter (KF) series [78, 79] (regular KF for linear model or Uscented KF for 

nonlinear model) for motion prediction of one maneuver and Interactive Multi Model 

(IMM) KF or Switching KF [80] for different possible maneuvers can be applied. If non-

Gaussian uncertainties are considered, approximation method such like particle sampling 

method [131] or polynomial chaos expansion [132] can be used to propagate the 

uncertainties in the prediction horizon. 

 For a certainty amount of IOVs that have common movement (e.g. similar 

velocities) and close geometrical proximity, they can be regarded as an object vehicle 

group (OVG) and represented by an extended moving object. This helps to redefine the 

feasible collision-free field to exclude undesired local minimums for the motion plan [93]. 

The OVG can be formed either based on a distance threshold defined by the overlap of 

their elliptical collision fields for a deterministic case [116] or on a probabilistic closeness 

threshold defined by a similarity function in terms of the position and velocity distribution 

for the case with state uncertainties [130] [129]. For the case with uncertainties, the 

boundary of the group is then defined as the joint state distribution of those IOVs in the 

group with a specified confidence coefficient. This can be used to set up a chanced 

constraint to avoid collision with an OVG. However, it’s not yet implemented with any 

kind of motion planning method. Furthermore, a more efficient explicit function is required 

to approximate the tightened constraint of using the logistic functions, for the purpose of 

real-time implementation with optimization based motion planning methods. 
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The objective of this chapter is to find a more efficient way to tighten the 

probabilistic collision avoidance constraint and implement it with an existing predictive 

motion planning method. The contribution of this chapter includes:  

 Develop a constraint tightening strategy via deriving the analytical solution for 

the fundamental dimension of the collision area according to the specified 

confidence threshold and the uncertainty distribution. 

 Implement the proposed constraint tightening method to multi-vehicle grouping 

frame work and solve the stochastic MPC based motion planning problem for 

collision avoidance and traffic interaction. 

6.3 Tightening the Constraint of Probabilistic Collision Avoidance 

Let X(x) be the state space (position) occupied by a vehicle considering its 

geometric shape. Without too much loss of generality, hereafter, x represents only the 

position state for the centroid of the geometric shape of each vehicle, including ACV and 

IOV. Then, the collision between ACV and IOV i at time k (the subscript k is omitted in 

the following content for simplicity) is defined by the condition C(xA,xO_i): 

XA(xA)∩XO_i(xO_i)≠Ø, as is shown in Figure 5-3 with rectangular geometric shape 

description . Then the probabilistic for ACV to avoid a collision with IOV i is higher than 

a specified confidence value 1-δ, 0<δ<1, can be given by: 

    _ _A A O i O iX x X x ØP                                             (6.1) 

To simplify the evaluation of collision probability we do some modification to the 

collision condition as well as the collision avoidance constraint as shown below:  
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  _, _iA A O O iP x x  X                                              (6.2) 

where XA,O_i(xO_i) is an extended geometric space occupied by the IOV i at time k 

on which we lump the geometric shapes/sizes of ACV XA(xA) and IOV i XO_i(xO_i). Therein, 

ACV is considered as a point. Note that (3) and (4) are equivalent. An example of collision 

in 2D position space between ACV and IOV i with rectangular shapes is shown in Figure 

5-3. One can also similarly derive the extended shape XA,O_i(xO_i) for other geometric 

descriptions like circles or ellipses. But the rectangular shapes can help to find the close-

form solution for the probability of collision.  

Assuming the Gaussian distribution on the position states, a general integral form 

to evaluate the probabilistic collision between the ACV and an IOV with non-negligible 

geometric shape (rectangular) is derived in the Proposition 1 in Section 4.3.3. However, to 

avoid the complexity of using numerical evaluation of (5.17), here we adopt an explicit 

formula to approximate (5.17) for rapid evaluation and real-time application with MPC 

based motion planning framework.  

Considering the collision in a 2D case, the position state is defined by: 

e

s
x

y

 
  
 

                                                         (6.3) 

where s and ye are the arch length and lateral position for the centroid of the vehicle 

geometric shape defined in the Frenet frame, as shown in Figure 2-4. By following the 

assumptions used in Proposition 1 and rectangular shape for the vehicles, (5.17) can be 

rewritten as a definite bivariate normal integral: 
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where the integral interval (Δs ,Δs ), (Δ ey ,Δ ey ) are defined by: 
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and the combined covariance matrix _,A O i  is given by: 
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where σ is the variance for each position state and ρ is the correlation coefficient between 

s and ye. Without loss of generality, here we consider |ρ|<1. To efficiently and 

conservatively evaluate the probability of collision in (6.4) with |ρ|<1, we give the 

following closed-form approximation that voids the evaluation of the integral on the right-

hand side of (6.4). We detail the derivations with general observations about bivariate 

normal distributions in Remark 6-1 and Remark 6-2.  

