
Open Research Online
The Open University’s repository of research publications
and other research outputs

Multiple Viewpoints for Tutoring Systems.
Thesis
How to cite:

Moyse, Roderick (1991). Multiple Viewpoints for Tutoring Systems. PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 1990 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

UN l^0J5T^lcrr^-h
(bX9H-2gO

Multiple Viewpoints for Tutoring
Systems.

Roderick Moyse
BA., MSe.

Submitted for the degree of

Doctor of Philosophy in Cognitive Science.

Research conducted in the Centre for Information Technology in Education,

The Institute of Educational Technology, The Open University, U.K.

November 1990.

© Roderick Moyse 1990.

f \\ j]^\\or notAheX * M "702.^ / f 4 -
q^-Sub/ooùsStoA - Z MiO

: I ? l ù 1 I

ProQ uest Number: 27758697

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27758697

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

Multiple Viewpoints for Tutoring Systems.

Abstract.

This thesis investigates the issue of how a tutoring system, intelligent or otherwise, may be
designed to utilise multiple viewpoints on the domain being tutored, and what benefits may
accrue from this. The issue was relevant to earlier systems, such as WHY (Stevens et al.
1979) and STEAMER (Hollan et al. 1984).

The relevant literature is reviewed, and criteria which must be met by our implementation of
viewpoints are established. Viewpoints are conceptualised as pre-defined structures which
can be represented in a tutoring system with the potential to increase its effectiveness and
adaptability. A formalism is proposed where inferences are drawn from a model by a range
of operators. The application of this combination to problems and goals is to be described
heuristically. This formulation is then related to the educational philosophy of Cognitive
Apprenticeship. The formalism is tested and refined in a protocol analysis study which
leads to the definition of three classes of operators.

The viewpoint structure is used to produce a detailed formulation of the domain of Prolog
debugging for novices, with the goal that students should learn how different bugs may be
localised using different viewpoints. Three models of execution are defined, based on
those described by Bundy et al. (1985). These are mapped onto a restricted catalogue of
bugs by specifying a number of conventions which produce a simplified and consistent
domain suited to the needs of novices.

VIPER, a tutoring system which can itself accomplish and explain the relevant domain
tasks, is described. VIPER is based on a meta-interpreter which produces detailed
execution histories which are then analysed. An evaluation of VIPER is reported, with
generally favourable results.

VIPER is discussed in relation to the research goals, the usefulness of Cognitive
Apprenticeship in supporting such a design, and possible future work. This discussion
exemplifies the use of established student modeling techniques, the implementation of other
viewpoints on Prolog, and the application of the design strategy to other domains. Claims
are made in relation to the formulation of viewpoints, the architecture of VIPER, and the
relevance of Cognitive Apprenticeship to the use of multiple viewpoints.

This work is dedicated to my
mother. Mite, and to the memory

of my father, Edwin.

Acknowledgements

First thanks must go to my supervisors, Dr. Mark Elsom-Cook and Dr. Diana
Laurillard for their tireless help, criticism, and encouragement, and for their
determination to turn a rough idea into a thesis. The prompt reading and return of draft
chapters was particularly appreciated.

Thanks to Tim O'Shea for keeping an eye on things, and for the coaching on
grantsmanship. Working in the Centre for Information Technology in Education has
been a lot of fun and I would like to thank all the members of the group for making the
three years so enjoyable. Those who waded through drafts for me must get a special
mention: Pat Fung, Ann Blandford, and Fiona Spensley.

My research has benefited from discussions with many people at the Open University,
and I would like to thank in particular, Claire O’Malley, Mike Brayshaw, Rick Evertz,
Mike Baker and Tony Hasemer for taking the time to talk things through. Special
thanks to Mike Brayshaw for always being there when I got stuck with my Prolog,
which was often enough.

The wolf was kept from the door by those who helped me with consultancies and
research work: Diana Laurillard, John Naughton, and Mark Elsom-Cook. In
particular, thanks to John for his generosity and support, to Diana for insisting that I
was worth more than was on offer, and to Mark for introducing me to so many other
researchers in the field. The experience gained in this work was invaluable, and
contributed much to my thesis. In relation to this I must also thank Olwyn Wilson,
who always found a way to sort things out and who helped me raise the money to get
to Tokyo, and all the secretarial and support staff in LET.

Many floors were slept on. A big thankyou to Claire O'Malley, Mark, Ches Lincoln
and Roshni Devi for generosity beyond the call of duty.

As well as work there was music. A big hand to the guys in Virtual People for getting
it on: John Gigg, Mark Elsom-Cook, and Dave Wakeley. Also a big hand to Mike
Lowndes for help with booking the rehearsal rooms and gear.

A fair part of the later work was done in Edinburgh. Many thanks to everyone there for
their interest, deskspace and cooperation. In particular, thanks to Paul Bma, Helen
Pain and Alan Bundy for thrashing out the idea, and to Peter Ross for saying that he
would buy it. Big thanks to Judy for printout, to Jean Bunton and Millie Tupman who
saved me from taking my machine home every night, and to Karen for oiling the
wheels.

Acknowledgements

Many others, here and abroad, have had an influence on my work. I would like to
thank Allan Collins, Gordon McCalla, Joost Breuker, Radboud Winkels, Pierre
Dillenbourg, Benedict du Boulay, Jim Greer, Peter Goodyear, John Self and Rachel
Rimmershaw for their interest and encouragement. Special thanks to Peter for the
invitation to Calgary and for bracing walks.

Most of all, thanks to Karen for making it all worthwhile.

This research was supported by a postgraduate award from the Science and
Engineering Research Council of the United Kingdom.

u

Table of Contents.
Contents... i

Table of Figures....................................... vil

Table of Tables...viii

Publications.. ix

Chapter 1. Introduction to the Thesis ;.. 1

1.1 Viewpoint Structures and Related Issues.. 1

1.2 Designing the System and Formulating the Domain: the influence of the Viewpoints............9

1.3 The Domain Formulations and the Dialogues they Support..14

1.4 Design Considerations and Claims for VIPER............... 21

1.5 Conclusions... 25

1.6 The structure of the thesis ... 26

Chapter 2. Viewpoints in tutoring systems: uses, structures, and domains................... 29

2.1 Viewpoints in ITS design: the problem.................................. 29

2.1.1 Different viewpoints required for the same activity... 30

2.1.2 Different Viewpoints for different activities..34

2.1.3 Different viewpoints from novice to expert.................. 35

2.1.4 Glass boxes and black boxes... 36

2.1.5 Exploring the student's viewpoint 38

2.1.6 Viewpoints and design philosophies..39

2.1.7 Conclusions: defining the problem..44

2.2 Mental Models.. 47

2.2.1 Studies of mental models............................ 48

2.2.2 The application of models... 51

2.2.3 Conclusions... 54

2.3 Prolog Tutoring and Tracing.................................. 54

2.3.1 Prolog novices have problems.. 55

2.3.2 A technique for interpreting a record of Prolog execution... 57

2.3.3 Conclusions: Prolog as an implementation domain................ 58

2.4 Debugging: studies and tutoring....................................... 58

2.4.1 Describing Bugs.. 59

2.4.2 Debugging Systems.. 60

2.4.3 Conclusions: Prolog debugging as an implementation domain............................. 62

2.5 Explanation Content and Knowledge Base Structure... 63

2.5.1 Structuring the Knowledge Base... 63

2.5.2 Interpreting the Knowledge Base.. 66

2.5.3 Conclusions.. 69

2.6 Educational Philosophy.. 70

2.6.1 Ways o f learning..70

2.6.2 Applying Knowledge............................ 76

2.7 Conclusions to Chapter 2...77

Contents.

Chapter 3. A Formulation for Viewpoints.. . 80

3.1 Considerations for the formulation... 80

3.2 The goals of the formulation ... 86

3.3 The Formulation..88

3.3.1 The structure for implementing viewpoints............................. 88

3.3.2 The viewpoint structure and "cognitive apprenticeship"..93

3.3.3 The viewpoint structure and alternative possible structures.. 96

3.4 Extending and testing the proposed viewpoint structure ... 98

3.5 Conclusions to Chapter 3.. 99

Chapter 4. Testing the Formulation: A Protocol Analysis...100

4.1 Introduction..................... 100

4.1.1 Goals of the study..100

4.1.2 Outline of the study method... 101

4.2 Details of the study method...102

4.2.1 Models and Instructions..................................... 102

4.2.2 Training Systems... 106

4.2.3 The Simulation Screen... 107

4.2.4 The Simulation Algorithms... 107

4.2.5 The Subjects...109

4.2.6 Expected results and purpose of the study..109

4.3 The Protocol Analysis.. 110

4.3.1 The differential analysis... 110

4.3.2 Segmentation and Validation.. I l l

4.3.3 Protocol Analysis Results.. 112

4.4 Discussion of the Protocol Analysis Results..................... 113

4.4.1 Introduction...113

4.4.2 The Steam valve Control... 114

4.4.3 The Damping Control........................... 116

4.4.4 The Pumpspeed Control................... 118

4.4.5 Errors in the reasoning.. 119

4.4.6 Responses to extreme system states................ 119

4.4.7 Problems involving the simulated system..121

4.5 Conclusions to Chapter 4 ...122

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis..................... 124

5.1 Introduction: The Goals of the Formalisation.. 124

5.2 Formalising the reasoning of the subjects..126

5.2.1 A Formalisation of the models...126

5.2.2 General remarks concerning the formalisation.. 128

5.2.3 Formalising the reasoning of the 'functional model' group.......................................129

5.2.4 Formalising the reasoning of the 'structural model' group.. 131

5.2.5 Conclusions: formalising the reasoning of the two groups.......................................134

5.3 Classes of operators required to formalise the reasoning... 134

ii

Contents.

5.3.1 Introduction... 134

5.3.2 Operator type one: the 'access' operator................................ 135

5.3.3 Operator type two: the 'inference' operator... 135

5.3.4 Operator Type Three..136

5.4 Conclusions to Chapter 5.. 137

Chapter 6. The Implementation Domain and Tutoring Goals.................. 138

6.1 Introduction... 138

6.2 Prolog for novices..142

6.2.1 Introduction.. 142

6.2.2 Background to the models of Prolog execution 143

6.2.3 Prolog Model 1: The Database of Clauses...145

6.2.4 Prolog Model 2: The Search Space.. 146

6.2.5 Prolog Model 3: The Search Strategy..148

6.2.6 Prolog Model 4: The Resolution Process ... 151

6.2.7 The models combined as an interpreter..152

6.2.8 Conclusions to section 6 .2 ...153

6.3 Describing Bugs..154

6.3.1 Classifying Bugs: a simplified environment...154

6.3.2 The Bug Trees and their application...159

6.3.3 Conclusions to section 6.3... 163

6.4 Formulating abstract descriptions of the effect of each bug..163

6.4.1 Introduction...163

6.4.2 Bug effects on Program execution..164

6.4.3 Developing description templates for each bug execution pattern............................ 171

Introduction.. 171

Conventions governing the mapping of models onto bugs.................. 171

Classifying bugs in terms of the models...176

Questions which may be asked of the student............................... 178

Building templates to describe bugged execution .. 180

Template substitution..184

6.4.4 Conclusions to section 6.4.............................. 185

6.5 Re-formulating the Models of Prolog for tutorial dialogues.. 186

6.5.1 The dialogues required.. 186

6.5.2 'Procedural' versions of the Prolog models..188

6.6 Conclusions to Chapter 6...190

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.......................................193

7.1 Introduction... 193

7.2 The Meta-interpreter..197

7.2.1 The meta-interpreter: top level... 197

7.2.2 Implementing the Resolution model.. 199

7.2.3 Implementing the Search Strategy model..200

7.2.4 Implementing the Search Space model..205

ill

Contents.

7.3 Recording and analysing the execution history... 206

7.3.1 Asserting the execution history facts..206

7.3.2 Analysing the execution history facts...207

7.3.3 Data available after execution history analysis. ..209

7.4 The tutorial dialogues...210

7.4.1 Introduction..210

7.4.2 Using the procedural versions of the Prolog models... 210

Dialogue 1: describing execution.. 211

Dialogue 2: Identifying the bugged clause..220

Dialogue 3: Describing the bug's effect on execution................... 226

7.5 Conclusions to Chapter 7.. 231

Chapter 8. Evaluating VIPER.. 233

8.1 Introduction... 233

8.2 Method and Materials..235

8.2.1 A tutorial with VIPER..235

8.2.2 Printed Materials.................... 237

8.2.3 The Questionnaire... 238

8.3 Results... 239

8.3.1 Responses to Questionnaire section 1, experience of Prolog................................... 239

8.3.2 Responses to Questionnaire section 2, the Interface..240

8.3.3 Responses to Questionnaire section 3, the Viewpoint Representations..................244

8.3.4 Responses to Questionnaire section 4, VIPER overall..249

8.3.5 Responses to Questionnaire section 5, the Viewpoints.. 254

8.4 Discussion... 255

8.4.1 Discussion of responses to Questionnaire Section 1...255

8.4.2 Discussion of responses to Questionnaire Section 2...256

8.4.3 Discussion of responses to Questionnaire Section 3...258

8.4.4 Discussion of responses to Questionnaire Section 4 ...260

8.4.5 Discussion of responses to Questionnaire Section 5...264

8.5 Conclusions to Chapter 8.. 264

Chapter 9. A Discussion of VIPER....................... 266

Introduction..266

9.1 The viewpoint formalisation..266

9.2 Design goals of VIPER.. 269

9.3 VIPER'S design................. 271

9.3.1 VIPER and Debugging...271

9.3.2 Black boxes and Glass boxes..276

9.3.3 Successful and unsuccessful aspects of VIPER's dialogues.......................................277

9.3.4 System architecture..278

9.4 Cognitive Apprenticeship.. 279

9.5 VIPER and other domains.. 281

9.5.1 Introduction..281

iv

Contents.

9.5.2 Another viewpoint on Prolog.. 282

The viewpoints which utilise the process history....................................... 282

The production of the process history...284

9.5.3 A different domain..284

The viewpoints which utilise the process history 285

The production of the process history... 287

9.5.4 A domain that cannot be implemented using VIPER's strategies............................292

9.6 Future Work..292

9.6.1 Introduction 292

9.6.2 Domain Models and Domain..293

9.6.3 System Architecture................................... 296

Diagnosis... 296

9.6.4 Dialogue 1: Execution Description... 298

Diagnosis.................................... 299

9.6.5 Dialogue 2: Identifying the bugged clause.. 301

Diagnosis... 302

9.6.6 Dialogue 3: Describing the bug's effects...302

Diagnosis............................ 303

9.7 Conclusions to Chapter 9.. 306

Chapter 10. Conclusions.. 310

10.1 Research Goals..310

10.1.1 The viewpoint formalism...310

10.1.2 The system architecture............... 312

10.1.3 Cognitive Apprenticeship.. 313

10.2 Pedagogical goals served by the use of multiple viewpoints 314

10.2.1 Adaptation to the goals of the student......... 314

10.2.2 Explanation in terms of different viewpoints...315

10.2.3 Sub-dividing the domain.. 315

10.2.4 The elimination of misconceptions... 315

10.3 Summary of Claims... 317

References...318

Appendix 1. An example execution history from VIPER.. ...I

Appendix 2. The documents used for VIPER's evaluation..II

Appendix 2.1: VIPER evaluation briefing document.. II

Appendix 2.2: Models used in VIPER's evaluation for the description of a subset of Prolog
Execution.. IV

Appendix 2.3: The menu options relating to each model... V

Appendix 2.4: The queries and program databases used in Dialogue 1...VI

Appendix 2.5 The possible bugs associated with each viewpoint...VII

Appendix 3. The queries and code used for Dialogues 2 and 3 of the evaluation......................................VIE

Resolution Viewpoint...V d

Search Strategy Viewpoint..IX

V

Contents.

Search Space Viewpoint...X

Appendix 4. The Evaluation Questionnaire..XI

VI

Table of Figures.

Figure 1: An Outline Structure for Viewpoints.. 89

Figure 2: The simulation screen in starting state..103

Figure 3. The number of encodings of the specified category in the first twenty minutes of each
session for each pair of subjects. Grey columns represent the pairs given a structural model.
Patterned columns represent the pairs given a functional model.................. 113

Figure 4. An overall view of the work described in chapter 4 ...141

Figure 5. The Bug Tree for the symptom 'Unexpected instantiation of a variable'. (Symptom from
Bma et al. 1987).................... 158

Figure 6. A summary of the relationships of Symptom, Bug, Module, Models of execution, and
Templates 161

Figure 7. The 'Bug Tree' for the symptom 'A variable instantiated to an unexpected value'.
(Symptom from Bma et al. 1987)...... 162

Figure 8. The description template derivation tree for the symptom 'A variable instantiated to an
unexpected value' combined with a specific bug, bug manifestation and question. (Symptom from
Brna et al. 1987)... 180

Figure 9. The structure of VIPER... 195

Figure 10. A partial call graph for the meta-interpreter: 'order_res_tmth' checks a goal against
successive database clauses...198

Figure 11. An example of the explanations used in Dialogue 1... 212

Figure 12. The explanation of figure 11 applied to the current execution... 213

Figure 13. The procedural Search Space model with its associated symbols, explanation templates
and menu versions of model parts..217

Figure 14. The screen for describing code execution...219

Figure 15. The screen for describing code execution showing the Resolution model menu 'popped-
up' to take student input... 219

Figure 16. The screen for identifying the bugged clause...221

Figure 17. The screen for describing the bugged execution...228

vu

Table of Tables.

Table 1. Possible legal goal outcomes at a given point in the traces of both Ideal and Bugged code
for the bug 'Missing Clause' and the symptom 'A variable instantiated to an unexpected value',
using models of section 4.2 and database conditions of section 4.3. (Symptom from Bma et al.
1987)... 168

Table 2. Possible legal goal outcomes at a given point in the traces of both Ideal and Bugged code
for all bugs of section 4.3. and the symptom 'A variable instantiated to an unexpected value', using
the models of section 4.2 and database conditions of section 4.3. (Symptom from Bma et al.
1987).. 169

Table 3. Each row in the table gives a recognised Code Error, the model associated with it, and the
relevant comment on the Search Space. (Code Errors derived from Bma et al. 1987)............................178

Table 4. Altemative slot entries for Functor, Arity, Argument, and Search Strategy slots of
templates to describe execution of bugged clause and relevant goal. Rows are not meaningful.......... 183

Table 5. Complete template to describe the execution and analysis of version 1 of the bug 'Extra
Clause' when the relevant clause has no subgoals. 'Version 1' implies that the traces of both
bugged and ideal databases show a successful resolution at the same point.. 184

Table 6. The symbol, mle and explanation template combination for the execution event where
the functors of a goal and clause unify.. 214

Table 7. The proceduralised models abbreviated to a set of menu choices, with their associated
system symbols.................................... ...215

Table 7 Continued.. 216

Table 8. Options available on the 'Questions' menu... 224

Table 9. The input options available for each button of the 'Bugged Execution' dialogue......................229

Table 10. Examples of possible execution history segments for a proposed 'Heavy Rainfall' tutor... .288

Table 10 Continued... 289

vm

Publications.

Parts of the work described in thesis have been published as follows:

1. The contents of chapter 3, (the protocol analysis study), with the exception of the

operator formalisations, was published as :

Moyse R. (1991). "Multiple Viewpoints Imply Knowledge Negotiation" in
Interactive Learning International, vol. 7 part 1. (January '91).

2. An outline of the domain formulations and implementation described in chapters 4 and 5

was published as:

Moyse R. (1990). "Implementing Knowledge Negotiation". Proceedings of the
International Conference on Advanced Research on Computers in Education.
Tokyo, Japan, July 18 - 20th. 1990. North-Holland.

3. An early summary of the viewpoint formulation of chapter 2 and the protocol analysis

study of chapter 3 was published as:

Moyse R. (1989c). "Knowledge Negotiation Implies Multiple Viewpoints", in
Artificial Intelligence and Education: Proceedings of 4th. International Conference
on AI and Education. Amsterdam, May 1989. .lOS, Amsterdam.

4. An overview of VIPER's design and evaluation is now in press as:

Moyse R. (in Press). "Design Strategies for Knowledge Negotiation: The VIPER
system", in Moyse R. and Elsom-Cook M.T. (Eds.) Knowledge Negotiation. Paul
Chapman, London.

5. A short paper summarising the contents of chapters 1 and 2 was published as:

Moyse R. (1989b). "Multiple Viewpoints for Intelligent Tutoring Systems",
Interactive Learning International, vol. 5, no. 2. April 1989.

IX

Chapter 1. Introduction to the Thesis.

1.1 Viewpoint Structures and Related Issues.

The literature of Intelligent Tutoring Systems (ITS) contains many references to the virtues

of using multiple representations of the domain knowledge, the purpose being to express

different viewpoints upon that domain. A standard example is the WHY system described

by Stevens, Collins and Goldin (1979). They concluded that to tutor the causes of heavy

rainfall properly it was necessary to represent 'functional' knowledge of particular

processes, such as condensation, as well as 'scriptal' knowledge ie. knowledge about the

sequence of conditions which leads to the downpour. Other examples include QUEST

(White and Frederiksen 1986) which highlighted the differences between experts' and

novices' views of electrical circuits, and the research conducted for STEAMER (Hollan,

Hutchins, and Weitzman 1984) which showed that the way experts think about a particular

machine does not necessarily depend on its physical components but on their intended

actions. This thesis examines these and other examples and identifies a range of issues as

being involved in the use of multiple viewpoints for tutoring systems.

The issues identified are:

• The need to use multiple viewpoints to correctly carry out a single activity;

• The need to use multiple viewpoints to carry out different activities;

• The need to employ different viewpoints at different points along a learning path;

• The possibly contrasting needs for system efficiency in task execution, and for

clarity in explanations given to the student;

• The desire to promote reflection and meta-cognition in the student;

• The desire to explore the student's own viewpoint;

• The need to formulate an adaptive and constructive philosophy of tutoring system

design, which does not rely on a "transmission" theory of education (ie. a theory

where knowledge is viewed as something that has to be simply moved from system

to student).

1

Chapter 1: Introduction to the Thesis

These issues, especially the last issue listed above, indicate that the use of multiple

viewpoints is of profound and general importance in the design of tutoring systems. This

thesis develops a design methodology related to their use and indicates that the issues

should be considered as central to every stage of system design. The importance of the

issues can be briefly illustrated by reference to the work of Self (1988a, 1988b) who

argues that reliance on a single representation of the tutored domain has led to an

inappropriate 'trinity' model of system design; (the student model, the domain

representation, and the tutoring component). If this model leads designers to assume that

the system has, in a Platonic sense, the 'one true' representation of the domain then they

may also assume that the student may be adequately represented as a 'subset' of the expert,

or domain representation. This can easily lead to an authoritarian style of tutoring with an

implicit 'transmission' theory of education being applied.

In this context Self advocates the use of belief systems to represent domains and the

various viewpoints upon them. To this end Self (1990) has furnished us with a wide-

ranging review of systems which attempt to model the holding and revision of sets of

beliefs. Unfortunately this review indicates that the construction and processing of belief

systems is an area beset by fundamental technical difficulties. This being so the issues

surrounding their use in tutoring systems must be equally unclear. The direction taken in

this thesis is to re-define the problem, and to investigate what can be achieved with pre

defined viewpoints. What is thus required is a methodology for structuring viewpoints and

for designing systems which utilise them, which takes account of all the relevant issues.

Specifically this means that the domain representations of the system being designed must

be formulated in terms of the viewpoints that we wish to use and the way we wish to use

them, and that the tutoring interactions that the system is designed to support must be

oriented to the availability of multiple viewpoints on the domain.

The design methodology described in this thesis relates these factors and specifies the

particular kinds of adaptation to the student that can be achieved by the use of pre-defined

2

Chapter 1: Introduction to the Thesis

viewpoints. The first step is to develop a single structure which can be used to represent

various viewpoints on various domains. Once this has been done an example domain is

chosen and an example system is implemented to investigate the kinds of adaptability that

can be achieved. The results indicate that if the viewpoints are carefully chosen tutoring

may be adapted to a student’s goals, to their previous experience of the chosen and other

domains, and to any misconceptions that they may be harbouring. Also, since the

structure for formulating viewpoints emphasises the use or application of the knowledge

being learned, tutoring may be conducted in terms of this meta-knowledge. The paths of

influence in the design process are thus circular or iterative: the viewpoints chosen for

implementation in the system will depend on the kinds of goal, experience and

misconception that are envisaged as being present in the target student population and on

the kind of tutoring that the designer wishes the system to carry out. At the same time, the

kinds of tutoring dialogue and adaptation that are possible will depend on the specific

viewpoints that can be represented and on the interactions that they will support. To the

extent that viewpoints are chosen and structured the design method attributes a structure to

the domain. To the extent that the tutoring interaction is adapted to the viewpoints that the

domain affords the design method exploits the structures that are inherent in the domain.

These two possible influences must be reconciled to produce an effective system.

The viewpoints referred to in this thesis are more than just altemative representations. This

may be shown by representing the same information (eg. the novice’s view of an electrical

circuit) in two different formalisms. The information content would be the same in each

case although the representations of that information would be different. What then, does

"viewpoint" mean? We shall try to answer this firstly by exploring a specific example and

then by proposing a general structure for describing viewpoints.

The example is from Minsky (1981) who points out that for hard problems one "problem

space" (ie. an initial state, a goal state, and a set of operators) is not usually enough.

Troubleshooting the electrical system of a car for example, may require that we use either

Chapter 1: Introduction to the Thesis

an electrical or a mechanical viewpoint. Each has its own set of labels for the same set of

objects (eg. the car body as earth connection) and its own set of diagnostic questions.

While electrical faults generally require mechanical manipulation in order to rectify them,

the isolation of the fault may well require that both modes of analysis be used separately.

This implies that there is some other form of knowledge involved, a 'control knowledge'

which allows decisions to be made about when and how each mode of analysis is to be

used.

The viewpoints described in the previous paragraph may be characterised in two ways.

Firstly, they are complementary modes of analysis both of which may be required in a

particular context. Secondly, they refer to the same set of objects but identify and structure

them in quite different ways. The value of this seems to be that each view brings out

particular features of the domain in question.

With these points in mind the concept of a "viewpoint" is proposed as a theoretical

construct which is useful in ITS design. It is not proposed as a psychological reality.

Viewpoints are initially conceptualised as being similar to the "...user's conceptual

model..." described by Young (1983). While acknowledging a diversity of definitions for

such models. Young sought to summarise a general agreement about their nature by

describing them as:

"...a more or less definite representation or metaphor that a user adopts to guide his actions and

help him interpret the device's behaviour."

In order to describe viewpoints these models need to be augmented with a range of

operators which can be used to infer different information from the model, or else

transform it. This need can be illustrated by considering a model which describes some

parts of a car alternator system and their relationships. (This example is explored in detail

in chapter 2). Where the model describes a rotor, pulley wheels, wires and drive-belts and

their correct relationships it could be used to answer the two distinct questions a) "does the

Chapter 1 : Introduction to the Thesis

system have a drive-belt?", and b) "Is this particular drive-belt in the correct condition?".

Each answer is obtained by performing a different operation on the model.

These inferential operators are seen as vital to the proper definition of a viewpoint for

implementation. One reason for this lies in the belief that in order to tutor and explain a

domain effectively a tutoring system must itself be able to perform the tutored tasks in the

given domain. It must thus be able to draw the required inferences from a given model and

so must be equipped with suitable means of doing so. Also, as the Minsky example above

indicates, we need some 'control knowledge' to decide when a particular model is

applicable to a particular problem. Moyse (1989) suggests that this may be achieved by

equipping each viewpoint with heuristics which describe the kinds of problems to which it

may be applied. As mental models have to be applied to problems, and as we wish to

describe this process, a viewpoint is seen as a description of the application of a mental

model.

The structure for viewpoints was developed with the intention that it should be used as a

basis for formalising viewpoints which could then be implemented as the domain

representations of an ITS. Before starting the implementation, it was thought wise to

actually test the structure's ability to formalise different viewpoints on a domain, and

develop it as necessary.

This testing and development required that some methodology be adopted. Since no text

book was available to specify an appropriate methodology, methods used elsewhere in

cognitive science were harnessed to a new purpose. The methods had been used to

investigate the application of mental models to specific systems but had not studied the

specific inference processes used with each model. Since these inference processes were

seen as a vital part of each viewpoint, a study was designed which enabled us to record the

decision-making process as verbal protocols. The protocols were then analysed to

determine which inference processes were used. The protocols were obtained by asking

Chapter 1: Introduction to the Thesis

groups of subjects to apply different models to the same simulated system with the same

specific goals, and recording the resulting dialogues.

The purpose of this exercise was twofold:

• to determine whether the intended structure for viewpoints was adequate. If the

models used by different groups and the inference procedures associated with each

model could be shown to be quite distinct, and if the intended structure for

viewpoints could be used to formalise both combinations of model-and-set-of-

inference-procedures, then it could be concluded that the intended structure was

sufficiently robust to serve as the basis of an implementation.

• to determine what kinds of operator would be required. The notion of an

'operator' is a very general one. The implementation of a system requires that

specific operations be defined. In order to fulfil our goals for the tutoring system

design we needed these operations to reflect, as far as possible, the reasoning used

by human users. It was assumed that the analysis and formalisation of reasoning

exhibited by human subjects could help to define classes of operator which satisfied

this need.

The study is described in Moyse (1991). It resulted in an extension and clarification of the

proposed structure for implementing viewpoints. Two groups of subjects were asked to

control a simulated power station, having been given different models of the simulation.

One group were told, broadly, that it was a "power generation system" and were given a

functional model of the system which simply linked specific actions to specific effects,

while the other group were told that it was a "nuclear power station", and were given a

structural model. (Young [1983] describes structural models as "suirogate" models which

allow a user to make inferences about a system's behaviour). The decision-making

conversations of each pair were recorded and transcribed as verbal protocols. These were

analysed to reveal what kinds of inference were involved with each model.

Chapter 1: Introduction to the Thesis

One purpose of the exercise was to show that the proposed structure for viewpoints was

useful and effective in modelling the different inference processes which might be involved

with the use of different mental models. Under these conditions, the structural model

appeared to entail a much greater use of real-world knowledge and causal reasoning. The

functional model tended to elicit rule-based, or condition-action based reasoning. These

processes were formalised in terms of the proposed structure for viewpoints. The fact that

the viewpoint structure was able to encode the quite distinct mental models and reasoning

processes of the two groups was taken as confirmation of its usefulness as a means of

formalising different viewpoints. The study also allowed us to develop descriptions of

three categories of operators which could be used to draw inferences from the models. The

use of heuristics to encode information detailing the use of each viewpoint was not tested in

this study. We do not wish to make strong claims as to the precise psychological

mechanism (eg. analogy, qualitative reasoning) involved in the manipulation of the models

described, but suggest that the notion of a viewpoint could encompass any or all of these

mechanisms.

Having verified the usefulness of the viewpoint structure it was necessary to choose an

example domain in which to implement a tutoring system. A very strong motivation at this

point was that a real domain should be chosen. By this we mean a domain where the

actual viewpoints used by practitioners or students in that domain could be formalised and

used and some attempt made to deal with the real problems and misconceptions that they

faced. There were several reasons for this motivation. The first and most general was a

belief that the appropriate way for tutoring systems technology to advance was for it to

engage with real rather than 'toy' domains, and their related problems. The second reason

related to the intended evaluation of the implemented system. If a fictional domain, or an

excessively arcane one were to be chosen, then serious problems could arise in finding a

sufficiently large user population to conduct some form of evaluation. A third reason was

the simple wish that the work done should at least have the chance of being of some

practical use when it was completed. It was felt that the issues involved were of

7

Chapter 1 : Introduction to the Thesis

considerable significance to system design, and to education generally, and that every

attempt should be made to demonstrate this to those who were not yet convinced.

These considerations meant that the domain used for the study described above (nuclear

reactor/power station) was not suitable. True, there is a pressing need for reliable and

effective training to be given to the operators of such systems in the real world, but the

nature of these systems and the complexity of the knowledge required to deal with them

meant that the accurate acquisition and representation of such a domain was a project which

exceeded the resources available for completion of the thesis. It was also foreseen that

there would be considerable problems in finding a suitable pool of practitioners who could

take part in an evaluation.

What was required was a 'real' domain of suitable size where the relevant viewpoints had

at least been identified, where a definite educational need had been established, and where a

sufficient number of users could be found to conduct an evaluation after the system had

been implemented. These needs were answered by the domain of Prolog, especially of

Prolog for novices. The language is frequently a mystery to those who are encountering it

for the first time, and sometimes even to those who are more experienced in its use.

Attempts to alleviate this situation have included the description of a series of models

(Bundy et al. 1985) which may be taught to novices so as to give them a more structured

initial understanding of the language. We assumed that viewpoints based on these models

could be developed. As the structure used to define viewpoints emphasises the use of the

knowledge involved, we wished to define a domain where the different viewpoints could

actually be applied, and where such application could be practised and critiqued as a part of

the tutoring process. Models of execution are clearly necessary in the task of debugging.

If students have problems understanding how Prolog works, then they will have even

greater problems in debugging code. These considerations led to the choice of Prolog

debugging for novices as the experimental application domain. The goal was to build a

Chapter 1 : Introduction to the Thesis

system which could tutor the skill of using different viewpoints to localise bugs in Prolog

code.

1.2 Designing the System and Formulating the Domain: the

influence of the Viewpoints.

The first step in the design of the system which could tutor the use different viewpoints to

localise bugs in Prolog code (VIPER: Viewpoint Based Instruction for Prolog Error

Recognition) was thus the definition of the necessary viewpoints on Prolog. Models were

required to act as the core of each viewpoint. An initial set of models was defined based on

those described in Bundy et al. (1985). Bundy et al. outline four complementary "user's

conceptual models" (Young 1983) of a Prolog interpreter which can be taught to novice

students to help them understand Prolog execution. These are the Program Database, the

Search Space, the Search Strategy, and the Resolution Process. In various combinations,

these four models can be used to comprehend the many different representations of Prolog

execution such as Byrd Boxes, Arrow Diagrams, and And/Or Trees.

Three of the four models from Bundy et al. were re-defined and changed somewhat,

formalised, and implemented (incidentally in Prolog code). The fourth model was not used

because the bugs it could localise were mainly concerned with syntax errors. It was

assumed that syntax errors would be caught by the host environment. The remaining three

models were changed to suit the goals of the design and the needs of the domain

formulation.

When the three models are combined via a control structure, they constitute an interpreter

which exhibits a subset of Prolog behaviour, and which can be used to produce an

execution history in the required terms. This 'history' can then be interpreted. This ability

to 'watch' a 're-play' of the interpreter's execution allows the tutoring system to describe

that execution in terms of the three models outlined above. The purpose of this is to tutor a

set of viewpoints on (a subset of) Prolog execution which novice programmers may use to

9

Chapter 1 : Introduction to the Thesis

localise bugs in their code. These initial models are intended to be the first in an upwardly-

compatible progression, and as such do not cater for backtracking or the use of the 'cut'.

These aspects of Prolog are not seen as crucial to our preliminary goals for the prototype

system, as we only intend to use problems which do not depend on backtracking for their

solution. Our intention is that more sophisticated execution models which describe

backtracking should be developed when the initial system design has been proven.

To be fully implemented as viewpoints, the models need to be associated with a set of

inference operators of the kind described in Moyse (1989, 1991) and an indication of each

viewpoint's area of application. The models presented to the student are cast in the form of

a set of procedural 'if-then' rules to facilitate their use in the description of execution. The

'if part specifies when a particular rule should be applied, and the 'then' part specifies

what execution step should occur.

The structure of the resulting viewpoints was central to VIPER's design. In terms of the

design method outlined above the viewpoints were chosen or "attributed" to the domain of

Prolog debugging, as they facilitated the tutoring of novices, and gave an account of Prolog

execution which was 'complete' in the sense that novices could use them to perform all the

tasks with which they would be presented in the tutoring interaction. The viewpoints

"exploited" structures present in the domain of Prolog debugging in the sense that they

used such concepts as "Search Space" and "Search Strategy" which are widely used by

Prolog practitioners, and which can be used (or frequently are used) to define sets of

possible bugs. The point of this attempt to 'exploit' the domain structure is that if the

system can perform the domain tasks in terms which are at least related to those used by

human practitioners then it should be able to tutor, demonstrate, and explain those tasks in

the same terms.

When combined with the requisite operators, the models constitute the viewpoints which

are the first part of the domain formulation of VIPER. VIPER performs tasks in the

10

Chapter 1 : Introduction to the Thesis

domain by using the inference operators to act on the models of Prolog execution. The

tutoring tactics and strategies adopted are based, in part, on the possibilities afforded by

these domain formulations. (It should also be remembered that the formulations were

chosen partly because of the tutoring strategies that they made possible). In the actual

implementation the heuristics which define the area of application for a viewpoint are not

explicitly implemented. Instead, the possible bugs are defined in such a way that a given

bug can only be related to a single viewpoint. (This is described in more detail in section

1.3). This means that the area of application of a given viewpoint (ie. its use to localise

specific categories of bug) is made obvious as it is one of the core structures or conventions

of the domain. The structure that was adopted for implementing viewpoints thus has a

direct influence on the way that the VIPER's domain is formulated.

It is the relationship between three specific viewpoints and the categories of bugs that they

can localise which forms the second part of the domain formulation. This describes a

simplified environment of bugs and 'ideal' solutions in terms drawn from Bma et al.

(1987). Bma et al. give a four-level classification for bugs where the descriptions are

related to programmer expectations. A simplified environment is necessary in order to

avoid the serious difficulties inherent in trying to build an intelligent 'debugger' and to

allow available resources to be used in investigating the tutoring aspects of the problem;

(ie. the goal is to tutor about debugging without trying to build a full-blown debugger).

The space of possible bugs is thus divided into three sets, each of which relates to a

particular viewpoint in such a way that operators can be defined which allow the relevant

viewpoint in VIPER to identify the bug. The mapping from viewpoints onto bugs is thus

strongly influenced partly by the need to exploit a particular stmcture which is used to

formalise viewpoints, and partly by the need to simplify an intractable domain.

The use of viewpoints formalised in the way described influenced other parts of VIPER's

architecture. The first of these is the use of an execution history. In order to determine the

nature and effect of a specific bug VIPER compares the execution of the bugged code with

11

Chapter 1 : Introduction to the Thesis

that of an ideal version of the code. VIPER needs to know the results of the two

executions to determine firstly whether a bug is present and, if so, what its exact nature

may be. A history of each execution must thus be stored in order for VIPER to compare

them. The use of viewpoints and of a specific viewpoint structure influences the terms in

which this history is recorded. It is not sufficient to record the execution in terms of a

single viewpoint. Instead the history must contain all the information required for an

analysis in terms of any one of the three implemented viewpoints. The terms used to

record this execution history must be recognisable by the viewpoints and their operators.

This in turn implies that the interpreter which runs the code must be built so as to produce

the kind of execution history which is required. The point to be made here is that the

influence of particular viewpoints structured in a particular way extends to the very core of

the system design.

Another feature of the architecture influenced by the viewpoint formalisation and its

implementation in the specific domain chosen, was the nature of the dialogues that the

system would support. The viewpoint structure emphasises the application of the

knowledge involved. In this case this amounts to the localisation of a bug. In order for the

system to determine that the student has done this correctly, it must have positive evidence

that two conditions are satisfied. Firstly, there must be evidence that the student has

correctly identified the bug. However, correct answers here could be the result of guesses

or random choice so a second condition must be satisfied: there must be evidence that the

student correctly understands the effects on execution implied by the chosen bug. The

investigation of each condition requires a separate dialogue. The point to be made is that

the choice of a viewpoint structure which emphasises the application of the knowledge

involved has implications for the kinds of tutorial dialogue that are deemed to be relevant

and necessary.

The emphasis on this aspect of the viewpoint structure has one other influence that should

be mentioned. It influences the kinds of extension to the system and further work that are

12

Chapter 1: Introduction to the Thesis

envisaged for VIPER. Where the area of application for a viewpoint is made explicit and is

available to the system a range of adaptations to the student become possible. For example

a statement of the student's goals could be matched to a statement of what problems given

viewpoints can be applied to and a suitable viewpoint chosen for tutoring. Alternatively,

where a student is manifestly applying the wrong viewpoint to deal with a problem, (eg. a

mechanical rather than an electrical view of a motor ignition problem), the missing

'viewpoint application' or 'meta-knowledge' could be taught directly.

