312 research outputs found

    Deploying ontologies in software design

    Get PDF
    In this thesis we will be concerned with the relation between ontologies and software design. Ontologies are studied in the artificial intelligence community as a means to explicitly represent standardised domain knowledge in order to enable knowledge shar¬ ing and reuse. We deploy ontologies in software design with emphasis on a traditional software engineering theme: error detection. In particular, we identify a type of error that is often difficult to detect: conceptual errors. These are related to the description of the domain whom which the system will operate. They require subjective knowledge about correct forms of domain description to detect them. Ontologies provide these forms of domain description and we are interested in applying them and verify their correctness(chapter 1). After presenting an in depth analysis of the field of ontologies and software testing as conceived and implemented by the software engineering and artificial intelligence communities(chapter 2), we discuss an approach which enabled us to deploy ontologies in the early phases of software development (i.e., specifications) in order to detect conceptual errors (chapter 3). This is based on the provision of ontological axioms which are used to verify conformance of specification constructs to the underpinning ontology. To facilitate the integration of ontology with applications that adopt it we developed an architecture and built tools to implement this form of conceptual error check(chapter 4). We apply and evaluate the architecture in a variety of contexts to identify potential uses (chapter 5). An implication of this method for de¬ ploying ontologies to reason about the correctness of applications is to raise our trust in the given ontologies. However, when the ontologies themselves are erroneous we might fail to reveal pernicious discrepancies. To cope with this problem we extended the architecture to a multi-layer form(chapter 4) which gives us the ability to check the ontologies themselves for correctness. We apply this multi-layer architecture to cap¬ ture errors found in a complex ontologies lattice(chapter 6). We further elaborate on the weaknesses in ontology evaluation methods and employ a technique stemming from software engineering, that of experience management, to facilitate ontology testing and deployment(chapter 7). The work presented in this thesis aims to improve practice in ontology use and identify areas to which ontologies could be of benefits other than the advocated ones of knowledge sharing and reuse(chapter 8)

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    An overview of expert systems.

    Get PDF

    Automation of IC package design using PEX /

    Get PDF

    Knowledge based approach to process engineering design

    Get PDF

    The development of an expert system shell with a mixed knowledge representation, explicit control of reasoning and a truth maintenance system

    Get PDF
    Bibliography: pages 227-236.This thesis concentrates on several important issues in expert system research, namely - representation of knowledge - control of reasoning - implementation of non-monotonic logics via truth maintenance systems. There are three parts to this thesis. PART1 covers the background research in the above mentioned topics. PART2 discusses the WISE system and the way in which research from PART1 was applied to the development of the WISE shell. PART3 considers the features of other expert system shells

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF

    Kiel Declarative Programming Days 2013

    Get PDF
    This report contains the papers presented at the Kiel Declarative Programming Days 2013, held in Kiel (Germany) during September 11-13, 2013. The Kiel Declarative Programming Days 2013 unified the following events: * 20th International Conference on Applications of Declarative Programming and Knowledge Management (INAP 2013) * 22nd International Workshop on Functional and (Constraint) Logic Programming (WFLP 2013) * 27th Workshop on Logic Programming (WLP 2013) All these events are centered around declarative programming, an advanced paradigm for the modeling and solving of complex problems. These specification and implementation methods attracted increasing attention over the last decades, e.g., in the domains of databases and natural language processing, for modeling and processing combinatorial problems, and for high-level programming of complex, in particular, knowledge-based systems

    On the role of Computational Logic in Data Science: representing, learning, reasoning, and explaining knowledge

    Get PDF
    In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions
    corecore