Remark 6-1: Let (Δs, Δye) have a bivariate normal distribution with correlation 

coefficient ρ=0: 
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The solution for the bivariate integral within the integral region (Δs ,Δs ), (Δ ey ,

Δ ey ) is easy to obtain: 
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where erf is the error function: 
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Remark 6-2: Let (X, Y) have a bivariate normal distribution with zero means and 

correlation coefficient |ρ|<1: 
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It’s hard to directly find the closed-form solution for the bivariate integral of this 

distribution, but it can be transformed into a bivariate normal distribution with ρ=0 (form 

of (6.7)) via a coordinate rotation, as shown in Figure 6-1. After rotation, the new 

distribution is given by: 
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The new self-variances σs’, σye’ and the rotational angle θ can be determined by 

computing the eigenvalues and eigenvector of the old covariance matrix [133] to arrive at: 
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Note that different from the case in Remark 6-1, the Δs/Δye coordinate and Δs’/Δye’ 

coordinate are both coordinates with their origins located at the means of the bivariate 

distribution (or are cases with zero means; non-zero mean distributions can be easily 

handled by applying translations with the means).  

To apply the solution of the bivariate integral obtained from Remark 6-1 to our 

problem, the rectangular integral region need to be rotated parallel with the axes of the new 

 

Figure 6-1: Bivariate normal distribution under different coordinate. ρ≠0 in Δs/Δye 

coordinate. ρ=0 in Δs’/Δye’ coordinate. The red rectangle represents the integral 

region. 
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coordinate system. Also, to ensure a conservative evaluation of the probability, the new 

integral region must cover or circumscribe the old one. As shown in Figure 6-1, considering 

the original integral region [Δs ,Δs ]=[Δs0-a, Δs0+a], [Δ ey ,Δ ey ]=[Δye,0-b, Δye,0+b] in 

Δs/Δye coordinate, we select the new integral region to be given by [Δ ’s ,Δ ’s ]=[Δs0’-a’, 

Δs0’+a’], [Δ ’ey ,Δ ’ey ]=[Δy’e,0-b’, Δy’e,0+b’] in Δs’/Δye’ coordinate, where: 
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Then, a closed-form approximation of the cumulative probability of a bivariate 

normal distribution defined as (6.4) is conservatively obtained by: 
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Using (6.16), the probability of collision between ACV and IOV i in (6.4) can be 

easily evaluated using the conservative integral region in the rotated coordinate system. 

When a confidence threshold δ is specified, a related collision area XA,O_i,k,δ for 

ACV inscribed in a rectangle (see Figure 6-3) is determined as: 

    , _ , , , __ ,|O i A k A kA O i A O ix x P x   X X             (6.17) 
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In the collision area XA,O_i,k,δ, the dimension ΔX’ and ΔY’ can be approximated by 

explicit functions in terms of the confidence threshold δ, the size of the aforementioned 

extended geometric area XA,O_i,k(xO_i,k) occupied by IOV i and the distribution of the 

uncertainties. Therein, the logistic function with a residual error function r(x) is used to 

approximate the error function: 
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l c x
x f x r x r x

e

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                  (6.18) 

 

 

Figure 6-2: Approximation of the error function with a logistic function (Top left). The 

cumulative square error for 20000 samples range from -10 to 10 with different cl 

values (Top right). The approximation performance when cl=2.4. The maximum error 

is 0.019 when |x| is close to 1.45 (Bottom). 
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The minimum cumulative square error found with the coefficient cl=2.4, as 

illustrated in Figure 6-2. r(x) is symmetric with respect to the origin and only have non-

zero values between the region [-5, 5]. Two monotonically decreasing regions including (-

 ,-1.45] and [1.45, +  ) exist. The maximum bound for r(x) is rb = 0.019. These 

characteristics are useful in demonstrating the conservatism of the dimension for the 

collision area with uncertainties approximated by using the logistic function. 