This section attempts to describe a number of ways in which the structuring and

implementation of viewpoints is intimately bound up with the central issues of tutoring

system design. The structure of models, operators, and heuristics which is adopted to

formalise and implement viewpoints is intended to be general, and applicable to many

domains. The particular domain formulation that results from applying the structure to

Prolog debugging for novices, and the specific tutorial dialogues and system structures that

are required to exploit it, are specific to the chosen domain. The strategy of using models

and an execution history which are analysed or interrogated by operators is seen as being

applicable to many procedural domains. The precise content of this history will in each

case depend on the nature of the viewpoints implemented, as will the detailed structure of

the system which generates the history. The use of heuristics to describe each viewpoint's

area of application is intended to be something which could be achieved in every suitable

domain and would thus enable similar forms of adaptation to the user in each of those

domains.

13

Chapter 1: Introduction to the Thesis

1.3 The Domain Formulations and the Dialogues they

Support.

This section describes the formulated domain, and the dialogues supported by it in more

detail.

The operational goals of VIPER are that the student should be presented with standard

novice-level programs which contain a single bug. The student's task is to learn how to

localise the bugs. The system, if it is to tutor effectively, must also be able to locate the

bugs. This does not mean that VIPER constitutes an intelligent debugger. Such systems

have to deal with arbitrary code structures and multiple solutions to a single problem.

VIPER utilises an ideal solution to each problem set to the student and compares the

execution history of this solution with the execution history of the bugged code in order to

locate the bug. Our intention is not so much that the system should be able to find the bug,

but that it should promote the skill of searching for it in terms of the procedural execution

models. The use of an ideal version of the code allows us to concentrate on this

pedagogical goal with the system setting the agenda and determining which specific bugs

may be dealt with in a given tutoring episode.

VIPER deals with a restricted category of bugs which are described in terms defined by

Bma et al. (1987). This allows us to systematically describe the bugs that the system can

handle and thus the classes of problems that may be incorporated as tutoring materials. The

allowed bugs are described in terms of missing, extra, or wrong 'modules'. Depending on

the level of description 'modules' may be such things as whole predicates, subgoals, or

arguments. Bugs may be concerned with termination or with variable instantiation issues.

Bugs concerned with variable instantiation may give rise to a) the unexpected failure to

instantiate a variable; b) the unexpected instantiation of a variable; c) a variable instantiated

to an unexpected value.

14

Chapter 1 : Introduction to the Thesis

The missing, extra, or wrong modules which may give rise to this behaviour may be listed.

The search strategy of Prolog requires that we also add to the list the possibility of wrong

order for clauses and subgoals. If our list of modules is complete then all possible

(individual) bugs may be described in this way in relation to the ideal template code.

Although this classification is 'syntactic' in that it does not include any of the procedural

semantics of the programmer, it has the advantages of being simple, regular, and complete,

while defining a finite number of bug types. The catalogue of bugs is related to the models

of execution by a set of conventions which determine what is, for instance a 'Resolution'

bug, and what is a 'Search Strategy' bug. This 'mapping' from models to bugs allows us

to state that certain bugs can be localised by using certain viewpoints.

Using Bma et al.'s (1987) classification we may define 'trees' of possible bugs for each of

the three kinds of variable symptom. The 'instantiation to an unexpected value' bug for

instance implies that a goal containing variables succeeds in both the ideal and bugged

code. Thus only bugs capable of yielding this result need to be considered. These 'trees'

can also be used to specify the range of possible bugs which may be included in the

problems set to the student if we stipulate that only a single bug may be present in each

problem. For reasons of tractability and clarity, we also stipulate that the bugged code may

only have one difference from the ideal code, that of the bug chosen.

The pedagogical goal of the system is that the student should develop the ability to describe

Prolog execution in terms of the execution models so as to localise possible bugs. VIPER

facilitates the first part of this leaming by asking the student to use the models to describe

the execution of a given query and set of clauses. Where necessary VIPER can

demonstrate this skill. The student's description is checked against an execution trace

which contains much more information than a normal trace would do. Each goal has to be

shown being matched against all clauses in the program database, not just against those

which share the same functor. If a given resolution fails then the precise reasons for this

must be reported so that the different types of failure can be made clear.

15

Chapter 1 : Introduction to the Thesis

To this end VIPER's meta-interpreter records each step of the execution as a series of

asserted facts. These facts are labeled according to whether they relate to the ideal or

bugged code, and are numbered in the order of their assertion. They contain symbols

specifying the interpreter action which gave rise to the fact along with the current goal and

clause whose resolution was being attempted. This method is an adaptation of that used by

Eisenstadt (1985) to facilitate a form of tracing and debugging known as 'retrospective

zooming'.

In order to determine the effect of a particular bug in a given set of clauses both the ideal

and the bugged code are run with the same initial query. The two outcomes and the two

execution histories are then analysed to see firstly where (or if) they differ, and secondly

which of the allowed bugs could account for any differences found. The analysis of

differences is carried out by sets of operators designed to identify the specific conditions

which result from the bugs of the relevant tree (see above). Each operator can explain the

diagnosed bug to the student by means of a template which can be instantiated to produce

descriptions of the effect of the current bug in terms of VIPER's viewpoints.

If the correct operator succeeds the system will have available, for a given initial query, the

ideal and the bugged outcome, a statement of what constitutes the bug, and execution

histories for both ideal and bugged code. These may be used as the basis for a range of

tutorial activities.

The pedagogical goal of the system and the architecture described above suggest three

essential tasks for the student. The first is to be able to describe or predict the bugged

execution in terms of the models of execution. The second is to identify where the bugged

execution diverges from what would be expected for a correct solution to the problem and

thus to identify which clause contains the bug. The third is to identify the bug and describe

its effects. These three tasks form the basis of three dialogues that VIPER uses to effect its

tutoring.

16

Chapter 1: Introduction to the Thesis

For the first task the student is asked to describe each step of the bugged execution in terms

of the appropriate models. (We use 'models' rather than 'viewpoints' here, as the

description of execution is not carried out to achieve any particular purpose in the domain,

such as the localisation of bugs. This means that the full 'viewpoint' apparatus which

includes heuristics determining the applicability of different models to a problem is not

required. The execution description exercise is carried out to check and rehearse a student's

knowledge of the models before they are used to actually locate and describe bugs in the

second and third dialogues). The student does this by making a series of menu selections

each of which identifies a part of an execution model. The student's answers are checked

against the system's execution history and, if necessary, can be corrected. The action

symbol, goal, and clause contained in each line of the execution history allow the

generation of correct answers and explanation.

Each of the interpreter action symbols is associated with a particular part of a model and

with a corresponding menu choice. For a given execution step the correct answer (ie.

menu option) is determined by looking up the menu choice that should correspond to the

action symbol in that history step. Explanation is provided by expanding an asserted fact

in the execution history into a more accessible account which is phrased in terms of the

models of execution. Partial explanations, relating to a specific model or combination are

generated by expanding only those trace facts which contain execution symbols relevant to

the specified models.

The student's responses could be monitored for evidence of known misconceptions. This

possibility introduces the need for some form of student model. A simple student model

has been implemented for this execution-description task which records the number of

correct, potentially correct, and wrong answers for each part of each execution model.

This is not seen as contributing to the research interest of the system.

17

Chapter 1 : Introduction to the Thesis

The second task for the student involves identifying where the bugged execution diverges

from what would be expected for the ideal solution to the problem, and thus deciding

which clause contains the bug. In the case of a variable being returned with the wrong

value, this question breaks down into two others relating to separate events. If the bug

causes the resolution which would give the correct value to fail, a second resolution has to

succeed allowing the wrong value to be returned. The two questions are thus: a) where

does the correct value fail to get instantiated? and b) where does the wrong value get

instantiated? In each tutorial the system must make clear which question is being asked, as

different descriptions and explanations are associated with each one. (Where the bug

causes the 'wrong' resolution to succeed before the correct value could be instantiated, the

two events described above are in fact the same single event and only one question may be

posed).

The students are shown the bugged code and are asked to indicate which clause contains

the bug. They are told that the correct answer is provided by an 'ideal' code solution

(which they cannot see), and that only a single difference is allowed between this 'ideal'

solution and the visible bugged code. (The need for these simplifications is discussed in

chapter 6). This single difference must, of course, constitute the bug. In order to check

an hypothesis about this bug the students may ask questions about the 'ideal' code via a

'Questions' menu. The same menu allows them to propose a candidate bug or to request a

full explanation of the bug and its effect. This menu is also available in the third dialogue.

For the third task the student is asked to describe the effect of the bug and then to choose

the relevant bug from a list of candidates. The student's description can then be checked

against a keyword template assembled by the relevant bug-finding operator. Variables in

this template are instantiated to the appropriate clause and goal, and the description is given

in terms of the relevant models. These descriptions are given coherence by a set of explicit

conventions which govern the mapping of the models onto VIPER’s simplified bug

catalogue. Where necessary, an explanation of the current bug and its effect can be

18

Chapter 1: Introduction to the Thesis

provided via the 'Questions' menu described above. This explanation is provided by

operators which detail the inferences that can be made with each model in order to localise

bugs.

The more detailed descriptions given in this section are intended to illuminate the points

made in section 1.2. The importance of the viewpoint operators can be shown by briefly

considering each of the dialogues described above.

In the first, 'execution description' dialogue, the student merely has to select the

appropriate part of each model to apply in order to describe each step. VIPER performs

this task by retrieving the symbol from the relevant execution history fact, and then

retrieving the stored value (model part) associated with that symbol. This action illustrates

the use of the first class of operators defined, those which simply retrieve a specific explicit

piece of information from a model or execution history. Simple as it is, this operator

allows VIPER to check the student's prediction for an execution step; to provide the correct

answer if this is required, or else an explanation in terms of the bound values at the relevant

point in the execution; to demonstrate the skill of describing execution, (when the operator

is used repeatedly to describe a sequence of steps); and to describe the execution in terms of

a single or of multiple viewpoints.

The second dialogue asks the student to identify the bugged clause and invites them to

check their hypotheses about the difference between the ideal and bugged code by

requesting information through the 'Questions' menu. This information is provided by

other examples of the 'access' operator which simply retrieve stored values such as the

functor of clause n , the number of clauses in the ideal code, or the name of the bug

detected by VIPER.

Where the student requests an explanation the second form of operator is brought into play.

This operator relates two explicit statements via an inference procedure and thus makes

explicit information which is otherwise only implicit

19

Chapter 1 : Introduction to the Thesis

An abstract example would be: (A -> B, B -> C) > (A > C). There may be as many

instances of this operator as there are inference procedures, and the inference procedure

need not be logically correct. The operator seeks to define the bug by identifying a

characteristic in the bugged code which is associated with the success or failure of a

particular attempted resolution, and stating that this implies that the wrong result is obtained

(first statement). The fact that the wrong result is obtained implies that the identified

characteristic is different in the ideal code (second statement). Thus the presence of the

bugged code characteristic coupled with the result of the specific resolution attempt implies

that the characteristic is different in the 'ideal' code (conclusion). Operators of this kind

are defined for each bug in such a way that only the correct one can succeed given the

restrictions imposed on the domain. VIPER thus identifies the bug in terms of an inference

procedure which is defined in response to observations of human reasoning, and which

attempts, however inadequately, to have some relationship to that reasoning. The

inferences made in the use of this operator are used to provide the explanation of the bug.

Both forms of operator discussed here are thus central to the design and execution of the

system's dialogues. The simulation study described in section 1.1 identified a third form

of operator which added information to, or deleted information from, the models, so that

different inferences could be made, or different information retrieved. VIPER was not

developed to the point where this operator could be implemented although certain uses for it

were envisaged, such as transforming the Search Strategy model to represent a more

advanced description of Prolog's behaviour, or perturbing a model to represent a student's

misconception.

While the precise value of these operators is a matter for further debate, it is clear that the

functionality that they provide could be generalised to other domains where viewpoints

were implemented in similar ways, and where the strategy of generating an execution

history was also adopted.

20

Chapter 1 : Introduction to the Thesis

As has been stated above, the heuristics which state a viewpoint’s area of application are

not implemented explicitly in VIPER, but are implicit in the structuring of the domain. As a

result of this, we cannot show VIPER explicitly adapting to individual students in the light

of these heuristics, in the manner outlined above. The system was not, in fact, equipped

with the complex student models which such adaptation would require, although a

discussion of "further work" indicates how these models could be implemented using well-

researched techniques. What can be shown, in the evaluation of the system, is that

individual students would choose to work with a specific viewpoint in order to satisfy

specific goals, such as improving their appreciation of the kinds of bug that can be trapped

using the "Search Strategy" viewpoint. This is taken to imply that although the heuristics

linking specific viewpoints with specific areas of application were not formalised explicitly

for VIPER, the notion of linking viewpoints to goals and problems in this way is at least

very useful in exploiting the adaptive potential provided by the use of multiple viewpoints

on a domain. We see no reason why this kind of adaptivity should be limited to the

domain explored by VIPER.

1.4 Design Considerations and Claims for VIPER.

The educational philosophy which has guided the design of VIPER's tutorial dialogues is

that of Cognitive Apprenticeship (Brown et al. 1989, Brown 1989). This philosophy

indicates that the purpose for which the knowledge being learned is to be used should be

borne in mind at all stages of a tutoring system's design. It indicates that the exercises and

practice which a system requires of a student should be as 'authentic', or as close to those

of real practitioners, as possible. VIPER uses the tutorial tactics of Cognitive

Apprenticeship: modeling of the target skill, the provision of a 'scaffolding' of threadbare

concepts, an emphasis on different possible problem decompositions, and extended general

practice.

21

Chapter 1 : Introduction to the Thesis

On the basis of VIPER's implementation and evaluation we would wish to make several

claims whose validity we believe we have demonstrated. The first of these is that the

viewpoint formalism of models and operators allows the implementation of pre-defined

viewpoints in such a way that the resultant systems can perform the relevant tasks in the

domain. A second claim is that the strategy of using a meta-interpreter or simulation to

produce a history of some process which is sufficiently detailed and structured to support

tutoring in terms of multiple viewpoints on the relevant domain, is a robust and flexible

method of implementing systems which can tutor in terms of the multiple pre-defined

viewpoints. The use of this method requires that the representational requirements of the

different viewpoints, and of the tutoring mechanisms which are to exploit them, should be

considered at all stages of the design process.

Some weaker claims can also be made. These depend on further work being done to

augment VIPER but we have demonstrated that these augmentations are quite feasible and

only require the use of techniques which are established in the literature. Firstly the basic

VIPER system could be augmented to carry out diagnosis in relation to inadequacies and

misconceptions in the student's knowledge. This could be achieved in relation to each

viewpoint by using unsophisticated student modeling techniques. Another weak claim is

that VIPER's domain could be extended to include other pre-defined viewpoints on Prolog

which could be implemented in the manner outlined above. This would not require any

changes to the basic architecture of VIPER, and would use the same meta-interpreter and

execution history.

A third weak claim is that, since any different viewpoints that were implemented would be

suited to different goals and experience, an augmented VIPER could adapt its tutoring to

these factors (assuming it had some representation of them) by choosing an appropriate

viewpoint. For example if we wished to introduce the student to the models of Prolog that

are implemented in VIPER, it would seem pedagogically wise to begin with the model

which is closest to something that the student already knows: ie. the tutoring is related to

22

Chapter 1: Introduction to the Thesis

their previous experience. The system could simply ask for information about this. Where

the student has some knowledge of theorem proving for example, we may begin with the

Search Space model which, as defined in chapter 6, has many similarities to traditional

theorem proving. The complexities of the Search Strategy and Resolution models could

then be approached later. Even where the student was familiar with all of the models the

bugs and exercises chosen for tutoring could initially focus on search space issues.

Novices frequently wish to concentrate on particular aspects of the language, as our

evaluation shows. They may, for example, wish to improve their understanding of

resolution in Prolog. The goal may be satisfied by choosing problems and exercises which

stress the use of the Resolution viewpoint. It is assumed that such adaptation increases the

student’s engagement with the system, and makes the tutoring more meaningful to them.

This desire to adapt to the goals of students means that the system design process must take

account of the possible uses of the knowledge to be tutored from the earliest stages.

This kind of adaptation to the misconceptions, goals or experience of the students can be

characterised as tutoring 'with' the viewpoints; ie. particular tutorial strategies are realised

through the use of different viewpoints. We can also describe a process of tutoring 'about'

the viewpoints. The goal of such tutoring is that the student should appreciate that a given

viewpoint is suited to the solution of particular classes of problems, and that it stands in a

specific relationship to other viewpoints. If we again consider the electrical and mechanical

views of a car ignition system, it is clear that they can both solve different classes of

problems. They are however closely related, and there may be many situations which

require their use in combination. Alternatively we may say that if the possible causes of a

fault implied by one view are excluded, then one of the causes implied by the other view

must apply. This implies that the student must learn to think both 'with' and 'about'

viewpoints and must, at least initially, engage in some meta-cognitive activities to consider

whether they are applying the appropriate view to a particular problem.

23

Chapter 1: Introduction to the Thesis

The chosen structure for viewpoints can be related to these considerations. The use of an

explicit model which is interrogated by sets of operators allows the system to tutor 'with' a

given viewpoint; ie. the system tutors, and can perform the tutored task, in terms of that

viewpoint. This, in conjunction with the use of an execution history, allows the system to

employ such tutorial tactics as demonstration, critiquing, and explaining. With further

work, we claim that the system could also model student errors.

The inclusion of a set of heuristics in the viewpoint structure which detail its area of

application allows the system to tutor 'about' the viewpoints in terms of their area of

application and their relationship to other viewpoints. Such tutoring could be intended to

remedy misconceptions in the student's knowledge of a viewpoint's applicability, or to

promote some meta-cognitive appreciation of how the viewpoint is to be applied. These

heuristics can be related to possible goals that a student may have, so that the system can

adapt the viewpoint it uses for tutoring to those goals, where knowledge of those goals is

available.

The adaptation of the tutoring to a student's previous experience is not dependent on any

specific part of the structure described, but is a general form of adaptation implied by the

use of multiple viewpoints. The system would require some specific knowledge relating its

available viewpoints to other areas of study or other viewpoints. A specific viewpoint

would be selected as being appropriate to the tutoring of a given student in the light of this

knowledge.

Another weak claim of the thesis is that other, quite different, domains which require the

use of multiple viewpoints can be implemented using the viewpoint formalism and system

architecture described above. A detailed example of how this could be achieved is given in

chapter 9 (the discussion chapter of the thesis) in relation to WHY (Stevens et al. 1979).

Essentially the method involves building a simulation of the domain to be tutored and using

this to produce an execution history for that domain. In this sense, VIPER's meta

24

Chapter 1: Introduction to the Thesis

interpreter is seen as a simulation of a subset of Prolog. For the new domain the execution

history must be sufficiently well-structured and sufficiently rich to support the range of

viewpoints that the tutoring demands. Each of these would be formulated in terms of the

model, operators and application heuristics described above.

1.5 Conclusions.

VIPER exemplifies a design methodology for formalising viewpoints and for implementing

systems that can tutor using multiples of such viewpoints. This methodology is best suited

to procedural domains, and requires that the potential uses of the knowledge, the intended

methods of tutoring, possible student goals and possible previous experience be taken into

account at all stages of the design process.

This chapter gives an overview of the thesis concentrating on the goals and motivations of

the author. It considers the importance of viewpoints in tutoring systems, a particular

method that has been chosen to pre-define them for implementation in a tutoring system,

and the development of this method. The role of viewpoints in the choice of an example

domain and in the design of VIPER are considered, along with more general reasons for

the ultimate choice of domain. The interplay between the adopted structure for viewpoints,

the structure of the chosen domain, and the design of the system is described. The domain

formulations and the dialogues that they support are given in outline. The educational

adaptations that the adopted structure for viewpoints makes possible are discussed, along

with the need to tutor both 'with' and 'about' the viewpoints. The claims made in the

thesis are summarised.

25

Chapter 1 : Introduction to the Thesis

1.6 The structure of the thesis.

We conclude this chapter with an outline of the ten chapters which constitute the thesis.

Chapter 1. Introduction to the Thesis.

This chapter gives an overview of the thesis concentrating on the goals and

motivations of the author. It considers the importance of viewpoints in tutoring

systems, a particular method that has been chosen to pre-define them for

implementation in a tutoring system, and the development of this method. The role

of viewpoints in the choice of an example domain and in the design of VIPER are

considered, along with more general reasons for the ultimate choice of domain. The

interplay between the adopted structure for viewpoints, the structure of the chosen

domain, and the design of the system is described. The domain formulations and the

dialogues that they support are given in outline. The educational adaptations that the

adopted structure for viewpoints makes possible are discussed, along with the need

to tutor both 'with' and 'about' the viewpoints. The claims made in the thesis are

summarised.

Chapter 2. Viewpoints in Tutoring Systems: Uses, Structures, and Domains.

This chapter consists of a literature review which introduces the relevant areas and

gives a first formulation of the problem, the research goals, and the intended

research direction.

Chapter 3. A Formulation for Viewpoints.

Chapter 3 considers the various factors involved, and produces an outline

specification of a formalism for implementing viewpoints. This is related to the

educational philosophy of Cognitive Apprenticeship.

26

Chapter 1 : Introduction to the Thesis

Chapter 4. Testing the Formulation: a Protocol Analysis.

This chapter describes a protocol analysis study that was undertaken to test and

refine the viewpoint formalism described in chapter 3. Protocols are obtained which

display quite distinct patterns of inference when different groups are asked to apply

different mental models to the same simulated system.

Chapter 5. Testing the Formulation: Formalising the results of the protocol analysis.

The single formalism for viewpoints which is described in chapter 2 is used to

formalise both of the patterns of inference identified in chapter 4. Parts of the

formalism are developed in greater detail.

Chapter 6. The Implementation Domain and Tutoring Goals.

Chapter 6 contains a detailed formulation of the implementation domain. First the

models of execution are developed, and then mapped onto a restricted catalogue of

bugs. This mapping is achieved by specifying a number of conventions which

produce a simplified and consistent debugging 'world' which is suited to the needs

of novices.

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

This describes the implementation of VIPER itself. The main structures described

are the meta-interpreter, the code which produces and analyses an execution history,

and the predicates which manage the three forms of dialogue that VIPER can

support. These dialogues are structured in terms of the main tasks in the domain.

Chapter 8. Evaluating VIPER.

This chapter describes an evaluation of VIPER by seven students with encouraging

results. The system was configured to give a standard tutorial where the student first

practised the application of the models to describe execution, and then practiced

27

Chapter 1 : Introduction to the Thesis

debugging in the simplified domain by choosing which viewpoint they wished to

work on.

Chapter 9. A Discussion of VIPER.

This is the main discussion chapter. The research goals are reviewed and an

assessment made of what has been achieved. The usefulness of Cognitive

Apprenticeship as an educational philosophy which supports the design of systems

using multiple viewpoints is also assessed. A range of future work and possible

system developments is described.

Chapter 10. Conclusions.

Where chapter 9 provides a detailed discussion and conclusions, this chapter

summarises the main claims that can be made on the basis of the work described in

the body of the thesis, and the justifications of those claims.

28

Chapter 2. Viewpoints in tutoring systems: uses,
structures, and domains.

"The multiple-viewpoint framework allows us to conceptualise the whole question of knowledge-

driven CAI in a new way, in terms of how knowledge should be partitioned among different

viewpoints" (Stevens, Collins and Goldin 1979. Quoted from the 1982 reprint p. 23).

The literature of Intelligent Tutoring Systems (ITS) contains many references to the virtues

of using multiple representations of the domain knowledge in order to express different

viewpoints upon that domain. This literature review examines relevant past work in the

field, and then notes some of the educational issues involved. Subsequent sections of the

chapter deal with mental models, Prolog tutoring and debugging for novices, and

explanation in relation to the use of multiple viewpoints. These are variously relevant to

studies and implementations described in later chapters. The final section of the review

describes a philosophy of education which supports the use of multiple viewpoints in

tutoring.

The problems on which the chapter focuses may be stated as follows: if ITSs need

viewpoints, how are we to conceptualise them, how might they be implemented in our

systems, what goals would this serve, and what implications might it have for our overall

design philosophy?

2.1 Viewpoints in ITS design: the problem.

The use of multiple viewpoints has been considered desirable for a number of reasons

which can be illustrated by reference to previous work in ITS. Four core issues are

discussed in parts 2.1.1 - 2.1.4 of this section, (2.1). These sub-sections refer to

previously-implemented systems to illustrate the influence that the issues relating to

multiple viewpoints have had on system design.

29

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

The core issues, listed by the number of the section dealing with them, are:

2.1.1 The need to use multiple viewpoints in order to correctly cany

out a single activity.

2.1.2 The need to use different viewpoints in order to cany out

different activities.

2.1.3 The need to employ different viewpoints at different points along a leaming

path.

2.1.4 The possibly contrasting needs for system efficiency in task

execution, and clarity in explanations given to the student.

A fifth issue, the desire to promote meta-cognition and reflection in the student, is dealt

with in parts 2.1.5 and 2.1.6 of section 2.1. These parts are also concerned with more

general issues affecting system design.

2.1.1 Different viewpoints required for the same activity.

The earliest and clearest explicit statement of the need for multiple viewpoints in tutoring

systems is found in the work of Stevens, Collins and Goldin (1979), when they discuss

the limitations of the WHY system. In order to tutor the causes of heavy coastal rainfall,

they implemented the domain representations of the system in the form of ’scriptal'

knowledge, which defined the sequence of conditions leading to a downpour and described

such entities as a warm airflow and warm water mass. This was found to be inadequate

however, as students’ accounts of the process after tutoring contained a number of bugs

representing the importation and incorrect use of concepts external to the intended domain.

An example is the 'sponge' bug, which explains heavy rainfall in terms of the moist air

mass being 'squeezed' against the coastal mountains. They concluded that it would also be

necessary to represent and tutor 'functional' knowledge of particular processes, such as

condensation, and of such generalised relationships as 'inverse processes' and 'feedback

systems'. They also make the point that these differing viewpoints would have to be

»

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

properly integrated and updated if other bugs were to be avoided. The argument here is

that if students are to acquire knowledge about this domain without bugs or

misconceptions, then different viewpoints on the domain will have to be tutored and

integrated.

Stevens and Collins (1980) discuss the issue of viewpoints, (here 'views', or 'points of

view’) in a more general context. They discuss viewpoints in terms of alternative 'models'

which can be applied to a given situation to form hypotheses and make predictions. They

conclude that specific strategies must be available to determine when to use a given model,

and also to determine how this model relates to the others that might be used. This is seen

as having major implications for education generally, and as necessitating a move away

from 'static' or 'surface' forms of knowledge representation such as that used for WHY

(Stevens, Collins and Goldin 1979).

A different combination of viewpoints is shown to be necessary by the work on the

successive versions of the SOPHIE system. This system was designed to train students in

the repair of electronic circuits by having them find the faults in a simulated circuit. In

SOPHIE I, (Brown and Burton 1975) the student may advance a hypothesis and ask for

feedback. This hypothesis is evaluated by comparing the current values it predicts with

those found in the simulations of a working and a faulted circuit. (A numerical model of

the circuit provides quantitative data about the various states within it). This data is

interpreted by "inference specialists" which embody the laws of electronics. This allows

hypothesis generation and testing, but not causal explanation. The designers hoped to

achieve such explanation by means of another module which contained qualitative

knowledge, such as which components are most likely to fail, how power amplifiers may

be stressed, and heuristics about how to combine this knowledge with the quantitative data.

Their ambitions were partly realised in SOPHIE II (Brown et al. 1976). Here, a

troubleshooting expert demonstrated how it solved a problem by qualitative reasoning. It

31

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

attempted to make its measurements causally meaningful, and to explain its strategy en

route to a solution. In summary, both qualitative and quantitative analyses of the same

electrical circuit were needed in order to provide a tutoring episode which contained both

hypothesis testing and causal explanation. This may be described as a need for

complementary modes of analysis, or, more loosely, as a need for different viewpoints.

For SOPHIE HI, (Brown et al. 1982), it was intended that yet more viewpoints should be

added, with the intention of providing active coaching in relation to the student’s

performance. The design called for an 'electronics expert' to draw on both the quantitative

and qualitative knowledge of circuit behaviour so as to build up a database for a

troubleshooting expert'. This troubleshooter was to have circuit-independent knowledge

of how to manage a set of fault hypotheses, and how to propose new measurements to the

electronics expert.

Yet other kinds of viewpoints may be found in NEOMYCIN, (Clancey 1983). The

ancestor of this system, (MYCIN, Shortliffe 1976) was not a tutoring system, but an

expert system designed to diagnose bacterial infections. It was, however used as the basis

(domain representation), of GUIDON, (Clancey 1979), and it was this exercise which led

directly to the development of NEOMYCIN. MYCIN attempted to formalise the

knowledge of medical experts in a series of condition-action, (if — then -—) rules known

as productions. The order of these rules, and the order of their subgoals, was critical to

successful diagnosis. Each one that fired contributed to the database of evolving

hypotheses. There was no explicit problem-solving strategy, (beyond exhaustive search),

built into the system. Rather, it ploughed exhaustively through the same set of rules for

each diagnosis. Although it was quite successful at problem-solving, its usefulness was

limited by an inability to give convincing explanations of its conclusions.

Clancey (1983) describes how he and his colleagues at first saw themselves as

"applications engineers" whose task was to adapt MYCESTs explanation facility to a tutorial

32

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

setting. It was, however surprising to find out how little the explanation facility could

accomplish for a student." (ibid. p. 217). MYCIN did not solve problems in the same way

as a human expert. Its production system rules were formulated to diagnose infections,

which it did successfully by exhaustively searching the problem space. There was thus no

explicit problem-solving strategy which could be taught to a student. As Clancey freely

admits, "Focusing on a hypothesis and choosing a question to confirm a hypothesis are not

necessarily arbitrary in human reasoning", (ibid. p. 220), thus raising serious questions

about the usefulness of MYCIN as the basis of a system for tutoring students in diagnostic

reasoning.

The relevance of this to the current discussion becomes clearer when one examines the

ways in which Clancey tried to overcome this problem. The re-evaluation occasioned by

GUIDON'S failure led to the development of NEOMYCIN (Clancey 1983). After listing

the kinds of knowledge used by human experts for diagnostic reasoning, a series of "meta

rules" were developed to give meaningful access to the domain rules, (ie. to encode the

notion of a hypothesis), and to manage and interpret a changing list of hypotheses. Similar

structures were developed for GUIDON, known by such names as "rule models" and "rule

schemas". Their purpose was to make clear the relationships between the rules of a

domain, so that a reasoning strategy could be learned. It can be argued that they still leave

out a great deal of crucial procedural information, such as why the subgoals of each rule are

considered in a particular order. The main point, however, is that the various meta-rules

and their sub-structures may be seen as alternative viewpoints on the domain, without

which any useful tutoring or explanation is not possible. This very point is made by

Wenger (1987 pp. 275-7) who describes NEOMYCIN's substructures as "orthogonal

viewpoints", which "— act like windows, giving access to the knowledge base". He

concludes that these

"— access channels are crucial to support the variety of reasoning tasks and focusing strategies by

which data and conclusions are connected". (Wenger 1987 p. 276).

33

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

2.1.2 Different Viewpoints for different activities.

The previous sub-section described situations where a combination of different viewpoints

was necessaiy for a given activity to be successful. The argument in this sub-section is that

specific activities can strongly condition the way we need to perceive an object or system,

and that this may imply the adoption of a specific viewpoint to support that activity. An

everyday example could be the metallic body of a car being seen not in terms of its shape

and mechanical functionality, but in electrical terms as an 'earth' connection. In short, the

way we see things may depend on what we want to do with them.

A similar example exists in the ITS literature. Knowledge elicitation carried out in

preparation for the construction of STEAMER, (Hollan et al. 1984), showed that the way

experts think about a particular machine does not necessarily depend on its physical

components, but on the actions they wish to perform with it. Accordingly the designers

attempted to base the tutoring process on the conceptual abstractions, (mental model), of

the experts, rather than on the precise physical characteristics of the machines, and labelled

their approach "conceptual fidelity". The system was built to tutor the operation and

maintenance of steam propulsion plants, and was designed as a graphical interface to an

interactive, inspectable simulation of such a plant. This core simulation had already been

built. An example of the use of a function-specific viewpoint occurs when the complex

assembly of parts which makes up a working turbine is labeled by experts simply as a

'steam chamber with drains'. The safe and efficient running of this "abstract" machine

requires some "abstract" procedures, such as opening the drains before admitting steam to

the chamber, (Stevens and Roberts 1983). This example may be used to draw attention to

the function-dependent or "context oriented" aspect of viewpoints: their use may be

dependent on a specific context or set of goals.

STEAMER makes use of this by offering over one hundred different views of the plant in

question, from abstractions such as 'the basic steam cycle’, to control panels describing

34

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

some specific state of an operating system. A pump may be seen as an instance of a

'positive displacement pump' or as a component of a 'pumping station'. The richness of

the information provided by the simulation is exploited by a frame-based representation

system which accesses the different combinations of data required to support different

viewpoints. A specific object's relationship to the system may be described and explained

in terms of its physical connections, energy connections, information connections, or

perhaps in terms of the procedures which operate upon it. Trials with trainees have

convinced the designers that the systems ability to change viewpoints is crucial to its

effectiveness.

2.1.3 Different viewpoints from novice to expert.

STEAMER (Hollan et al. 1984) showed a preoccupation with 'conceptual fidelity' in the

interface used to access a pre-existent simulation. With QUEST however, (White and

Frederiksen 1986) this concept was applied to the system's most basic domain

representations. QUEST was designed to tutor the behaviour of electronic circuits. Like

STEAMER it was conceived as an inspectable simulation with a graphical interface, but the

underlying representations form a sequence of qualitative models based on a causal

calculus. Rather than concentrating on a single device, QUESTs successive models

corresponded to increasing levels of expertise in the principles of the domain.

The models differ along the dimensions of type, order, and degree. 'Type' describes such

characteristics as 'qualitative', 'proportional', (eg. descriptions such as "less than" or

"equal to"), and quantitative, while 'order' deals with the derivatives that the model uses to

define changes in a circuit. If one order describes any change of voltage, for example, the

next may describe the rate of that change. The 'degree' dimension adds to the complexity

of the model by taking additional constraints into consideration. The models are thus

generic, each relating to a given level of complexity in the analysis of electronic circuits. A

crucial connection between the models was 'upward compatibility', which ensures that a

35

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

simpler model can be extended or refined so as to match the next more complex one with a

minimum of effort. This system was quite successful in tutoring a small group of students

in a restricted problem-solving area.

White and Frederiksen do not claim that the model structure they define provides on its

own an adequate model of expertise, since they believe that this consists of much more than

the ability to predict specific states. They regard it as crucially important that different

models of various type and order be integrated into a coherent and effective understanding

of the domain. This ’integration', and the question of precisely how particular models are

related to the solution of particular problems, remain as topics for future research for them.

These conclusions echo those of Stevens, Collins and Goldin (1979). If we regard the

different model types as different viewpoints, we may conclude that such viewpoints may

be implemented in a tutoring system, and that they may form a pedagogically useful

progression from novice to some level of expertise.

2.1.4 Glass boxes and black boxes

The origin of the 'glass box' and 'black box' terminology may not be entirely clear, but an

early manifestation can certainly be found in du Boulay et al. (1981). The point of the

terminology is that different models of a system may be presented according to the needs or

expertise of the user even when tutoring is not the immediate goal. The inner workings of,

in this case, a computer language interpreter are not available for inspection and are

regarded as a 'black box'. This may present little problem to an expert, but novices

attempting to program in the language may soon find that their interactions with the system

become unintelligible as they have no idea about what state the system is in. The problem

may be alleviated by providing a 'notional machine' as an idealised model of the system

which can describe the more important events occurring inside the 'black box' in terms

familiar to the novice. Statements about "stack overflow" for example, might be

meaningless, while a statement concerning "store size" might communicate usefully. This

36

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

'notional machine' is the glass box. Different models are thus provided for expert and

novice.

While du Boulay et al. (op. cit.) are concerned primarily with programming languages, we

may extend the idea to tutoring systems. The comments above in relation to GUIDON and

SOPHIE (section 2.1.1) and QUEST (section 2.1.3) describe systems whose knowledge

representations attempt to capture some degree of "psychological validity", in the sense that

they attempt to solve problems or make inferences in ways which are meaningful to

humans. The meta-rules of GUIDON (Clancey 1983) are designed to encode the notion

and form of hypotheses. The modules of SOPHIE (Brown et al. 1976) and the models of

QUEST (White and Frederiksen 1986) are intended to exhibit qualitative reasoning. The

point of this is that for tutoring purposes, the systems should be able to explain their

inferencing in terms that humans might use or understand.

WEST (Burton and Brown 1979) shows that this and other pedagogical aims can be

achieved without having the machine reason in those terms. Where the system presents the

student with a task or problem, the system may solve that problem for itself by means of a

'black box', but, having found the solution, carry out its tutoring and explanation in terms

of a 'glass box'. WEST is based on a game which exercises arithmetic skills. A player is

given three numbers at random and has to compose an expression which is evaluated to

give the number of moves towards the goal, their 'home town'. Players may also aim to

'bump off other players or to take short cuts.

Tutoring is based on 'differential modeling'. The student's performance is compared to

that of the system's expert, and diagnosis starts if the student's move is not optimal. This

design strategy is necessary due to the random nature of the game, ie. is not possible to say

in advance what skills will be required at any specific point in the game. The various

possible moves are analysed in terms of 'issues' or strategies (eg. trying for a 'bump') to

37

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

identify those that the student is using and those that reveal weaknesses in their play. The

system does not represent interactions between issues or erroneous issues.

Because the domain of the game is limited, the expert can work by exhaustively listing all

possible expressions and simulating their application to the current state of play. This

expert thus needs no representation of the issues. Its moves are analysed by the same

diagnostic procedures that are applied to the student's moves. However, once the ideal

move has been identified, it may be presented to the student in terms of the related issue.

Two quite distinct representations (viewpoints) are thus exploited in conjunction so as to

effectively tutor a single domain. As Wenger (1987) points out, the system expert has

considerable performing power, but is not "psychologically plausible". The 'issue'

recognisers have no performing power, but are able to justify the expert's moves in

"teachable" terms. Wenger also points out that in more complex domains, where the

computational costs of analysing the expert's move may become prohibitive, the domain

expertise would have once again to be implemented in terms of the pedagogical issues that

the system was designed to address. Nevertheless, WEST shows that a 'black box'

domain expert can be pedagogically useful if a suitable 'glass box' representation can be

found to complement it. This point is of direct relevance to the tutoring system which is

being proposed in this chapter.

2.1.5 Exploring the student's viewpoint.

In the consideration of viewpoints and tutoring, it may be argued that we should encourage

students to develop and explore their own views of a domain, and that tutoring should be

adapted, where possible, to the student's view. The Alternate Reality Kit, ('ARK', Smith

1986), while not strictly a tutoring system, does move in this direction. ARK is an

environment designed to express physical laws, (correct or otherwise). It contains a wide

variety of objects, all of whose behaviours may be programmed or connected, and all of

which obey the laws set for the environment as a whole. The intention is to allow students

38

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

to appreciate why the laws of physics are as they are by seeing what happens when they are

broken. Students may set the system up to reflect their own view of the behaviour of a

physical process, and observe the consequences; (O'Shea and Smith 1987). While this

system does allow students to express their own viewpoint on a domain, it does not carry

out any active tutoring or student modeling, and is perhaps best characterised as a system

which promotes exploration.

2.1.6 Viewpoints and design philosophies.

The systems discussed in the previous sections indicate that the question of viewpoints is

an important one for ITS design. If viewpoints are to be incorporated into the systems, we

may ask what general implications this may have for our design philosophy.

A standard reference for the state of the art and for the most general approach to tutoring

system design is Wenger (1987). The central idea of this work is that of 'knowledge

communication', which is defined as:

"... the ability to cause, and/or support the acquisition of one's knowledge by someone else, via a

restricted set of communication operations." (Wenger 1987, p. 7).

It may be argued that this approach has a number of conceptual limitations since it implies

that some single, pre-existent mass of knowledge has to be carefully poured into a politely

passive student. Taken to its extreme, the student would be seen simply as an extension of

the computer program. There are those (see section 2.6) who believe that the student is

more properly conceptualised as an active participant who is engaged in the tutoring

process, and whose learning involves the structuring and integration of the information

with which they are presented rather than its passive acceptance. This in turn implies that

not all students may structure it in the same way. These points seem to be acknowledged

later in Wenger's book. He stresses, with reference to Lave, (1988), that the student must

be actively engaged in problem solving, in order that they perceive specific problems,

3 ,

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

discover the limitations of their current view, and "... demonstrate a new viewpoint's

conceptual superiority ". (Wenger's italics. Wenger op. cit. p. 411).

Several points can be made here. Firstly, while Wenger is happy to emphasise the

importance of the student actively acquiring new viewpoints, this activity is not well

described by the concept of "knowledge communication" as defined above. Also, any

system which was attempting to move the student from one viewpoint to another would

have to have different accounts of the domain available to it, ie. would have to have

multiple viewpoints on that domain. This would require more than a "communication"

model as some decision processes for choosing, tutoring, and using the appropriate

viewpoints would also have to be defined.

There are other indications that Wenger really intends his readers to see the student as a

more active participant in learning. He proposes (p. 321) the notion of "equivalence

classes" of models of knowledge, "... within which communication is possible and

useful." This sounds far more complicated than, (and quite distinct from), "... the

acquisition of one's knowledge by someone else... ", but he gives no further information

about how such equivalence classes might be derived, what they might look like, or how,

precisely they might be used. Elsewhere he states that:

"... recipients must interpret communication by a process of reconstruction, and there is always

some uncertainty about the similarity of the knowledge possessed by each participant" (Wenger

op. ciL p. 321),

but the implications of this for 'knowledge communication' are not made clear. On page

365 Wenger states that it is obvious that a "model of communicable knowledge" need not

be static, but could be modified by the communication process. Unfortunately he does not

give any description of the mechanism by which this could take place. In the Epilogue

Wenger states that:

40

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

"... both the knowledge states involved in knowledge communication are modified: knowledge

communication is viewed as a dynamic interaction between intelligent agents by which knowledge

states are engaged in a process of expansion and articulation". (Wenger op. ciL p. 431).

This seems to bear little relation to the definition given earlier, which described the

"acquisition" by some other individual of one's pre-existent knowledge. While this latter

statement does seem to embody a more constructive view of the student, it comes late in the

book and still leaves the reader with considerable doubt as to what 'knowledge

communication' really entails, thus limiting its usefulness as a basis for design. The issue

is not clarified by Wenger's own attempts to define viewpoints. These are discussed in

section 3.1.

Similar dissatisfaction with the notion of 'knowledge communication' is shown by Self

(1988a, 1988b) who suggests that the reliance on a single representation of the domain has

led to an inappropriate "trinity" model of ITS design, (the student model, the domain

representation, and the tutoring component). He suggests that this may lead to a rather

authoritarian style of tutoring, which assumes that the system embodies in a Platonic sense,

the one true representation of the domain. This being so, the approach may also lead one to

assume that the student may be adequately represented as a 'subset' of the expert. Self

(1989) indicates that 'education as transmission' is not an idea favoured by this century's

educational philosophers and quotes Perkinson (1984) in saying that "... the transmission

theory of education is both false and immoral".

Self suggests that we should more properly represent the domains as "belief systems",

which may be reconceptualised, and that more attention should be paid to meta-cognitive

skills, such as reflecting on one's own problem-solving processes. This does seem like a

far more fruitful direction if our purpose is to explore viewpoints in ITS. Our relief should

be restrained, however, as the area of belief systems is fraught with serious research

problems.

41

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

Self (1990) has produced a wide-ranging review of systems which attempt to model the

holding and revision of sets of beliefs, in an effort to list ways in which viewpoints might

be structured and implemented. The problems thrown up by this review are legion.

Agents may, for instance, hold inconsistent or contradictory viewpoints, requiring such

formulations as 'local reasoning' (Fagin and Halpem 1987). The demands of

computational efficiency and psychological plausibility may require that non-deductive

reasoning methods be used. Other problems relate to the processing mechanisms used with

viewpoints. If modal logics are used, then the belief operator 'B' becomes "referentially

opaque", ie. even if we have proved that two expressions are equivalent, we cannot in the

main substitute one for the other.

Another area of work concerns the revision of viewpoints, more generally known as

'reason maintenance' or 'belief revision' (Martins and Shapiro 1988). Where the

viewpoints are formed incrementally from the accretion of a series of individual beliefs the

problem is "relatively tractable" as the latest additions alone may be revised. Where there

are radical differences between viewpoints however, the problems are more profound.

Writers such as Komfeld and Hewitt (1981) stress the need to preserve the "core of

fundamental concepts" in "adjusting" such a viewpoint. The definition of the "core" and

the means of adjustment are not made clear.

Selfs review indicates that the construction and processing of belief systems is an area

beset by fundamental technical difficulties. This being so, the issues surrounding their use

in ITS must be equally unclear. With some thought however, it is possible to separate the

issues surrounding the construction and use of viewpoints from those entailed in research

upon belief systems. Rather than making a tutoring system based on belief revision the

focus of our research, we may re-define the problem and concentrate on a system which

utilises a number of pre-defined viewpoints. This should allow a robust system to be built,

thus allowing an investigation of the issues which arise when we attempt to progress

42

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

beyond a 'knowledge communication' model of design. The research described in this

thesis takes exactly this approach.

A rather different notion of 'viewpoints', giving rise to correspondingly different

conclusions about tutoring system design, is voiced by Lesgold (1988). Lesgold is

primarily concerned with the issue of curriculum organisation for tutoring systems. He

contrasts "conventional instruction" and "intelligent instructional systems" in the following

terms: "conventional instruction", while having an explicit curriculum, usually does not

have a complete representation of the target knowledge. For "intelligent instructional

systems" the emphasis is reversed. They generally have a "complete" representation of the

target knowledge, but little explicit representation of curriculum or curricular goals. The

'viewpoints' that Lesgold describes are essentially different ways of accessing and ordering

a set of defined lessons so as to serve different goals.

The notion that ITS systems have a "complete" representation of the target knowledge can

be used to point out some of the differences between the notion of viewpoints developed in

this thesis, and that proposed by Lesgold. The emphasis of sections 2.1.1 - 2.1.5 above is

on the need to extend the previously-inadequate representations of the systems described,

and to develop descriptions of the relevant domain in terms of viewpoints which are

explicitly taught to the student. Even with such extensions, researchers such as White and

Frederiksen (1986) explicitly state that proper 'expertise' involves more than their

representations actually embody. Lesgold is less concerned with reformulating the domain

that with organising a pre-existent set of lessons in terms of the pre-requisite knowledge

required for the different kinds of problems that may be presented to the student. Thus for

example, one problem-based curricular organisation, or 'viewpoint', may first emphasise

physical laws, while another emphasises measurable properties or qualitative problems. It

seems that for Lesgold, it is not these modes of analysis' which are themselves the

viewpoints', but the collection of different parts of each of them which make up a path

through the curriculum.

43

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

This said, it must be admitted that Lesgold shares some of the concerns of this thesis. He

is concerned with the application of knowledge, and repeatedly states that real learning

involves more than the sum of the lessons learned. For him this implies that remedial

lessons must check the students ability to transfer knowledge to new problem-solving

contexts, (something others may regard as a more fundamental issue), and that the limits of

applicability for each piece of knowledge should be made clear. Lesgold also wishes to

adapt instruction to the learning preferences of the students, and to build on their previous

experience. He currently has little to say on the latter issue. His approach leads to a three-

layered system architecture, where the bottom layer, the various lessons, are accessed in

terms of a lattice of connected curricular goals. In the top layer, labelled as 'meta-issues',

separate nodes form the starting-point for each 'viewpoint'. Little information is given

about these, but they appear to involve such issues as catering to a given student's

strengths and weaknesses in learning.

2.1.7 Conclusions: defining the problem.

What conclusions can be drawn from this review of tutoring systems which utilise different

viewpoints? It is clear that in this context "Viewpoints" are not simply alternative

representations. We may illustrate this by representing the same information, (eg. the

novice's view of an electrical circuit), in two different formalisms. It may be represented as

a semantic net, or as clauses in predicate calculus. In other words, a single viewpoint may

be expressed as two different knowledge representations. Conversely, a single

representation, such as the quantitative circuit model of SOPHIE 1, (Brown and Burton

1975), may be used by several viewpoints. In this case, a single circuit model is used by a

number of "procedural specialists", to answer 'what i f questions, to evaluate the student's

hypotheses, to list all possible hypotheses, and to evaluate requests for new measurements

made by the student.

44

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

How are we to characterise what we might mean by a "viewpoint"? Minsky (1981)

provides direction with a memorable example. He points out that for hard problems, one

"problem space", (ie. an initial state, a goal state, and a set of operators), is not usually

enough. If a car has a flat battery, we may suspect a fault with the generator. Describing

this as a mechanical system, we see a pulley wheel driven by a belt from the engine. The

armature is a rotating device associated with carbon brushes, held in position by bolts and

screws. If we are trying to fix the system, this viewpoint implies a specific set of questions

about belt tension, bolt security etc. There is, however, an alternative and complementary

viewpoint, which sees the generator as an electrical system. The armature is now a flux-

linking coil, while the commutator and brushes are a switching system. The entire metallic

body of the car may be seen as a battery (earth) connection. This viewpoint also has its

own set of diagnostic questions. While electrical faults generally require mechanical

manipulation in order to rectify them, the isolation of the fault may well require that both

modes of analysis be used separately. This implies that there is some other form of

knowledge involved, a 'control knowledge' which allows decisions to be made about when

and how each mode of analysis is to be used. This partitioning of the problem space

allows the search for a solution to be carried out more efficiently, ie. in smaller search

spaces.

The viewpoints described in the previous paragraph may be characterised in two ways.

Firstly, they are complementary modes of analysis, both of which may be required in a

particular context. Secondly, they refer to the same set of objects, but identify and

structure them in quite different ways. The value of this seems to be that each view brings

out particular features of the domain in question, and in doing so can reduce the search

space for certain problems.

Our review of the literature can be related to this example. The remarks in section 2.1.1

indicate that multiple, complementary viewpoints may indeed be required to carry out

certain tutoring and problem-solving functions. Section 2.1.2 shows that for given tasks a

45

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

specific viewpoint is most effective. In terms of Minsky's example, an electrical

perspective would not necessarily be of use in the solution of a mechanical problem.

Section 2.1.3 serves to remind us that there may be profound differences between the

viewpoints of novice and expert, which probably comes as no surprise to your mechanic.

Given the preceding remarks, and the goal of building tutoring systems, we may frame the

problem as follows: ITSs need viewpoints, so how are we to conceptualise them, how

might they be implemented in our systems, what goals would this serve, and what

implications would it have for our overall design philosophy? The question of whether or

not our systems could allow students to work with their own idiosyncratic viewpoints is

seen as premature. We may note, as with the generator example above, that some

problems require the use of more than a single viewpoint to arrive at a solution, while

certain tasks are facilitated by the adoption of specific viewpoints. This last point implies

that for a viewpoint to be of use to us, we must go beyond learning the viewpoint itself to

learn also how it is to be used. What is needed then, is an approach which emphasises and

makes explicit this context-related aspect of our domain models. It is in this sense, as well

as in building specific models, that the student has to "structure" or "reconstruct" their

domain knowledge. This structuring involves learning when and how specific knowledge

is to be used. Where a problem demands that one viewpoint must be used in combination

with another, it also involves the explication of meta-knowledge about that viewpoint's

relationship to other knowledge, as Self (1989) advocates. In other words such structuring

involves the integration of viewpoints.

On the question of implementation, little may be concluded at this point, since each system

studied appears to offer a different solution. An important point seems to be that while

highly complex or very large domains require an implementation with some 'psychological

plausibility', smaller or less complex domains can also be well served by a 'black box'

allied to an appropriate'glass box'.

46

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

If our design philosophy directs us to view the student as an active participant in the

learning process, then this view can only be meaningful if the system we design adjusts to

that student’s participation. If our approach makes a range of viewpoints available for

tutoring the same topic, then our system may seek to adjust to such factors as the student's

knowledge state, learning history, goals, and preferences. 'Knowledge state' here can

refer to the degree of integration of viewpoints as well as their levels of expertise. Where a

number of viewpoints on a domain are implemented and available, decisions will need to be

made about which one is to be tutored at a given point in the tutorial process, how it is to be

tutored, and why. If we desire adjustment rather than imposition, it would seem preferable

that these decisions be arrived at through a process of negotiation between system and

student.

It is worth pointing out here that the necessary decisions relate to two distinct levels of

analysis. Initially, a domain could be tutored in terms of a given (most suitable) viewpoint.

Where the student is made aware that alternative viewpoints are available, and that tutoring

is to be conducted in terms of these, then the student, and the decision-making process,

must also consider the relationships between the viewpoints, and the differing areas of

application for each one. This thesis is concerned with both levels of analysis.

2.2 Mental Models

How should we conceptualise 'viewpoints'? The review of ITS systems and design

philosophies given in section 2.1 showed little agreement about what constitutes a

'viewpoint'. If we look outside the area of ITS for useful concepts a strong candidate

would appear to be the psychological concept of the 'mental model'. Although this term is

widely used, there seems to be a variety of conflicting definitions for it; (eg. Johnson-

Laird [1983], versus Centner and Stevens [1983]). Some of the clearest definitions appear

in Young (1983) and are given below.

47

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

The intention of this section is not to review the whole literature of mental models, which is

extensive, but to discuss areas of work which are directly relevant to our attempts to

formulate and implement viewpoints in a tutoring system. The work of Centner and

Centner (1983) and Kieras and Bovair (1984) indicates that inferencing can vary with the

model used. Larkin et al. (1980) and Clancey (1985) pointed out the importance of some

form of indexing mechanism to link the problem at hand to the knowledge which may solve

it. We show this to be relevant to the position of writers such as Self (1989) and Brown,

Collins and Duguid (1989) in their concern with meta-cognition and learning.

2.2.1 Studies of mental models.

An important paper is that by Kieras and Bovair (1984) who investigated the differences

attributable to the presence or absence of a mental model when making inferences about the

operating procedures of a previously unknown device. They studied the time and number

of trials required to eliminate redundant moves from the procedures in the two conditions.

Their evidence shows that the 'with model’ condition is superior when a suitable device

model is used. They deal with the actual inferences made by the subjects only in passing,

and appear to assume that they will be the same as those developed in Kieras' (1984)

simulation model. They conclude that a "suitable" device model for inferring operating

procedures is based on concepts of device topology and power flow for the device in

question.

Also relevant in this context is the work of Centner and Centner, (1983). In the paper

entitled "Flowing Waters or Teeming Crowds: Mental Models of Electricity", these authors

showed that different inferences result when different models of the domain are used.

Working with a simple electrical circuit, they asked one group to consider it in terms of

water flowing through the circuit, the other to consider it in terms of objects, (crowds of

people), racing through passageways. When asked to answer questions about the effect of

parallel resistors on current flow, the subjects using the "moving crowd" model showed a

«

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

better, (more accurate), performance than those using the water analogy. This is attributed

to the suitability of the analogy for the problem posed. In terms of a moving crowd,

parallel resistors represent two gates for progress rather than one, resulting in a greater

flow rate. In the hydraulic model, resistors apparently represent drag, and more of them

means more drag, (and thus less current flow), regardless of configuration.

The Kieras and Bovair study shows that performance in deducing the correct operating

procedures is significantly affected by the presence or absence of a suitable mental model.

The Centner and Centner study shows that different inferences may result from using

different models. In dealing with results, however, this particular study does not attempt

to systematically capture the inferential processes involved, and thus does not give detailed

support to the assumptions about why the models produce different results. (This question

is approached through these author’s subsequent theories of analogy).

Let us assume that we wished to model the subjects’ performance in these studies

computationally, in terms of the notion of viewpoints outlined above, (ie. we require a

performance model while psychologists debate the psychological reality of their various

accounts). We would need to augment the Centner and Centner study, and the Kieras and

Bovair study, to give a) some account of the means by which inferences are drawn from

the models, and b) some account of how a particular model is chosen as being applicable to

a particular problem.

We have chosen to focus on the first of these topics. The methodologies of these two

experiments are combined for a study, (detailed in chapter 4) which observes subjects

applying two distinct models to the operation of the same system. (The idea of operating a

device is taken from the Kieras and Bovair study, while the comparison of two mental

models is taken from the Centner and Centner study). The verbal protocols from these

sessions are analysed in an attempt to distinguish different patterns of reasoning between

49

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

the two groups. These differences are modeled in terms of a structure for viewpoints

(outlined in chapter 3), as a demonstration of the usefulness of this structure.

The two kinds of mental model which are used in the study are two of the most commonly

distinguished ones, that is Structural and Functional models of a specific system. Young

(1983) refers to these two types as "Surrogate" and "Task/Action Mapping" models, and

explores the qualities of each. Where 'D' is the device in question, the Surrogate

(Structural) model is:

"... a physical or notational analogue of the mechanism of D, and can be used to answer questions

about D’s behaviour." (Young 1983 p. 38).

Young’s "Task/Action Mapping" (or "Functional" model) is described as:

"...the core of the mapping between the user’s actions on D, and what D does."

(Young 1983 p. 38).

(We shall refer to these two types in terms of the more commonly-used descriptions [eg. di

Sessa 1986] "structural" and "functional"). Logically, the differing content of the two

models gives them different utility. The ability provided by the "surrogate" model to reason

about D’s behaviour should allow one to make predictions about that behaviour. It may

not, however, be immediately obvious how to achieve a specific goal using that same

model. Di Sessa (1986) discusses what appears to be the same distinction in terms of

"functional" and "structural" models and gives this example: an understanding of how a

function such as Pascal’s "WRITELN" prints data as output does not help a novice to see

how to leave some vertical space between output lines. A structural appreciation of

"WRITELN" views it as a combination of function and argument, which, when executed,

causes the argument to be printed as a line of text. Novices must be taught the functional

"trick" of calling "WRITELN ” without an argument so as to produce a blank line because

this "... potential function... " is not clearly visible in the structural model.

50

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

This kind of "trick" is the stuff of "functional" models. They may tell us precisely how to

achieve specific goals, but they do not describe the structure of the system with which we

are interacting, and thus do not give us the information we need in order to make more

general predictions about its behaviour. It is in these terms that di Sessa (1986) describes

the characteristics of the two kinds of model, and their differing utility. The "structural"

model is designed to offer explanation and correct predictions in uniform terms, and so

focuses on characteristics which are independent of any specific use and applicable in all

contexts. The "functional" model details characteristics which are concerned with "...

specific use, consequences or intent"; (p. 202).

In the latter part of his paper di Sessa (op. cit.) sounds what must be a note of warning for

any attempt to base a tutor’s viewpoints on coherent mental models. He draws on work

with ’Logo’ to show that learners may not acquire a single functional ’frame’ but a

patchwork of partial explanations which are combined in what he describes as "distributed

models". In addition to the stated functional model, these may include such elements as

analogy to text, visual pattern matching, and rationalisations. Even if a coherent model is

learned, it may be inconsistently applied.

2.2.2 The application of models.

di Sessa’s point at the end of section 2.2.1 concerning the application of mental models

raises an important issue for this discussion of viewpoints. Knowing a model does not

guarantee its use, or indeed its use in appropriate situations. If the use of mental models

may be characterised as problem-solving, then some significant and useful elements may be

identified in the literature. This section discusses some of these.

In a much-referenced paper Larkin et al. (1980) attempt to discover what lies behind such

words as ’judgement' and 'intuition' when attempting to explain the superior problem

solving abilities of experts doing physics problems. According to their analysis, experts

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

appear to use "... pattern-indexed schemata... " to relate significant features of the problem

to the parts of long-term memory which retain the knowledge needed to find a solution.

Put more simply, experts have a means of deciding what kind of problem they are dealing

with, and thus what approach to it is appropriate.

A similar idea is advanced by Clancey (1985) who describes a problem-solving technique

called 'heuristic classification' which may be successfully built into expert systems such as

NEOMYCIN. The point of this technique is that it provides a heuristic which directly links

two concepts in a non-hierarchical manner, and specifies the knowledge needed to solve a

problem without reference to the specific programming language used to represent that

knowledge. More standard classificatory methods rely on hierarchies to define the

intermediate relations between the concepts and thus produce a more certain inference at the

cost of more extensive search.

The fact that concepts are directly linked should not be taken to mean that the link between

problem and solution are equally direct. Features of the problem are identified by data

abstraction, a process which may have to go through several iterations before any of the

features identified map onto parts of the solution schemas. This could mean, for example,

that data relating to a specific patient is abstracted, initially, into categories which attempt to

structure that data. The solutions themselves may be either selected from a known set or

constructed in response to the problem features.

As Clancey points out, this technique has some strong implications for teaching systems

which may be built to the heuristic classification model. He quotes Bruner and refers to

others to show that the idea is not a new one but has previously been a significant part of

educational, AI, and psychological theorising. We do not have to accept Clancey’s system

in all its detail to state some of these implications, but can take his (and Bruner's) point as

to the importance of classification. One obvious conclusion is that knowledge of solutions

needs some indexing or classificatory method to link it, even indirectly, with features in the

52

Chapter 2: Viewpoints in tutoring systems: uses, stractures, and domains.

problem domain. This was also, in part, the message of the Larkin et al. (1980) paper

discussed above. The necessity of such a link becomes all the more apparent if one is

contemplating tutoring multiple viewpoints on a domain, as these viewpoints may relate to

radically different forms of solution. The link is thus necessary to indicate the kinds of

problem to which a viewpoint may be applied. We may again refer to Minsky’s (1981)

generator example (see section 2.1.7) to exemplify this: seeking mechanical solutions to

electrical problems can be very unproductive. A more general consideration is that students

may rapidly become disorientated if we tutor different viewpoints on a domain without

indicating that these have different utility. This theme is taken up in chapter 3 where we

formulate a structure for viewpoints.

A direct connection from the concerns of the preceding paragraph to the ITS literature may

be found in such papers as Self (1989) and Collins Brown and Newman (1987). Self

emphasises the need for 'reflection', ie. reasoning about our beliefs rather than with them,

and reasoning about our problem-solving methods. The contention is that we may learn as

much from reasoning about how we solved the problem, as from actually solving it. As

Self points out, this could be a problem as our ITSs are not, yet, telepathic, and can not be

aware of a student's reflection. A useful alternative to this is the separation of the 'task

level' and 'discussion level' (Gumming and Self 1989b) for ITSs, where the purpose of the

'discussion level' is to critique the execution of the task. In terms of 'heuristic

classification', this could mean that discussing the heuristics used could become a valid

tutorial activity.

An example of such activity is given by Brown, Collins and Duguid (1989) under the

banner of "cognitive apprenticeship". A college mathematics, class is given the "Magic

Square" problem. The point of the activity is not simply for them to solve the problem, but

more importantly for them to understand how mathematicians might think about the world,

and set about solving such problems. This is achieved by having them "... enter the culture

of mathematical practice" (ibid. p. 37), the idea being that profound learning can take place

53

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

through authentic activity akin to the training of an apprentice, rather than through the

abstracted activity common to much schooling. The class worked through the problem

collaboratively and then, crucially, went on to analyse the solution, thus highlighting the

heuristics which led to the adoption of a particular solution method. Alternative solutions

were analysed, and found to be examples of more general mathematical ideas. This

culture of mathematics is contrasted with the "culture of schooling" whose practice would

stop when the first solution to the problem was found,

2.2.3 Conclusions

This section has reviewed some of the literature on mental models which is relevant to our

discussion of the nature and use of multiple viewpoints in ITS. Young (1983) has given us

reasonable definitions of "surrogate", (structural), and "task-action mapping", (functional)

models, while di Sessa (1986) has told us what each kind may be good for. The studies

from Centner and Centner (1983) and Kieras and Bovair (1984) show that different

inferences can arise when different (or no) models are used. Larkin et al. (1980) and

Clancey (1985) have pointed out the importance of some form of indexing mechanism

which links the problem to the knowledge which solves it. We show this to be relevant to

the position of writers such as Self (1989) and Brown, Collins and Duguid (1989)

concerning meta-cognition and learning. It is concluded that such linking mechanisms will

be important for tutoring systems exploiting multiple viewpoints on the domain.

2.3 Prolog Tutoring and Tracing

The ideas being developed in this thesis are to be tested through the implementation of a

tutoring system for a specific domain. The intended domain is that of debugging strategies

for Prolog novices. This section reviews literature relevant to this domain. Bundy et al.

(1985) provide a source of possible viewpoints, while Fung et al. (1987) and Taylor

(1988) identify a range of novice misconceptions in Prolog which should be considered in

the design of any diagnostic component for a Prolog tutoring system. Eisenstadt (1984

54

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

1985) provides an implementation technique by which Prolog execution may be directly

observed or interpreted. This technique can be adapted to allow the interpretation of Prolog

execution in terms of our desired viewpoints.

2.3.1 Prolog novices have problems.

It is widely acknowledged (eg. Bundy et al. 1985) that Prolog can present problems for

novices. It can be, for non-mathematicians, a complex and difficult language to learn.

This section considers some of the literature on Prolog novices since it is they who

constitute the target group of the proposed tutoring system.

It was recognised fairly early on that novice's had problems in visualising what was

happening in the Prolog interpreter, and an early attempt to provide a consistent framework

for interpreting the execution of programs was Byrd's (1980) 'box' model or "notional

machine"; (similar in purpose to du Boulay et al.'s [1981] "glass box". See section 2.1.4).

This is still the basis of many trace packages. It was helpful, but, as Pain and Bundy

(1985) and Bundy et al. (1985) point out, it did not make clear the details of progressive

resolutions, of outstanding goals, or of the search strategy being employed. The two

papers just referred to also list other representations of Prolog execution, such as the

"and/or tree", the "arrow diagram" and the "flow of satisfaction". None of these alone is

seen to be adequate in isolation, since they emphasise different aspects of the execution,

and do not all conform to a consistent model of the interpreter. Accordingly, Bundy et al.

(1985) set out to produce a complete and consistent "Prolog story" which could be used to

"...understand and predict the execution of a Prolog program", and which could form the

basis for teaching materials, error messages, and tracing packages. The "story" was

intended to cover both the procedural and declarative semantics of Prolog, and to illuminate

the 'difficult to understand' aspects of the language such as the construction of recursive

data structures and the scope of variables.

55

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

The resultant story has four parts. These are the Program Database, the Search Space, the

Search Strategy, and the Resolution Process. In various combinations, these four models

can be used to comprehend the many different representations of Prolog execution, (Byrd

Boxes, Arrow Diagrams, And/Or Trees, Or Trees, Full Trace, Partial Trace etc.). The

Database is the collection of assertion and implication clauses that go to make up the Prolog

program. The Search Space describes the relationship between the goal literals which are

input by the user, or generated by the program, and the Program Database. The Search

Strategy is concerned with the order in which the goal literals are generated, and the order

in which Database clauses are chosen for resolution with them. The Resolution Process

describes the unification of goal and clausehead, and the possible generation of new goal

literals. These stories are dealt with more fully in chapter 6 as they form the starting point

for the viewpoints of the implemented tutoring system.

It is intended that the ideas developed in this thesis should be tested through the

implementation of a system designed for tutoring novices in the domain of Prolog

debugging strategies. It will thus probably be beneficial to consider just what problems and

misconceptions such novices display. A range of these are detailed quite clearly in the

work of Fung et al. (1987) and Taylor (1988).

Fung et al. propose an "initial taxonomy" of misconceptions found in novices' work with

Prolog. Its categories refer to misconceptions about such areas as search and backtracking,

backtracking alone, backtracking and the cut, the flow of control and variables, variables

and the cut, and details of the unification process. These misconceptions may be simple,

such as the idea that the interpreter always attempts to resolve a goal literal with facts before

clauses regardless of their position in the database, to more complex conceptions such as

the idea that variable instantiations to the left of a cut apply to the subgoals on the right of

the cut, even if the variable names do not occur in that subgoal.

56

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

Taylor (1988) describes a range of 'superbugs' (Pea 1986) in addition to the lower level

bugs identified by Fung et al. (op. cit.). These seem to be imported fi*om the students

knowledge of spoken or written language on the implicit assumption that Prolog will abide

by the same rules. An example is the "left-to-right bias" superbug, which assumes that the

execution will always move through the program clauses in the manner that we read text,

that is top-down and left-to-right. This may occur some of the time, but not all of the time.

These descriptions of novices' misconceptions do not seem to have any immediate

implications for our first task, that is to develop a structure for implementing viewpoints,

and to design a tutoring system which may use them effectively. If, however, that system

is to contain a diagnostic component which needs to take account of any misconceptions

which the student may display, then the work of Fung et al. (1987) and Taylor (1988)

immediately becomes more relevant. Initially, more attention will be paid to the work of

Bundy et al. (1985) and the four elements of their Prolog "story".

2.3.2 A technique for interpreting a record of Prolog execution.

The problems that people exhibit in understanding Prolog programs has led to another

research direction. This aims to produce better tools for tracing and debugging Prolog

programs, and caters for practitioners as well as novices. A survey of available tools is

given in Bma et al. (1988) who list the types of tool and the Prolog environments which

support them. The desire to improve on the 'boxes' model of execution which underlay

most tracers (Byrd 1980), led Eisenstadt (1984, 1985) to develop PTP, the "Prolog Trace

Package". This uses 19 symbols to describe an execution trace at a fine grain level. In

particular, the symbols reveal the detailed symptoms of all resolution attempts, highlighting

such events as subgoal success and arity failure. The symbolic trace is stored with the

relevant goal and clause for each line. This information is used to provide different levels

of detail for the user of the trace. They could, for instance, determine the end result, and

57

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

then "zoom" in to the appropriate level of detail in the execution. PTP also uses the trace to

look for "bug cliches" in the execution.

The interest of this technique in relation to our thesis is that it provides a means of

interpreting Prolog execution after the program has been run. If the technique can be used

to interpret Prolog execution in terms of the four-part "story" proposed by Bundy et al.

(1985) then we may have the possibility of implementing viewpoints based on the "story",

and a tutoring system based on the viewpoints.

2.3.3 Conclusions: Prolog as an implementation domain

In section 2.3 three areas of research are reviewed which, taken together, indicate that some

aspects of novice-level Prolog may be a fruitful area in which to implement an ITS

incorporating multiple viewpoints. Bundy et al.'s (1985) "story" shows the need for

complementary models of Prolog which highlight different aspects of the language's

execution. It is assumed that these "stories" could form the basis of viewpoints in the

proposed tutoring system. Fung et al. (1987) and Taylor (1988) identify a range of

misconceptions which the design of any diagnostic component for a tutoring system would

need to consider, the system being proposed in this chapter being no exception. Eisenstadt

(1984, 1985) provides a technique which can be used to build the interpreter that the

proposed tutor, with its different viewpoints, would require.

2.4 Debugging: studies and tutoring

Debugging is a rich and complex topic, with many levels of analysis from program syntax

to programmer semantics. The focus of this research however, is not debugging per se.,

but the tutoring of debugging strategies. This section describes how a limited and

simplified catalogue of bugs can be identified in relation to an ideal version of the code

through the work of Bma et al. (1987). The proposed system is contrasted with others

such as PROUST (Johnson and Soloway 1984), and the point made that it is not intended

58

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

to constitute a 'debugger' in the conventional sense of the word. The intended research

direction is to tutor the application of appropriate models rather than to build a full-scale

debugger. The simplification of the 'bug' domain means that the research efforts can be

concentrated on developing mechanisms which describe the bug's effect on execution in

terms of the four models we wish to use, and which are able to tutor this skill.

2.4.1 Describing Bugs

The four parts of the "stoiy" outlined in Bundy et al. (1985) could be applied to Prolog in

many ways, (eg. to describe general execution as opposed to specific programming

techniques or algorithms). In order to focus the design problem we have decided to

concentrate on the area of debugging for novices.

This presents the problem of how we are to describe and classify bugs in a manner suitable

to our purposes. Help is at hand in this matter from Bma et al. (1987). This paper

provides a method of classifying bugs based on programmer expectations. Bma et al.

define four levels of description for a bug. These are the 'Symptom Description' level,

(eg. a wrong variable binding); the 'Program Misbehaviour Description', (the explanation

offered for a symptom in terms of control flow); the 'Program Code Error Description',

(eg. abstractions such as a 'missing base case'); the 'Underlying Misconception

Description'. As the proposed system is aimed at novices, it will require a simple system

for classifying bugs. Our immediate concem is thus with the 'Symptom Description', and

the 'Program Code Error Description' levels, as it is assumed that novices are not well-

equiped to deal with descriptions of control flow and misconceptions. Apart from error

messages and side effects, symptoms may concem Termination issues or the Instantiation

of Variables.

If we concentrate on the Variable Instantiation bugs, these may be classified as

a) the unexpected failure to instantiate a variable;

59

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

b) the unexpected instantiation of a variable;

c) a variable instantiated to an unexpected value.

These three behaviours may be explained at the 'Code Error' level in terms of 'modules'.

Depending on the level of description, these 'modules' may be such entities as a set of

predicates, or within a clause, an argument or subgoal. A given fault may be due to a

missing module, an extra module, or a wrong module; (eg a missing subgoal, an extra

subgoal, or a wrong subgoal). The search strategy of Prolog requires that we also include

the possibility of wrong order for clauses and subgoals. If our list of modules is complete,

then all possible (individual) bugs may be described in this way, in relation to some ideal

"template" code. Although this classification may be described as 'syntactic' in that it does

not include any of the procedural semantics of the programmer, it has the advantages of

being simple, regular, and complete, while defining a finite number of bug types. Using

this classification, we would be able to specify exactly what bugs any prospective system

would be able to process, without reference to the intentions of the programmer.

The classifications of the 'Program Misbehaviour Description' become relevant once the

domain has been formulated, and possible dialogues between system and student aie being

considered.

2.4.2 Debugging Systems

The ability to classify bugs without reference to the programmer’s intentions is of crucial

importance. The classification outlined in 2.4.1 refers the bugged code and result to an

ideal version of the code and its result. Any system operating in this manner would thus be

quite distinct from a "debugger" which attempts to find bugs in an arbitrary piece of code.

The debugger has to try and cope with such issues as the different possible ways of

solving a given problem, ie. there may be many different assemblages of code which give

the same result. Another issue for a debugger is that of acquiring some representation of

just what the programmer was attempting to do in the first place. If the program syntax is

60

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

correct, then any bugs must lie in the relationship between what was intended and the

manner in which the program actually executes. We now briefly describe two systems

which do utilise some representation of the programmers intentions, to illustrate how these

systems might differ from one which utilises an ideal version of the code.

PROUST (Johnson and Soloway 1984) was intended to be able to diagnose bugs in the

code of students who were given a specific problem. The system attempts to analyse a

formalised version of the problem and the students solution by synthesising the design

process that led to the student's code. The exact set of intentions which gave rise to the

code were not available to the system, but had to be inferred by it on the basis of the

problem specifications and the input code. PROUST used a three-level mechanism for this

inferencing, consisting of g W j and sub goals on the basis of the problem

specification, plans to realise the goals, and code to implement the plans. The system had

detailed knowledge of each level, and various forms of rules for dealing with mis-matches.

The detection of bugs has to proceed in parallel with the synthesis of the programmer’s

intentions as bugs might lead to a misinterpretation of the intentions, and a representation of

intentions was needed to spot bugs. This may be likened to a form of parsing. PROUST

was quite successful in identifying bugs from simpler problems, but more complex

problems allow the programmers greater freedom, and require more bottom-up analysis to

infer intentions directly from the code. This is very hard and Johnson (1987b) was led to

consider ways in which programmers might explicitly discuss their intentions with the

diagnosing system.

This method of explicit discussion between the system and the programmer was actually

used in SNIFFER (Shapiro 1981). This system stored a complete record of the code's

execution, and had a number of tools which allowed the programmer to interrogate this

record in order to locate the point where unexpected behaviour was obtained. The

programmer then gave this point and a statement of what was expected as input to the

system's debugging experts. These compared the actual code associated with the indicated

61

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

region with the code that the expectation would require in order to determine what bugs

may be relevant.

2.4.3 Conclusions: Prolog debugging as an implementation domain.

It should be clear from the remarks in 2.4.2 that the distinctions captured by the "symptom"

and "code error level" sections of Bma et al.'s (1987) paper do not support the construction

of a ’debugger’ as the term is generally used. Nor do we wish them to, since that is not

what we wish to build. In general terms our goals are as follows: we wish to investigate

whether the four models of Prolog execution outlined in Bundy et al. (1985) can be

implemented as viewpoints in a tutoring system which focuses on the use of those

viewpoints in debugging. In other words, we require a system which can tutor the skill of

using the four models of Prolog execution to localise bugs in Prolog code. This does not

necessarily require the high-level intention-recognition and bug-recognition facilities of

PROUST (Johnson and Soloway 1984), as we may limit the definition of what a bug may

be, and instead put the effort into a system which can describe those bugs we do allow in

terms of the four models of Prolog, and tutor in relation to this skill. Our research direction

is to tutor the application of the models rather than build a debugger. Bma et al.’s (1987)

paper gives us a complete classification of bugs in relation to an ideal version of the code.

It is concerned only with the ’ideal’ and ’bugged’ results, and not with any question of

intention.

For such a closed and structured world, a ’bugfinder* should not be difficult to build, and

efforts could be concentrated on developing mechanisms which describe the bug’s effect on

execution in terms of the four models we wish to use, and which are able to tutor the skill

of using those models to localise bugs. In short, we wish to demonstrate that a system

may be built which can support a satisfactory tutorial dialogue with the student in terms of

different viewpoints on Prolog execution, and which can help the student to use those

viewpoints effectively in localising bugs.

62

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

2.5 Explanation Content and Knowledge Base Structure.

Much of the effectiveness of any tutoring system depends on the quality of explanation that

it is able to give. It was this issue which prompted the inclusion of 'meta-rules' in

NEOMYCIN, (see section 2.1). As the issue is certain to arise in the implementation and

use of the proposed system, a brief review of explanation in relation to multiple viewpoints

is included here. The major concern is to establish how the content of explanations may

vary with the viewpoints they relate to. There appear to be two methods by which such

adaptive explanations may be produced: either the distinct viewpoints may be built into the

knowledge representations of the system, or else a mechanism may be implemented to

control what is retrieved from previously-existing knowledge representations which are not

dedicated to a specific viewpoint. This section discusses systems which illustrate the use

of both these methods.

2.5.1 Structuring the Knowledge Base.

Stevens and Steinberg (1981) describe "A typology of explanations and its application to

computer aided instruction". This work was an offshoot of the research on STEAMER

(Hollan et al. 1984, see section 2.1), and drew on naval engineering texts and operations

manuals to produce a taxonomy that could be used for organising explanations of physical

devices. They distinguish nine types of explanation, which differ in

"... level of detail, conceptual perspective, degree of 'match* with physical reality, and degree of

’quantitativeness’" (Stevens and Steinberg 1981 p. 2).

The "physical-causal" explanation for example, uses words such as 'push', 'puli' and

'force* to break a continuous process into sets of discrete events which have causal links

between them and are temporally ordered. The "stuff-state-attribute" explanation on the

other hand emphasises the substances that the system in question is dealing with, and the

way in which the attributes of the "stuff change with a change of state. It exploits the

63

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

strong human perception that "s tu ff is conserved, (what goes in must come out,

somewhere), to assist inferences about such matters as changing levels in water tanks.

Stevens and Steinberg (1981) claim to have automated the "physical-causal" explanation

and conclude that multiple types of explanation are needed precisely because people use

several different types of mental models to reason about complex physical systems. Thus,

they maintain, the goal for a tutor is to:

"... determine what models are necessary to reason in the ways useful to perform the tasks

associated with a given system and then communicate explanations embodying those models".

(Stevens and Steinberg 1981 p. 18).