Remark 3: Let (Δs’, Δye’) have a bivariate normal distribution with correlation 

coefficient ρ=0 after rotation as described by (6.11), from (6.16), the boundary of the area 

(see Figure 6-3) with specified bivariate integral region [Δ ’s ,Δ ’s ] = [Δs0’-a’, Δs0’+a’], 

[Δ ’ey ,Δ ’ey ] = [Δy’e,0-b’, Δy’e,0+b’], a’, ’≥0 and confidence threshold δ is defined by: 
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Figure 6-3: Collision area for ACV and IOV i with specified confidence threshold δ 
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From Figure 6-3 we can see that the shape of the area boundary is close to a hyper-

ellipse inscribed in a rectangle with the same dimension for length Δa’ and width Δb’ as 

the major and minor length of the boundary. Also, from (6.19), the contribution of the 

distributions for Δs’, Δye’ to the cumulative probability are independent as they are 

decoupled, therefore calculating the length for Δa’ and Δb’ can be also decoupled, as given 

by: 

’’ ’

’ ’’ ’ ’

’ ’
1 1

erf ,   erf
4 2 2

e

e

e

e
e

ya

y

y

ya

a

e

s a y

C
s C y

 



 

  
        

   
                 (6.20) 

’ ’ ’

’ ’ ’’ ’

1 1
erf ,   erf

4 2 2
’ ’

e

b b s

s

y sb

s

b

e

s

C
y C s

 

  

 

   
        

  
                  (6.21) 

As the error function is a single variate integral, Δa’ and Δb’ can’t be analytically 

solved from (6.20) and (6.21). Therefore, we substitute the algebraic function (6.18) into 

(6.20) and (6.21) to replace the error function and obtain: 
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Before solving (6.22) and (6.23), the residual error function r(x) must be handled. 

From Figure 6-2 and (6.16), we can see the two aforementioned monotonically decreasing 

regions (- ,-1.45] and [1.45, + ) are related to a small confidence threshold of collision. 
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Therefore, when δ is specified in a particular region close to zero, the residual error part in 

(6.22) and (6.23) will have negative value and thus result in a conservative solution for the 

dimension of the collision area. When δ is specified out of the region close to zero, the 

residual error will not always be negative. Therefore, a worst case compensation 

considering the maximum residual error bound rb will be used to ensure the conservative 

solution. Above all, by considering the monotonicity, symmetry with respect to the origin 

and the bound of the function and the following scenario based equation is proposed to 

ensure the conservatism in determining the dimension of the confident collision area: 
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where ε>0 is a small value to ensure a feasible solution in analytically resolving the 

algebraic equation (6.24) and (6.25). When substituting the expression of logistic function 

in (6.24) and (6.25) and use a new variable to represent the exponential function for Δa’ 

and Δb’, two univariate quadratic equations are obtained and therefore easy to solve. For 

simplicity of the chapter, the final expressions are not given here.  

Once Δa’ and Δb’ are solved, the rectangular collision area in Figure 6-3 for a 

specific confidence threshold δ is obtained and thus it can be in cooperated with the existing 

motion planning method like RRT*. However for mathematical constrained optimization 

based planning method like MPC, an algebraic model is better for the purpose of real-time 

implementation. Therefore, we bring the idea from [93] and [116] that using the fourth 

order hyper ellipse to describe the collision area between ACV and IOV i: 
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Figure 6-4: Algebraic collision area for ACV and IOV i described by a conservative 

fourth order hyper ellipse with ca=1.189 
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Where ca is a coefficient that can adjust the conservatism of the forth order hyper 

ellipse. With a determined rectangular (Δa’ and Δb’ for length and width and rotational 

angle θ), the circumscribed fourth order hyper ellipse with minimum area is related to 

ca=1.189, which ensures a conservative collision area that includes the original collision 

area as a subset, as shown in Figure 6-4.  

6.4 Multiple Vehicle Grouping Framework 

In last chapter, we proposed a probabilistic framework to track groups of IOVs. 