An example of a system which has achieved this in some degree is the 'Recovery Boiler

Tutor' (Woolf 1988). This system tutors the operation of a complex piece of plant found

in many paper mills throughout the USA. It adjusts its explanations to different

operational situations and to different operators. The system combines a simulation with an

intelligent tutor and monitors the operator's performance. The operator can request

information about the state of the system in many forms, eg. as an animated graphic

depicting the system's components, as a control panel of gauges, or as specific trends

plotted against time. Via menus the operator may ask for information about such matters as

the current problem, the appropriate actions, and the root cause of the situation. The

explanations given in response draw on a domain representation which is "broken" into

three classifications. The 'conceptual knowledge' identifies the basic domain concepts,

and the relationship between them. 'Procedural knowledge' encodes the reasoning used

by the system to solve problems in the domain. Exploiting both of the former is the

'heuristic knowledge' which is intended to describe how an expert would make

measurements in the domain, and manipulate the 'conceptual' and 'procedural' knowledge

so as to find solutions. It could be argued that these different forms of knowledge

constitute the different 'models' that Stevens and Steinberg (1981) wish to see as the basis

of tutoring system explanations.

64

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

The 'Recovery Boiler Tutor' also adapts its explanations at an individual level in relation to

actions taken by a trainee. When an operator has taken some action in response to an

undesirable situation, the system can offer a critique of that action. The system refers to a

set of 'scenarios' which detail preconditions, operating emergencies, their solutions and

post conditions, to evaluate the student's action in the current 'scenario'. They may, for

instance, be told that the action was 'safe but not optimal', and why this is so. Woolf

(1988) stresses how the system's domain representations were carefully structured to

provide these different person-related and system-related forms of explanation.

t

Partitioning of the knowledge base is a technique also used by McKeown (1988) for the

ADVISOR system. This was not a tutoring system, but was intended to provide advice to

students about which courses they could or should take. The system interacts via a natural

language interface and the user's goals are derived from the ongoing discourse. With the

goal established, an underlying expert system determines the answer for this student, and

an edited version of the execution trace of this system is used to generate the explanation.

The knowledge base used for this is partitioned in terms of "perspectives", and the possible

goals are related to these perspectives in such a manner that the same advice may, in

different conditions, be justified by different explanations. The content of these

explanations is chiefly influenced by the user's overall goal, eg. 'how can I fulfil

requirements as quickly as possible?' as opposed to 'how can I maximise my personal

interest?' Relevant information about these goals is included in the explanation.

The different perspectives are represented by hierarchies of data whose roots are such

concepts as 'topics' (eg. 'Al topics') or 'requirements' (eg. the prerequisite credits for

doing a course in data structures). These hierarchies are linked by entities such as courses

which may be viewed from more than one perspective. The relevant information is

retrieved from the hierarchy and used as input to the expert system, and the resulting trace

edited into the explanation. A notable point is that a single hierarchy may be accessed by

more than one goal, so that different information is extracted, and a different trace

65

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

produced. This may be compared to SOPHIE I, (Brown and Burton 1975), where a

single circuit representation is accessed in terms of several different viewpoints.

2.5.2 Interpreting the Knowledge Base.

A different technique is advocated by Souther et al. (1989) and Suthers (1988). Souther et

al. are concerned with the provision of explanation in relation to the foundational

knowledge of introductory college courses. A feature of these courses is that they draw on

a large number of highly interelated viewpoints. Souther et al. note that previous designs

for ITS usually relate to a much more restricted domain, and the reader may indeed express

surprise at the scope of Souther et al.'s ambitions. They propose a method which utilises

"... domain-independent knowledge in the form of view types to select the appropriate knowledge

from a generalised knowledge base. (Souther et. al 1989 p. 123).

Elements of the domain knowledge are provided with annotations which indicate when that

element should be included in a certain type of explanation. The goal is thus to generate

explanations dynamically in terms of a small number of "view types". These "types" are

each intended to deal with a specific category of questions that a student might ask, and

each has a "strategy" associated with it which determines how that view is applied to the

knowledge base to generate an explanation. In addition, a view type specifies"necessary"

relations, which must be included in the explanations, and "permissible" ones, which may

be included but are not required.

The view types have such labels as "functional", "modulatory", "structural", "class-

dependent", "attributional" and "comparative". (These seem to overlap to some degree

with the explanation categories provided by Stevens and Steinberg [1981], as when

considering the attributes of objects). The explanation is based on a "concept of interest"

66

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

which, for certain "view types" is related to a "reference concept" to generate the required

information; (eg. pollen in relation to plant reproduction). The "strategies" select domain

knowledge in relation to the question asked and the reference concept.

The authors give us examples of the "definition-generation" strategy applied to three view-

types for the question "what is photosynthesis?", and claim to have produced explanation

generation "strategies" for two classes of questions, "... definition requests and

comparison questions" in relation to six view types. These strategies were able to generate

fifty test definitions from a botany text book by selecting links in a semantic net.

What began as an attempt to simplify the "intractable" problem of explicitly representing all

relevant viewpoints in a knowledge base begins itself to look highly complex here. There

are some seven view types, each with a number of different explanation strategies which

must take account of 'necessary’ and 'possible' relations to a very large number of

reference concepts, and which must be able to process and present temporal, spatial,

taxonomic and teleological information. Does this method imply that each element of the

domain knowledge base is to be indexed in relation to all of these categories? Such a task

does not seem tractable for a knowledge base of any size. This work could be

characterised as an attempt to erect a powerful epistemology on a conceptually simple

foundation, and in this sense its wisdom could be compared with that of similar attempts

under the name of "conceptual dependency" (Schank 1973). We may also wish to question

the extent to which a "domain independent" taxonomy of viewpoints may be defined.

Other questions may be asked in relation to the educational benefit of the exercise. Souther

et al. briefly mention the use of a student model and a dialogue history to provide "context-

specific presentations", but is education simply a matter of providing relevant definitions?

If these can be found equally well in a text book, (the comparison they themselves chose),

what is the benefit of using the system? There appears to be a distinct qualitative difference

between systems which actively engage the student in problem-solving activities and

67

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

critique their performance, such as SOPHIE (Brown and Burton 1975), WEST (Burton

and Brown 1979), or the Recovery Boiler Tutor (Woolf 1988), and those which simply

present information to the student in the manner of a book, (albeit with more adaptation to

the form of the student's question than a book can provide).

The explanation mechanism proposed by Suthers (1988) is not so overtly dedicated to

tutorial use, (although its use in this context is mentioned in passing), but has a comparable

approach. His basic idea is to free the discourse or explanation manager from having to

conform to the structures of a knowledge base which is structured mainly for reaching

decisions rather than for justifying them. This is to be achieved by using a "view retriever"

which accesses the knowledge base and provides a suitable form of input to the discourse

manager. These "views" are retrieved "... by parameters given along a small set of

epistemological dimensions" (Suthers 1988 p. 436). The "Topic" dimension defines the

object of central interest, and in the example Suthers gives us, (psychoeducational case

analysis), has two sub-dimensions "type" and "generality". Just how "topics" and "sub

dimensions" are to be specified in the domain independent terms desired is not made clear.

The "model" dimension determines the conceptual framework which is to be applied to "...

a given instance of the machine's reasoning", and contains the sub-dimensions "domain",

"computational", and "implementational". The last two of these deal with abstractions

about Al and the architecture of the reasoning machine. The "domain" sub-dimension deals

with the alternative models applied by practicioners in the field, and appears to assume that

all these models are equally applicable to a given instance of the machine's reasoning, and

that the machine's knowledge representations are rich enough to support them all. The last

dimension is that of "organisation", and specifies the way in which the explanation should

be structured, ie. what relations it should contain. Suthers lists six "classes" of relations

(eg. "chronological" or "structural"), but there seems little reason in principle why this list

of classes could not be extended indefinitely.

68

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

To retrieve a specific view, the specifications for each of these dimensions need to be

backed up by a statement of the level of detail required, and a set of tools which map the

elements of the knowledge base. In terms of a semantic net, these would be "node tables"

and "arc tables" which constrain the construction of a view in relation to the

"epistemological dimensions", and "path grammars" which constrain which nodes in the

representation may be traversed. These tools are not described in detail, but are intended to

encode the bulk of the domain-specific data. They appear to be related to the "semantic

grammar" of Burton (1975,1976), and must represent a serious investment of effort, since

they must be constructed in relation to each dimension and sub-dimension. An

implementation is said to be in progress.

2.5.3 Conclusions.

We may make a general point about the papers and systems considered in this section,

(2.5). They all envisage or describe explanation mechanisms which utilise pre-defined

knowledge representations to produce explanations whose contents vary with the goals of

the user. If we choose to see these different knowledge representations as encoding

Viewpoints', then our goal of designing a tutor that is based on pre-defined viewpoints and

that can produce appropriate explanations in relation to them begins to look realisable. The

implementations of 2.5.1 rely on knowledge representations which are purpose-built for

explanation, advice, or tutoring. This greatly simplifies the extraction and processing of

the relevant information, and gives greater scope for tutorially useful interaction.

The systems discussed in 2.5.2 rely on conceptual structures which interpret knowledge

bases designed for problem-solving performance. These structures are intended to be

simple, but inevitably become much more complex, while their implementational value has

yet to be proved and their educational value may well be questioned.

69

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

Where structures are defined for viewpoints, (Souther et al. 1989 and Suthers 1988) they

appear to be largely taxonomic, and do not focus on the issue of how the knowledge is to

be used.

2.6 Educational Philosophy.

Every tutoring system, intelligent or otherwise, implies the existence of some educational

philosophy, explicit or otherwise. This author is of the opinion that good design is more

likely to be achieved where a clear and explicit educational philosophy is available to guide

the process. At the very least, it helps to set explicit educational goals so that the success of

the system may be judged, and to remind the system builder that their creation has a

purpose beyond technical wizardry. This section sets out the educational philosophy which

underpins the research.

2.6.1 Ways of learning.

" Good learning situations and successful ITS, I suggest, are successful not because they enable a

learner to ingest preformed knowledge in some optimal way, but rather because they provide

initially underdetermined, threadbare concepts to which, through conversation, negotiation, and

authentic activity, a learner adds texture". (Brown 1989 p. 4).

This quotation exemplifies an emphasis on 'authentic activity’ which pervades the recent

writings of many who are concerned with "situated cognition" such as Brown (1989).

Brown refers to Resnick (1987) to distinguish the different kinds of learning that take place

in and out of school, and argues that the abstracted, explicit and generalised knowledge that

is the focus of formal teaching is not only difficult to learn, but is only marginally

transferable. He maintains that when it is situated in actual activity, the cognition of 'just

plain folks' or 'JPFs' (Lave 1988b) has much in common with that of experts, and that any

attempt to promote learning should take account of this. As Brown draws specific

70

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

conclusions from this in relation to ITS design, and as he summarises the work of many

others in this area, we shall examine his argument in more detail.

Brown seeks to distinguish between two views of learning. The conventional Or 'didactic'

view emphasises "... explicit renderings of "knowledge"..." which are decontextualised

and which promote problem-solving as the central quality of expertise. Brown suggests a

different view, derived from studies of ordinary people engaged in activities from which

they learn. This view stresses that learning is a process of making sense of the world in a

social and practical context, where learners produce, or co-produce concepts and models in

response to both the activity and some minimal concept specification. Brown supports this

view by contrasting learning in and out of school in terms of four categories noted by

Resnick (1987).

The first of these refers to authors such as Lave (1988a) to show that, outside of school,

most human activity, including learning, is social in nature, and that knowledge itself can

be seen as very much a social construction. While people may leam communally, they are

generally taught individually. Resnick's second category describes "... pure mentation... "

as opposed to "... tool manipulation." Schools emphasise the former, to the point of

insisting that "props" allowed in learning should not be available during testing. This

ignores the fact that tools constitute a large part of our environment, and that people use

apparently unrelated parts of their surroundings to distribute the burden of cognition. An

example of this given later is Lave's (1988b) account of a shopper finding the cheaper piece

of cheese in a bin which contained two sorts of the product, but gave no unit price. Rather

than engaging in complex calculations to determine the unit price, the shopper simply found

two pieces of equal size and selected the cheapest.

The third category discussed by Brown compares reasoning about abstractions with

reasoning about "stuff" (sic.). Outside the schools, people usually manipulate the "stuff

of the world directly, or else manipulate abstract symbols which are very closely tied to

71

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

such "stuff. These ties allow an expert to "look into" the world through the abstractions,

as an architect sees a building through a drawing or a physicist sees a circuit through a

diagram, so that the abstractions themselves are 'transparent’. School work, on the

contrary, emphasises the manipulation of symbols which have few connections to the

world, so that they become an end in themselves, and are thus "... opaque and

disconnected..." rather than a means to an end.

The last category deals with generalised learning, as opposed to that which is situation-

specific. Most school learning is deliberately abstract and generalised, with the intention

that it should be easily transferable. It turns out not to be so, as well as being difficult to

leam. Brown cites several authors on this point, and it is also supported by Cowan

(1986). Students are frequently unable to apply classroom knowledge except on classroom

tests. Brown suggests that situation-specific learning is however transferable, through

processes of analogical "intuition".

Having established these differences, Brown goes on to consider the main characteristics of

"Everyday Cognition" and "Expert Cognition". The former typically uses elements in the

environment to bear some of the load of computation and representation as with the

'cheese' example given earlier. The point being made is that people, rather than solving

problems outside of the context in which they encountered them, seem particularly good at

solving them within that context. Experts too exploit the context in their reasoning in

implicit ways, seeming to use contextual cues to decide what kind of analysis (or

viewpoint?) to apply to a given problem. Depending on the assumptions that an expert

makes, a transistor can be "seen as" an amplifier or a switch, and the implications of this

explored in causal terms (Brown and Burton 1987). It is this exploration which connects

the abstraction to the reality. These remarks seem to have much in common with the ideas

discussed earlier in relation to Clancey's (1985) "Heuristic Classification", where a

sequence of classifications connects the problem and the knowledge required to determine a

solution.

72

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

These perceptions lead Brown (1989) to argue that what JPFs do, and what experts do is

quite distinct from what is done in schools, and that there is a surprising similarity between

the "... implicit reasoning processes ..." (sic.) of JPFs and experts. There is thus a real

continuity between the cognition of JPFs and that of experts, while there is a real

discontinuity between the cognition of school students and experts. These continuities and

discontinuities are detailed, and two summary points are made: the activities of JPFs and

experts are situated within cultures of activity which strongly influence the negotiation of

meaning between situation and actor, and the construction of understanding, (see remarks

on Brown, Collins and Duguid [1989] above); in contrast to this, students are generally

expected to work on de-contextualised symbols and laws applied to well-defined problems

which are not related to any interpretive culture.

Brown concludes that the key implication of all this for ITS is that we must design systems

to do what schools have not done: we must take advantage of the "... robust, innovative

features ..." of human learning that he has described. This implies that we must re-assess

our ideas of what constitutes educational practice so as to include both formal and informal

learning of both explicit and inexplicit knowledge. Brown refers to studies such as Schon

(1987) to point out that an account of expertise which relies solely on the formal "...

abstractable content..." as a basis for learning is not going to be an adequate basis for

producing experts. Experts inhabit a "... practice w orld..." of

"... conventions, constraints, languages, and appreciative systems repertoire of exemplars,

systematic knowledge, and patterns of knowing-in-action." (Schon 1987 pp. 36-37).

It is the process of enculturation into this world that is referred to in Brown, Collins and

Duguid 1989 as "cognitive apprenticeship". The challenge for ITS is thus not to produce

successions of microworlds, but "Increasingly Complex Enculturating Environments".

73

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

Brown goes on to list five crucial aspects of learning which he believes are currently

overlooked, and which must be taken account of in the design of the "Enculturating

Environments". At the core of these is a demand that the technological and conceptual

tools that constitute the ITS must be "transparent" in the sense that they are seen as the

means to an end, rather than an end in themselves. The students must be able to "see

through" the tools to the world itself as a blind person can appreciate the world through

their cane without significant awareness of the cane itself. The attempt to characterise this

kind of technology gives rise to a rather different use of the term "Glass-box" from that

used in section 2.1.4. Brown's use of the term goes beyond identifying knowledge

representations which are adapted to the provision of tutoring and explanation, to a more

demanding design imperative which stipulates that the system and its knowledge

representations should connect the student directly to the world of practice. This may

sound like a contradiction in terms since an ITS can only ever constitute a virtual world.

The stipulation takes on more meaning though, if it is interpreted as a demand that the use

and practice of the knowledge to be learned should always have a central place in the ITS

design process.

Brown finally identifies three types of "transparency" that a system may manifest, and

refers to Wenger (1988) for a more comprehensive taxonomy. "Domain transparency"

describes qualities in the learning tool that allow the learner to "see into" the domain,

focusing on those aspects of it which are of interest without being distracted or obstructed

by other features of the tool itself. The analogy is drawn with the use of a magnifying

glass. The glass is transparent, but the object is brought sharply into focus. This may be

interpreted as offering models of the domain which are suited to the learner's purpose.

"Internal transparency" refers to qualities of the learning tool itself. Where a tool or system

aids performance in some area through built-in expertise, the reasoning strategies of the

tool should be made clear so that the users may build for themselves suitable models of

74

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

successful reasoning in that domain. This sounds like the interpretation of "glass-box"

given in section 2.1.4.

The third form of transparency is not so clearly described. "Embedding transparency"

refers to the overall process of which the tool and its use are a part. The tool itself must not

become "decontextualised", since then it becomes simply another rigid abstraction.

Instead, the design of the tool must reflect the process of ongoing interactions between the

user and the world. The implications of this for ITS design are not spelt out

The goals articulated by Brown (1989) can be related to our discussion of viewpoints.

"Domain transparency" can be taken as referring to the selection and use of appropriate

domain models. If different models each have a different utility, as discussed above, then

in order to provide the "transparency" that Brown advocates, the system will have to select

an appropriate domain model for the student's goals. This in turn implies that the different

models, and conventions regarding their use, will have to be represented in the system.

This is indeed the project which we have outlined above.

The notion of "Internal transparency" raises the question of the degree to which the

inference mechanisms that operate on the system's model can be made to match those of

experts in the world. This issue, and that of the degree to which such a match can promote

implicit learning, are matters which are better discussed in relation to the implementation

described in subsequent chapters. The closeness of this 'matching' will also have

implications for any consideration of the system's interface, as the development of

STEAMER (Hollan et al. 1984) demonstrates. This issue is also best discussed in relation

to the implemented system.

75

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

2.6.2 Applying Knowledge.

We interpret Brown’s (1989) demand that a learning tool should always connect the learner

to the world of practice as a demand that the use and practice of the knowledge to be

learned should always have a central place in the ITS design process.

This is, after all, one of the things which distinguishes it from the explicit and formalised

learning common in school work with its apparent lack of transferability. These points

about use and transferability are supported by Cowan (1986) who laments the inability of

many students to apply the algorithms they had learned in engineering courses to problems

whose nature was not immediately clear, ie. they were not good at analysing the problem to

determine which algorithms should be applied. Cowan puts much of the blame for this on

the manner in which the courses are taught: problems set are generally straightforward

applications of algorithms which have just been tutored, and become ends in themselves

rather than being intimately tied to engineering practice. As noted above, Cumming and

Self (1989b) advocate an emphasis on such practice in terms of a "discussion" level which

reflects upon the use of knowledge in problem solving. The purpose of the 'discussion

level' is to critique the student's execution of the task so as to make them aware of possible

alternatives or improvements.

This is the kind of separation described by Brown, Collins and Duguid (1989) in relation to

the maths class which did not simply solve a problem, but spent a great deal of time

subsequently discussing different possible solutions. In the light of Brown's (1989)

remarks we may speculate that much of the effectiveness of the 'situated' learning that these

authors describe comes from the fact that, being learned in practice and within a 'culture',

the knowledge and its application are, from the first, intimately connected. The examples

given by Stevens, Collins and Goldin (1979) indicate that integration between different

viewpoints is as important as knowing in how a specific one should be used. We may

finally refer once more to Larkin et al. (1980) who stress the expert's skill in analysing a

76

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

problem, and to Clancey (1985) who stresses the importance of "heuristic classification" as

a means of connecting knowledge with solution strategies. The real point being made here

is that our concern with the application of viewpoints is not an implementational

convenience, but an issue of considerable importance for education itself.

2.7 Conclusions to Chapter 2.

Viewpoints appear to be alternative modes of analysis which each highlight different

aspects of the domain in question and thus reduce the search space for problem solving.

The review of ITS literature shows that different viewpoints may be needed both for

tutoring and for problem-solving. There are indications that students learning different

viewpoints on a domain also need to leam in what context the viewpoints are to be used,

and how they are related to each other. Different viewpoints may also relate to different

levels of expertise.

For an implemented ITS the knowledge representations of a large domain will probably

need a degree of 'psychological plausibility' while smaller domain may be well served by a

'black-box/glass-box' combination. The basic problem seems to be that of finding a

suitable conceptual structure for a viewpoint on which to base an implementation, and of

deciding what educational goals and design philosophy it is to support. Where a range of

viewpoints are available, the student may be seen as an active partner in the process, so that

their learning history and goals may influence the selection of the viewpoint to be tutored.

(This selection could be made by the student, a human teacher, an ITS, or any combination

of these three).

The literature on mental models is taken as a reasonable starting point in looking for

definitions of 'viewpoints'. Parts of this literature indicate that different inferences are

made with different models, and that having a model may give better performance than

having none. The nature and utility of 'structural' and 'functional' models are described in

detail. The importance of mechanisms which link problem contexts to the knowledge

77

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

required for their solution is underlined, and a candidate mechanism offered by Clancey

(1985).

A suitable domain for implementing an ITS appears to be that of Prolog for novices. The

complementary models required, and common misconceptions about Prolog, have already

been described by others (Bundy et al. 1985, Fung et al. 1987). An implementation

technique which allows the interpretation of a record of Prolog execution has also been

described (Eisenstadt 1985). The desire to emphasise the application of viewpoints leads

us to consider the application of the models of Prolog to debugging as a domain. A means

of describing bugs in terms of symptoms and program code (where 'template' code is

available) is provided by Bma et al. (1987) . Relating possible bugs to template code

allows the construction of a closed domain and avoids the complications inherent in

building a 'debugger'. Implementation efforts may thus be concentrated on mechanisms

which can describe and tutor the effects of particular bugs on Prolog execution in terms of

Bundy et al.'s (1985) four models.

Part of a tutor's function is to provide appropriate explanation. Previous work in providing

explanation in relation to different viewpoints is encouraging in that some success has been

achieved using pre-defined viewpoints for specific domains (Stevens and Steinberg 1981,

Woolf 1988, McKeown 1988). The proven implementations have structured their

knowledge representations in terms of the relevant viewpoints. Another approach attempts

to re-interpret knowledge-bases specifically built for problem-solving in the domain

(Souther et al 1989). This approach appears to involve a highly complex conceptual

apparatus, has yet to be implemented convincingly, and is of questionable educational

value.

The use of multiple viewpoints in tutoring systems appears to entail some re-thinking of

our educational philosophy since the application of each viewpoint also needs to be tutored,

as does its relation to other viewpoints. This contextualises the knowledge to be learned in

78

Chapter 2: Viewpoints in tutoring systems: uses, structures, and domains.

a way that traditional schoolwork generally avoids, and provides the possibility of adapting

our tutoring to the goals and experience of the student. An approach to education which

emphasises the context and use o f knowledge, and the situated nature of learning is

proposed in Brown (1989), and is summarised in section 2.6. The implications of this for

ITS design, as listed by Brown, are also summarised.

The goal of this thesis is thus to identify and test a structure fOT implementing viewpoints in

tutoring systems, and to investigate the design issues which arise when several such

implemented viewpoints are to be used in a single system. These design issues include

both technical questions relating to system architecture and knowledge representation, and

more general educational questions relating to educational philosophy, tutorial strategies

and goals, and the provision of explanation.

79

Chapter 3. A Formulation for Viewpoints.

This chapter considers how the notion of a mental model may be augmented so as to

provide a structure for representing viewpoints in an ITS. (This does not imply that the

resulting viewpoint is proposed as a ’psychological reality'). The need for inference

mechanisms to act upon a formalised model is considered, as is Wenger's (1987) attempt to

formulate a viewpoint structure. The structure advocated in this thesis is developed by

considering issues relating to the domain being tutored, the design objectives stated for the

implemented system, and the educational philosophy it is intended to embody. As

described the structure of each viewpoint is intended to be modular, consisting of a model

for the domain, a set of inference procedures to act on the model, and a set of heuristics

stating the application of the model/inference procedure combination to problem contexts.

This formulation is considered in relation to the 'cognitive apprenticeship' theory of

learning, and also in relation to alternative possible formulations. The need for a study to

extend and validate the formulation is considered.

3.1 Considerations for the formulation.

What structure should we use to describe viewpoints? The literature considered in chapter

2 section 2 indicated that research on 'mental models' may have much to offer as a starting

point for any formulation of 'viewpoints' for an ITS implementation. The point was made

that to formalise the subjects' performance in the Centner and Centner (1983) study, and

the Kieras and Bovair (1984) study in terms of the notion of viewpoints outlined above,

(ie. to provide a formalisation which could act as the basis of a performance simulation for

tutoring purposes), we would need to augment the studies in several ways.

These augmentations would need to include:

a) some account of the means by which inferences are drawn from the models;

b) some account of how a particular model is chosen as being applicable to a

80

Chapter 3: A Formulation for Viewpoints

particular problem;

c) a formalised version of the models used.

(Strictly speaking, the subjects of the two studies were instructed to apply certain models,

but as we have argued above, knowledge about when to apply a model is crucial to its

successful use). Since it seems likely that the final application of the models would depend

to some extent on the inference processes that are used in conjunction with them, it seems

logical to focus initially on the first and last of these questions, ie. the inference procedures

and the model formalisation.

Although this discussion refers to 'mental models', it should be stressed that the concept of

a "viewpoint" is not proposed as a psychological reality. We are concerned with the design

of Intelligent Tutoring Systems, and a "viewpoint" is proposed only as a concept which is

useful in this practice. The problem being addressed is that of how tutoring systems may

be designed to utilise different viewpoints on a given domain. This stance is taken since the

work of system design requires a performance simulation of appropriate reasoning in the

domain, while psychologists continue to debate the psychological reality of their various

accounts. Viewpoints are thus conceptualised as being based on 'models', and related

heuristically to contexts of use. 'Model' is used here, and throughout this thesis, as by

Young (1983) to describe a'user's conceptual model'.

Viewpoints are seen as being distinct from available accounts of mental models in that

firstly, they propose some mechanism for deciding when the model is applicable; and

secondly, they propose specific mechanisms for making inferences from the model, and for

choosing amongst these mechanisms. In general terms, then, mental models have to be

applied to problems, and as we wish to describe this process for the implementation of

tutoring systems. A viewpoint is thus seen as a description of the application of a mental

model.a viewpoint is seen as a description of the application of a mental model. Its

81

Chapter 3: A Formulation for Viewpoints

purpose, loosely stated, is to allow the system to conduct its tutoring flexibly, taking into

account the goals and knowledge states of the student

The issue of how different inference procedures may be used with a given model may be

explored by reference to the work on SOPHIE I (Brown and Burton 1975) and the

METEOROLOGY TUTOR (Brown et al. 1973) where a number of different kinds of

inference are made using the same model. In the case of SOPHIE a single (numerical)

circuit model is used by a number of "procedural specialists", to answer 'what i f

questions, to evaluate the student’s hypotheses, to list all possible hypotheses, and to

evaluate requests made by the student for new measurements. These "procedural

specialists" illustrate the kind of inference procedures which may be required in conjunction

with specific models, and also raise a classificatory problem. Looking at specific events in

the functioning of the circuit and holding a hypothesis about what is wrong with the totality

of it seem to be quite distinct points of view which would be adopted in different contexts,

and quite possibly for different goals. They are, however, based on the same model,

being distinguished only by their inference procedures and (possible) heuristics for

application. Does this mean that any difference of inference procedure always identifies a

different viewpoint? This does not seem to be a particularly sensible or useful conclusion,

since it would identify an explosive number of different viewpoints. It is perhaps

premature to seek a clear answer to the problem at this stage, but it may be noted here since

we are speaking of multiple "different" viewpoints on a domain, and may be called upon to

state in what way they are different. Where viewpoints are based on different models, the

distinction between them seems clear, as they are likely to have different "primitives" for

description which are structured in different ways.

A similar discussion may be had in relation to the METEOROLOGY TUTOR (Brown et al.

1973) which was a precursor of SOPHIE. This system used a number of finite-state

automata to produce qualitative models of meteorological state changes. The various

automata are linked by "transition conditions" and also "global predicates" which represent

82

Chapter 3: A Formulation for Viewpoints

the assumptions behind the questions asked of it. When assembled, the automata resemble

an augmented transition network. To answer specific questions, the model is set to the

stated conditions and run. This produces an inference tree whose branches represent

different causal chains. This may be read "root to le a f to answer the questions detailing

specific conditions, such as "If the temperature falls by three degrees -—". However, it

may also be used to answer more general questions about causal relationships, such as

"Does relative humidity decrease when the temperature drops?". This is done by searching

for a causal path between the two named states with their relative values.

Here the different viewpoints may be characterised as quantitative and qualitative: ie. the

former propagates the state changes resulting from a quantified change in the value of a

specific parameter, while the latter generalises causal relationships at a different level of

analysis or "grain size". Thus there are two distinct viewpoints which access the same

model, but which do so in different contexts, and which use different inference

mechanisms to derive their conclusions.

The kind of inference procedures that are required for our viewpoints may be obtained by

defining operators of the kind used in problem solving (Newell and Simon 1972) which

may be applied to the model in question to infer the desired information. As the later

analysis of protocols will show, we may also wish to augment or transform the models.

Other operators will be required in order to do this. These inferential operators are seen as

an important part of the proper definition of a viewpoint

The basic formulation that results from this discussion thus has three parts. The first two

are an explicit domain model, and a set of operators which interrogate it. The third part

encodes the knowledge about when it is useful or appropriate to apply the combined model

and inference procedures. Although the work towards an implementation is initially

concerned with the first two of these parts, a few more remarks about the third part are in

order here so as to draw together a number points made previously. The most basic point

83

Chapter 3: A Formulation for Viewpoints

is that, as stated in section 2.6, our concern with the application of viewpoints is an issue

of considerable importance for education as well as for implementation.

As Centner and Genmer (1983) and Kieras and Bovair (1984) show, different inferences

and different levels of performance may be obtained depending on the model, or lack of it,

employed. The desirability or otherwise of a particular result will depend on the goals of

the exercise. This indicates that different models may have different utility in relation to

different goals. Young (1983) and di Sessa (1986) give examples of this when they

discuss the differing utility of structural and functional models in relation to, respectively,

understanding how a calculator functions, and learning to program. Effective action in

pursuit of goals, or the effective application of viewpoints which have been learned, would

thus seem to require that students also leam what the different combinations of model and

inference procedures are good for, ie. when they should be applied.

This conclusion is supported by the discussion of Brown (1989) and Cowan (1986) in

section 2.6. Brown emphasises the central role of expert practice in learning, while Cowan

laments the inability of many students to apply the quantitative algorithms they had learned

to problems whose nature was not immediately clear, ie. they were not good at analysing

the problem to determine which algorithms should be applied. We may thus draw the

conclusion that learning to apply knowledge in this way, that is learning to identify the

salient features of a problem and apply a suitable model to it, is a valid educational goal,

and an important component of expertise as Brown (1989) maintains. We may also

express the opinion that it is a much neglected one. As noted in chapter 2, Self (1989)

points to its importance when he calls for greater attention to be paid to metacognition and

reflection, and recommends a separation of the task and discussion levels in relation to

learning in a given domain (Cumming and Self 1989b).

An alternative attempt to formulate a structure for viewpoints is found in Wenger (1987).

The language of Wenger's formulation is somewhat opaque, and we refer to it in order to

84

Chapter 3: A Formulation for Viewpoints

support our decision to use the language of the mental models literature in order to describe

viewpoints. Wenger (1987) claims that his definition is relevant at three levels of analysis.

These are in relation to specific situations, to specific domains, and as a general

background. Each viewpoint has a 'kernel’ composed of a number of 'keys' such as prior

decisions or beliefs. Along with the 'kernel' is a 'scope' defining the "foreseeable area of

relevance" of the viewpoint. In summary, Wenger sees a viewpoint as an

"— interp^etivG con tex t w hose k e rn e l co n ta in s critical k eys to the p roper u n d ers tan d in g o f the

entities within its scope." (Wenger op. cit. p. 355).

This "kernel" of "prior decisions" sounds remarkably like the kind of model described in

Centner and Stevens (1983). In de Kleer and Brown (1983), we might see them as the

complex assumptions concerning causality and structure ever-present in naive qualitative

reasoning. In Centner and Centner (1983), the "keys" might be the assumptions of identity

between the behaviour of piped water and that of electric current. The "scope", or area of

relevance may or may not be seen as intrinsic to the model. If we add an algorithm

specifying just how the model is to be applied and inferences drawn in a particular

situation, then we could have the bones of a "viewpoint".

Wenger fleshes out his analysis with examples of the kind of viewpoint that can be

identified for each level of analysis. One would wish to argue with few of his examples.

Indeed, many of them seem to echo illustrations given earlier in this paper, and he even

uses the Centner and Centner (1983) teeming crowds/electricity analogy to illustrate one

point. This then, is a generally useful analysis, but it is not clear to us why the objects

analysed could not equally well be referred to as "models", thus avoiding the burden of

additional terminology. Wenger (1987 chap. 15) seems to reserve this term for the totality

of knowledge representations which make up the system's expertise in relation to a

particular domain. Civen the work in Psychology, it would seem sensible to also use the

term in relation to an individual's view. "Personal" models could be distinguished from

"generic" ones, while the question of "grain-size" or "level" could be dealt with by a

85

Chapter 3: A Formulation for Viewpoints

hierarchy of models. With respect to definitions, a range may be found in such papers as

Young (1983), and de Kleer and Brown (1983). As Young points out, the structure of

these may vary with the use to which the model is to be put.

Wenger does not make clear the connection between seeing the problem in a particular way,

and solving it. Simply adopting a new frame of reference, or for example, a causal as

opposed to a strategic ("good idea") approach does not of itself produce a solution. The

new view may make a range of procedures possible. Choices must be made about which

one is to be used and how it is to be applied.

3.2 The goals of the formulation.

We are now in a position to make a preliminary specification of a structure for "viewpoints"

in terms of our goals for the implemented system. This structure may be considered in

relation to the domain to be tutored, our design objectives, and our educational philosophy.

These areas of concern are of course intimately linked, but taken separately, they may serve

to structure our discussion.

For a given domain, our blueprint for viewpoints must be able to support (ie. encode)

different ways of analysing that domain, so that different aspects of it are highlighted. The

use of these ‘modes of analysis' to support specific classes of problem-solving tasks must

also be supported; (ie. the viewpoint must be able to encode the way in which different

inferences may be made using the same 'mode of analysis', that is, by applying the same

model). The assumption behind this requirement is that a tutoring system must itself be

able to carry out the tasks or exploit the knowledge that it is trying to tutor. In addition to

this, a viewpoint must be able to encode information relating to the areas where the mode of

analysis and its inferencing mechanisms may be fruitfully applied.

The performance goals of the system we are designing are as follows: the implemented

system should be able to conduct tutoring in a given domain in terms of two or more

86

Chapter 3: A Formulation for Viewpoints

viewpoints on that domain. This implies that the system should be able to tutor the

viewpoints independently, and make clear their area of application, as well as tutoring their

interrelationship, or use in combination. This in turn implies that the traditional problems

of student modeling are made even more complicated, since diagnosis, correction, and

explanation will need to be given in relation to the individual parts of a viewpoint, its use in

isolation, and its use in relation to other viewpoints. While this is not the real focus of the

research, it does imply that a representation of viewpoints needs to be carefully structured if

the modeling and explanation tasks are to be tractable.

It has also been indicated above that the presence of multiple viewpoints may also allow us

to adapt to the student (eg. adapting to their learning history or current goals) by choosing

particular viewpoints for a given tutoring episode. For such adaptation to be possible, the

viewpoints, or a decision process that chooses them, would have to encode information

concerning the learning histories and possible goals that the viewpoints can be related to.

This desire for adaptation is scarcely separable from the educational philosophy. This

philosophy (see section 2.6) demands that the student be viewed as an active partner in the

educational process, so that, as stated, the tutoring is adapted to their changing goals and

needs. In practice this adaptation could take various forms. If a student can be diagnosed

as lacking a necessary viewpoint for a given task, then this viewpoint can be taught. If a

student's goals can be either diagnosed or given as input to the system, then the viewpoints

appropriate to those goals can be taught. 'Liberal' designers may allow the student to state

their own needs and tutor in relation to those stated. In Brown's (1989) terms, the

intention of this is that the viewpoints being taught should be 'transparent' to the student,

ie. they should not be taught or learned for their own sakes alone, but should promote the

student's ability to 'see through' them to the world itself.

The educational philosophy also demands that learning should be rooted in ongoing

practice which is as 'realistic' as possible, and that the student should be encouraged to

87

Chapter 3: A Formulation for Viewpoints

consider the "discussion" or meta-level aspects of the knowledge they are dealing with.

This is intended to follow some aspects of the "cognitive apprenticeship" model described

by Brown, Collins, and Duguid (1989). The attention to "discussion" or "meta-level"

knowledge about where a given piece of knowledge may be applied is also important for

the elimination of misconceptions as Stevens, Collins and Goldin (1979) indicate, (ie.

there would be little point in tutoring the 'functional' as well as the 'scriptal' views of

rainfall unless the student was also induced to use them in combination). The possibility

that it will be necessary to use viewpoints 'in combination' as well as individually to solve

some problems, such as Minsky's (1981) car ignition example, introduces a complication:

it seems that it will not be sufficient to simply list the contexts and goals in relation to which

a given model and set of inference mechanisms will be useful. Ideally, the viewpoint

fomulation should also enable the system to give some guidance about when and how a

given viewpoint should be used in conjunction with other viewpoints.

The need to root learning in some ongoing 'practice' implies that the viewpoints, together

or separately, will have to support the successful execution, as well as explanation of,

relevant tasks in the domain. In other words, the system must, at some level, be able to do

what it is trying to tutor.

3.3 The Formulation.

The goals expressed in sections 3.1 and 3.2 lead us to define the following working

structure for viewpoints to be used as the knowledge representations of an ITS.

3.3.1 The structure for implementing viewpoints.

The viewpoints are to be composed of three modules, these are:

• The model, or set of descriptors, terms, and relationships which are used together

in a particular mode of analysis in the domain.

• A set of inference mechanisms which are applied to the model in order to make the

88

Chapter 3: A Formulation for Viewpoints

different inferences necessary in a given mode of analysis.

• A set of representations, heuristic or otherwise, which specify contexts in which

the given mode of analysis may be used, and the goals which may be satisfied by

doing so.

This is represented graphically in figure 1.

Figure 1: An Outline Structure for Viewpoints.

Goals A Complete V iew point ^ Contexts
of Use

Goals and Application Heuristics

Inference
Procedures

Model

Task and Solution

Figure 1 is intended to convey the following: A solution to a given task or problem is

produced by inference procedures acting on a model of the domain in question. Specific

features of the problem will map onto specific elements of the model, and onto specific

parts of the inference procedures. The choice of which model and set of inference

89

Chapter 3: A Formulation for Viewpoints

procedures to apply to a given problem is controlled by a set of heuristics. A different

formulation of these heuristics states the classes of goals (or contexts of use) which each

'model-and-set-of-inference-procedures' combination may serve. In combination, the

heuristics, model, and inference procedures are referred to as a Viewpoint'.

A simple example of this structure can be given in terms of an alternator for a car engine.

First, a model of the alternator has to be described. For clarity's sake this is expressed as a

set of Prolog clauses:

haspart(altemator, pulley).

haspart(altemator, rotor),

haspar^altemator, wires).

haspart(altemator_drive, belt).

drives(belt, pulley).

drives(pulley, rotor).

drives(rotor, current_production).

comect(belt):-undamaged(belt), tight(belt).

correct(wires):-undamaged(wires), fastened(wires).

This model could support a number of inferences, relating to such questions as "What parts

does an alternator have?", "does an alternator have a pump?", "what drives the rotor", or,

for a specific case of an alternator, "Is the belt in the correct condition?". The operators

which are intended to encode the means of making such inferences form the second part of

the model. These can be expressed in Prolog predicates such as:

drives(X,Y).

drives(X, Y):> drives(X, Z), drives(Z, Y).

drives(X,Y):- drives(Z,X),

not Y = Z,

message(['the processes driven by X, 'are outside the scope of this model*]).

The third part of the viewpoint is a set of heuristics which guide the application of the

model and associated set of inference procedures to specific problems, problem-solving

90

Chapter 3 : A Formulation for Viewpoints

contexts, or goals. Without being coded in Prolog, these statements can be sentences of

the form:

• "If the alternator is not functioning, this viewpoint can be used to identify possible mechanical

causes".

• "If you wish to list the components of the alternator, use this viewpoint.".

• "If you wish to ascertain the presence or absence of a component in the altematœ, use this

viewpoint".

This formulation for viewpoints may be related to the goals stated in section 3.2. In terms

of the domain-related goals, the 'model' will encode the different modes of analysis, or

'mental models' that are applicable. The use of this model to solve specific classes of

problems is to be encoded in the inference procedures which act upon the model. This

should give the resultant system the ability to actually do the tasks or exploit the knowledge

that it is trying to tutor, once a suitable viewpoint has been selected for a given problem.

The information necessary to make this selection is to be encoded in the heuristics which

govern the applicability of models to problem-solving contexts. This is equivalent to

saying that the heuristics describe the classes of goals that a model may serve. The

intention that the system should be able to choose a 'suitable' model, clearly assumes that

the viewpoints encoded in it are the correct and proper ones. (This is in accordance with

the position stated in section 2.1.6, that the research should concentrate on the question of

what could be achieved in terms of a system which utilised a number of pre-defined

viewpoints). This does not however preclude the possibility of representing

misconceptions at any level of the viewpoint structure described through such traditional

methods as perturbation modeling (Carbonell 1970). The elements to be perturbed could

include the model, the inference mechanisms, or the application heuristics.

The performance goals stated in 3.2 would be served through the explicit representation of

two or more viewpoints in the terms described. Each may thus be tutored separately. It is

also intended that the heuristics governing a viewpoint's application should encode

information about its relationship to other viewpoints as well as to problem classes and

91

Chapter 3: A Formulation for Viewpoints

goals. The purpose of this is to give the system the ability to tutor in terms of the

relationships between viewpoints, and to promote the integration desired by Stevens,

Collins and Goldin (1979). How, for instance, is the mechanical view of a car alternator

related to the electrical view? Does a change of state described in one view imply a change

of state in the other? Is it ever necessary to use both views in combination? Which classes

of problem are solvable by each viewpoint? Are there situations when it is advisable to

switch from one viewpoint to the other?

The modular description in terms of model, inference procedures, and heuristics, is

intended to provide a structure which will facilitate the diagnostic and student modeling

functions of the system. The encoding of the heuristics in terms of both contexts where the

modeWnference procedure combination may be applied, and goals that may be so served, is

intended to enhance the adaptability of the system. If knowledge of a student's goals can

be acquired, then viewpoints related to them may be tutored. It would also be desirable

that the system have the ability to diagnose when such tutoring was not necessary.

The explicit representation of the inference procedures as well as the models they act upon,

should give the system itself the ability to function successfully in the domain it is intending

to tutor. This should satisfy some of the goals implied by our educational philosophy. The

student may thus be given explanation and demonstration in relation to each aspect of the

domain, and may be set tasks which relate to those in the real world domain.

The explicit representation of the application heuristics and relevant goals for the viewpoint

should allow the system to tutor in relation to this knowledge, since, as Gumming and Self

(1989b) recommend, it separates the "discussion" or meta-level knowledge from the "task"

knowledge in the models and inference procedures.

92

Chapter 3: A Formulation for Viewpoints

3.3.2 The viewpoint structure and "cognitive apprenticeship".

It is hoped that the structure for viewpoints given in section 3.3 will allow some learning in

the style of "cognitive apprenticeship" described by Brown, Collins, and Duguid (1989).

This account of learning emphasises the crucial role of "authentic" activity, and the vital

contribution which may be made by aspects of the social and physical environment in

which learning takes place. Four basic tutoring strategies are identified.

These are, in rough order of use:

• modeling;

• the provision of "scaffolding" for the student;

• the identification of different decompositions for a problem;

• general practice.

(These are also discussed as "modeling", "coaching", and "fading").

The idea behind "modeling" is that the tutor should demonstrate some practice in the

domain as a practitioner, and make explicit some aspects of the tacit knowledge that

underlies authentic activity. "Scaffolding" is a term used to represent the provision of a

conceptual framework which the student can use to organise their thinking about the

domain. This is provided at a "threadbare" level, and is given added texture by the student

through practice in the domain. Such "scaffolding" may well draw on structures or

systems which are already familiar to the student. The purpose of pointing out different

decompositions for a problem is to indicate to the student that problem descriptions and

heuristics, (and even algorithms) are not 'absolute', but may have greater or lesser utility in

different contexts. The purpose of general practice is to allow the student to generalise

what they have learned to new situations, so that they may become more expert

practitioners, generating their own solution paths for problems, and adding more "texture"

to the initially bare "scaffolding" of concepts. This "generalisation" may well also involve

some re-formulation of the original "scaffolding". Such practice should be as authentic as

93

Chapter 3: A Formulation for Viewpoints

possible, since much of the "texture" to be added to the "scaffolding" is to be derived from

interactions with the social and physical environment.

The relevance of this to the structure for viewpoints given above can best be demonstrated

in terms of a specific domain, and the outline of a system intended to tutor in that domain.

Let us assume that the domain is Prolog, specifically the localising of bugs in Prolog code.

Let us also assume that a number of viewpoints are available which are structured as

described above, and which together can describe the execution of Prolog goals and code.

The purpose of the assumed system is to tutor the skill of using the viewpoints to localise

bugs in pieces of code. Common sense states that the students will not be able to learn

such a skill until they have some understanding of the viewpoints themselves, and can

apply these to describe Prolog execution in general.

This implies three overall stages in the tutoring process for this domain:

• becoming familiar with the models and applying them to describe Prolog execution;

• becoming familiar with the viewpoints and applying them to debugging in the

simpleified environment the system provides;

• generalising what has been learned to debugging in a 'real' environment.

If the assumption is made that the goals of the system are to address the first two of these

stages, then the four cognitive apprenticeship strategies can be discussed in terms of how

the viewpoint structure will support the strategy in relation to each stage.

The first strategy given above is modeling. For the first stage of Prolog learning,

(describing execution), the system would have to model the way in which the viewpoints

are applied to describe Prolog execution. This could be accomplished through a procedure

which could determine which part of which model is appropriate to describe a given part of

the execution. This part could then be presented to the student. The function of retrieving

a specific modelpart can be allocated to an operator of the relevant viewpoint. The

application of the viewpoints in the localisation of bugs is likely to be a more complex

94

Chapter 3: A Formulation for Viewpoints

matter, involving chains of inference. However, such 'bugfinding' could also be modeled

if operators could be defined which connect a buggy behaviour to a specific piece of code

through a sequence of inferences on one or more models.

The provision of "scaffolding" is the second strategy proposed by cognitive apprenticeship.

In terms of the viewpoint structure outlined above, the models themselves can fill this role.

For the task of describing Prolog execution, they provide a range of related and stmctured

concepts for description, so that the problem becomes one of deciding which part of the

structure to apply. For localising bugs, each model provides a means of describing and

highlighting certain aspects of Prolog execution, so that the presence or absence of specific

bugs can be determined. For a given buggy behaviour, this has the effect of carving up the

'problem space' of possible bugs into smaller, and hopefully more manageable, chunks.

The emphasis here is that one of these problem spaces should provide the explanation for

the bug.

The tutorial strategy of emphasising different possible problem decompositions can also be

served by the proposed viewpoint structure. Depending upon the particular model and set

of operators used, differing (partial) accounts of execution could be obtained, emphasising

the fact that there are various ways in which execution may be described. In relation to

bugfinding, the different combinations of model and operator could describe the different

bugs which would all produce the same bugged behaviour. Rather than emphasising that

there may be different problem spaces to consider, (as in the case of "scaffolding" above),

this aspect of viewpoint use emphasises the idea that there may be several different possible

explanations for a given bugged behaviour.

The strategy of giving practice so that the students become practitioners and generalise what

they have learned to new situations is seen as beyond the capabilities of any tutoring system

being implemented as a part of this thesis. Applying the different viewpoints to describe

Prolog execution seems to be an activity which is in any case capable of little

95

Chapter 3: A Formulation for Viewpoints

generalisation. In the case of bugfinding, the student would hopefully generalise what they

had learned by going beyond the confines and limitations of the tutoring system to apply

what they had learned to localising real bugs in real code.

A few more general comments are in order here in relation to cognitive apprenticeship. The

protagonists of the theory put great emphasis on the importance of "authenticity" in the

activities by which the students learn. This is contrasted with the "inauthentic" nature of

much schoolwork; (ie. school work may well be centred on a version of knowledge which

is abstracted from the activity and environment which created it, and which is studied for its

own sake, rather than to achieve specific goals in the real world). This raises some

question as to the extent to which viewpoints, as described above, could create an authentic

environment in the virtual world of a tutoring system. Such a question can not be

answered at this stage, although it is hoped that the use of formalised mental models as the

core of viewpoints will bring "authenticity" a step closer.

Another question concerns the limitations of cognitive apprenticeship as a theory. Other

writers, (eg. A. N. Whitehead 1932) emphasise the necessity and the benefit of occasional

radical reformulations in the student’s knowledge of the domain. It is not clear how

cognitive apprenticeship could cater for such a reformulation, as the "scaffolding" is

supposed to be clothed with detail rather that radically changed. Viewpoints, on the other

hand, emphasise the alternative modes of analysis which are available for a given domain,

and imply the need for such reformulations by their very existence. We will return to this

issue in terms of the implementation described in later chapters.

3.3.3 The viewpoint structure and alternative possible structures.

The structure for viewpoints which is proposed above is obviously not the only one which

could be adopted. The adoption of this particular structure can however be justified by

considering some possible alternative structures and their potential shortcomings. Self

(1990) provides a review of systems which attempt to model the holding and revision of

96

Chapter 3: A Formulation for Viewpoints

sets of beliefs. This review is intended to illustrate the ways in which viewpoints might be

structured and implemented. The technical problems which Self shows to be involved in

the construction and maintenance of such belief systems are summarised in section 2.1.6.

We can also provide a critique in terms of goals that are set out in the earlier sections of this

chapter. The point of this critique is to demonstrate that the use of viewpoints for tutoring

as opposed to other activities places particular constraints on the choice of a structure to be

used for implementing them.

In the systems described by Self (1990), the mechanisms used to process a viewpoint,

while frequently problematic, are not seen as integral to the viewpoint. Thus the

viewpoints are not 'active' in the sense of being able to produce an inference in relation to a

problem. Rather, the set of beliefs is acted upon by some external mechanism. In this

sense a set of beliefs is akin to a 'model', but does not give the requisite information about

how that model is to be applied. As stated in section 3.2 it is desirable that the same 'mode

of analysis' or model should be able to support the drawing of many different inferences

via a number of different inference mechanisms, so that the tutoring system is itself able to

carry out the task it is trying to tutor. Tutoring may thus be carried out either in terms of

the model itself, or the inference procedures to be used in conjunction with it. Since these

procedures may well differ from model to model, it seems a wise design policy to include

the relevant ones with each model in the definition of a viewpoint

Section 2.2 also states that our purpose is to design systems which can tutor in terms of

two or more viewpoints on a given domain. Such tutoring can only be useful if the

functionality of the distinct viewpoints can be made clear, and any misconceptions in

relation to this functionality dealt with. To do this the system must have available to it

some information concerning the applicability of each viewpoint. This kind of information

is not generally present as an aspect of a belief system, since only appropriate problems

will usually be set for it. It is true that such a set of beliefs could contain a member which

states that 'the purpose of this belief set is to solve problem X', but there is no constraint

97

Chapter 3: A Formulation for Viewpoints

stating that such a belief has to be present. The purpose of 'designing-in* a section marked

'application heuristics' in each viewpoint is to ensure that this information is always

present. This information will also be required if, as stated, we wish to adapt the tutoring

to such factors as the student's goals. It will not be possible to choose a viewpoint to suit a

given set of goals unless the system has some knowledge of what goals the different

viewpoints can serve.

The goals related to the educational philosophy laid out in 3.2 also require the kind of

structure which has been described in section 3.3. These state that the learning should be

rooted in ongoing practice which is, as far as possible, "realistic", that tutoring should be

adapted to the student's changing goals, and that they should be encouraged to consider the

meta-cognitive aspects of the knowledge they are dealing with. If we are to root the

learning in some ongoing 'practice', the system must be able to exploit the models it is

tutoring, ie. it must also have knowledge of the relevant inference mechanisms. A 'belief

system' would not necessarily have this information explicitly available. If a tutorial

dialogue is to focus on the meta-level aspects of some knowledge, (eg. the context in which

it is applicable), then an explicit statement of this context must be available to the system.

Again, such information would not necessarily be available in a 'belief system'.

3.4 Extending and testing the proposed viewpoint

structure.

Although considerable analysis and thought had gone into the development of the structure

given in section 3.3, it was apparent that more work needed to be done before any effort

was made to implement a system based on it. Prudence required that the real utility of the

formulation be tested, while precision demanded that the inference procedures to be used as

operators on the model be specified in greater detail. It was concluded that the utility of the

formulation would have been demonstrated if it was able to encode the viewpoints and

formalise the reasoning of real subjects in a problem-solving situation. This formalisation

could then act as the basis for a performance simulation to be used in a tutoring system. It

98

Chapter 3: A Formulation for Viewpoints

was also concluded that a close analysis of the reasoning used in such a situation would

indicate the nature of the inference mechanisms which would have to be encoded in an

implemented system. This does not imply that the exercise was intended to identify

specific ways of drawing inferences which could be applied to all models. Rather, the

purpose was to identify classes of inference mechanisms which could act as elements of a

viewpoint structure, and which were generaliseable. Accordingly, a study was designed

to satisfy both of these objectives by recording and analysing the verbal protocols of two

groups of subjects, each group being given a different model to apply to a problem domain.

This study is detailed in chapter 4.

3.5 Conclusions to Chapter 3.

This chapter considered how the notion of a mental model could be augmented so as to

provide a structure for representing viewpoints in an ITS. (This was not intended to imply

that the resulting viewpoint should be seen as a 'psychological reality'). The need for

inference mechanisms to act upon a formalised model was considered, as was Wenger's

(1987) attempt to formulate a structure for viewpoints. The pedagogical importance of

applying viewpoints was stressed. A structure was proposed for representing viewpoints

in an ITS. The structure was developed by considering issues relating to the domain being

tutored, the design objectives stated for the system, and the educational philosophy it is

intended to embody. The structure of each viewpoint is intended to be modular, consisting

of a model for the domain, a set of inference procedures to act on the model, and a set of

heuristics stating the application of the model/inference procedure combination to problem

contexts. This formulation was related to the 'cognitive apprenticeship' theory of learning,

and to some possible alternative formulations for viewpoints. The need for a study to

validate and extend the proposed formulation was stated.

99

Chapter 4. Testing the Formulation: A Protocol
Analysis.

4.1 Introduction.

4.1.1 Goals of the study.

Chapter 3 gives an outline of a formulation that is intended to be used to implement

viewpoints in an (Intelligent) Tutoring System. The structures of the formulation were

developed by considering issues relating to the domain being tutored, the design objectives

stated for the system, and the educational philosophy that the system is intended to

embody. The structure of each viewpoint is intended to be modular, consisting of a model

of the domain, a set of inference procedures to act on the model, and a set of heuristics

stating the application of the model/inference procedure combination to problem contexts.

The chapter concludes with a statement of the need for a study to validate and extend the

proposed formulation. This study is described below.

This study was motivated by two related goals. Firstly, we wished to establish a conceptual

basis for implementing viewpoints in Intelligent Tutoring Systems. This involved

demonstrating that two different viewpoints and the reasoning associated with them could

be formalised in terms of a single structure of context, models, and operators. In terms of

the study described below, we wished to show that our single structure for viewpoints

would allow us to formalise the different reasoning patterns that are observed when two

different viewpoints are applied to the same system. Success in this endeavour would be

taken as confirmation that the proposed structure was able to formalise a range of

viewpoints and the reasoning associated with them. This formalisation method could then

be used as the basis for implementing viewpoints in a tutoring system.

It was thus necessary to identify the observable differences in reasoning patterns in more

specific detail than previous work had done, in order to formalise them. The study

100

Chapter 4: Testing the Formulation: A Protocol Analysis.

described below uses protocol analysis to distinguish the different reasoning patterns

associated with two quite distinct mental models. In chapter 5 we then use the single

proposed structure for viewpoints to formalise these different patterns. It is during this

exercise that the second goal of the study is pursued, that of obtaining a more precise

definition of the kinds of operator which would be required for the actual implementation of

a viewpoint.

4.1.2 Outline of the study method.

Ten pairs of subjects were given the task of collaboratively operating a computer

simulation. Half the pairs were given a functional model of the system, and half a

structural model. Their discussions were recorded and analysed. The different inferential

processes the analysis revealed were then formalised using the framework of model and

operators outlined above. The requisite operators were developed after the protocols had

been analysed, and can be shown to fall into three distinct classes.

'Structural' and Functional' models were chosen since they are two of the most commonly

distinguished types of mental model, (eg. di Sessa 1986). They are described in detail by

Young (1983) as "Surrogate" and "Task/Action Mapping" models. A structural model

describes the structure of the device in question, while a functional model describes the use

of the device in achieving specific operational goals.

The method of applying two different models to a single device draws on the work of

Centner and Centner (1983), and Kieras and Bovair (1984). The domain of a 'power

generation system’ was chosen because firstly, it lent itself to description in terms of the

two models, and secondly, it was judged to have the right level of familiarity for the

intended subjects. It was sufficiently familiar that they could reason about it in the terms

they were given with some feeling of confidence, but it was not so familiar that they would

101

ChaptCT 4: Testing the Formulation: A Protocol Analysis.

already have well-established and coherent models of this kind of system. (This was based

on the assumption that the intended subjects who were students, technical, and academic

staff at the Institute of Educational Technology would not have a working knowledge of

power generation systems).

4.2 Details of the study method.

4.2.1 Models and Instructions.

The control panel for a much-simplified (nuclear) power station was built in HyperCard on

an Apple Macintosh; (see figure 2). Ten pairs of subjects, (five pairs for each model),

were given either a Functional or a Structural model (di Sessa 1986) to apply to the

simulation, each member of a pair being given the same model. Jointly-responsible pairs

were used on the assumption that they would justify their actions to each other, and thus

articulate their reasoning.

We stress here that we are not using ’functional’ in the sense employed by de Kleer, (eg.

de Kleer and Brown 1983). These authors view any knowledge of ’function’ as being

crucially connected to an appreciation of structure in the relevant system via notions of

causality. The whole point about a ’functional’ model as described by Young (1983), is

that it does not entail any notion of causal mechanism, since it has no description of the

internal structure of the device in question. The work by de Kleer, while fundamental, is

of only limited relevance here. In their (1983) paper, de Kleer and Brown discuss the

possibility of having different embedded models of the same device, and state that:

" Unfortunately, our theory has no mechanism to handle or to profit from this situation; nor does

it say anything about multiple device topologies." de Kleer and Brown (1983) p. 188.

102

Chapter 4: Testing the Formulation: A Protocol Analysis.

It is just these multiple models and multiple topologies that the current work on viewpoints

is intended to explore, de Kleer and Brown take the basic components of the system to be

described as given. The thrust of our work is to investigate the different sets of

'primitives', or 'conceptual components' which may be used to describe the same system.

While de Kleer and Brown have the tenet of "no function in structure" as a central part of

their theory, the whole purpose of our work is to investigate how a given system may be

conceptualised in different ways in order to pursue different functions.

Figure 2: The simulation screen in starting state.

 ̂ .
FURNACE TEMPERATURE!jENERGY LEVEL^COOLANT TEMPERATURE! ' .

- i- -

! POWER OUTPUT«iteMtMtMIM

.'ArwMwmr/.V/.'/."

174 20

DAMPING)

K A c t a r t f ' . " . . 'X

, V'' I p u m p s p e e d I

V jSTEAMVALVEl

ikÉÉÉÉMAÉM

" . ^ I

■GHsD ■ I

In the study reported here, the Functional model described the device as the control panel

for a power generation plant, and gave a list of control movements which would achieve

operational goals, such as raising the "furnace temperature". The Structural model

described the device as the control panel for a nuclear power station, and briefly described

the flow of energy through the system.

103

Chapter 4: Testing the Formulation: A Protocol Analysis.

All subjects were presented with a set of written instructions, conveying the model they

were being asked to use, and details of the goals they were to achieve using the computer

simulation.

The instructions based on a Functional model read thus:

"Please imagine that you and the other person in the study are jointly responsible for the safe

operation of the industrial plant described below. You both see the same screen displayed, but only

one of you can operate the controls. You can communicate by talking normally. If you have a

mouse to cerate the controls, please think aloud, and explain to the other person what you want

to do, and why, before you do it. If you cannot operate the controls, please make your thinking

clear to the other operator. Please respond to any instructions which appear on the screen.

The horizontal bars at the bottom of the screen are the controls, while the vertical bars at the top

give information about the state of the system. Please study the printed illustration and say when

you are ready to continue.

The plant MUST be operated within the constraints stated below.

This device is the control panel for a power generation plant The controls are used to cany out the

following functions by executing the actions given on the right

To increase furnace temperature: > decrease damping or

decrease pump speed or both.

To reduce furnace temperature: > increase damping or

increase pump speed ot both.

To increase power output: > open steam valve.

To decrease powa* output-> close steam valve.

104

Chapter 4: Testing the Formulation: A Protocol Analysis.

Furnace Temperature must be between: 500 - 600 ®C.

Power Output must be between: 600 - 800 MW."

The instructions based on a Structural model read:

"Please imagine that you and the other person in the study are jointly responsible for the safe

operation of the industrial plant described below. You both see the same screen displayed, but only

one of you can operate the controls. You can communicate by talking normally. If you have a

mouse to operate the controls, please think aloud, and explain to the other person what you want

to do, and why, before you do it. If you cannot operate the controls, please make your thinking

clear to the other operator. Please respond to any instructions which appear on the screen.

The horizontal bars at the bottom of the screen are the controls, while the vertical bars at the top

give information about the state of the system. Please study the printed illustration and say when

you are ready to continue.

The plant MUST be operated within the constraints stated below.

This device is the control panel for a nuclear power station. It is a fission reactor, with the reaction

controlled by damping material. The energy is drawn from the reactor core by means of a pumped

coolant. The hot coolant is used to produce high-pressure steam which is fed to a turbine through a

control valve. The turbine turns a generator, which produces electrical current.

Furnace Temperature must be between: 500 - 600 ®C.

Power OuQ)ut must be between: 600 - 800 MW."

It may be noted that in the ’structural' model, no information about how to achieve specific

operational goals using the controls was given. Formalised versions of these models are

given in section 5.5.1.

105

Chapter 4: Testing the Formulation: A Protocol Analysis.

Apart from the differing models all subjects were given the same instructions, along with a

labeled printout of the "control panel" they were about to use. (See figure 2).

As the instructions indicate, the members of each pair were asked to be jointly responsible

for operating the system within specific constraints, (5(X) - 6(X) °C. for furnace temperature,

and 600 - 800 MW. for power output), and told that these constraints MUST be adhered

to. They were seated at back-to-back monitors with a partition between them, so that they

could communicate verbally, but not visually. Each monitor showed the same information,

but only one member of each pair had a mouse with which to control the system. The

mouse-owners were instructed to negotiate their control actions with the mouseless partner,

and to describe each action and its rationale while carrying it out. The mouseless partners

were instructed to participate in this negotiation, and influence the mouseowners as they

saw fit. This arrangement was intended to stimulate the production of think-aloud

protocols. These think-aloud protocols were recorded, transcribed verbatim, and analysed.

4.2.2 T rain ing Systems.

Before the main session, all pairs were given the same training on two simpler systems,

which comprised one control bar and one readout bar, in the same orientation to the screen

as the main study's bars; (controls horizontal, readouts vertical. See figure 2). These were

said to represent a compressed-air tank which could be set to various pressures using the

control bar. The first training system established mouse skills and inter-subject familiarity,

and was stable in the sense that once the system had reached the level set in the control bar,

it would stay there. The control and readout bars were both on a scale from one to a

hundred, and the pressure value set was the one which finally appeared in the readout

In the second training system, the compressed-air tank had to be kept within certain

pressures, and was said to be part of a larger industrial process. It would move by small

106

Chapter 4: Testing the Formulation: A Protocol Analysis.

steps to the pressure set in the bar, and stay there for a short time. If after some 25

seconds, no new pressure had been set, the displayed pressure would start to rise quite

quickly, necessitating remedial action on the part of the operator. This prepared the

subjects for instability in the main system. Also, while the control scale remained 1-100,

the readout was on a scale from 1 - 1000. The pressure value displayed was calculated by

an equation which made it proportional to the internal control value.

4.2.3 The Simulation Screen.

The screen for the main session showed three long horizontal bars, and four shorter vertical

ones above them. (See figure 2). The horizontal bars acted as controls, displaying the

control settings, and accepting new control settings via mouseclicks in the bar. The vertical

bars gave a readout of various parameters for the system. The three controls were for

damping, pumpspeed, and steamvalve setting. The readouts were for furnace temperature,

energy level, coolant temperature, and power output. All bars were labeled according to

their function, and had a numerical, as well as a graphical, readout. These labels were

chosen so as to be neutral with respect to the type of energy source powering the system.

All sessions were started with the simulation in the same state, with the furnace temperature

and power output readings well below the levels set by the constraints.

4.2.4 The Simulation Algorithms.

The various readouts, (Furnace Temperature, Energy level. Coolant temperature, and

Power Output), were calculated from the control settings. It was intended that the

algorithms should maintain the basic logic of heat and energy flows in the type of system

described. Thus if the Coolant Temperature dropped below 100, the Power Output

immediately went to zero. (ie. there was no steam available to generate power). If the

107

Chapter 4: Testing the Formulation: A Protocol Analysis.

Steamvalve was opened, the Power Output would increase, and the Coolant Temperature

would drop slightly unless other parts of the system were adjusted.

To simulate the inertia likely to be found in real industrial plant, the system had a fairly

ponderous and measured response to changes in the control settings. It could take some

time for them to be fully reflected in the readout values. The "steamvalve" gave the quickest

response, being quickly reflected in changing "power output" values.

If a pair maneuvered their system into a stable state, it would eventually de-stabilise itself

so that the session would continue to yield information about the pair's inferences. After

the system had been stable, (ie. without a change of more than 10% in any parameter), for

some 40 seconds, the internal value of either damping or pumpspeed was incrementally

changed, so that the system started to heat up. The corresponding readout values were

calculated and displayed, although no change was made to the control settings shown on

the horizontal bars. This destabilising loop would retain control until either the mouse was

clicked in the relevant control, or the maximum internal value for that control was reached.

This de-stabilisation applied at all times.

At the end of the twenty minutes set as the time for the main session, the system took

control of the display, refusing any new control settings, and raising all readout values to a

high level. The following message then appeared on the screen:

"Please state what you think this power generation system will do next, and why."

The question remained on the screen, and the system took no fiuther action. The subjects

were allowed free discussion at this point, which was recorded until the subjects appeared

to have nothing further to say.

108

Chapter 4: Testing the Formulation: A Protocol Analysis.

4.2.5 The Subjects.

The subjects were research students, secretaries, technicians and staff at the Open

University campus in Milton Keynes. Twenty people took part, (eleven men and nine

women), randomly allocated to ten pairs, (five in each condition). At the start of each

session, a coin was tossed to see which of the pair would control the mouse.

4.2.6 Expected results and purpose of the study.

This is based on the properties of the models referred to in the previous section. Logic

dictates that if some subjects are informed about the structure of a system, but not about

how to achieve specific operational goals with it, then they will have to make some

assumptions and produce a chain of reasoning which links their current model to a specific

course of action; (ie. they will have to develop their own functional model). Knowing, for

instance, that the system is controlled by damping material and has a pumped coolant does

not immediately tell the subjects how to keep the furnace temperature within the constraints

set. We may predict this reasoning process without making any strong commitment as to

the particular psychological mechanism involved. The group using a functional model do

not need to carry out this reasoning, since their model already links specific actions to the

explicit operational goals of the simulation. We would thus not expect to find evidence of

this reasoning in their protocols.

We wish to show that, (for the purposes of ITS design), the two distinct viewpoints and

reasoning exhibited by the two groups can be formalised using the single structure for

viewpoints described above; ie. by a formalisation of the models they were given, with

appropriate operators. The success of this exercise should demonstrate the utility of our

formulation of viewpoints as a starting point for implementing them in our systems; ie. we

109

Chapter 4: Testing the Formulation: A Protocol Analysis.

can use the same viewpoint structure to formalise the various viewpoints that are required

for the tutoring system.

4.3 The Protocol Analysis.

4.3.1 The differential analysis.

The purpose of the analysis was to demonstrate that there was indeed a difference between

the reasoning of the two groups, as Centner and Centner (1983) would predict. The

recorded sessions were transcribed as verbatim protocols. We wished to find a single

encoding category which would capture the difference of reasoning style referred to above;

(ie. there should be a significant difference between the two groups, (or at least an

indicative trend) in the number of protocol segments encoded in the category. The group

using a structural model were not told explicitly how the various parts of the system

interrelated. They had to make assumptions based on their knowledge of the world and

reason causally from these. These assumptions appeared to involve objects such as "air"

in the furnace, or processes such as "fission reaction" or "meltdown". The point of interest

was that these objects and processes were not represented on the monitor screen or in the

instructions, (see fig. 2 for an example of the simulation screen), and had to be imported by

the individuals concerned along with assumptions about their relationships. To capture

these importations and assumptions the encoding category is defined as follows:

"Descriptions of the power generation system using knowledge of real-world objects or

processes which are not represented on the screen."

The fact that an object such as "coolant" or "steam" was mentioned in the structural model

should not automatically exclude a phrase mentioning it from being counted as an example

of the encoding category, since the information given in the instructions is never sufficient

to support causal reasoning directly: eg. the existence of a "pumped coolant" does not tell

110

Chapter 4: Testing the Formulation: A Protocol Analysis.

the subject how it interacts with the other parts of the system, so that assumptions about

this still have to be made.

The following protocol segments are examples of the encoding category:

(1) "Yes, increase the air in the furnace”.

(2) "I have increased the speed of the coolant going round the system and it's bringing down

the temperature again".

The first example fits the category as the screen has no representation of air in the furnace.

The second example fits because while the screen does give information about two different

temperatures, it has no representation of coolant circulating around some system.

The assumptions made here can be described roughly as:

1) the coolant circulates round the system;

2) the speed of this circulation is directly related to the setting of the "pumpspeed"

control;

3) making the coolant circulate faster takes more heat from the furnace and so brings

its temperature down.

Statements concerning the stability of the system, and generalised statements to the effect

that "something is going to happen" or "might happen" were not encoded as instances of

the category.

4.3.2 Segmentation and Validation.

The transcripts were divided into segments which were then encoded by the experimenter

as either being, or not being, an instance of the category described. The reliability of this

111

Chapter 4: Testing the Formulation: A Protocol Analysis.

encoding was checked by having three independent judges each encode four of the

transcripts using the category, examples, and exclusions stated above.

The judges were all given the same transcripts, two from each subject group, with no

indication as to what kind of group the transcripts came from. The resulting encodings

were not discussed with the judges. In order that the transcripts and the encoding category

should be meaningful, the judges were introduced to the simulation and its two models.

The results of this showed a clear agreement with the investigator on at least 75% of the

encoded segments, without discussion. This was taken as a confirmation that the

investigator's own encoding was sufficiently reliable.

Where possible, the segment boundaries were made identical with clause or sentence

boundaries. Where sentence structure was incomplete, natural breaks in the dialogue such

as the change from one speaker to another were used. Where two clauses were linked by

conjunctions such as "so" or "while", and the experimenter judged that there was a material

difference of content between the clauses, a segment boundary was inserted on one or other

side of the conjunction.

4.3.3 Protocol Analysis Results.

Nine protocols were available for analysis, four from the structural group and five from the

functional group. The tenth protocol was unavailable due to a technical fault in the

recording apparatus. The number of encodings for the specified categoiy in the first twenty

minutes of each session is shown in figure 3. The number of subjects is too small for

meaningful significance (t) testing, but the trend for a greater number of encodings among

the group using a structural model appears to be strong.

112

Chapter 4: Testing the Formulation: A Protocol Analysis.

Figure 3. The number of encodings of the specified category in the

first twenty minutes of each session for each pair of subjects. Grey

columns represent the pairs given a structural model. Patterned

columns represent the pairs given a functional model.

structural model

II i
functional model

4.4 Discussion of the Protocol Analysis Results.

4.4.1 Introduction.

Figure 3. indicates that the subjects using a structural model interpret the system in teims of

their imported knowledge of real-world objects and processes to a much greater extent than

do the subjects given a functional model. We will now attempt to show that the main use

of this imported knowledge is to support causal reasoning, and that this involves a different

reasoning procedure to that employed with the functional model. Having established the

113

Chapter 4: Testing the Formulation: A Protocol Analysis.

distinction, we will indicate how our proposed structure for viewpoints may be used to

formalise examples of the reasoning of the two groups.

We structure this analysis by looking at the way the two groups reasoned about the controls

they could manipulate, the steamvalve, the damping control, and the pumpspeed control.

(See Figure 2 for an example of the simulation screen).

4.4.2 The Steamvalve Control.

We start by considering how the two groups reason about changing the power output levels

of the system. The following excerpt shows a pair with a structural model discussing their

lack of power output:

SI. "The energy level is up, so we should be able to get power output shouldn’t we?"

82. "No, because you can't, because you don’t have the steam. The coolant is not hot. You can’t

get any steam to produce the power."

The subjects' model only tells them that "the hot coolant is used to produce high-pressure

steam which is fed to a turbine through a control valve". It requires reference to the real-

world knowledge that steam can only be produced above the boiling point of the water, for

the subjects to develop a functional model of how to raise power output. They have to

make the assumption that it is possible for the coolant temperature to be too low to produce

steam for the turbine. When, by dint of luck or reasoning, the subjects have raised the

coolant temperature, it is necessary for them to assume that the "control valve" of the model

is in fact the bar labelled "steam valve" on the screen, and that increasing the numerical

value of the setting for this is analogous to opening the valve. Another piece of real-world

knowledge tells them that opening a valve allows more of the controlled material to pass

through. These last inferences involving the valve can be seen a few lines after the

previous quotation, where SI. says:

114

Chapter 4: Testing the Formulation: A Protocol Analysis.

"The energy level is really high now, why aren't we getting any of it as power output? The steam

valve. The coolant tempwature's right up now, lets have more steam valve".

These subjects thus seem to build a functional model, on top of the structural one they were

given, by a process of causal reasoning.

This process may be summarised as follows:

1) Steam is generated at the boiling point of the water.

2) The source of heat for this process is the system coolant.

3) Therefore the coolant must be hot to cause the generation of steam.

4) This steam will only cause power to be generated if it is fed to a turbine.

5) The control labeled "steam valve" controls this flow of steam.

6) Raising the setting of the steam valve will cause more steam to flow through it and

thus raise power output by causing the turbine to spin.

In terms of our suggested structure for viewpoints, the assumptions about how to raise

power output, described above, could be modeled by operators which augment the

structural model with the relevant piece of knowledge, and attempt to draw inferences from

the result. This is exemplified in more detail below in relation to a different quotation.

The process for the group who are given a functional model is less complex, and does not

involve causal reasoning or reference to real-world knowledge which is not provided in

their model. Examples of this are,

5 1. "Power is going down, we need to increase the steam valve".

52. "So increase it now. Oh".

SI. "Too much".

and,

115

Chapter 4: Testing the Formulation: A Protocol Analysis.

51. "Oh dear, we are getting nothing like the power we need. Open steam valve up about, put it

up to fifty".

These may be characterised as "condition-action" pairs, echoing the content of the

functional model the subjects were given. This reasoning is not characterised by the

reference to causality and physical processes found in the structural model groups.

A direct manifestation of the functional model they were given occurs when the dialogue

takes the form of goal-action pairs such as:

52. "It's going too quick, isn't it.

SI. "What on the power? so reduce power output. I'll decrease steam valve slightly here".

The form of reasoning here may by characterised as far more rule-based than causal-based,

so that the subjects simply have to find the goal in the model which corresponds with then-

own goal, and select one of the actions given for that goal.

A variant of this for the condition-action pairs involves selecting a goal which will change

the unwanted condition to a desired one, (usually the inverse of the unwanted condition),

finding the goal in the model which corresponds with that goal, and selecting one of the

actions given for that goal.

4.4.3 The Damping Control.

A similar pattern is found here. The structural group reasoned about the damping control

through various forms of real-world knowledge. One subject declared their intention as

follows:

SI. "fm going to try and stop the furnace from cooling too much, by clicking on the damping,

allowing it a bit more air by going down towards the zero".

116

Chapter 4: Testing the Formulation: A Protocol Analysis.

It would appear that the "furnace" label led this subject to elaborate their model of the

system with knowledge of a conventional furnace, and reason in these terms, in spite of

being told that this was a nuclear power station. Was the subject reasoning in terms of the

domestic coal fire, whose rate of combustion is regulated by controlling the flow of air to

it?

Other subjects did not instantiate the model’s "damping material" as a particular substance,

but used their concept of damping as a process which can have a greater or lesser effect to

make assumptions and deduce a functional model for this control. The following three

quotations illustrate this:

1) "It's jumped up again, it wants more damping. Slow down the fission reaction".

2) "Take off the damping slightly, then you create more reaction. Hopefully that will increase the

cooling".

3) "Reduce the damping'cause it must be damping the reaction."

It is interesting to note in the second quotation how the application of a piece of knowledge

has produced a deduction in direct opposition to the actual effect of the change, (ie. the

hope that more reaction will increase the cooling). If the functional-model groups showed

this reversal at all, it was quickly corrected, and generally associated with clear statements

that they were confused.

As with the steamvalve, the group with the functional model generally justified their

decisions in instrumental rather than causal terms, reasoning within the scope of the model

they had been given, as in

117

Chapter 4: Testing the Formulation: A Protocol Analysis.

51. "Shall we reduce damping?"

52. "To increase the furnace temperature, yes, and maybe a lot"

4.4.4 The Pumpspeed Control.

A similar pattern is found in relation to the pumpspeed. Faced with a falling coolant

temperature and power output, one structural model pair respond thus:

5 1. "Coolant temperature is going down rapidly, so decrease pumpspeed."

52. "To there?"

SI. "Yes,... That means it stays in for longer and gets warm."

What in the first two lines seems to be a functional exchange has a clear causal justification

attached to it in the third. The subject's model only tells them that the system has a

"pumped coolant". A passing knowledge of the cooling system of a water-cooled car

engine would be sufficient to make the necessary assumptions and reason about the effects

of changes in the pump speed. (It is of course also necessary to assume that "pumpspeed"

control affects the "pumped coolant". Subjects appear to do this automatically.)

A different "structural" subject, faced with a similar situation, appears to use the same

expanded model, but with less certainty:

"When it was going really hot, it did make it to the power output, so try giving the pumpspeed a

big whack upwards. I can't figure out whether rushing more coolant past improves it or makes

things worse."

This last speaker explicitly states in the discussion at the end of the session that he used his

knowledge of a car engine cooling system to make inferences about the reactor.

118

Chapter 4: Testing the Formulation: A Protocol Analysis.

4.4.5 Errors in the reasoning.

The structural model group came to mistaken conclusions about the causality of the system

far more frequently than the functional model group. This has been referred to above, and

it is evident in the last quotation, although this specific aspect of the protocol analysis has

not been verified. It does seem to be a reasonable result if we accept that the structural

group were reasoning about the system more frequently in causal terms, and were looking

for importable knowledge which might be used as assumptions to illuminate their situation.

Another example is:

"... It should go up now. Maybe the pumpspeed is very dependent on how much steam is coming

through."

This is mechanically possible, and in that sense plausible. However, if it assumes that the

pumps are using the very energy the system is generating, this would seem like a rather

savage feedback loop which might have the system oscillating between very hot and very

cold. Alternatively, the speaker might simply have failed to consider this matter. The point

is, that this group of subjects are evidently trying to augment their model with causal links

so as to deduce the correct functional model for the constraints they have been given. With

sufficient time, we would expect them to do this quite successfully.

4.4.6 Responses to extreme system states.

A different kind of "error" was produced in response to extreme system state readings.