From the probabilistic grouping results, the probability to avoid a collision with a certain 

OVG i can be described by the joint probability of collision avoidance with all the IOVs in 

the OVG i. Specifically, with a confidence value 1-δ, 0<δ<1, of ACV to avoid collision 

avoidance with OVG i at time k, the constraint is given by: 
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According to the Boole’s inequality, (6.27) can be conservatively converted to: 
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Where NIG,i is the number of the IOVs in OVG i. We can see by following (6.28), 

evaluating the constraint for ACV to avoid a collision with OVG i could give rise to 

computational burden, when NIG,i takes a large number, which might deteriorate the 

performance of real-time motion planning method like MPC or RRT* that requires high 

frequency for the update of the solution plan. To overcome this issue, here we consider the 
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OVGs as an individual vehicle with extended shape. The idea also comes from our previous 

work [93] [116]. The extended shape XA,G_i(xG_i) can be obtained from the union of the 

geometric shape of all the IOVs in the group. An example for rectangle shape description 

is shown in Figure 6-5. In this case, to avoid the collision with OVG i will be transformed 

to avoiding the collision with an extended IOV. Therefore (6.28) becomes: 

  _, _iA A G G iP x x  X                                (6.29) 

With Gaussian uncertainty assumption, (6.4)/(6.16) can be used to evaluate (6.29) 

with the integral intervals defined by: 
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where  

 

Figure 6-5: Illustration of the extended geometric shape for the OVG i 
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From (6.30) and (6.31), the extended geomantic shape of OVG i object covers more 

area than the union of the IOVs in the group, it will sacrifice some feasible region. But it 

helps to exclude some local minimum and reduce the time to evaluate the collision 

constraint for the planning problem, which we will demonstrate via simulation in the next 

session. 

According to (6.28), we can see the IOVs that are closer to the ACV in the OVG i 

will have more influences on the accumulative collision probability. In addition, 

accounting for the uncertainties on the position state of ACV, the combined covariance 

matrix _,A G i  between ACV and OVG i can be selected from the set of the combined 

covariance matrix 
,_, G iA O I  between ACV and IOVs in OVG i, based on the Euclidean 

distance:  

, ,min
_ _, , MD G iA G i A O j                                           (6.32) 

where jMDmin,G,i is the index for the IOV in OVG i with minimum Euclidean distance to the 

ACV: 
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Therefore, by determining the size, estimated position and its covariance matrix for 

the extended geomantic shape of OVG i. (6.29) can be evaluated and transformed into a 

tightened deterministic constraint as we proposed in Section 5.3. 

6.5 Simulation and Results 

To illustrate the performance of the proposed constraint tightening method, it’s 

incorporated with the MPC based motion planning framework proposed in [31] for static 

and dynamic obstacle avoidance scenarios with state observation uncertainties.   

6.5.1 MPC Problem Formulation 

As uncertainties are considered, the motion planning problem to be solved over the 

prediction horizon [0, Hp] results in a stochastic MPC problem, regarding a predictive 

trajectory guidance problem that following one maneuver (tracking one suit of reference 

lane and speed as stated in Chapter 2) is formulated by: 
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 subject to :       , ,A Ax f x u w , x X , u U , w W                             (6.35) 

,0(0) AAx x                                                     (6.36) 

Ay Ax                                                     (6.37) 

  1Pr , 0Ac x u                                             (6.38) 

 2 , 0Ac x u                                                 (6.39) 
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Here, the cost function minimizes the expectation of state tracking error and control efforts. 

x covers all the state variables of the ACV particle motion model which includes the positon 

states given by (6.3), the whole model can be found in [31]. X represents the state-space 

for x. x0 denotes the current/initial state (measured and estimated). The estimation of the 

system outputs, namely the speed vt and lateral position ye of the ACV are grouped in vector 

y to check their reference r. P, Pt and R are the weighting matrices for the cost of the on-

going and terminal tracking error, and the cost of control efforts, respectively. In (3.17), U 

denotes the admissible set for input u, which includes the input to ACV motion model and 

selection variables. W is the state space for noise/disturbance w. All the probabilistic 

collision avoidance constraint for single IOVs (6.2) or OVGs (6.29) are included in the 

probabilistic constraint to satisfy a belief coefficient δ, denoted by (3.20). These constraints 

will be tightened into deterministic constrain by the method we proposed in the previous 

sections for tractable solutions. Other deterministic inequality constraint like control limits 

are included in (3.21). As for a predictive maneuver planning problem, the MPC 

formulation will follow the definition given in (3.16)~(3.21).  

The MPC problem above is solved by ACADO Toolkit with an active-set method-

based solver. To efficiently find the solution of MPC, the warm-start strategy is widely 

used that applying the solution of the MPC problem at last step as the initial guess for the 

current step. However, for a nonconvex problem, the warm start strategy will easily guide 

the optimization into local minimum. For the motion planning problem with multiple IOVs, 

the collision fields for different IOV with position proximity can create a space with local 
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minimum when the object of ACV is moving forward. However, grouping the vehicles 

with closeness can help to exclude those local minimums. 

6.5.2 Uncertainty Propagation 

Given the nonlinear system model in (3.17), we adopt Unscented Kalman Filter 

(UKF) [85] to estimate the motion states of ACV in the presence of process and 

measurement uncertainty/noise. A regular KF can be used for state estimation of IOV for 

one maneuver (tracking a specific lane and speed). To account for other possible 

maneuvers of the OVs, the Interactive Multi-Model KF algorithm [80, 86] can be applied 

for OV state estimation. Here, we assume the filtering parameters are well captured from 

the driving data for the drivers of all OVs of all maneuvers. 

Given the current estimates of the ACV and OV states, one can predict the evolution 

of the mean and covariance of the states for the whole length of the prediction horizon of 

the MPC. Here, we propagate uncertainty in the predicted states (for both ACV and OV) 

using the filtering techniques (UKF/KF) based on  (3.17) with the notion of the most likely 

measurement. It is shown in [78] that the most likely measurement will not introduce bias 

in the system, thus it is useful to constrain the uncertainty propagation. Finally, note that 

the future inputs used in the motion prediction of the ACV will be taken from the previous 

planning results of the MPC.  

6.5.3 Simulation Results 

In the simulation, two different methods of handling the observation uncertainties 

are compared. In the first case labeled “W/O CT”, the expectation of the state will be 

considered as deterministic and constrain tightening will not be applied, therefore the 
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extended geometric area XA,O_i,k(xO_i,k) will be directly used to generate the algebraic model 

in (6.26) with ca=1.189, which is without constrain tightening. In the “W/ CT” cases, the 

stochastic MPC problem formulated by (3.16) and solved via the proposed constraint 

tightening in (6.26) with ca =1.189 is considered. 

5.5.3.1 Avoiding Single Static IOV 

In this case, the ACV (at speed of 30m/s) needs to avoid a collision with a static 

IOV located at the same lane in front. Three different values of confidence threshold limit 

(δ=1%, 10% and 30%) are used to compare the performance of different uncertainty 

handling methods. As uncertainties are involved, for each δ setting, the simulation for each 

method will repeat 100 times to obtain the trajectories of the collision probabilities 

evaluated by (6.4) during the collision avoidance process. Then the maximum collision 

probabilities (Max CP) for the 100 trajectories will be recorded to fit a normal distribution 

model and then estimate the 99.9% confident interval of the MCP distribution. The main 

parameters for the recorded Max CP is summarized in Table 6-1.  It should be noticed that, 

the different δ settings will not affect the distribution of the maximum collision probability 

Table 6-1: Main parameters for the recorded Max CPs for different constraint 

handling method with different δ settings, obtained from 100 example simulations for 

each case 

Max CP 

δ=1% δ=10% δ=30% 

Mean Max Mean Max Mean Max 

W/O CT 13.75% 70.2% 13.75% 70.2% 13.75% 70.2% 

W/ CT 0.017% 0.26% 0.603% 4.38% 3.204% 20.41% 
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for W/O CT case as no uncertainties are considered. Therefore, the same distribution of 

Max CP of W/O CT case is used to compare with “W/ CT” cases for different δ settings.  

Figure 6-6 shows the trajectory examples and the Max CP distribution for different 

constraint handling methods at δ=1%, 10% and 30%. With higher Max CP, the position 

trajectory will stay closer to the IOV. We can see that as the W/O CT case has the fixed 

Max CP distribution. The confidence threshold will always be violated when δ is set to be 

less than some certain value (like around 30% in this simulation case), where the safety 

cannot be ensured.  For the W/ CT cases, as the confidence threshold δ increases, the mean 

of the Max CP distribution rises and the 99.9% intervals extends. Also the position 

trajectories goes closer to the IOV. In the case W/ CT, the extension of the 99.9% interval 

is bounded and the confidence thresholds are always obeyed. This illustrate the 

conservatism of the collision area shown in Figure 6-4. The interval extension is mainly 

affected by the estimated characteristics of the uncertainties. Therefore, in the case with 

constraint handling, ca =1.189 can ensure safety in the trajectory planning with a specified 

confident threshold. 
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a) δ=1% 

 

b) δ=10% 

 

c) δ=30% 

Figure 6-6: Position trajectory examples (left) and the Max CP distribution (right, 

99.9% confident range for normal distribution) for ACV to avoid a static IOV under 

different constrain handling methods 
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5.5.3.2 Avoiding Multiple Static IOVs 

In this case, the ACV (at speed of 30m/s) needs to avoid three static IOVs with 

position proximity that create a local minimum for the MPC planner, as shown in Figure 

6-7. The performace of planner with and without applying vehicle grouping method 

introduced in Section 5.3 as well as with different constraint handling methods are 

compared under δ=1%. The mean Max CP of all the recorded 100 examples for each case 

are summerized in Table 6-2. 