The instability routines sometimes produced extremely high readings for the furnace

temperature, energy level, and power output controls. These produced different reactions

in the two groups, and although this part of the protocol analysis has not been verified, the

results are interesting.

119

Chapter 4: Testing the Formulation: A Protocol Analysis.

In these post-Chemobyl days, ideas such as "meltdown" and "going critical" may be taken

as common knowledge. In the first twenty minutes of the session, reference to these ideas

are far more common among the pairs with a structural model. Examples are:

1) T don’t want it to go critical at this stage."

2) "Meltdown."

3) "We have just irradiated the world".

These remarks were usually made in response to the furnace temperature going well above

its upper constraint The structural group were told that they were dealing with a nuclear

reactor, and appear to make the following assumption: This reactor is going to behave in

the same way as reactors in the real world. They import the knowledge or belief that when

reactors get particularly hot they get particularly dangerous, and make the appropriate

inference. The operating constraints they are given, and the bar-chart scale appear to

provide the context for judging what is or is not "particularly hot".

The group with a functional model respond rather differently to exceptionally high

readouts. They are generally more concerned with high power output readings than with

high furnace temperatures. Typical statements are:

1) "We are going to self-destruct here"

2) "We’ve just blown apart"

3) "But it’s going to explode if the power is too high".

These show the importation of a different kind of world knowledge and provide some of

the few examples of the encoding categoiy found in the functional group transcripts. They

120

Chapter 4: Testing the Formulation: A Protocol Analysis.

were told that they were dealing with a "power generation system", and appear to make the

following assumption: This is a mechanical system which is going to behave like

mechanical Systems in the real world. They import the belief that when systems are

stressed far beyond their operating levels, they may self-destruct or explode, and make the

appropriate deduction. Thoughts of "irradiation" are absent. There is no particular reason

to focus on the furnace as the most dangerous component. Their sensitivity to power

output levels can be understood if we remember that these levels are controlled by

manipulating a steam valve. If the assumption is made that excessive power output levels

must mean excessive quantities of steam, and this is coupled with the imported knowledge

that steam is usually harnessed by having it under great pressure, their fears appear quite

rational.

4.4.7 Problems involving the simulated system.

Some aspects of the hypercard simulation caused confusions which may have lead to less

distinct results than might otherwise have been obtained. One of these was the overall

speed of the Macintosh Plus running the program. The simulation was implemented as a

sizeable piece of code, (a Hypertalk script) which caused the machine to run rather slowly

so that sometimes it could not keep pace with the rate of clicks being made in the control

bars. This led to two kinds of confusion in the subjects. Firstly, the subjects wondered if

the machine was reacting to them at all, and would automatically click twice or three times.

This only exacerbated the problem, since when the program did get around to taking input

from the clicks, the cursor could well be in another part of the control bar or screen, and it

was to this later position that the program responded. In this situation the experimenter told

the subjects to click only once, and keep the cursor in the same position until the machine

had responded to the input.

121

Chapter 4: Testing the Formulation: A Protocol Analysis.

Other problems were caused by the programmed instability of the simulation. In

retrospect, it would have been wiser to have this operating only when the system was

within its stated constraints, rather than at all times. This would have continued to provide

information about the subjects inferences without causing unnecessary confusion. As it

was, the subjects sometimes felt that the behaviour of the machine contradicted their

expectations, and thus inhibited their reasoning about how to control it. The fact that there

were two kinds of instability, and that the particular one invoked would continue until an

adjustment was made to the control which was related to it, only complicated matters.

4.5 Conclusions to Chapter 4.

As noted previously, the goals of this study were to identify different reasoning patterns

associated with the use of different models, so that these differences could subsequently be

formalised using the proposed conceptual structure for implementing viewpoints in an ITS;

(see chapter 3). This structure consists of a model, a set of operators which draw

inferences from it, and a set of heuristics which indicate the viewpoint's area of application.

Success in this exercise would be taken as confirmation that the proposed viewpoint

structure was able to formalise a range of viewpoints for implementation in an ITS.

A protocol analysis study observed two groups of subjects applying either a functional or a

structural model to a simulated power station. Their verbal protocols were recorded and

analysed. This analysis identified a trend towards causal thinking based on imported real-

world knowledge which is associated with the use of a structural model in the situation

studied. The subjects appeared to use to use the imported knowledge to build personal,

composite models which are not necessarily coherent. The functional model appears to

involve the use of condition-action or goal-action based reasoning with much less reference

to imported knowledge.

122

Chapter 4: Testing the Formulation: A Protocol Analysis.

Stronger conclusions concerning the different inference processes involved in the use of

different models may not be drawn, due to the limited numbers in each group of subjects.

Also, no claims are made as to the precise psychological mechanism, (eg. analogy,

qualitative reasoning), involved in the manipulation of the models described. The question

of heuristics to select a given viewpoint as appropriate to a specific problem has not been

investigated here.

The fact that the group given a structural model tended to reason about the simulated system

causally, while those given a functional model tended to reason in a rule-based, condition-

action way supports the proposal that different models do have different utility, as Minsky

(1981) and the designers of STEAMER (Hollan et al. 1984) suggest. We may imagine two

groups of people, one whose goal was to repair the power system when it was faulty, and

another whose goal was to operate it safely under normal conditions. We would suggest

that the structural, (causal), view was appropriate to the repairers, as it would allow them to

reason about the system's behaviour under abnormal conditions and make predictions

about its behaviour. The 'operators' would not necessarily need any such causal

perspective, since they could, (as in the study), simply follow the rules for different

conditions. How many individuals after all, happily operate a motor car or a computer

without any detailed knowledge of its mechanism? The point of these remarks is that they

have some implications for tutoring, since if a student's goal can be identified, then a

viewpoint appropriate to it may be selected, (given that one is available). Put another way,

this may help the system to select problems and exercises which are meaningful to the

student.

123

Chapter 5. Testing the Formulation: Formalising
the results of the Protocol Analysis.

5.1 Introduction: The Goals of the Formalisation.

The study described in chapter 4 was motivated by two related goals. Firstly we wished to

establish a conceptual basis for implementing viewpoints in Intelligent Tutoring Systems.

This involved demonstrating that two different viewpoints and the reasoning associated

with them could be formalised in terms of a single structure of context, models, and

operators. In terms of the study described in chapter 4, we wished to show that the single

structure for viewpoints described in chapter 3 would allow us to formalise the different

reasoning patterns that are observed when two different viewpoints are applied to the same

simulated system. Success in this endeavour would be taken as confirmation that the

proposed structure was able to formalise a range of viewpoints and the reasoning

associated with them. This formalisation method could then be used as the basis for

implementing viewpoints in a tutoring system.

It was thus necessary to identify the observable differences in reasoning patterns in more

specific detail than previous work had done, in order to formalise them. The study

described in chapter 4 uses protocol analysis to distinguish the different reasoning patterns

associated with two quite distinct mental models. The work described in this chapter uses

the single proposed structure for viewpoints to formalise these different patterns.

The second goal of the study was to arrive at a more precise definition of the kinds of

operator which would be required for the actual implementation of a viewpoint. This goal

was pursued by considering the detail of the formalisations of the different reasoning

patterns.

As stated in chapter 1, the inferential operators that interrogate a model are seen as vital to

the proper definition of a viewpoint for implementation. One reason for this lies in the

124

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

belief that in order to tutor and explain a domain effectively a tutoring system must itself be

able to perform the tutored tasks in the given domain. It must thus be able to draw the

required inferences from a given model and so must be equipped with suitable means of

doing so. Since the structure for viewpoints was developed with the intention that it should

be used as a basis for formalising viewpoints which could then be implemented as the

domain representations of an ITS, it was thought wise, before starting the implementation,

to actually test the structure's ability to formalise different viewpoints on a domain, and

develop it as necessary.

This resulted in the definition of three classes of operator which act on a given model. The

first of these simply retrieves explicit elements of the model. The second draws inferences

which are implicit in the model by applying an inference procedure to two explicit elements

of the model. The third augments (or transforms) the model with new information or

assumptions. The first two classes of operator may then be applied to the result.

In summaiy, the formalisation described in this chapter had two purposes:

• to determine whether the intended structure for viewpoints was adequate. If the

models used by different groups and the inference procedures associated with each

model could be shown to be quite distinct, and if the intended structure for

viewpoints could be used to formalise both combinations of model-and-set-of-

inference-procedures, then it could be concluded that the intended structure was

sufficiently robust to serve as the basis of an implementation.

• to determine what kinds of operator would be required. The notion of an

'operator' is a very general one. The implementation of a system requires that

specific operations be defined. In order to fulfil our goals for the tutoring system

design we needed these operations to reflect, as far as possible, the reasoning used

by human users. It was assumed that the analysis and formalisation of reasoning

exhibited by human subjects could help to define classes of operator which satisfied

this need.

125

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

The issue of how to formalise the heuristics which describe the area of application for each

viewpoint is not dealt with in detail in this chapter, as the formalisation of the operators and

reasoning processes was seen as a prior task.

5.2 Formalising the reasoning of the subjects.

5.2.1 A Formalisation of the models.

Having established the distinction between the reasoning patterns of the two groups in

chapter 4, we will now indicate how the our proposed structure for viewpoints may be

used to formalise this reasoning. As stated earlier, this formalisation makes no claims to be

psychologically valid. Each model will be expressed as a sequence of Prolog clauses. (AU

Prolog examples here and elsewhere in this thesis are based on the syntax and predicates of

LPA MacPROLOG version 3.0).

The functional model formaUsed in Prolog.

exists(power_generation_plant).

haspart(power_generation_plant, control).

iscontrol(damping).

iscontrol(pumpspeed).

lscontroi(steamvalve).

increase(furnace_temperature):- decrease(damping).

increase(furnacejemperature):- decrease(pumpspeed).

increase(furnace_temperature):- decrease(damping), decrease(pumpspeed).

decrease(furnacejemperature):- increase(damping).

decrease(furnaoe_temperature):- increase! pumpspeed).

decrease! furnacejemperature):- increase!damping), increase!pumpspeed).

increase! poweroutput):- increase! steamvalve).

126

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

decrease! poweroutput):- decrease! steamvalve).

legalj30weroutput! X):- X > 600, X < 800.

legaljurnacetemp! X):- X > 500, X < 600.

inconstraints! X, Y):- legal_poweroutput! X), legaljurnacetemp! Y).

The Structural Model Formalised in Prolog.

exists! nuclear_power_station).

haspart! nuclear_power_station, reactor).

haspart! reactor, damping_material).

haspart! reactor, coolant).

haspart! reactor, pumps).

haspart! nuclear_power_station, control_valve).

haspart! nuclear_power_station, turbine).

haspart! nuclear_power_station, generator).

controls! damping_material, reactor).

moves! pumps, coolant).

takes_energy! coolant, reactor).

makes_steam! coolant):- hot! coolant).

controls! control_valve, steam).

turns! steam, turbine).

turns! turbine, generator).

produces! generator, electricity).

legaljjoweroutput! X):- X > 600, X < 800.

legaljurnacetemp! X):- X > 500, X < 600.

inconstraints! X, Y):- legaljx>weroutput! X), legaljurnacetemp! Y).

It is evident from the Prolog clauses that these models contain quite distinct sets of

information, and that each can answer questions unanswerable by the other. Eg. the

127

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

question "How do you increase the furnace temperature?" is directly answerable by the

formalised functional model, but not by the structural model, since the latter has no

representation of "increase". The structural model can, however, answer the question

"What moves the coolant?", while the functional model cannot. The functional model has

no representation of pumps, coolant, or their relationship. This indicates that the two

models have different utility in relation to different sets of goals, such as predicting system

behaviour, or controlling specific parameters.

5.2.2 General remarks concerning the formalisation.

We now demonstrate how the reasoning shown by our subjects can be formalised using

our proposed structure for viewpoints. The demands of the formalisation help to clarify the

classes of operators that are required by the viewpoint structure.

For this purpose we intend to confine the formalisation to the part of a viewpoint which

involves operators acting on a model to augment it or to draw inferences. That is we shall

follow the aims of the study in not considering the heuristics or algorithms which denote a

particular model as being relevant to a particular context or goal.

Although these heuristic elements are not addressed in the formalisation work we will now

give brief examples of them in relation to the structural and functional models of the study

as this may help to clarify subsequent discussion. The heuristics are intended to specify the

areas of application for each viewpoint. (As stated above viewpoint is defined as a model

combined with a set of operators which draw inferences from it, and heuristics which

describe the area of application of the combined model and operators).

Simple examples of the heuristics for the structural and functional viewpoints thus:

a) Where the goal is to operate the system within specific constraints, or to tutor such

operation, use the functional viewpoint

128

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

b) Where the goal is to find faults in the system, or to tutor such fault-finding, use

the structural viewpoint.

5.2.3 Formalising the reasoning of the 'functional model' group.

We may reconsider the example given in chapter 4 where subjects given a functional model

find themselves with a low furnace temperature. We described this as 'goal-action'

reasoning. The relevant goal has only to be identified in the original model, and the

corresponding actions taken. Our example of a functional model group reasoning in

relation to the damping control was

51. "Shall we reduce damping?"

52. "To increase the furnace temperature, yes, and maybe a loL"

If the goal here is to increase the furnace temperature then what is required in order to

formalise the reasoning is an operator which will retrieve any action or actions associated

with that goal in the formalised model. As this operator simply accesses information that

is explicit in the model, it will be referred to as the 'access operator'.

If the goal is represented as 'increase(furnace_temperature)' we may retrieve all possible

actions associated with that goal using a Prolog predicate such as:

get_possible_actions(Ghead, List) :-

findali((Gbody, Vars), {clause(Ghead, Gbody, Vars)), List).

If the goal given is represented in the model as a Prolog fact, then the 'Gbody' returned

will be the atom 'true'. This predicate will work for both Functional and Structural

models. The operator may be characterised as enabling the straightforward retrieval of

information represented in the model.

129

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

We also gave examples above of 'condition-action* reasoning by the group given a

functional model where they were responding to a low power-output. If we assume that

this is a response to the instruction that the system must be kept within the stated

constraints, then the condition to which they are reacting is defined by reference to those

constraints. The formalisation of action choice has been described above, but formalising

the perception of the condition requires a different kind of operator. This is because the

information required to make a decision about constraint satisfaction is not contained in a

single element of the formalised models. The success of the 'inconstraints' predicate of

both models requires the satisfaction of subgoals concerning ' legal_poweroutput ' and

'legaljurnacetemp'. The conditions for satisfaction of these subgoals are defined

elsewhere. What is required is an operator which will chain through the different parts of

the model to obtain the final numerical definition of 'inconstraints'. This may be loosely

described as using an inference procedure to make explicit information which is only

implicit in the model. This may be represented by a predicate such as:

inferJnfo(Goal, Result):-

clause{Goal, Implication),

Implication =.. [Op|Goallist],

get_subgoals(Goallist, Result).

get_subgoals([], []).

get_subgoals([[]j, []).

get_subgoals([Head|Rest], [Subgoals|Result]):-

clause(Head, Subgoals),

get_subgoals(Rest, Result).

This would assemble a list of the precise subgoals, (of subgoals), which would have to be

satisfied for the initial goal of 'inoonstraints(X, Y)'. An alternative example of this type of

operator is given below with reference to the structural model group, where it would be

130

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

more generally used. Due to its use of an inference procedure, this operator will be

referred to as the 'inference operator*.

5.2.4 Formalising the reasoning of the 'structural model' group.

The reasoning of subjects given a structural model is generally more complex, and it is

necessary for them to augment the model they were given with some assumptions. Our

example shows them faced with a rising furnace temperature.

"It's jumped up again, it wants more damping. Slow down the fission reaction".

This example involves firstly an assumption that the furnace temperature is dependent on

the state of the reaction, and secondly an assumption that the "control" of the "damping

material" over the "reaction" conforms to some model of damping that the subjects already

possess. These are essentially assumptions of causality, an increase in the reaction level

causing an increase in the furnace temperature etc. Apart from the model in their

instructions the only explicitly relevant information available to the subjects is the readout

of the furnace temperature, and the damping setting on the screen. What needs to be

formalised is the reasoning which links the two items of information.

This may be done by adding Prolog clauses to the structural model formalised above

indicating that one of the operators we need is an operator which will augment the existing

model with new information. Although this involves the making of assumptions we do not

intend to imply that all parts of the augmented model should be consistent, or 'true' in

relation to each other. Instead, the formalisation is intended to be much closer to the

"distributed models" described by de Sessa (1986).

In the current example the fiimace temperature is too high, so the subjects have a new goal

which is not represented in their original model: ' decrease! furnacejemperature)'. This

goal requires an appropriate action on the system, which may be represented as:

131

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis,

produces! Change! State), decrease! furnacejemperature)).

(Functors may be variables in LPA MacPROLOG version 3.0). The structural model given

to the subjects does not specifically tell them that the reaction produces heat, nor that it is

this heat which is one determinant of the furnace temperature. The assumption that the

furnace temperature is related to the heat produced by the reaction, and the nature of this

relationship, may be formalised as:

related! furnacejemperature, heat).

related! heat, reaction).

relationship! increase! reaction), increase! heat)).

relationship! decrease! reaction), decrease! heat)).

relationship! increase! heat), increase! furnacejemperature)).

relationship! decrease! heat), decrease! furnacejemperature)).

A fully runnable program requires additional clauses telling the Prolog interpreter how to

use this representation to set up new goals on the path to satisfying the initial goal. These

could be written as:

produces! Change! State), Otherchange! Otherstate)):-

involved! Otherstate, State),

causal! Change! State), Otherchange! Otherstate)).

involved! W, Z):- related! W, Y), related! Y, Z).

involved! W, Z):- related!W, Z).

causal!/, Y):- relationship!/, Y).

causal!/, Y):- relationship!/, Z), relationship!Z, Y).

This ' produces ' predicate is able to chain through the new database clauses and produce

inferences which are not explicitly represented in the model, and constitutes the second

132

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

example of the 'chaining* operator described above. It is able to do so without using the

'clause' predicate, since the clauses it operates on are in the form of Prolog facts.

The second assumption in our example tells us that the level of reaction is related to the

amount of damping being applied to the system. "Damping" may be modelled as a value

change which is in an inverse relationship to the values of any variables it effects. Thus if

the value associated with damping increases, the values of any variables it effects must

decrease.

related! reaction, damping).

relationship! increase! damping), decrease! reaction)).

relationship! decreases! damping), increases! reaction)).

The Prolog interpreter can exploit this code using the same interpretive clauses, (the

'produces' predicate), given above.

The control actions available to the system may be represented as Prolog "facts", such as:

increase! damping, N, Direction).

decrease! damping, N, Direction).

where 'N' is a variable indicating the degree of change in the current value of damping, and

'Direction' is a variable indicating the direction of that change. Formalising the execution

of the action to satisfy the derived goal, would require further predicates to determine the

degree of change, to calculate the new variable value, to set the execution as a goal, to

assert the new value in the database, and to adjust the system to the change. This

augmented model thus allows a succession of goal states to be defined, linking the top-level

goal, a reduction of the furnace temperature, with the action of increasing the damping.

Through the application of 'retrieval' and 'chaining' operators to an augmented model we

are able to formalise how subjects who were given a structural model develop inferences

133

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

equivalent to those found in the functional model. This does not imply that their inferences

are correct, consistent, or identical with those used by other subjects or groups.

5.2.5 Conclusions: formalising the reasoning of the two groups.

The work described in sections 5.2.1 - 5.2.4 leads us to claim that the most distinct

differences of reasoning between the two groups in the study (ie. the use of causal as

opposed to rule-based reasoning) can be formalised using the combination of models and

operators which we have outlined above as a structure for implementing viewpoints. The

detail of this exercise indicates that, in this case, at least three of different classes of

operator are required in order to infer information from the given models or to change

them. These three classes are described below.

The assertion that heuristics may be included as a part of a viewpoint in order to encode

information about the problems that the viewpoint may be applied to and the goals that it

may serve was not tested in the protocol analysis or in the subsequent formalisation. No

claims may thus be made in relation to this topic.

5.3 Classes of operators required to formalise the
reasoning.

5.3.1 Introduction.

These example formalisations indicate that, in this case, at least three classes of operator are

needed if viewpoints are to be implemented in the form described above. Since our

examples may be said to rely on the Prolog interpreter we shall try to characterise the three

classes of operator in abstract terms so that they may be implemented in whatever language

or representational formalism is considered appropriate.

134

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

5.3.2 Operator type one: the 'access' operator.

This is intended to retrieve the smallest elements of information already directly available in

the model; eg. in relation to the formalised structural model above it would answer the

question "What controls the steam?". What is retrieved will thus depend on the grain-size

and content of the knowledge representation. Where for example the elements of the

knowledge representation were binary relations, such as 'tums(A, B)', or implications

such as 'A > B', the first type of operator would simply retrieve these. This operator

would be used to formalise the reasoning of both functional and structural groups, and is

exemplified (in predicate form) by the 'get_possible_actions' predicate given in section

5.2.3. This predicate retrieves the second half of a binary element, or an implication

relation, if one half is given.

The need for such a 'retrieval' operator is specific to this project of implementing

viewpoints. Such an operator is not required for traditional problem solving systems as

they are taken as having perfect access to the solution if it is a part of the goal state. In

other words if the "solution" is a part of the current state, then no specific retrieval operator

is required. This assumption cannot be made in relation to viewpoints as we may wish, for

tutoring purposes, to ask two different questions of the same representation; (cf. the

different uses of the same circuit representation in SOPHIE I [Brown and Burton 1975]).

We may wish the single structural model (formalised above) to tell us firstly: "What moves

the coolant?' or on another occasion: 'What controls the steam?'

5.3.3 Operator type two: the 'inference' operator.

This operator examines the model, and combines two or more parts of it via an inference

procedure to produce a previously unstated conclusion. It does not, however, introduce

new information from outside the original model; (this is done by the third type of

operator). There may be as many examples of the 'inference' operator as there are

135

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

inference procedures. The ’inferjnfo’ and ' produces ' predicates given in section 5.2.3

are examples in predicate form. 'Inferjnfo' links a goal state with the stated actions

necessary to achieve it, while 'produces' is used in the example given to determine the

action which will reduce the furnace temperature. 'Produces' does this by defining an

inference procedure for specific binary relations, in terms of legal relationships between the

functors and their arguments. This type of operator could thus be to formalise the

reasoning of both functional and structural groups.

A more general example of the operator could be a rule of inference in logic, where:

(A - > B , B - > C) - > (A - > C) .

5.3.4 Operator Type Three.

This operator directly introduces new information which is related to the system state. This

operator is exemplified by the last example formalised above, where models of reaction and

damping were imported and added to the original model. It is assumed that this operator

would be most generally used in relation to the group given a structural model.

The added models are not derived from the original model but are assumed to exist

separately as the "real-world knowledge" of the person whose reasoning is being

formalised. The result is a composite model to which the first and second classes of

operators described above may be applied. We view these as being similar to the

"distributed" models described by di Sessa, which are "... accumulated from multiple,

partial, explanations ...", and which "... represent a patchwork collection of pre-existing

ideas in the learner, 'corrupted' to new ends." (di Sessa [1986] p. 209). This may be

seen as the union of two sets of elements, and does not require that the result be coherent

Our current work assumes that a range of possible parts to be added would have been pre

defined by the system designer. The operator is thus not the parts that are added, but the

mechanism that adds them. The literature describes a number of mechanisms for

136

Chapter 5. Testing the Formulation: Formalising the results of the Protocol Analysis.

determining which information should be retrieved and drawn into the situation, such as

Clancey's (1985) 'Heuristic Classification'.

5.4 Conclusions to Chapter 5.

As noted previously, the goals of the study described in chapter 4 and the formalisation

described in chapter 5 were to identify different reasoning patterns associated with the use

of different models, so that these differences could be formalised using the proposed

conceptual structure for implementing viewpoints in an ITS; (see chapter 3). This structure

consists of a model, a set of operators which draw inferences from it, and a set of

heuristics which indicate the viewpoint's area of application. The distinct reasoning

patterns identified in chapter 4 were formalised in order to demonstrate the utility of the

proposed viewpoint structure, and to clarify the nature of the operators that would be

required to draw inferences from the models in an implementation.

Examples of the different reasoning patterns drawn from the protocols of chapter 4 were

formalised in Prolog code using a Prolog formalisation of the models given to the subjects,

and operators developed in response to the needs of the exercise. This led to the

identification of three distinct classes of operators which may be implemented in any

suitable formalism. It is thus suggested that both of the goals of the study have been

realised: ie. the utility of the proposed structure for viewpoints has been demonstrated, and

greater knowledge gained of the kinds of operator which are required in order to implement

it.

Stronger conclusions concerning the different inference processes involved in the use of

different models may not be drawn, due to the limited numbers in each group of subjects.

Also, no claims are made as to the precise psychological mechanism, (eg. analogy,

qualitative reasoning), involved in the manipulation of the models described. The question

of heuristics to select a given viewpoint as appropriate to a specific problem has not been

investigated here.

137

Chapter 6. The Implementation Domain and
Tutoring Goals.

6.1 Introduction.

Previous chapters have introduced the area to be investigated in this thesis, (the use of

multiple viewpoints in ITS), and described the development and validation of a structure

which may be used to formalise viewpoints in preparation for their implementation in a

tutoring system. This chapter deals specifically with the formulation of the domain which

is to be tutored.

Having verified the usefulness of the viewpoint structure it was necessary to choose an

example domain in which to implement a tutoring system. A very strong motivation at this

point was that a real domain should be chosen. By this we mean a domain where the

actual viewpoints used by practitioners or students in that domain could be formalised and

used and some attempt made to deal with the real problems and misconceptions that they

faced. There were several reasons for this motivation. The first and most general was a

belief that the appropriate way for tutoring systems technology to advance was for it to

engage with real rather than 'toy' domains, and their related problems. The second reason

related to the intended evaluation of the implemented system. If a fictional domain, or an

excessively arcane one were to be chosen, then serious problems could arise in finding a

sufficiently large user population to conduct some form of evaluation. A third reason was

the simple wish that the work done should at least have the chance of being of some

practical use when it was completed. It was felt that the issues involved were of

considerable significance to system design and to education generally, and that every

attempt should be made to demonstrate this to those who were not yet convinced.

These considerations meant that the domain used for the study described in chapter 4

(nuclear reactor/power station) was not suitable. True, there is a pressing need for reliable

and effective training to be given to the operators of such systems in the real world, but the

138

Chapter 6: The Implementation Domain and Tutoring Goals

nature of these systems and the complexity of the knowledge required to deal with them

meant that the accurate acquisition and representation of such a domain was a project which

exceeded the resources available for completion of the thesis. It was also foreseen that

there would be considerable problems in finding a suitable pool of practitioners who could

take part in an evaluation.

What was required was a 'real' domain of suitable size where the relevant viewpoints had

at least been identified, where a definite educational need had been established, and where a

sufficient number of users could be found to conduct an evaluation after the system had

been implemented. These needs were answered by the domain of Prolog, especially of

Prolog for novices. The language is frequently a mystery to those who are encountering it

for the first time, and sometimes even to those who are more experienced in its use.

Attempts to alleviate this situation have included the description of a series of models

(Bundy et al. 1985) which may be taught to novices so as to give them a more structured

initial understanding of the language. We assumed that viewpoints based on these models

could be developed. As the structure used to define viewpoints emphasises the use of the

knowledge involved, we wished to define a domain where the different viewpoints could

actually be applied, and where such application could be practised and critiqued as a part of

the tutoring process. Models of execution are clearly necessary in the task of debugging.

If students have problems understanding how Prolog works, then they will have even

greater problems in debugging code. These considerations led to the choice of Prolog

debugging for novices as the experimental application domain. The goal was to build a

system which could tutor the skill of using different viewpoints to localise bugs in Prolog

code.

This domain is summarised as the use by novices of different viewpoints on program

execution in order to localise bugs in Prolog code. Two partial accounts of the domain

have to be formulated and combined in order to produce a set of abstractions which, when

implemented, can act as the knowledge representations of the tutoring system.

139

Chapter 6: The Implementation Domain and Tutoring Goals

The two partial accounts of the domain are:

1) Three complementary models of Prolog execution; (based on a set of four models

developed by Bundy et al. [1985]).. These describe a subset of Prolog behaviour,

and are intended to support the tutoring of novices. When combined with operators

and heuristics as described in chapter 3, each model forms part of a viewpoint.

2) A restricted catalogue of bugs. Bugs are described syntactically in terms of

'missing', 'extra', or 'wrong' 'modules'. These descriptions are also intended to

support the tutoring of novices.

The work reported in this chapter is described graphically in figure 4.

Figure 4 depicts the process by which the models of Prolog and the catalogue of bugs are

combined. First, the possible execution patterns for each bug are listed. Then a set of

conventions is established which governs the mapping of the models onto the bugs. This

set of conventions is used to define a taxonomy of bugs and to describe the effects of each

bug on program execution. These conventions also take account of the intended use of a

particular technique for interpreting a record of Prolog execution. The final abstractions

that the tutoring system uses are produced by combining the descriptions of each bug's

effect on program execution with a statement of the bug's classification.

To avoid confusion it should be noted that while Bundy et al. (1985) describe four models

of Prolog, the work described in this chapter is based on only three of these, which are re

defined for specific uses in the tutoring system.

140

Chapter 6: The Implementation Domain and Tutoring Goals

Figure 4. An overall view of the work described in chapter 6.

m eta-
interpretotion
technique

Prolog
models

Bug
descriptions

taxonomy of
Bugs

descriptions of
execution patterns

Templates:
abstract descriptions of
execution for each Bug

procedural
Prolog
models

Bug
catalogue

conventions
governing mapping
of models onto
Bugs

As previously stated, both the execution models and the bug catalogue are intended to

support the tutoring of novices. To this end, both are simplified accounts of their subjects.

The Prolog models developed in this chapter only deal with a subset of Prolog execution,

and the bug catalogue only describes bugs in syntactic terms, (rather than in terms of the

programmers intentions or specific programming techniques). The models and bug

141

Chapter 6: The Implementation Domain and Tutoring Goals

catalogue thus constitute two simplified environments which are suited to the needs of

novices. The novices can explore the principles of the domain without necessarily

acquiring the detailed knowledge used at a more advanced stage, and without being

distracted by details or discouraged by their lack of knowledge.

It is intended that the partial accounts of the domain should be upwardly compatible with

more complete accounts which could follow. An earlier example of this simplification

strategy being used in an ITS is the succession of augmented models in QUEST (White

and Frederiksen 1986).

6.2 Prolog for novices.

6.2.1 Introduction.

The choice of a tutoring system's domain is an integral part of the design process, as is the

precise formulation of that domain for implementation in the system's knowledge base.

The work described in this section is motivated by the need to describe Prolog execution in

terms of models which are accessible to novices. A more precise statement of that

motivation requires that several topics which have been introduced separately should now

be considered in relation to each other.

In section 2.3.1, four models which were developed by Bundy et al. (1985) for describing

Prolog execution to novices were introduced; (the rest of the chapter concentrates on three

of these). A technique developed by Eisenstadt (1984) for interpreting a history of Prolog

execution was introduced in section 2.3.2. In section 3.3.2 a possible system was

discussed based on the assumptions that its domain was the localisation of bugs in Prolog

code, and that a number of implemented viewpoints were available to it which together

could describe Prolog execution. The purpose of the assumed system was to tutor the skill

of using the viewpoints to localise bugs in pieces of code.

142

Chapter 6: The Implementation Domain and Tutoring Goals

The implementation of such a system requires that the execution of the code being

considered by the student should be interpreted in terms of the relevant viewpoints. Such

an interpretation would enable the critiquing of reasoning about the execution by both

system and student. In the context of this thesis, this implies that the complementary

models of Prolog execution described by Bundy et al. (1985) should be formulated in such

a way that they may act as the basis of viewpoints in the implemented tutoring system.

Specifically, they should be formulated in a way which allows them to be combined to

form a working and observable Prolog interpreter. A record of the workings of this

interpreter could then be interpreted in the manner described by Eisenstadt (1984).

This section thus describes the formulation of the models from Bundy et al. (1985) to serve

as components of such an interpreter. Some parts of their models, such as backtracking

and the use of the cut, are omitted. Other parts, such as the generation and processing of

subgoals, are changed.

6.2.2 Background to the models of Prolog execution.

As described in chapter 2, the difficulties encountered by Prolog novices motivated Pain

and Bundy (1985) and Bundy et al. (1985) to produce a complete and consistent "Prolog

story" which could be used to "...understand and predict the execution of a Prolog

program.", and which could form the basis for teaching materials, error messages, and

tracing packages. The "story" was intended to cover both the procedural and declarative

semantics of Prolog, and especially illuminate the 'difficult to understand' aspects of the

language such as the construction of recursive data structures and the scope of variables.

This required that the details of resolutions, the proof of outstanding goals, and the search

strategy employed should all be described. "Impurities" in this story are described by Bma

et al. (1987b).

143

Chapter 6: The Implementation Domain and Tutoring Goals

As stated above, the resultant story has four parts, which we shall regard as complementary

models in the sense of the "user's conceptual model" discussed by Young (1983). The

purpose of such 'conceptual models' is to allow the user to make reliable inferences about

the system being considered. The parts of Bundy et al.'s (1985) 'story' are the Program

Database, the Search Space, the Search Strategy, and the Resolution Process. The short

overview of these models presented in chapter 2 is now repeated in the next paragraph as

an introduction to a more detailed discussion.

In various combinations, the models can be used to comprehend the many different

representations of Prolog execution, (Byrd Boxes, Arrow Diagrams, And/Or Trees, Or

Trees, Full Trace, Partial Trace etc.). The Database is the collection of assertion and

implication clauses that go to make up the Prolog program. The Search Space describes the

relationship between the goal literals which are input by the user, or generated by the

program, and the Program Database. The Search Strategy is concerned with the order in

which the goal literals are generated, and the order in which Database clauses are chosen

for resolution with them. The Resolution Process describes the unification of goal and

clausehead, the binding of variables to values, and the possible generation of new goal

literals.

Bundy et al. (1985) do not give a detailed statement of each model, but instead give a short

outline and examples of its application. A preliminary task was thus the formulation of

some more precise statement of each model. The initial attempt at this resulted in the model

statements given below. These were later modified to facilitate the implementation of the

tutoring system.

Each model was first defined in detail as a set of Prolog clauses. The form given here is

that of the Prolog clauses translated into English sentences.

144

Chapter 6: The Implementation Domain and Tutoring Goals

Before examining these models it may be helpful to describe their relationship to the

"viewpoints" of the implemented tutoring system. This relationship is outlined in the

introduction to this chapter, where the process of formulating an account of the system's

domain is summarised. The process is descibed graphically in figure 4. The system

domain is summarised as the "... use by novices of different viewpoints on program

execution to localise bugs in Prolog code", the point of this being that different viewpoints

may be used to localise different classes of bugs. In order to formulate the domain, two

partial accounts have to be combined in a way which facilitates the description of bugged

execution in terms of the viewpoints we wish to use. As described in section 6.1 these two

partial accounts are 1) a set of models which describe Prolog execution, and 2) a restricted

catalogue of syntactically-described bugs. The models become "viewpoints" when they are

combined with operators which draw inferences from them to identify bugs, and heuristics

which state the kind of problem to which the "viewpoint" can be applied.

The purpose of sections 6.2.3 - 6.2.6 is to produce a first statement of the first partial

account of the domain, that of the set of models for describing Prolog execution. This

statement is later modified to serve the needs of the implementation.

6.2.3 Prolog Model 1: The Database of Clauses.

1. The Database can contain Facts.

2. The Database can contain Rules.

3. The Database can contain Facts and Rules, but only Facts and Rules.

4. Facts and Rules are composed of Prolog terms.

5. A fact has no rhs. and ends in a full stop.

6. A rule has a word, or a functor, or a relationship for a Ihs, as a separator, with subgoal(s)

for a rhs.

7. A subgoal has the form of a fact.

8. Functors have arguments which are within brackets.

9. A fact may be a word.

10. A fact may have a functor and an argument.

11. A fact may be a relation.

145

Chapter 6: The Implementation Domain and Tutoring Goals

12. A relation has a functor and two or more arguments.

13. Facts and Relations can be nested objects.

14. A Fact is true.

15. The head of a rule is true if the subgoals of the same rule are true.

This model was seen as being largely concerned with syntax, and, as Bundy et al. (1985)

state, the possible forms of "...assertion and implication clauses... ". This is taken to mean

that syntactically correct facts are true, while for syntactically correct rules, the head is tme

if the subgoals are true. It should be noted that no information is given about the

relationships between the different elements of the Database (ie. rules, subgoals and facts).

Thus, while this model embodies the purpose of the rule form by stating the relationship of

implication between rulehead and subgoals, it does not tell us how to prove those subgoals.

The detailed syntax of Prolog is defined through a number of other statements which define

the possible alternatives for 'term', 'word', and 'relation'.

This model, (like the other three), was implemented, but does not play any part in the final

tutoring system. This is because the system is itself built in Prolog, (ie. the models of

Prolog are implemented in Prolog code), and syntax checking is done automatically by the

host environment before any of the code is executed. Since it is the execution of Prolog,

rather that its syntax which is expected to give novices problems, a decision was taken to

concentrate on the other three models. The model was implemented to the point where it

could accurately diagnose and label correct and incorrect Prolog terms.

6.2.4 Prolog Model 2: The Search Space.

If this model is to be used without reference to model 1, then the following three statements

concerning the possible contents of the Search Space are necessary as the Search Space is

concerned with the relationships between 'facts' and 'rules':

146

Chapter 6: The Implementation Domain and Tutoring Goals

1. The Search Space can contain Facts.

2. The Search Space can contain Rules.

3. The Search Space can contain Facts and Rules, but only Facts and Rules.

The question of whether these statements are more properly a part of the Syntax model is

ultimately academic, as the operation of the Search Space model in the tutoring system does

not refer directly to these three statements, but must have them as a prerequisite

assumption.

The main part of the model is as follows:

1. A goal is true if it resolves with a fact or if it resolves with the head of a rule whose subgoals

can be shown to be true using the contents of the Search Space.

2. Subgoals are treated as goals.

3. The head of a rule is true if its subgoal(s) is/are true as defined in 1 and 2.

4. There may be more than one way of showing a goal to be true.

These statements may be paraphrased as describing the space of facts and rules which is

available for proving goals, and the relationships between the parts, (facts and rules), of

that space. This may be likened to normal theorem-proving, where the successive goals

and theorems to be considered are not implicitly ordered. It is the stated relationship

between the facts and rules which distinguishes this model from the Database' model.

This model can thus be seen as a 'declarative' statement of the knowledge needed to

determine the relationship between the rules referred to in the Database model. It may be

labelled 'declarative', as it states the conditions which are to determine the truth or failure of

a given goal, but gives no information about how any search to determine that truth or

failure is to be carried out. In other words, it defines a structure without giving any

information about how to move around it. This information about how to carry out the

search may be labelled 'procedural' information, and is the essence of the third model, the

Search Strategy.

147

Chapter 6: The Implementation Domain and Tutoring Goals

The point of describing the Search Space in these terms (which are not found in the work

of Bundy et al. [1985]) is that they provide an abstract definition of the concept of "Search

Space". This abstract definition can then be used to draw inferences about all instances of

that concept, ie. about any specific Search Space that is encountered. The more usual

definitions of a Search Space in terms of 'Call Graphs', 'OR Trees', or 'AND/OR Trees'

always have their structure and relationships dictated by the specific Seach Space being

described, and are thus a descriptions of a specific instance of a Search Space which cannot

be used to draw deductive inferences about any other Search Space. If a viewpoint is to be

useful, it must be based on a model which has a suitable degreee of generality. The model

of the Search Space has thus been formulated to give this generality.

6.2.5 Prolog Model 3: The Search Strategy.

As indicated in section 6.2.4, this model gives the 'procedural' knowledge required to

organise a search through the Search Space in a particular uniform and consistent way.

This is contrasted with the declarative knowledge given in the Search Space model

described in the last section. This model specifies the order in which rules and facts are to

be considered as parts of possible proofs for a given goal, and the order in which any

resultant subgoals are themselves to be considered for proof. The model's statements use

the verbs 'resolve' and 'unify'. These actions are not defined in this model, but form the

core of the fourth model: Resolution.

1. To show that a goal is true, attempt to resolve the goal/query with successive database items

in the order in which the items occur in the database.

la. If the goal resolves with the item and the item is a fact, then the goal is true.

lb. If the goal matches the head of a rule, then the goal is true if the subgoals of

the rule can be shown to be true, taken in the order in which they occur in the rule.

148

Chapter 6: The Implementation Domain and Tutoring Goals

Ic. If the current attempt to prove a goal true fails, then attempt to resolve the

goal with the remaining items in the database, in the order in which they occur there. If a

match is found, repeat la/lb.

2. If no fact resolves with the goal, or if no set of subgoals for a matching rulehead can be

shown to be true, then the goal is not true.

Two points can be noted here: firstly that this model makes no reference to backtracking as

an element of the Search Strategy, and secondly that the generation of new goal literals

from the subgoals of a rule is included as a part of the Search Strategy.

Backtracking was excluded in the prototype version of the system, as our intention was to

use, in the first instance, examples which did not depend on backtracking to produce their

results. It was envisaged that a hierarchy of models could be defined which described

Prolog execution at increasing levels of complexity until the full range of Prolog behaviour

had been covered. It was assumed that, given sufficient time, the prototype system could

be expanded to cater for all of these models and their combination with operators and

heuristics to form viewpoints.

This strategy of starting with simple models and progressing to more complex ones has

precedents in the ITS literature, and underlies the design of QUEST (White and

Frederiksen 1986). If such a succession of models was desired for the Prolog story, with

backtracking included in the more complex ones, this could be achieved by expanding item

2 of the model given above to include the requisite information about re-doing the most

recent successful goal if the current one fails. This would also satisfy White and

Fredriksen's criteria of "upward compatibility". (This requires that a student should be

able to refine and extend the models used at an early stage of a learning process with a

minimum of reconceptualisation). This expansion would however, also occasion some

extra complexity in the 'Resolution' model given below, since this would require a

149

Chapter 6: The Implementation Domain and Tutoring Goals

description of how variables are unbound if backtracking proceeds through the resolution

that initially bound them.

It was noted above that the generation of new goal literals from subgoals is here described

as an aspect of the Search Strategy. This is a departure from the original 'story' of Bundy

et al. (1985), where the formation of new goal literals is described as an aspect of

Resolution. The change was made in the interests of consistency and economy. It is clear

that the proving of subgoals has to be somehow connected to the description of the Search

Space and Search Strategy, since subgoals must be proved in the Search Space, using the

same strategy as for an initial query. It would hardly be economical to have the same

search strategy described twice, ie. once for initial queries whose proof was described in

the Search Strategy model, and again for subgoals whose proof was described as a part of

the Resolution model. Such a dual description would also fail to promote an appreciation

of the recursive nature of Prolog. Accordingly, the Search Space model declares that

subgoals are to be treated as goals, ie. that the same Search Strategy should be applied to

proving them. The Search Strategy model itself thus regards subgoals and queries as in

some senses equivalent.

There is another reason for constructing the models in this way. This relates to the fact that

there is a strategy governing the order in which the subgoals are proved, ie. they are

attempted in the order in which they appear in the rule rather than in any random order.

This point is not emphasised in Bundy et al. (1985), although they refer to it in their

discussion of the way in which the Search Strategy imposes an order on the nodes of an

Execution tree. (This implies that in describing a given execution, the nodes of the tree

would conventionally be visited in a top-down, left-to-right order). There are thus two

aspects of search strategy which affect the handling of subgoals. Firstly, they are proved

in the same manner as an input query. Secondly, where there is more than one subgoal,

the goals should be proved in the order in which they appear in the rule. It was decided

150

Chapter 6: The Implementation Domain and Tutoring Goals

that each of these issues could be made more clearly explicit by removing the handling of

subgoals from the Resolution model, and including it in the Search Strategy model.

6.2.6 Prolog Model 4: The Resolution Process.

The model below might more accurately be called the 'unification' process, since, unlike

the 'Resolution' story proposed by Bundy et al. (1985) it does not deal with the generation

of subgoals. For the reasons given in the last section, the generation of subgoals is

described as a part of the Search Strategy. The process described here is the unification of

a goal with the head of a database item. If that item happens to be a fact, (ie. it has no

subgoals), then this unification is equivalent to a resolution in the sense that the goal is

proved. If there are subgoals to be proved, then the process described in this model will

not complete the resolution, as the Search Strategy will have to be employed to set the

subgoals as new goal literals. The model reads as follows:

1. Two literals will unify if:

a) Their principal functors are the same

AND

b) They have the same number of arguments, (if any)

AND

when each argument in one goal is matched with the corresponding argument in the same

position in the other goal, starting with the leftmost,

c) Either

1) The arguments are terms which are identical

OR

2) Both arguments are variables which are either uninstantiated or instantiated to

the same value.

OR

3) An uninstantiated variable in one clause is in the same position as a Prolog

term in the other.

AND

all occurrences of a given variable in the same two goal literals can

be instantiated to the same value without contradicting another

argument (or instantiation).

151

Chapter 6: The Implementation Domain and Tutoring Goals

If these conditions are satisfied, the variable is instantiated to the value of the Prolog term.

2. If these conditions are not satisfied, the goal literals will not unify, and any variable

instantiations made in this resolution are abandoned.

In the quest for clarity it was decided to keep this model as simple as possible in order to

facilitate its acquisition and use by novices. To this end, the smallest unit of description

that this model recognises is an 'argument' which is instantiated as a 'term' or a 'variable'.

The effect of this is that the model cannot, immediately, deal with embedded variables or

"functions" in terms (ie. in arguments). In this sense the model describes a "function-free"

Prolog. It is assumed that the model could be expanded to a more complex form which

was able to deal with such functons. As was argued above in relation to backtracking, this

simplification is consistent with the pedagogical practice of providing a sequence of models

with increasing levels of complexity, and beginning the tutoring with the simplest.

The model given here for 'resolution' could deal with embedded variables if the part of it

which describes argument matching was applied recursively to the elements of each term

which constituted the arguments; (ie. each bit of the two arguments being unified had to

either be identical, or a variable... etc.). This would describe the unification of arguments

at a finer grain size, and could constitute the next level of complexity to be tutored if a

progression of models was desired. The model as it is given above is sufficient for our

current purposes.

6.2.7 The models combined as an interpreter.

This chapter is mainly concerned with defining the domain in which the tutoring system is

to operate. As the opening remarks of this section point out, however, one goal of the

formulation of the models is that they should, in combination, form a Prolog interpreter

whose operation is transparent in the sense that it can be observed. This is equivalent to the

"glass box" representation described in section 2.1.4. Since our adapted definitions of the

152

Chapter 6: The Implementation Domain and Tutoring Goals

models have just been discussed, this is a suitable point at which to note some of their

shortcomings when used as the basis for such a glass-box interpreter. These shortcomings

do not relate to specific details of the implementation, but to aspects of Prolog execution

which anything claiming to be an interpreter would have to demonstrate.

The chief shortcoming of the models, assuming that they are to be combined to form a

Prolog interpreter, is that there is no account of a) the way in which variables are

standardised apart, and b) the method by which instantiated values are passed up and down

between parent goals and subgoals. The first issue, the standardisation apart of

differently-named variables, describes the process by which unbound variables are given a

new unique identifier when a goal containing them becomes a new goal literal. This issue

is mentioned briefly by Bundy et al. (1985) as an aspect of their 'Resolution' story,

although no details of the rules governing the process are given.

The second issue, that of the method by which instantiated values are passed up and down

between parent goals and subgoals, is illustrated briefly by Bundy et. al, although they do

not describe how the process is accomplished. It may well be a matter for debate whether

this issue, the passing of variable values, is properly discussed as an aspect of the 'pure'

declarative account of Prolog, or as an aspect of the implementations of the specified

language. The latter category would imply that the issue was not crucial to understanding

the language, and thus not of great interest in the tutoring of debugging strategies to

novices. The view taken here is that neither of these issues is of immediate relevance to

novices, and thus need not be pursued any further.

6.2.8 Conclusions to section 6.2

Four complementary models of Prolog execution have been formulated. Three of these

models are to be used as the basis of viewpoints on Prolog execution in the proposed

tutoring system. The models are based on the four proposed by Bundy et al. (1985),

although some parts of their models, such as backtracking and the use of the cut, are

153

Chapter 6: The Implementation Domain and Tutoring Goals

omitted. Other parts, such as the generation and processing of subgoals, are changed.

Since the intention is to implement the resulting models and combine them to form a

working Prolog interpreter, their limitations for this purpose are noted.

6.3 Describing Bugs

The parts of the "story" detailed in section 6.2 could be applied to tutoring Prolog in many

ways; (eg. they could be used to describe some arbitrary execution as opposed to specific

programming techniques or algorithms). In order to focus the process of designing a

system which could tutor in terms of the models, it was decided to concentrate on the area

of debugging strategies for novices. This section details a method of classifying bugs, and

its use to generate a space of possible bugs in which the implemented tutoring system can

operate. As stated in section 6.1, this 'space of possible bugs' is intended to form a

simplified environment which is suitable for use by novices. The space of bugs is

described graphically as a set of 'trees'.

6.3.1 Classifying Bugs: a simplified environment.

As previously stated, it is intended that the domain of the proposed tutoring system should

be debugging strategies for novices. This presents the problem of how bugs are to be

described and classified. Section 2.4 summarised the four-level classification scheme

proposed by Brna et al. (1987), and indicated that our current concern was with the

'Symptom Description', and the 'Program Code Error Description' levels. As explained in

section 2.4 we wish to describe and classify a range of bugs without reference to the

programmer's intentions, although Bma et al.'s (1987) discussion is related to programmer

expectations. Instead of considering programmer expectations, we shall relate the

classification to an ideal 'template' version of the code. Used in this way, the classification

allows all possible bugs to be listed.

154

Chapter 6: The Implementation Domain and Tutoring Goals

The categories listed by Brna et al. at the symptom level were Error Messages, Side

Effects, Termination Issues and the Instantiation of Variables. Given the tutorial goals

stated in the previous paragraph, the categories which are most suited to the construction of

a tutoring domain are Termination Issues and the Instantiation of Variables, since they are

most closely related to normal Prolog execution, and are most easily explained in terms of

the models of section 6.2.

Termination issues consist of:

Unexpected termination.

Unexpected failure to terminate.

Termination with an unexpected value.

Instantiation of Variable issues consist of:

Unexpected failure to instantiate a variable.

Unexpected instantiation of a variable.

A variable instantiated to an unexpected value.

Section 2.4.1 described how these 'symptoms' may be explained at the 'Code Error' level

through either syntactic or technique-oriented classifications. Our concern is with the

syntactic classification. This explains symptoms in terms of missing, extra, or wrong

'modules'. Depending on the level of description, these 'modules' can be such entities as a

set of predicates, or within a clause, an argument or subgoal. As stated, the search strategy

of Prolog requires that we also include the possibility of wrong order for clauses and

subgoals; (the topic of order is discussed by Bma in relation to both Program Misbehaviour

and Code Error description). A complete list of modules allows all possible (individual)

bugs to be described in relation to the ideal template code.

The modules chosen for the novice-tutoring system are as follows:

1) Clause.

155

Chapter 6: The Implementation Domain and Tutoring Goals

2) Functor.

3) Argument.

4) Subgoal.

5) Operator.

Each of these, apart from 'Operator', can be prefixed by 'wrong', 'extra', or 'missing' to

give a category of bug. To cater for bugs related to Prolog's search strategy, it is also

necessary to include the categories of 'wrong order' for clauses, subgoals, and arguments.

Not every combination of prefix and module name is useful; eg. the category 'wrong

clause' is not useful as other descriptions such as 'wrong argument' or 'wrong argument

order' are more specific. The categories of 'missing operator' or 'extra operator' seem

more related to an appreciation of syntax than of execution. In all, twelve bug categories

are defined. These are detailed below.

This catalogue of bugs may now be related to each of the symptoms described above. The

development strategy adopted for the proposed system was to choose one of these

symptoms and produce a domain representation of the bugs which could cause it with the

given list of modules. It was assumed that the tutoring would be based on this domain

representation, and that similar representations could be built for the other symptoms. The

symptom chosen for this exercise was 'A variable instantiated to an unexpected value' as

this was judged to describe an easily-comprehended situation which might well be within

the student's experience, and which could be explored via a variety of tutoring activities.

Accordingly, discussion in subsequent sections will generally be related to this symptom,

with the exception of discussion relating to figure 5.

For each symptom, we can define a 'tree' of expected and actual outcomes and candidate

bugs. As an example, the 'instantiation to an unexpected value' symptom implies that a

goal containing variables succeeds in both the ideal and bugged code, and that a variable in

the query is instantiated. Only bugs capable of yielding this result need to be put into the

156

Chapter 6: The Implementation Domain and Tutoring Goals

tree. A system module can then be built to detect the bugs specified in each tree. Figure 5

gives the 'tree' for the symptom Unexpected Instantiation of a Variable'.

Before exploring the detail of these 'bug trees', one further point concerning their use will

be made.

If three simple conditions are observed, the trees can be used to specify the range of

possible bugs which may be included in the problems set to the student, and can thus form

a structure for the entire domain and its tutoring. These conditions are now stated,

followed by their pedagogical and technical rationale.

The conditions are as follows:

1) Only a single bug may be present in each problem.

2) The bugged code may only have one difference from the ideal code.

3) The bugs should be in the databases, not in the queries set with them.

The point of these simplifying conditions is to provide an environment where the student

can concentrate not simply on the localisation of bugs, but on the use of the models of

Prolog developed above to carry out the task.

It is assumed that this requires, at least initially, a domain which is as simple as possible.

At the same time, it is assumed that in order to tutor effectively, the system must be able to

carry out the task that it is trying to tutor. Specifying that only a single bug should be

present gives the simplest situation that can be described by the 'symptom and module'

analysis outlined above. Multiple bugs might interact in arbitrarily complex ways, causing

confusion to the student, and possibly providing patterns of execution which were beyond

the capacity of the proposed system to analyse.

157

Chapter 6: The Implementation Domain and Tutoring Goals

Figure 5. The Bug Tree for the symptom ’Unexpected instantiation of

a variable'. (Symptom from Brna et al. 1987).

Symptom: Unexpected Instantiation of a variable.

Goal Succeeds
Get Instantiation

Expect no Instantiation

Expect Goal Failure Expect Goal Success

missing dause

extra clause

wrong dause
order

wrong functor;

W rong Arity

Wrong Arguments

wrong operator missing dause

wrong subgoal
order

wrong subgoal

extra subgoal

missing subgoal

extra clause

wrong clause
order

wrong functor

Wrong Arity

Wrong Arguments

wrong argument order

wrong operator

wrong subgoal
order

wrong subgoal

extra subgoal

missing subgoal

wrong argument order

The stipulation that there should be only one difference between the ideal and bugged code

(ie. that of the bug itself) is intended to further simplify the 'bugfmding' and explanation

mechanisms of the proposed system. The stipulation allows the point of difference to be

quickly identified by syntactic comparison, leaving its significance to be determined fiom

the execution trace. As described in section 2.4, it is not the goal of this work to build a

full-scale intelligent debugger. The conditions outlined here provide a closed and

158

Chapter 6: The Implementation Domain and Tutoring Goals

structured 'world' which can be analysed by a fairly simple 'bugfinder'. This

simplification allows greater effort to be directed towards the main goals of the research, ie.

the development of mechanisms which describe the bug's effect on program execution in

terms of the models we wish to use, and which are able to tutor this skill.

6.3.2 The Bug Trees and their application.

This section gives the 'trees' of possible bugs for the 'Variable Instantiation' symptoms

given the range of 'modules' specified above. As indicated in section 6.3.1 not all

combinations of 'missing', 'extra', or 'wrong' and a module are useful, and some

combinations are omitted. Thus the two possible categories of 'missing argument' and

'extra argument' are subsumed under the single heading of 'wrong arity'. The possible

category of 'wrong clause' is assumed to be expressed in the other, more specific,

categories such as 'wrong subgoal' or 'wrong argument'. The possible categories

'Missing Functor' and 'Extra Functor' are not included in the domain representation. The

former is judged to an unlikely event, while the latter is viewed as a syntax error. As

described in section 6.3.1, the possible categories of 'Missing Operator' and 'Extra

Operator' are also omitted. It is assumed that 'not' and 'fail' will always appear in or as

subgoals.

This gives the following 12 categories of bug:

Missing Clause.

Extra Clause.

Wrong Clause Order.

Wrong Functor.

Wrong Arity.

Wrong Arguments.

Wrong Argument Order.

Missing Subgoal.

159

Chapter 6: The Implementation Domain and Tutoring Goals

Extra Subgoal.

Wrong Subgoal.

Wrong Subgoal Order.

Wrong Operator.

Figure 5 shows the tree which could be drawn using these categories for the symptom of

'unexpected instantiation of a variable'. Small arcs between branches of the tree indicate an

'and' relation. Absence of an arc indicates an 'or' relation. (The 'and' branch for 'goal

succeeds' at the top level is something of a tautology, as in order to get the unexpected

instantiation, the goal must succeed. It is included in order to establish a standard format

for such trees).

As figure 5 indicates, the lack of an instantiation could be expected either because the goal

set with the database was expected to fail, or else because the goal was expected to succeed

without finding a value for the variable in question. The same range of bugs may apply in

each case, but their effect on program execution in the two cases will be different. This

may be exemplified in terms of the 'extra clause' bug. Where failure was expected, this

bug might allow the goal to succeed, thus providing the unexpected instantiation. (It will

be remembered that only one difference between the ideal and bugged code is allowed, that

of the bug itself). Where the goal is expected to succeed without a value for the variable in

question, the extra clause must permit a different unification which gives the unexpected

value to the variable.

This kind of analysis may be performed for each of the bugs listed above. This implies that

under the conditions stated in section 6.3.1, the effects of each listed bug on program

execution may be expressed in abstract terms, without reference to the specific code being

executed. A summary of the structures which are involved in this expression is given

graphically in figure 6. This figure indicates that where a specific symptom is caused by a

specific bug, the behaviour caused by that bug can be described in terms of the models of

160

Chapter 6: The Implementation Domain and Tutoring Goals

execution developed in section 6.2. This behaviour must result in either the success or

failure of a given goal. A 'template' or 'summary description' can be constructed for each

case. This 'template' describes the bug's effect on execution in terms of the models, but

without reference to specific pieces of code.

Figure 6. A summary of the relationships of Symptom, Bug,

Module, Models of execution, and Templates.

Symptom

Bug

Goal
Failure

Goal
Success

Behaviour
Caused by
Bug.

eg. Variable instantiated
to an unexpected value'.

A 'missing', 'extra'
or 'wrong' module.

Expressed in terms
of models of execution.

Bug results in eittier
success or failure of
a given goal. One
template for each.

These abstract descriptions or 'templates' may be used to explain the effects of each bug on

program execution, or else to check a description of the execution given by a student. If

161

Chapter 6: The Implementation Domain and Tutoring Goals

we assume that the abstract description of a bug's effect can be phrased in terms of the

models of Prolog presented in section 6.2, then this will provide a way of formally relating

the models to the intended tutoring domain, which is the localisation of bugs in Prolog

code. The details of this formalisation are explored in sections 6.4 and 6.5.

Figure 7. The 'Bug Tree' for the symptom 'A variable instantiated to

an unexpected value'. (Symptom from Brna et al. 1987).

Symptom: Variable instantiated to an unexpected value.

-Goal Succeeds
Get Instantiation B

Expect Instantiation A

Expect Goal Success

missing clause '— ^wrong operator

extra clause

wrong clause
order

wrong functor

Wrong Arity

wrong sut)goal
order

wrong subgoal

extra subgoal

missing subgoal

Wrong Arguments wrong argument order

162

Chapter 6: The Implementation Domain and Tutoring Goals

We indicated in section 6.3.1 that the discussion of this domain would be centred initially

around a single symptom, that of 'A variable instantiated to an unexpected value*. The

'bug tree' for this symptom is given in figure 7.

6.3.3 Conclusions to section 6.3.

Section 6.3 refers to Brna et al. (1987) to derive a catalogue of bugs which may be

described in relation to the programmer's expectations. The definition of 'Missing',

'Extra' or 'Wrong' modules allows all possible bugs to be defined 'syntactically' in relation

to an ideal version of the code. This structure is used in relation to the symptom 'A

variable instantiated to an unexpected value' (Brna et al. 1987), to define a range of

modules and resultant bugs that the proposed tutoring system will be able to handle.

Specific conditions regulating the relationship between the ideal and bugged code are also

defined. The symptom, the expectations associated with it, and the range of possible bugs

are assembled into 'trees'.

6.4 Formulating abstract descriptions of the effect of each

bug.

6.4.1 Introduction.

The discussion so far in this chapter can be summarised as follows: section 6.2 provided

models of Prolog execution which, taken together, can be seen as describing a simplified

version of Prolog execution; section 6.3 described a simplified, limited and systematised

set of bugs which are assumed to operate under given conditions. The model Prolog with

the restricted bug catalogue and conditions can be said to provide a much simplified

environment which is suitable for novices wishing to learn about debugging strategies.

163

Chapter 6: The Implementation Domain and Tutoring Goals

Having constructed the parts of a simplified domain, it is necessary to define in detail how

those parts will interact. Accordingly, in this section, the twelve possible bugs from

section 6.3 are discussed in relation to the symptom ’A variable instantiated to an

unexpected value'. (See figure 7, and Brna et al. 1987). In general terms, this involves

mapping the execution models of section 6.2 onto the bugs of section 6.3 in order to

describe how each bug may effect execution. (As this description relates to the issue of

'control flow', it may be seen as a version of the 'Program Misbehaviour Description' of

Brna et al. 1987). Once the execution patterns for each bug have been established, then

each pattern must be described in terms of the models of section 6.2. These two tasks are

undertaken in this section.

6.4.2 Bug effects on Program execution.

In this section the possible execution patterns of each bug are noted.

The discussion in this section assumes that two versions of code are always available, one

being the ideal version, the other being the bugged version. If both versions were to be

run with the same query, two different execution traces should result. The difference

between the trace from the ideal code, and the trace from the bugged code should reveal the

effect of the bug, as only one difference between ideal and bugged code is allowed. (See

section 6.3). For each bug discussed in this section, it is assumed that traces are available

describing the execution of both ideal and bugged code as a series of numbered statements.

The two execution traces can be compared in terms of the initial query and any resultant

subgoals which are generated, eg. a 'failure' in the ideal code trace may occur where the

same goal succeeds in the bugged code trace. (The models defined in section 6.2 match a

goal with every database clause, not just those with the same functor. For a given goal,

failure may thus be the outcome in relation to each successive clause in the database).

Under the conditions stipulated in section 6.3, and with the requirement that for this

164

Chapter 6: The Implementation Domain and Tutoring Goals

symptom ('A variable instantiated to an unexpected value') both goals must eventually

succeed, only certain outcomes are possible, and these can be listed exhaustively. The

possible outcomes for one bug, 'Missing Clause' will now be discussed in detail, and then

the possible outcomes for all twelve bugs identified in section 6.3.2 will be given in tabular

form.

To recap: the symptom under discussion is 'A variable instantiated to an unexpected value';

the bug is 'Missing Clause'; the search strategy does not incorporate backtracking, and

only one difference between the ideal and bugged code is allowed. The effect of the

missing clause on the execution trace is obviously dependent on the position of that clause

in the ideal database. If the missing clause is near the first (top) position in the ideal

database, then all the possible unifications which the clauses following it might allow are,

as it were, 'moved up' one place. The following pair of databases illustrate this for the

goal 'big(X)'.

Ideal Database. Bugged Database.

big(X):- hungry(X). big(X):- hungry(X).

hungry(cat). hungry(iguana).

hungry(iguana).

For these databases, the goal 'big(X)' always succeeds, as do all generated subgoals. In

each database the execution terminates when the second clause gives 'X' a value. In the

bugged database, however, the fact 'hungry(cat)' is missing, allowing the subgoal

'hungry(X)' to succeed on 'hungry(iguana)' thus giving the symptom 'variable instantiated

to an unexpected value'. This could only happen in the ideal database if the resolution of

'hungry(X)' and 'hungry(cat)' was forced to fail. The executions which would be shown

in the two traces can thus be described by saying that a successful resolution in the 'ideal'

trace occurs at the same position as a successful resolution in the 'bugged' trace, but that

165

Chapter 6: The Implementation Domain and Tutoring Goals

these resolutions occur with different clauses. This description can form the basis of a

specification which identifies the presence of the bug in question, a 'Missing Clause', if we

add to it the stipulation that the ideal database must be one clause longer than the bugged

database.

This bug may also show other patterns of execution. A goal in the 'ideal' trace may

succeed where a goal in the 'bugged' trace fails if the clause which resolves with the goal in

the ideal database is missing in the bugged database. In this case, there must be another

clause in the bugged database which gives a successful resolution in order for the variable

in the goal to be given a value. (It will be remembered that the symptom here is 'A

variable instantiated to an unexpected value'). This situation is illustrated by the following

code being run with the goal 'huge(X, Y)':

Ideal Database. Bugged Database.

big(dog). big(dog).

huge(red, fish). unhappy(man):- huge(black, dog).

unhappy(man):- huge(black,dog). huge(b!ack, dog).

huge(black, dog).

For the execution with this goal, both the 'ideal' and the 'bugged' trace will show the same

result with respect to the first clause, the fact 'big(dog).', as both attempted resolutions will

fail to match. The next attempted resolution succeeds in the 'ideal' trace, when the query

resolves with 'huge(red, fish).' so that 'X' is instantiated to the value 'red' while 'Y' is

instantiated to the value 'fish', and the execution halts. The fact 'huge(red, fish).' is

however missing from the bugged database, so that the second attempted resolution shown

in the 'bugged' database is with the clause 'unhappy(man):- huge(black, dog).'. This

fails, giving a failure in the 'bugged' trace where there is a success in the 'ideal' trace. The

execution with the bugged database goes on to resolve the query with 'huge(black, dog).',

so that in the 'bugged' trace, 'X' is instantiated to the value 'black', while 'Y' is

instantiated to the value 'dog', thus giving the symptom in question.

166

Chapter 6: The Implementation Domain and Tutoring Goals

It is interesting to note that under the conditions specified for this exercise, (see section

6.3), it is not possible to have a situation where a failure in the 'ideal' trace, (with a later

success and consequent instantiation of the goal variable) is matched by a success in the

'bugged' trace, if the resulting instantiations are to have different values, ie. if the symptom

under discussion is to actually appear. (Under the terms of this discussion, getting the

same variable instantiations through different resolutions does not constitute a bug). This

is easily explained. If the bug in question is a 'Missing Clause', and a failure in the 'ideal

trace' matches a success in the 'bugged' trace, then the clause which causes the failure in

the ideal trace must be missing from the bugged database. This would constitute the single

allowable difference in the two databases. All subsequent clauses in both databases would

thus have to be identical. The first subsequent clause which successfully resolved with the

current goal in the ideal trace would also do so in the bugged trace, and the resulting

variable instantiation would be the same in both traces, so that the symptom of 'A variable

instantiated to an unexpected value' would not be seen. The following code illustrates this

point:

Ideal Database. Bugged Database.

big(dog). big(dog).

unhappy(man):- huge(black.dog). huge(red, fish).

huge(red, fish). huge(black, dog).

huge(black, dog).

If the query set is again 'huge(X, Y)', then the first successful resolution in the bugged

database will be with the second clause, the fact 'huge(red, fish).'. 'X' will thus become

instantiated to the value 'red' while Y' is instantiated to the value 'fish', and the execution

will halt. In the ideal database, the attempted resolution of the query with the second

clause 'unhappy(man):- huge(black,dog).' will fail. The traces thus show a failure in the

'ideal' trace where there is a success in the 'bugged' trace. The next attempted resolution

in the 'ideal' trace will be the query with the third clause, the fact 'huge(red, fish).'. This

will succeed giving the same instantiations as the bugged execution just described. Any

167

Chapter 6: The Implementation Domain and Tutoring Goals

further changes to prevent this happening are illegal, since the absence of the clause

'unhappy(man):- huge(black,dog).’ from the bugged database already constituted the single

allowable difference between the two databases.

The possible combinations of goal success and goal failure for the symptom ‘A variable

instantiated to an unexpected value' and the bug 'Missing Clause' (under the conditions

defined in section 6.3) may thus be defined as in the entries to Table 1; the other necessary

attributes of the bugged database are also listed.

A similar analysis can be carried out for all the twelve bugs listed in section 6.3.2. The

possible combinations of bug, goal success, goal failure, and database/trace condition are

derived systematically in the same manner and under the same conditions as those given for

the bug 'Missing Clause' given above. As these other derivations contribute little of

principle to the discussion, they are summarised in Table 2.

Table 1. Possible legal goal outcomes at a given point in the traces

of both Ideal and Bugged code for the bug 'Missing Clause' and the

symptom A variable instantiated to an unexpected value', using

models of section 6.2 and database conditions of section 6.3.

(Symptom from Brna et al. 1987).

Bug Ideal Trace Bug Trace Bugged Database / Traces

Missing Clause Success Success 1 less clause.

Missing Clause Success Failure 1 less clause.

Missing Clause Failure Success ILLEGAL

168

Chapter 6: The Implementation Domain and Tutoring Goals

Table 2. Possible legal goal outcomes at a given point in the traces

of both Ideal and Bugged code for all bugs of section 6.3. and the

symptom 'A variable instantiated to an unexpected value', using the

models of section 6.2 and database conditions of section 6.3.

(Symptom from Brna et al. 1987).

Bug Ideal Trace Bug Trace Bugged Database / Traces

Missing Clause Success Success 1 less clause.

Missing Clause Success Failure 1 less clause.

Missing Clause Failure Success ILLEGAL

Extra Clause Failure Success 1 more clause

Extra Clause Success Success 1 more clause

Extra Clause Success Failure ILLEGAL

Wrong Clause Order Success Success Different clause order. All
clauses shared.

Wrong Clause Order Failure Success Different clause order. All
clauses shared.

Wrong Clause Order Success Failure ILLEGAL

Wrong Functor Success Failure Functor failure in bugged trace.
Dif. functor

Wrong Functor Failure Success Functor failure in ideal trace.
Different functor.

Wrong Arity Success Failure Arity failure in bugged trace.
Different Arity.

Wrong Arity Failure Success Arity failure in ideal trace.
Different Arity.

Wrong Arguments Success Success Same arity, different arguments

Wrong Arguments Success Failure Same arity, different arguments

169

Chapter 6: The Implementation Domain and Tutoring Goals

Wrong Arguments Failure Success Same arity, different arguments

Wrong Argument Order Success Success Same arguments, different
argument order

Wrong Argument Order Success Failure Same arguments, different
argument order

Wrong Argument Order Failure Success Same arguments, different
argument order

Missing Subgoal Failure Success 1 less subgoal; other subgoals

of clause same.

Missing Subgoal Success Failure Is failure through lack of

subgoal possible?

Extra Subgoal Success Failure 1 extra subgoal; other subgoals

of clause same.

Extra Subgoal Failure Success Is failure through lack of

subgoal possible?

Wrong Subgoal Success Failure Same no. of subgoals; one

different.

Wrong Subgoal Failure Success Same no. of subgoals; one
different

Wrong Subgoal Success Success Same no. of subgoals; one
different

Wrong Subgoal Order Success Failure Same subgoals; different
subgoal order.

Wrong Subgoal Order Failure Success Same subgoals; different
subgoal order.

Wrong Subgoal Order Success Success Same subgoals; different
subgoal order.

Wrong Operator Success Failure Different operator

Wrong Operator Failure Success Different operator

Wrong Operator Success Success Different operator

170

Chapter 6: The Implementation Domain and Tutoring Goals

6.4.3 Developing description templates for each bug execution

pattern.

Introduction.

This section deals with the detailed mapping of the models of section 6.2 on to the bugs of

section 6.3. Section 6.4.2 described the different execution patterns that could be

associated with each bug, for a given symptom. A set of conventions is now stated which

govern the description of those patterns in terms of the models of section 6.2, and indicates

how they can be applied to give a complete description of each pattern. These conventions

are also used to develop a taxonomy of bugs, where each bug is classified as either a

Search Space, a Search Strategy, or a Resolution bug.

Finally, the description of the execution pattern and the bug classification are combined to

give abstract descriptions of the effect and nature of each bug in relation to the symptom 'A

variable instantiated to an unexpected value'. These descriptions do not refer to specific

pieces of code. They are used to define 'templates' which are intended to support the

tutoring and explanation which is required for the simplified domain. The 'templates' are

described in more detail below.

Conventions governing the mapping of models onto bugs.

The purpose of this section is to give a statement of the conventions which govern the

mapping of the models of section 6.2 onto the bugs of section 6.3, and the reasons for their

adoption. Conventions are defined in relation to Resolution, Search Strategy, and Search

Space.

These conventions state that bugs shall be classified as follows:

• Any change to functor, arity, argument, or argument order implies a Resolution

171

Chapter 6: The Implementation Domain and Tutoring Goals

bug.

• Any change to clause or subgoal order implies a Search Strategy bug.

• Changes which add or delete clauses or subgoals imply a Search Space bug.

The introduction to this section (6.4.3) mentioned the need for a set of conventions to

govern the use of the models of Prolog (section 6.2) to describe the effect of the bugs on

program execution. What is required here is a well-structured mapping of the models from

section 6.2 onto the bugs of section 6.3. Conventions for this mapping are necessary

firstly in order to prevent misunderstandings which might arise from different possible uses

of such terms as 'Resolution’, and secondly to allow us to associate given types of bugs

with the models which facilitate their localisation. This is, after all, the goal of the tutoring.

The 'templates' which are structured around this mapping are intended to describe program

execution and relate this to the given bugs. They should do so clearly and comprehensibly.

The discussion of the conventions leads, later, to a discussion of the 'templates'.

Conventions must first be defined in relation to 'Resolution', since we have to make

evaluative judgements concerning the outcome of specific 'Resolutions'..The point is

perhaps clarified by saying that a perfectly successful 'Resolution' can constitute a bug, (ie.

it succeeds where the 'ideal' trace shows a failure). In this case, no particular aspect of the

code such as 'arity' is highlighted as causing a failure, and as the student does not have

access to the 'ideal' trace, no specific aspect of the code can be isolated as being 'wrong' in

terms of execution. It is the overall ejfect of the execution which constitutes the bug. The

Prolog models of section 6.2 do not have the means to describe this, as it involves

comparisons between different executions. A vocabulary must thus be developed to permit

the expression of such evaluative conclusions.

Confusion may arise from the fact that 'Resolution' can be used in different senses. It can

refer to the abstract description of a process which attempts to unify the functors and all the

arguments of a goal and one of a number of clauses, thereby possibly binding unbound

172

Chapter 6: The Implementation Domain and Tutoring Goals

variables. Within such an abstract description, alternative 'Resolutions' are possible, so

that we might refer to the 'right' or the 'wrong' 'Resolution', depending on the desired

outcome.

In a different sense, 'Resolution' can refer to a specific part of a specific execution which

attempts to unify a given goal and a given clause in terms of functor, arity, and arguments.

This can only be discussed in terms of the success or failure of its individual stages and its

outcome. As it is not related to other possible resolutions, it allows no sense of being the

'right' or 'wrong' resolution. It is this latter meaning which is embodied in the models of

section 6.2. It is desired that the student should accurately apply these models to describe a

specific goal/clause execution and only then state that this execution is a manifestation of

some specific form of bug. If the goal of tutoring strategies for the localisation of bugs in

Prolog is to be well served, then the system must be able to clearly associate the correct bug

with one of the models, or a combination of the models, given in section 6.2.

Conventions must also be defined in relation to 'Search Strategy'. 'Search Strategy' is also

defined as describing a local process, in this case, the one by which clauses are chosen for

resolution with a given goal in a given execution. It does not describe the choice of one

search strategy in preference to another.

Other conventions must be defined in relation to 'Search Space'. The issue here is slightly

more complex. It's sense in the model of section 6.2 is quite clear, relating to the space's

de facto ability or inability to prove given goals. If however, we wish to use the term to

characterise a certain kind of bug, then the situation is less clear. The way that a bug is

labelled is intimately bound up with the action taken to remedy it. Consider the following

code, to be executed with the query 'huge(X, Y)'

173

Chapter 6: The Implementation Domain and Tutoring Goals

Ideal Database. Bugged Database.

big(dog). big(dog).

huge(black, dog). huge(red, fish).

unhappy(man):- huge(black,dog). huge(biack, dog).

unhappy(man):- huge(black, dog).

In both databases the query would succeed in resolving with the second clause, giving X =

black and Y = dog in the ideal database trace, but X = red and Y = fish in the bugged

database trace. According to the rules of section 6.3, the only allowable difference between

the databases is the bug, in this case the extra clause 'huge(red, fish).'. This defines the

bug as an 'extra clause' bug. However, if the ideal database is not available for inspection,

then the desired result can equally well be obtained by changing the order of the clauses,

(ie. by putting 'huge(black, dog) before 'huge(red, fish)'), thus defining the bug as a

clause order bug. (For the symptom that we are discussing this is frequently the case, as,

by definition, some goal must always succeed, and any other constraints on the code which

might make the re-ordering strategy inappropriate have not been articulated).

As another alternative, the functor of 'huge(red, fish).' could be changed to stop the query

resolving with it, so that the bug is seen as relating to an aspect of the resolution process.

Such clause order and functor changes would violate the conditions defined in section 6.2

by creating two differences between the ideal and bugged code, although this would not be

apparent to the student as the ideal code would not be available for inspection.

The re-ordering strategy in this example seems much more closely related to the definition

of the Search Strategy model in section 6.2. Questions which concern the presence or

absence of a clause seem much more related to the Search Space model. The changing of a

functor seems intimately related to Resolution. The question thus arises of how we may

structure the mapping of the models of section 6.2 onto the bugs of section 6.3 in an

unambiguous and coherent way, so that the changes the chosen bugs imply do not violate

the conditions defined in section 6.3. (There is also the more practical question of how the

174

Chapter 6: The Implementation Domain and Tutoring Goals

system is to guide the student onto the target bug and remedy, rather than allowing them to

make an alternative analysis implying an action which is ’illegal' in terms of differences

between bugged and ideal code).

A possible stmcture for the mapping is indicated if we consider one final semantic problem.

The examples given above involve changing respectively, the number of clauses, the clause

order, and one clause's functor. As the Search Space is defined in terms of the collection

of clauses which can be used to prove a goal, then each of these three changes will involve

changing the Search Space. In fact, any action taken to rectify a bug will involve change to

the Search Space, so that in this sense, all bugs are 'Search Space' bugs. This is not very

helpful.

Progress can be made by distinguishing the two uses of 'Search Space':

1) A collection of clauses, (the thing to which changes are made).

2) A way of labelling a certain kind of bug.

The first sense is that dealt with in the Search Space model of section 6.2. If we

concentrate on the second sense of the term, we must decide what kind of code errors, or

corrective changes, we want it to capture. As indicated previously, changes involving

clause order seem related to the Search Strategy model, while those concerned with such

aspects as functors and arity seem related to the Resolution model. If these categories of

changes are excluded, then we are left with those which concern the presence or absence of

specific clauses. This seems correct, since it relates the bugs of 'missing clause' and

'extra clause' to the model of the Search Space.

This categorisation can be extended to consider subgoals. The order in which they are

considered is dictated by the Search Strategy, so that bugs relating to this order can be seen

as Search Strategy bugs. Bugs relating to the presence or absence of subgoals can be seen

as Search Space bugs, as can 'wrong subgoal' bugs. Bugs relating to operators do not fit

neatly into this categorisation, but can be labelled as Search Space bugs for convenience.

175

Chapter 6: The Implementation Domain and Tutoring Goals

Syntax bugs are not considered here, since it is assumed that these will be caught by the

Prolog environment's syntax checker.

In summary, bugs can be named in terms of the changes that are made to rectify them. In

the context of the conditions specified in section 6.3, this can be used to structure a

mapping from the models of section 6.2 on to the bugs of section 6.3. as follows: Any

change to functor, arity, argument, or argument order implies a Resolution bug. Changes

to clause or subgoal order imply Search Strategy bugs. Changes which add or delete

clauses or subgoals imply a Search Space bug.

A good mapping from the models to the bugs implies that certain bugs should be associated

with certain models in a meaningful way. The point of the intended tutoring is that the

models should become useful in localising bugs. It is also desirable that, for the sake of

consistency, the conditions declared in section 6.3 should be maintained in the analysis

which identifies any given bug, (thus, for example, a re-ordering of the clauses would not

always be an acceptable solution). The conventions defined above are intended to produce

this consistency. It is also intended that they should regulate the labelling of bugs and

preclude misconceptions about that labelling.