Figure 6-7 shows the postion trajectory examples for the MPC planner without 

vehicle grouping method. We can see all the cases fail in overtaking the three IOVs due to 

the non-convex state space generated by the combination of the collison fields for each 

 

 

Figure 6-7: Position trajectory examples (top) and the Max CP probability distribution 

(bottom) for ACV to avoid multiple-IOV under different collision constraint settings 

without vehicle grouping (δ=1%) 
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IOV(see the area inside the purple dash and dot envelop with specified confidence 

threshold 0.01 or 1%). It can be undestood via looking at the predicted trajectories for 

W/CT case. Initially the plan was going straight until the final position goes in to the 

collision field of IOV2. However, there is no lower cost direction to force the MPC planner 

with warm start strategy to jump out of the local minimum. Therefore, the planned final 

position will always stays in the local minimum step by step, and the ACV will be guided 

to slow down by following a curved path to balance the minimzation of the longitudinal 

and lateral deceleration and finally to stop at the area of local minimum. Due to different 

Table 6-2: Mean of Max CPs for different constraint handling method in avoiding 

collision with multiple IOVs with δ=1%, obtained from 100 example simulations for 

each case 

Mean 

Max CP 

W/O Grouping W/ Grouping 

IOV1 IOV2 IOV3 IOV1 IOV2 IOV3 OVG 

W/O CT 24.04% 2.93% 1.48% 0% 0% 0.489% 0.623% 

W/ CT 1.5e-4% 0% 0.05% 0% 0% 4.4e-5% 5.3e-5% 

 

 

Figure 6-8: Position trajectory examples (top) and the Max CP probability distribution 

(bottom) for ACV to avoid multiple-IOVs under different collision constraint settings 

with vehicle grouping (δ=1%) 
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size of the collision field under differentconstraint handling methods, the resulted size of 

the area related to the local minima are different, which affects the shape of the planned 

trajectories. In the most conservative case of W/ CT, the planned trajectory is with the 

minimum curvature as the area for the loca minimum has the minimum size. This also 

means hardest brake is required in the deceleration for W/ CT comparing to W/O CT as its 

braking distance is the shorter. During the braking, only the Max CP with the IOVs for 

W/O CT case violate the confidence threshold, as shown in Figure 6-7 and Table 6-2.  

While in Figure 6-8, as the vehicle grouping method is applied, a conservative 

hyper elliptical gourp boundary for the OVG is genereated to include all the collison fileds 

of each IOV and therefore excluding the undesired local minimum. All the cases with 

different constraint handlling mehods are able to overtake the multiple static vehicles 

without hard brake.The trajectoris of different cosntraint handling methods in this case are 

similar as the case of avoding a single static IOV as the vehicle group is consder as an 

extended single IOV. This also leads to a lower Max CP for avoiding IOV3 than avoiding 

the OVG, as the OVG has larger collision area, as shown in Table 6-2 and Figure 6-8 (right). 

In addition, we can see the Max CP in this case is smaller than the single IOV case. This is 

due to the fact that, the inscribed rectangle with bigger size will lead to more conservatism 

for the subscribed hyper elliptical collision area as a fixed conservatism coefficient ca is 

used in (6.26). 

5.5.3.3 Interaction with Multiple Dynamic IOVs 

In this case, the ACV interacts with multiple IOVs with vehicle group changes due 

to lane change or speed change. As the performance of constraint tightening and vehicle 
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grouping on the motion planning of ACV have been illustrated in the previous collision 

avoidance cases, only the setting of W/ CT and W/ Grouping is use in this highway scenario. 

Here the MPC based motion planner proposed in [124]with ability of lane selection is used. 

A general scenario and the position trajectories for the ACV and IOVs is shown in Figure 

6-9, where we can see how the ACV overtake 8 slower IOVs with fixed and variable OVGs 

in the front. 

Initially, the ACV(at speed of 30m/s) makes a lane change to overtake the fixed 

OVG1 formed by IOV1 and IOV3(both at speed of 25m/s). Then it tries to make another 

lane change to the left adjacent one to overtake the original OVG3 formed by IOV4 and 

IOV5 (both at speed of 25m/s). But at t=30s, IOV5 changes lane to the left and OVG3 

vanishes. When IOV5 arrives at the new lane, it merges with the original OVG2 formed 

by IOV7 and IOV8 and then generates the new OVG2, this can be seen in the trajectories 

of the prediction horizon shown in Figure 6-10a. These OVG changes affects the motion 

 

Figure 6-9: Position trajectory example for ACV to avoid multiple-IOVs guided by a 

MPC motion planner with collision constraint tightening (δ=1%) and vehicle grouping 

in highway scenario. 
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plan of ACV that it decides to change back to the right lane to overtake the new OVG2. 

After that, since IOV6 slows down and then accelerate to fills the gap between the OVG2 

(formed by IOV5, IOV7 and IOV8) and IOV4, the OVG2 is extended to include IOV4 and 

IOV6 inside. Therefore, the ACV plan to change lane to the most right one to overtake the 

extended OVG2, as shown in Figure 6-10b. Finally, the ACV changes lane to the left to 

 

a) t=30.55s 

 

b) t=35.88s 

Figure 6-10: Examples of predicted trajectory for IOVs and planned trajectory for 

ACV with OVG boundary changes (δ=1%) in the predictive horizon 
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overtake IOV2 (at speed of 25m/s). From this scenario we can see how the OVG behaviors, 

including merge or vanish affects the motion planning of the ACV. During this process, 

the Max CP between ACV and the IOVs and OVGs are at very low values (close to zero) 

due to the conservative collision constraint tightening method applied.  

6.6 Conclusion and Future Work 

In this chapter we first develop a constraint tightening strategy that uses the logistic 

function and rotation approach to conservatively approximate the analytical solution for 

the fundamental dimension of the geometric collision area according to the specified 

confidence threshold and the uncertainty distribution. We then implement the proposed 

constraint tightening method to multi-vehicle grouping frame work and solve a stochastic 

MPC based motion planning problem for collision avoidance and traffic interaction. In the 

numerical experiment, we compare the approaches with and without using the constraint 

tightening method as well as vehicle grouping method. The statistic results shows that the 

specified confidence threshold for collision avoidance can be always satisfied when 

applying the proposed constraint tightening method. In addition, the vehicle grouping 

approach can help to exclude the undesired local minimum for the non-convex MPC based 

motion planning problem with a warm start strategy based numerical solver. Therefore, it 

can facilitate the motion planning of autonomous vehicle. In the future, we will work on 

finding a way to adjust the conservatism of the constraint tightening approach while also 

to ensure a safety. 
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CONCLUSIONS AND FUTURE WORK 

1. Conclusion 

The dissertation focus on predictive motion planning and control for autonomous 

driving with the consideration of 1) selection and planning of multiple maneuvers, 2) 

handling the stochastic uncertainties from state observation and 3) accommodating the 

dynamic environment with multiple object vehicles.  

To deal with the above considerations, firstly, a hybrid predictive trajectory 

guidance framework is proposed that models the maneuvers of ego vehicle (tracking a 

specific reference speed on a specific lane) with particle description under predictive 

control as a hybrid control system. The multiple maneuver options provide the autonomous 

vehicle with flexibility and robustness in accommodating the complex traffic scenarios 

with proper behaviors comparing to the case with only one maneuver options such like 

collision avoidance.  

Then the predictive reference speed assignment is combined with each optional 

reference lane in the configuration of the optimization of maneuver selection problem, thus 

realizing the predictive maneuver planning. Relaxation method is then applied to transform 

the mixed integer programming problem into nonlinear programming problem for real time 

application. Comparing with the hybrid predictive trajectory guidance framework, the 

predictive maneuver planning have better solutions in maneuver selection as the predictive 

motion of the surrounding traffic are considered and the switches among the optional 

maneuvers at each step of predictive horizon are optimized. However, this framework 

suffers from the local minimum do to the non-convex problem formulation. Therefore, a 
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forced maneuver selection (e.g. lane change) due to the reference speed adjustment is used 

to help the optimization problem jump out of the undesired local minimum. In addition, 

the obstacle filtering algorithm with vehicle grouping strategy is also used to effectively 

exclude the undesired local minimum via generating a more conservative collision field for 

the group of object vehicles with close proximity in positions.   

When stochastic uncertainties are induced, a probabilistic evolution model is 

applied to track the structure, state and boundary of the object vehicle group. The 

probabilistic collision/closeness criteria is derived between any two individual object 

vehicles with non-negligible geometric size and motion uncertainties based on their state 

estimation via Bayesian tracking. Based on the closeness evaluation, a density-based 

method is applied to group/cluster the IOVs without a prior guess about the number of 

groups. The Monte Carlo Simulation with large samples (1000~100000) is used to 

demonstrate the correctness of the derived integral expression in evaluating the 

probabilistic closeness. In addition, while computationally more efficient approaches of 

closeness evaluation that ignore geometric sizes exist, they could not resolve group 

attributes and are not applicable for road vehicles.  

Based on the probabilistic closeness/collision evaluation, a constraint tightening 

strategy is developed via deriving the approximated analytical solution for the fundamental 

dimension of the collision area with a specified confidence threshold and the estimated 

uncertainty distribution. The constraint tightening method is also extended to multi-vehicle 

grouping framework and implemented in solving the predictive maneuver planning 

problem with probabilistic collision avoidance constraint. The performance of the 
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constraint tightening strategy is demonstrated via statistic study based on the results of 100 

Monte Carlo simulation samples, which shows that the specified confidence threshold can 

be always satisfied. Also, the vehicle group behaviors like merge and split clearly indicates 

the driving intention change of the object vehicles and therefore affects the maneuver plan 

of the autonomous vehicle. 

2. Future work 

In the future, the following problems need further exploration: 

 The feasibility issue of the predictive maneuver planning with observation 

uncertainties. As the proposed predictive maneuver planning and control 

framework is based on the formulation of an MPC problem with various 

constraints. The successful implementation of the work is highly depends on 

the feasible solution found by the solver. However, in reality, due to the 

complexity of the dynamic environment (e.g. unexpected object vehicle 

maneuvers) and the uncertain condition of the sensing device (sensing 

range/view limitations, delays, faults and clutter), the feasible solutions might 

not be always found. Therefore, a feasibility study and perhaps some reactive 

approached to avoid an inevitable collision condition are still open for research. 

 The accurate and efficient motion/interaction prediction of the detected object 

vehicles and vehicle groups. As the predictive maneuver/motion planning 

method require the future information of the surrounding traffic environment, 

the accurate, efficient prediction of the intention, motion of the other traffic 

participants are very important. Furthermore, the maneuver of ego vehicle will 
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have influence on the other object vehicles (ego vehicles or human driven 

vehicles), thus the interaction between them needs to be considered and 

predicted to improve the performance of the maneuver/motion planning 

framework. 

  Conservatism of the constraint tightening approach. While with applying the 

constraint tightening approach, the specified confidence threshold is satisfied, 

the distribution of the collision probability are too conservative comparing to 

the confidence threshold, especially when the size of the geometric shape of the 

object vehicle is large(e.g. a vehicle group case). Therefore, a safe way to tune 

the conservatism of the constraint tightening approach is open for research. 

 



167 

APPENDIX 

Sufficient Condition for Non-Overlapping of Two Ellipses with Parallel Axles 

Use the parametric equation to describe the position of the ellipse defined in 

equation (4.3), (4.4), we obtain: 

1 1 1 1

1 1 1 1

cos

sin

E

E

x x a

y y b





 


 
                                            (A.1) 

22

2 2 2

2 2

2

cos

sin

E

E

x x a

y y b





 


 
                                           (A.2) 

Considering the externally tangential condition of the two ellipses defined in 

equation (A.1),(A.2), as shown in Figure A-1,  the position of the intersection between the 

two ellipses at the comment tangent should satisfied: 
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 Assume ellipse 1 is fixed, combining equation (A.1)-(A.2), the algebraic equation 

for the center of ellipse 2 that externally tangential to the ellipse 1 can be derived by: 

 

Figure A-1: External tangency of the two ellipses 
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which is bounded by  
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Thus the sufficient condition for the split of ellipse 2 from ellipse 1 can be defined 

by:  
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Similarly, if ellipse 2 is fixed, the sufficient condition for the split of ellipse 1 from 

ellipse 2 can be defined by: 
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Therefore, simultaneously satisfying equation (A.6) and (A.7) guarantees the non-

overlap of the two ellipses with parallel axles. 
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