Classifying bugs in terms of the models.

The conventions established in section 6.4.3 can now be used to label the individual bugs

in terms of Resolution, Search Strategy, and Search Space.

The relationships outlined in that section can be shown in tabular form. As the structure the

a table will reflect the use to which the entries will be put, this use must be briefly

considered first.

The primary purpose of the relationships described in section 6.4.3 is to build 'templates'

which describe particular patterns of execution and link them to specific bugs. If we

176

Chapter 6: The Implementation Domain and Tutoring Goals

assume that students have correctly identified the clause that contains the bug, they can be

asked to describe the execution of that clause with the relevant goal, and then state the

nature of the bug and the model it relates to. We may ask that the execution be described in

terms of three of the models from section 6.2, ie. Resolution, Search Strategy, and Search

Space.

The first model to be applied will be Resolution, which will be used to describe the

attempted resolution of the goal with the head of the relevant clause. If this completes

successfully, then Search Strategy will be used to determine whether any subgoals are to be

pursued. If the head resolution fails, then the search continues elsewhere. It is at this

point that some comment must be made on the search space, as an evaluation of the

previously-described execution. If the bugged execution manifests a Resolution or Search

Strategy bug, then the Search Space may be described as 'Ok'. If, however, the execution

described is seen as manifesting a Search Space bug, (eg. 'extra clause'), then this bug can

be given as the description of the Search Space. At this point the student can be asked to

state the relevant bug or 'Code Error'. The following table associates Code Errors, the

model related to them, and the appropriate comment on the Search Space. The description

of the bugged execution in terms of the three models is dealt with more fully below.

177

Chapter 6: The Implementation Domain and Tutoring Goals

Table 3. Each row in the table gives a recognised Code Error, the

model associated with it, and the relevant comment on the Search

Space. (Code Errors derived from Brna et al. 1987; Models derived

from Bundy et al 1985).

Code Error Model Search Space Description

Wrong Functor Resolution Ok

Wrong Arity Resolution Ok

Wrong Argument Resolution Ok

Wrong Argument Order Resolution Ok

Wrong Clause Order Search Strategy Ok

Wrong Subgoal Order Search Strategy Ok

Missing Clause Search Space Missing Clause

Extra Clause Search Space Extra Clause

Wrong Subgoal Search Space Wrong Subgoal

Missing Subgoal Search Space Missing Subgoal

Extra Subgoal Search Space Extra Subgoal

Wrong Operator Search Space Wrong Operator

Questions which may be asked of the student.

This section defines the kind of questions that a tutoring system embodying the mappings

of models onto bugs may ask of a student.

178

Chapter 6: The Implementation Domain and Tutoring Goals

Given the focus of the domain, the questions will be something like "Where and what is

the bug in this program?" or "Where does this trace differ from what you would expect for

the trace of a correct solution?". We may assume that at this point the student has access to

the following materials:

• The desired result.

• The actual result.

• The bugged trace.

• The bugged code.

What is desired is that the student should indicate the particular clause, clausepart, or aspect

of the database which constitutes the bug. For the symptom under discussion, ('A variable

instantiated to an unexpected value'), this can sometimes take the form of two quite distinct

questions. If a resolution in the 'bugged' trace fails where one in the 'ideal' trace succeeds,

then this is the point where a variable value fails to be instantiated. (See examples of code

above). In order for the execution to produce some value, a later resolution must succeed,

giving a point in the trace where an incorrect value is instantiated. The question which

asks about the location of the bug may thus take the following two forms:

• Where in the trace or code is the 'ideal' value not instantiated?

• Where in the trace or code is the bugged value instantiated?

Where the 'ideal' and 'bugged' traces both show a successful resolution in the same

position, (but with different clauses, see examples above), the two questions actually refer

to the same single event, as the 'bugged' trace does not show a failure where the 'ideal'

trace shows a success.

These considerations imply that the system must be able to distinguish which question is

being asked and must be able to tutor in relation to each one. In terms of an

179

Chapter 6: The Implementation Domain and Tutoring Goals

implementation, this means that where the questions refer to different events, a separate

template must be available to describe each event. One will be needed to describe the

execution where a variable vdlue fails to get instantiated, and another will be required to

describe the execution where a 'bugged' value is instantiated.

Figure 8. The description template derivation tree for the symptom

'A variable instantiated to an unexpected value' combined with a

specific bug, bug manifestation and question. (Symptom from Brna

et al. 1987)

Symptom.
('A variable instantiated to an unexpected value')

i
Bug (one of 12)

Bug Form

Question

(one of 1 - 3)

(one of 2)

Building templates to describe bugged execution.

The appropriate template for describing a specific combination of database, bug, execution,

and question can thus be derived from a simple tree structure. As described above, a given

180

Chapter 6: The Implementation Domain and Tutoring Goals

symptom can be caused by one of a catalogue of bugs, each of which may manifest

themselves in a small number of ways. In relation to each manifestation, either one or two

questions may be asked about the instantiation of the final variable value. This derivation

path from Symptom to question is shown graphically in figure 8.

As was stated in section 6.4.1, the purpose of this section is to develop detailed description

templates for the various manifestations of each bug described in section 6.3. It is intended

that these templates should support the various interactions between student and system that

tutoring and explanation in the simplified domain, described in sections 6.2 and 6.3, will

require.

Each template constitutes an abstract description of one of the bug manifestations described

in section 6.4.2. The terms of the description are those of the models of section 6.2, with

such additions as are necessary. The most crucial addition is a set of conventions

determining how the terms of the models are to be applied to the ideal and bugged

executions. These conventions are stated in section 6.4.3.

Table 3 can be used to build templates which describe the pattern of execution associated

with each bug, and the mapping from the Prolog models of section 6.2 onto each bug.

This can be illustrated with a pair of databases given previously, which are to be executed

with the goal 'huge(X, Y)'.

Ideal Database. Bugged Database.

big(dog). big(dog).

huge(black, dog). huge(red, fish).

unhappy(man):- huge(black.dog). huge(black, dog).

unhappy(man):- huge(black, dog).

The bug is an 'extra clause' ('huge(red, fish).'), in the bugged database. If we assume that

the student has correctly identified this clause as being the one which manifests the bug.

181

Chapter 6: The Implementation Domain and Tutoring Goals

then we may ask them to carry out the two-part task outlined under the title 'Classifying the

bugs in terms of the models' in section 6.4.3.

For the first part they can be asked to describe the execution of the bug-related clause with

the relevant goal in terms of the three models from section 6.2. This allows the human or

machine tutor to check that they have correctly understood the effect of the bug on program

execution. The second part of the task requires the student to identify the 'code error' and

the model it relates to in terms of the relationships stated in Table 3.

The first part of the task would follow the pattern described in the paragraph preceding

Table 3, and can be expressed here as the following algorithm:

For a given goal and clause do the following in order:

1. Check functors for "functors" slot.

if they match enter 'functors match'

else enter 'functors fail'

2. Check arity for "arity" slot.

if functors slot = 'functors fail' enter 'not relevant'

else check arity

if arity matches enter 'arity ok'

else enter 'arity fails'

3. Check arguments for "arguments" slot.

if arity slot = 'not relevant' or 'arity fails' enter 'not relevant'

else check arguments

if all argument pairs unify enter 'arguments ok'

else enter 'arguments fail'

4. Apply Search Strategy for "Search Strategy" slot

if arguments slot = 'arguments ok' check subgoals

if subgoals present and subgoals succeed enter 'subgoals ok'

182

Chapter 6: The Implementation Domain and Tutoring Goals

else if subgoals present and subgoals fail enter 'subgoals fail'

else if no subgoals present enter 'success on fact no subgoals'

else enter 'Seek new clause for proof

Table 4. Alternative slot entries for Functor, Arity, Argument, and

Search Strategy slots of templates to describe execution of bugged

clause and relevant goal. Rows are not meaningful.

Functor. Arity. Arguments. Search Strategy.

Succeeds. Succeeds. Succeeds. Subgoals: Succeed.

Fails. Fails. Fails. Subgoals: Fail.

Not relevant. Not relevant. No Subgoals: Stops.

New Clause.

In terms of the code of our example, the goal 'huge(X, Y)' unifies successfully with the

fact 'huge(red, fish).'. The template for this version of this bug thus has slots for

'functor', 'arity' and 'arguments' which state that the functor unification, arity matching,

and argument unification all succeed. The slot for 'Search Strategy' states that either any

subgoals in the clause succeed, or else the clause is a fact so that the search is complete.

The alternative descriptors for each slot are given in Table 4.

The second part of the template contains the entries relevant to the second part of the task.

These will constitute one of the combinations of Code Error, Model, and Search Space

description given in Table 3. In the case of our example code where 'huge(X, Y)' is

resolved with the extra clause 'huge(red, fish).', the relevant combination is 'Extra Clause'

for the Code Error slot, 'Search Space' for the Model slot, and 'Extra Clause' for the

Search Space description slot. The complete template is given in Table 5.

183

Chapter 6: The Implementation Domain and Tutoring Goals

Table 5. Complete template to describe the execution and analysis of

version 1 of the bug 'Extra Clause' when the relevant clause has no

subgoals. 'Version 1' implies that the traces of both bugged and

ideal databases show a successful resolution at the same point.

Template Slot. Template Entry.

Functor. Succeeds.

Arity. Succeeds.

Arguments. Succeeds.

Search Strategy. No Subgoals: Stops.

Search Space. Extra Clause.

Code Error Extra Clause

Model Search Space.

Template substitution.

Earlier it was pointed out that when the 'bugged' trace shows a failure on a clause where

the 'ideal' database shows a successful resolution, then two distinct questions about the

location and nature of the bug could be asked, (in the case of the symptom 'A variable

instantiated to an unexpected value'). One question asks where the expected vohxe fails to

get instantiated, while the other asks about where the unexpected value is instantiated. The

issue of providing templates to support both forms of question about the bug is simply

resolved. The failure can be described by a template specific to that version of the bug.

The second question implies an answer which describes a successful resolution in the

bugged database (occurring after the failure). In most cases, a successful resolution for a

specific bug will already have been described in a template, albeit in relation to a different

manifestation of the bug. Once the correct point in the trace relating to the second question

has been identified, all that is required is that a 'success' template relating to a different

184

Chapter 6: The Implementation Domain and Tutoring Goals

manifestation of the bug be used to describe it. This can be illustrated with the following

code, with the goal 'huge(X, Y)'.

Ideal Database. Bugged Database.

big{mad, dog). big(mad, dog).

huge(red, fish). big(red, fish).

huge{black, dog). huge(biack, dog).

A 'wrong functor' in the bugged database leads to a resolution failure on the second clause,

('big(red, fish).') where the ideal database execution succeeds. The ideal database thus

returns X = red, Y = fish, while the bugged database returns X = black, Y = dog, because

the bugged database execution succeeds on the third c^use, 'huge(black, dog).'. A

different manifestation of the same bug is however possible, where the bug occurs earlier.

Consider this code, to be executed with the same goal:

Ideal Database. Bugged Database.

big(mad, dog). huge(mad, dog).

huge(red, fish). huge(red, fish).

huge(black, dog). huge(black, dog).

The ideal database execution is unchanged, but the bugged database execution now

succeeds on the first clause, 'huge(mad, dog).' giving X = mad, Y = dog. In this case, the

first and second form of question about the bug would both refer to the same successful

resolution. The template used to describe this would contain the same entries as the

template used to describe the second, successful, resolution in the first bugged database

that was considered, and can be used to answer the second form of question relating to that

manifestation of that bug.

6.4.4 Conclusions to section 6.4.

This section takes the subset of Prolog defined in section 6.2 and the restricted bug

catalogue and conditions defined in section 6.3 and regards them as a simplified

185

Chapter 6: The Implementation Domain and Tutoring Goals

environment which is suitable for novices wishing to learn about debugging strategies.

The section then sets out to describe the detailed structure of that domain.

The possible effects of each bug on program execution are described in section 6.4.2. A

set of conventions is established to govern the process of describing these effects in terms

of the models of section 6.2. These conventions are also used to define a taxonomy of

bugs. This taxonomy, along with the distinct database features of each bug and the

description of its patterns of execution are used to develop a detailed templates in relation to

each bug. The purpose of the templates is to support the tutoring and explanation which is

required in the simplified domain. These templates give an abstract account of the possible

executions of each bug, and do not refer to individual pieces of code.

The form of the templates is dependent on their intended use in specific student-system

dialogues. The dialogues involve two tasks. The first involves the description of a specific

resolution attempt in terms of the Resolution and Search Strategy models. An algorithm for

this task is given. The second task involves the evaluation of this execution in terms of

statements describing the Search Space and the perceived Code Error. The terms for

describing the particular execution are listed, as are the possible combinations of Code

Error, model, and Search Space description given the stated conventions linking the models

to the bugs. An example of a template is also given. The questions which may be asked in

relation to each template are considered.

6.5 Re-formulating the Models of Prolog for tutorial
dialogues.

6.5.1 The dialogues required.

The purpose of developing the definition of the domain given in this chapter is that a

tutoring system should be built which embodies the definition. Sections 6.2, 6.3, and 6.4

have defined, respectively, simplified models of Prolog, a simplified catalogue of bugs,

186

Chapter 6: The Implementation Domain and Tutoring Goals

and a set of abstractions, (the templates), which map the models onto the bugs and describe

their effect upon program execution. The tutoring of this domain will necessarily involve

interactions between the student and the proposed system. The final interaction desired is

that the student should successfully produce the descriptions contained in the templates

given under the title 'Building templates to describe bugged execution' of section 6.4.3,

when they are presented with a set of code and results which manifest the relevant bug.

This desired interaction has many prerequisites, among which are:

1) The student must understand the models of Prolog developed in section 6.2 and

be able to apply them accurately.

2) The student must be able to accurately identify the bugged clause or resolution.

It is the first prerequisite which concerns us here, as it may require that the individual

viewpoints be tutored directly, or that the student's use of them be critiqued by the system.

The accurate understanding and application of the Prolog models by the student is intended,

very generally, to arise from two main forms of interaction between student and system.

These are Tutoring and Explanation. The issue of whether these are in principle separate

activities is not pursued here.

The point to be made is that, in implementational terms, these activities make separate

demands upon the system. Any tutoring on the nature and application of the Prolog models

requires that the student be able to input to the system statements which describe specific

Prolog executions in terms of the models. These statements are then processed by the

system and a (hopefully) suitable reaction computed. The initial flow of information is thus

from student to system. Explanation is here seen as a description of execution flowing

from system to student. Both these forms of description will require a language suited to

the task.

The models as given in section 6.2 are not well-suited to active tutoring and explanation

since (with the exception of some parts of the Resolution model), they are largely

187

Chapter 6: The Implementation Domain and Tutoring Goals

declarative in nature. This statement is intended to mean that while they describe models of

execution in abstract terms, they do not indicate which part of which model is applicable at

any particular point in a specific execution. They thus do not help the students to apply

their knowledge of the models, and do not make it easy for the system to justify the

selection of a particular model or modelpart as being relevant to a particular stage of

execution.

The student’s application of their knowledge can be at two levels. The first relates to a

simple description of execution, and involves selecting one part of one of the models as

being appropriate to describe the next step in the execution. The second is more concerned

with localising bugs in the code. This requires that the student should choose a particular

model, and by implication a particular range of possible bugs, as being most relevant to a

given bugged execution. Putting this another way, the student should leam how to apply

the different models to localise different bugs. This is the skill that the proposed system is

intended to tutor.

What is required to describe execution is a set of 'if ... then' or 'production' rules which

embody the models, and which specify the conditions of application for each model part.

In other words the models must be 'proceduralised'. In this form the models would

provide the student with a means of choosing which part of which model to apply, of

predicting the effects of that application, and of justifying their decision. Such a rule-set

would also provide the system with a means of structuring and justifying explanations of

execution.

6.5.2 'Procedural' versions of the Prolog models.

The models of section 6.2 were developed from the work of Bundy et al. (1985). The

models given in this section add 'procedural' information to those of section 6.2, which

states the execution conditions in which each part of each model should be applied. The

188

Chapter 6: The Implementation Domain and Tutoring Goals

motivation for this exercise is given in section 6.5.1. The Database' model, being largely

concerned with syntax, is not seen as relevant to this exercise.

The procedural form of the Search Space Model.

SSPl) When trying to prove a goal and generated subgoals, the same initial Search

Space must always be used.

SSP2) When all search Space clauses have been tried without success, a goal fails.

The procedural form of the Search Strategy model.

SSTl) If there is a goal, try to resolve it with the head of the first/next database item.

SST2) If the head resolves, consider subgoals.

SST3) If there are untried subgoals, set the first as a goal with the full Search Space.

SST4) If there are no subgoals, or none left untried, the goal which has resolved

with the head of the clause succeeds.

SST5) If the resolution of a goal and clausehead fails, or if a subgoal of the clause

fails, the whole resolution fails.

SST6) If a resolution fails, try to resolve the goal with the next item in the database.

The procedural form of the Resolution Model.

R l) Check the functors. If they unify, continue.

R2) If the functors do not unify, fail.

R3) If the functors unify, check the arity.

R4) If the arity is different, fail.

R5) If the arity is the same attempt to unify the arguments.

R6) Take the first untried argument from the goal and the first untried argument

from the clause. They unify if they are one of the following:

• identical constants.

• a variable bound to the value of the other, which is a constant.

• an unbound variable and a constant.

189

Chapter 6: The Implementation Domain and Tutoring Goals

• a pair of unbound variables.

• two variables bound to the same value.

R7) If any pair of arguments do not unify, fail.

R8) If the functors have unified, and the arity is the same, and there are no

arguments or none left untried, the resolution of goal and clausehead succeeds.

R9) If a goal contains an operator, and can be evaluated to 'true' with the current

variable bindings, the goal succeeds.

RIO) If a goal contains an operator, and cannot be evaluated to 'true' with the current

variable bindings, the goal fails.

These individual model parts are also used in an abbreviated form. They are shortened so

that they can be offered as menu items, thus forming a description language that can be

used by the system to take input from the student.

Although backtracking is not modelled in these models, some care has been taken to

formulate them in such a way that they could be extended to describe backtracking in the

future. Items SSP2 and SST6, for instance, could be extended to describe the more

complex behaviour that failure initiates when backtracking is included in the description.

6.6 Conclusions to Chapter 6.

Section 6.2 defines 4 models of Prolog execution derived from the four proposed by

Bundy et al. (1985); (three of these are to be used with the tutoring system). Some parts of

their models, such as backtracking and the use of the cut, are omitted. Other parts, such as

the generation and processing of subgoals, are changed. It is suggested that they could

form the starting point for a series of more complex models which could be used for

tutoring at a more advanced level than is here intended.

Section 6.3 assembles a catalogue of bugs which the intended tutoring system will be built

to handle. These are defined through the work of Bma et al. (1987). An analysis in terms

190

Chapter 6: The Implementation Domain and Tutoring Goals

of 'Missing', 'Extra' or 'Wrong' modules allows all possible bugs to be defined

'syntactically' in relation to an ideal version of the code. When used in relation to the

symptom 'A variable instantiated to an unexpected value' (Bma et al. 1987), the analysis

allows a range of modules and resultant bugs to be defined for the proposed tutoring

system. Specific conditions are stated to regulate the relationship between the ideal and

bugged code. The symptom and bugs are expressed graphically as 'trees'.

Section 6.4 combines the two simplified domains of sections 6.2 and 6.3 to provide a

mapping from the models to the bugs. The different possible patterns of execution that

each bug can show are noted, along with the distinct database features relating to each one.

A set of conventions are established which allow the execution patterns for each bug to be

described in terms of the models of section 6.2. These conventions are also used to define

a taxonomy of bugs.

The descriptions of the execution patterns and the taxonomy are used to develop detailed

templates which describe each bug and its effect on execution in relation to the symptom 'A

variable instantiated to an unexpected value' (Brna et al. 1987). These templates are

intended to support the tutoring and explanation which is required in the simplified domain.

The templates also take account of the fact that for some patterns of execution, two

questions can be asked about the precise nature of the bug.

Section 6.5 re-formulates the Prolog models of section 6.2 as a series of procedural

statements in order to facilitate dialogue between system and student. Each statement gives

the conditions under which the relevant part of the model should be applied.

As stated in chapter 2, the intended research direction is to tutor the application of the

models of Prolog in localising bugs rather than to build a 'debugger'. The use of the

'Modules', 'Symptoms' and 'Code Errors' (Brna et al. 1987), in conjunction with the

additional stipulations and structures detailed above, makes it possible to build a closed and

structured 'world' which only requires a fairly simple 'black box' for a 'bugfinder'. Our

191

Chapter 6: The Implementation Domain and Tutoring Goals

efforts, as demonstrated in the body of this chapter, can then be concentrated on developing

structures and mechanisms which describe the various bugs and their effects upon

execution in terms of the models we wish to use. Other mechanisms can then be developed

to tutor this skill. The emphasis is thus not on building a system which can simply find the

bugs, but on building one which can serve our pedagogical goal.

These state that the student should develop the ability to view Prolog execution in terms of

the models defined in sections 6.2 and 6.5, and that they should use these models to

localise bugs. The use of an ideal version of the code allows us to concentrate on

promoting these goals, with the system setting the agenda and determining which specific

bugs may be dealt with in a given tutoring episode.

The structures detailed in this chapter can be used to implement the knowledge

representations of a tutoring system.

The core tutorial dialogues will involve:

1) asking the student to describe the execution of Prolog code;

2) asking the student to identify the bugged clause;

3) asking the student to detail the effects of the bug on program execution, and to

classify the bug.

192

Chapter 7. VIPER: Viewpoint-based Instruction
for Prolog Error Recognition.

7.1 Introduction.

This chapter describes, in outline, the implementation of a tutoring system, (VIPER),

which is designed to exploit the conceptual structures detailed in chapter 6. One part of

these structures describes three sets of procedural rules, each of which constitutes a partial

model of Prolog execution. The other parts describe a set of bugs which VIPER is

designed to recognise, and a mapping from the execution models onto the bugs. A

description of the implementation is considered to be necessary due to the novel use of

multiple viewpoints in VIPER, and the claims that the author wishes to make regarding the

system architecture as a design solution, and possible extensions to this architecture. The

most basic claim is that, while the system described here is only adaptive in limited ways, it

provides mechanisms with which highly adaptive tutoring could be accomplished, using

well-researched methods.

The operational goals of VIPER are as follows: The student is to be presented with novice

level combinations of code and query which contain a single bug. This bug constitutes the

only difference between the bugged code and an ideal code. The student's task is to locate

and identify the bug, and describe its effect on the execution, using the three procedural

models given in section 6.5.

The pedagogical goal of VIPER is that the student should develop the ability to view

execution in terms of these models so as to localise possible bugs.

Before describing VIPER in detail, some introductory remarks are necessary. The first

topic to be addressed by these relates the absence of backtracking in VIPER to the notion of

upwardly compatible models. As noted in section 6.2.5 backtracking was excluded in the

prototype version of the system as our intention was to use, in the first instance, examples

193

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

which did not depend on backtracking to produce their results. It was envisaged that a

hierarchy of models could be defined which described Prolog execution at increasing levels

of complexity until the full range of Prolog behaviour had been covered. It was assumed

that, given sufficient time, the prototype system could be expanded to cater for all of these

models and their combination with operators and heuristics to form viewpoints.

Upward compatibility' was discussed in sections 2.1.3 and 6.2.5 in relation to QUEST,

(White and Frederiksen 1986). White and Fredriksen describe a series of increasingly-

sophisticated models which are intended to represent increasing levels of knowledge and

skill in the analysis of electronic circuits. A crucial connection between the models is

'upward compatibility', which ensures that a simpler model can be extended or refined so

as to match the next more complex one with a minimum of effort and reconceptualisation.

Section 6.2.5 indicates how the Search Strategy and Resolution models could be extended

to include a description of backtracking, and could thus form the core of viewpoints which

deal with the full range of Prolog behaviour.

Each part of VIPER will be considered in terms of its purpose, its structure, and, where

relevant, its inputs and outputs. Since VIPER was itself implemented in a variety of

Prolog, (LPA MacPROLOG 3.0), this description will sometimes need to use the

vocabulary associated with that language. All code was implemented by the author. A

schematic outline of the system is given in figure 9. This shows a meta-interpreter which,

when run with a query and suitable code, produces an execution history in terms of the

three procedural models of section 6.5.

This history can either be used as it stands to facilitate a dialogue with the student which

simply describes the execution that took place, or, if execution histories for both ideal and

bugged code are available, they can be analysed to determine the nature of the bug and its

effect on execution.

194

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Figure 9. The structure of VIPER.

Query
and
code

Meta-interpreter

Execution History

History Analysis

Bugged
Clause
Dialogue

Bugged
Execution
Dialogue

Execution
Dialogue

Questions re.
Ideal Code

Explanation of
Bug

This analysis enables two other dialogues to take place, one to determine which clause is

bugged, the other to describe the effects of the bug on the execution of the code. During

these last two dialogues, a menu allows questions to be asked about the ideal code, and an

explanation facility allows a complete explanation of the current bug to be given. The

questions which may be asked (via the "Questions" menu) are based on the "access"

195

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

operators of chapter 5 which may be used to retrieve information in relation to each

viewpoint. The explanations which are also provided via the menu are structured around

the inference operator of chapter 5, which makes explicit information which is only

implicit in the models.

Viper was not developed to the point where it could use the third type of operator described

in chapter 5, (the operator which introduced new information related to the system state), or

the heuristics which state the area of application for each viewpoint. The third class of

operator was omitted in order to keep the implementation project within the relevant

constraints of time and space. We believe that with further development this class of

operator could be used to modify the models used by VIPER so as to represent student

misconceptions or errors. In relation to the heuristics which state the area of application for

each viewpoint we would claim that these are implicit in the very domain formulation on

which VIPER’S design is based, (ie. the formulation given in chapter 6). In this

formulation, and in the system-student dialogues which are described in this chapter, each

viewpoint is exclusively related to the localisation of specific classes of bug. VIPER thus

represents a partial implementation of the structure for viewpoints which is given in chapter

3.

This chapter describes in turn, the meta-interpreter itself, the recording and analysis of the

execution histories it produces, and the three forms of dialogue which the recorded

histories support.

196

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

7.2 The Meta-interpreter.

7.2.1 The meta-interpreter: top level.

This module is intended to allow the execution of an input goal and database to be

’watched' as it proceeds through its various stages. More correctly, the meta-interpreter

creates a detailed histoiy of the execution, and it is the navigation through this history that a

system user will ’watch’. The meta-interpreter is built to reflect the structure of the three

(partial) models of Prolog execution described in chapter 6. This means that it describes

the execution in terms of Resolution, Search Strategy, and Search Space. In this

implementation the execution does not include backtracking, and thus does not require an

interpretation of the cut’. At its current level of development it also excludes embedded

variables, true’, not’, and ’false' statements, and some of the operators normally

associated with a Prolog environment. The execution history is stored in facts which are

asserted as the execution progresses. A single execution will thus produce a complete set

of facts relating to all three of the Prolog models specified in chapter 6. Provision is made

for alternative meta-interpreters (eg. one using a random searching strategy), to be used as

part of VIPER, if this is thought to be tutorially desirable. (For example, the purpose and

function of the true search strategy of Prolog could be demonstrated by comparing the

execution history it produces with that of a meta-interpreter utilising a random searching

strategy).

The top-level call to the meta-interpreter defines the kind of meta-interpretation that is

required, (ie. whether it should exhibit a correct or incorrect subset of Prolog behaviour).

The most version of VIPER described here uses the correct subset. For this a top-level

predicate provides a bindinglist to hold any values bound to variables in the input query,

and asserts an execution history fact to describe the start of the execution. Other subgoals

of this predicate initiate the execution of the query with the database, and retrieve any

values which are instantiated in the bindinglist as a result of it: (see ’sstrat_res_inteip’ in

197

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

figure 10). A second definition of this predicate caters for the failure of the input query by

returning 'no' in place of a bindinglist.

Figure 10. A partial call graph for the m eta-interpreter:

order res truth' checks a goal against successive database clauses;

'num res all true' proves a list of subgoals.

Top le v e l: query and
code taken as input.

sstrat_res_interp

build_bindinglist order_res_truth return_vals

order_res_truth num_res_all_trueop_test

t r i e s a goal with
successive clauses^

order_res_truth num res all true

proves a l i s t
o f subgoals.

The inputs to the meta-interpreter are a query and a database, both in the form of lists. The

clauses of the database list are numbered in sequence from l i o n , n being the length of the

list. Its outputs are the result of the execution, which may be a 'no', or a bindinglist of

values for any variables in the initial query. Also output are the history facts which record

the execution of the query and database.

198

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

7.2.2 Implementing the Resolution model.

This module of the meta-interpreter describes the resolution of a single goal and clausehead

or fact. It checks that first the functor,and then the arity of the input goal and clause are the

same, and fails the resolution if they are not. At each stage, a fact recording success or

failure is asserted. If functor and arity match, the module attempts to unify each pair of

arguments in turn, failing the resolution if any pair cannot be unified. History facts are

asserted for each pair. At the conclusion of this 'head' resolution, another fact is asserted

to record the result. The predicate handling this 'head' resolution, ('do_resolve'), is called

at appropriate times by the code which defines the search strategy. The setting of subgoals

as new goal literals is a separate issue which is also coded as an aspect of the search

strategy.

The head resolution predicate, ('do_resolve'), takes as input a goal and clause in list form,

and a bindinglist which contains values for any variables in the goal and the clause. It

delivers output in the form of a bindinglist which is updated as necessary to reflect any new

bindings made in the head resolution.

The unification of successive pairs of arguments, and the entry of any new bindings in the

bindinglist, are carried out by a predicate which attempts to unify the heads of any two lists

of arguments it is given, and calls itself to recurse if it succeeds. If either of the heads is a

variable, then the input bindinglist is accessed to retrieve any value entered there for that

variable. Any new bindings which result from the unification of a specific argument pair

are entered into the bindinglist. The outcome for each pair of arguments is asserted as a

history fact.

Definitions of the predicate are required for arguments which are:

• two identical constants;

• a constant and a variable;

199

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

• two variables;

• two arguments which cannot unify.

The procedure which carries out the argument checking, ('check_args'), takes as input the

lists of arguments from the goal and clause, and an input bindinglist. It gives execution

history facts and an updated bindinglist as output.

The predicate called to access the variable values stored in the bindinglist, (’bind'), needs to

make a different set of discriminations. The different possible argument combinations

require different actions to be taken.

The different combinations are here followed by the actions appropriate to each one:

• a bound variable with a constant; check the variable value.

• an unbound variable with a constant; bind variable to constant value.

• two unbound variables; bind together.

• two variables bound together, but with no value; no action.

• a bound variable with an unbound variable; bind together.

• two bound variables; check values the same, otherwise fail.

'Bind' calls a number of predicates to search and edit the bindinglist which has the form of

a list of lists. Its inputs are the two arguments to be unified, and a bindinglist. The output

is an updated bindinglist.

7.2.3 Implementing the Search Strategy model.

The purpose of the model is to allow explicit reports of the different stages of the search to

be made.

Reports are made of the following events:

• starting to resolve the current goal with the first/next database item.

200

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

• current resolution has failed, so quit it.

• current goal successfully resolves with a fact.

• current goal successfully resolves with a clausehead.

• current goal successfully resolves with a clausehead, and the subgoals succeed.

• a subgoal succeeds.

• all subgoals succeed.

• a subgoal fails.

These reports are made by a predicate, ('order_res_truth’), which attempts to prove the

goal that is input to it along with the database. This goal is checked to see whether or not it

contains an operator. (A range of thirteen infix operators are accepted by the meta

interpreter). Where an operator is present, the goal is evaluated using the relevant bindings

from the input bindinglist. Where the goal contains no operator, 'do_resolve' is called to

attempt the unification of the goal with the first item on the database that is also input. If

that resolution succeeds, and the item is a fact, 'order_res_truth' asserts an execution

history fact to that effect, and terminates. Where there are subgoals to be proved, another

predicate ('num_res_all_true') is called, and the resulting bindinglist given as the output of

the predicate. Should the resolution fail, 'order_res_truth' calls itself to recurse with the

tail of the list which forms the input database. Where that tail is an empty list, the end of

the search space has been reached, and the current goal must fail, as backtracking is not

incorporated in this implementation. A fact recording an empty database is asserted, and

the call is made to fail.

The predicate 'order_res_truth' thus requires definitions for the following cases:

• the input database is an empty list.

• the input goal contains an operator but no variables, and succeeds.

• the input goal contains an operator but no variables, and fails.

• the input goal contains an operator and variables, and is equivalent to a truth

condition.

201

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

• the input goal contains an operator and variables, and requires that the variable

binding list be updated.

• the input goal resolves with a fact in the database.

• the input goal resolves with the head of a clause in the database.

• the input goal fails with previous predicates so the next database clause must be

tried.

The need to evaluate goals which contain operators means that other facts relating to these

must be asserted by 'order_res_truth', although these facts are subsequently interpreted by

the user and VIPER as relating to the Resolution model. (These aspects of execution are

also discussed in chapter 6.4.2 as a part of the Resolution model).

'Order_res_truth' thus needs to assert execution history facts for the following cases:

• the evaluation of a goal containing an operator begins.

• the evaluation of a goal containing an operator succeeds.

• the evaluation of a goal containing an operator fails.

• the evaluation of a goal containing an operator has failed, and thus the current

attempt at resolution has failed.

This last case may not be seen as strictly necessary, but is included to maintain consistency

with actions taken when other attempts at resolution have failed. The actual evaluation of

the goal is undertaken by another set of predicates which are detailed below.

In the case where 'order_res_truth' is called with an empty database, a fact must be

asserted which is subsequently interpreted as relating to the Search Space model. This is

consistent with the procedural formulation of the models which is given in section 6.5.

The inputs to 'order_res_truth’ are a goal and a full database, a list representing the

database elements yet to be searched in an attempt to prove the goal, and a list of the

bindings for each variable in the goal and the clause. Its outputs are the asserted facts, and,

202

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition,

if the call succeeds, an updated bindinglist.

It was stated above that 'order_res_truth' calls 'num_res_all_true’ to attempt the proof of

any subgoals which become relevant as a result of resolving a goal with the head of a

clause in the database. This is consistent with the formulation of the models given in

section 6.5. The setting of subgoals as new goal literals is viewed as an aspect of search

strategy, since the goals have to be proved in a given order. For each subgoal in turn,

'num_res_all_true' builds a bindinglist for the variables in the subgoal, and calls

'order_res_truth' with the full database of clauses available at the beginning of the meta

interpreter execution. This initial bindinglist for a subgoal must take account of any

bindings made in the head resolution of the clause. This is achieved by giving the

bindinglist which results from the head resolution as input to 'num_res_all_true'. If a

subgoal succeeds, ’num_res_all_true' updates its input bindinglist and recurses, with the

resultant list and the list of remaining subgoals as input to the recursion. It also keeps a

count of how many subgoals have been proved, and uses this count to assert facts relating

to the success or failure of each subgoal. If called with an empty subgoallist, the input

bindinglist is given as the outputlist, and a fact recording the success of all subgoals is

asserted. If a goal fails, the parent goal is also failed.

This indicates that 'num_res_all_true' should be defined or the following cases:

• the subgoallist is empty as all subgoals have succeeded.

• a new subgoal is to be proved.

• a subgoal fails.

The inputs to 'num_res_all_true' are thus a list of subgoals to be proved, the full database,

the current bindinglist, and the number of the current subgoal. Its outputs are the asserted

facts, and, if it succeeds, an updated bindinglist.

Frequent mention is made in the preceding paragraphs of the bindinglists used to store the

values associated with each variable. These lists are built by first creating a list of all the

203

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

variables in the input goal, and then creating a place in the binding list for each of the listed

variables. A variable is not referred to by its name, but by the unique identifier that the host

Prolog environment assigns to it. For each variable, a search is carried out to ensure that it

is not already present in the bindinglist. The following is an example of a bindinglist for

three distinct variable bindings:

[[rabbit, _167], [white, _168, _142], L 893, _241, _267, _765j]

Each element of the bindinglist is a sub-list, the head of which represents the value to

which the variable or variables in the tail are bound; (see the first and second elements in

the example bindinglist above). Uninstantiated variables can thus be bound together by

inserting both variable identifiers into the same sub-list tail; (see the third element in the

example bindinglist above) New elements in the bindinglist are created for any variables

which are present in the resolving clause, but not in the goal.

When the proof of a given goal is complete, the resultant bindinglist is searched to find the

values associated with each of the variables in the goal. These values are assembled with

the variable identifiers into a bindinglist which is given as the proving predicate's output.

The last predicate which requires description in this section deals with the evaluation of

goals which contain operators. As stated above, the meta-interpreter can support a sub

class of thirteen of the infix operators which are normally associated with Prolog, the

'op_test' predicate tests for the presence of an operator by converting the goal into a list via

the "univ" operator, and then examining the head of that list. A goal with an operator but

no variables is simply set as a goal in the host Prolog environment. Other goals containing

operators are classified as either 'truth-conditional', (ie. they are either true or false and

their success would not require any updating of the bindinglist), or 'evaluative', (ie. their

success would require that a new value be entered for a variable in the binding list). The

truth-conditional goals are proved (or not) in the host Prolog environment. To do this, a

procedure which unifies each of the variable identifiers from the bindinglist with the

204

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

relevant value, and then sets the input goal to the host environment, is preceded with a call

of "not not". This tests the truth or otherwise of the goal without binding the variable

identifiers in the host environment to the values held in the meta-interpreter's bindinglist.

(If the actual goal succeeds, the variables bound before calling it are unbound by the failure

of the second 'not').

Goals which contain operators and which would bind a variable to a new value are tested

by identifying dummy variable names with the relevant values and setting the goal to the

host environment to obtain the outcome. This is then entered into the bindinglist. Where

variables are bound, execution histoiy facts are asserted with the relevant information.

7.2.4 Implementing the Search Space model.

This model is largely implicit in the structures described above. The assertion of execution

history facts relating to the search space is only required to describe three conditions.

These are:

• when a top level call to the meta-interpreter initiates the proof of an initial query

with a given database;

• when a subgoal is set as a new goal literal with the complete database;

• when the searching predicate is called with an empty database.

For the first of these cases, the fact is asserted by the call to the top-level predicate which

defines the type of meta-interpretation that is required. The second case is dealt with by

calls to 'num_res_all_true', the predicate which attempts to prove a list of subgoals. The

final case is dealt with by a call to 'order_res_truth'.

205

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

7.3 Recording and analysing the execution history.

7.3.1 Asserting the execution history facts.

The execution of a query and a database is recorded as a set of asserted facts. The

arguments of these facts contain data relating to the nature of the code, (ie. bugged or

ideal), the number of a particular step in the total execution, and the nature of the action

being recorded. Where relevant, the goal, the number of the resolving clause and the

clause itself are also recorded.

The predicates which assert these facts obtain the data from a number of sources. A fact

indicating whether the current execution is of ideal or bugged code is asserted before each

execution is begun. For each execution history fact that is asserted, this information is

retrieved and included in the arguments. A count is kept of execution steps so far, and

augmented for each execution history fact assertion. The nature of the action being

recorded is given to the fact assertion predicate as input by the predicate making the call.

This input takes the form of one of a range of symbols, and is an adaptation of the method

used by Eisenstadt (1984, 1985), which is described in section 2.3.2. Each symbol used

is related to one or more of the model-parts given in section 6.5. The goal, clause number

and clause are similarly given as input to the asserting predicate.

Four different predicates are required in order to assert the facts relating to different aspects

of the execution. A general predicate, ('trace'), deals with all assertions except those which

relate to subgoals, variables, and operators. It takes as input a symbol indicating a specific

action, the relevant goal, and the relevant clause. The goal and clause are converted into

their 'printing' form, (ie. into atoms), and included in the asserted fact. An example set of

history facts for a simple execution is given in appendix 1.

A separate predicate records the setting of subgoals as new goal literals, and their eventual

206

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

success or failure. This takes as input an execution action symbol, and a number indicating

the order of the subgoal in the list that have to be proved. This data does not have to be

converted to an atomic form.

A separate predicate is required to record the binding of variables, due to the characteristics

of the host Prolog environment being used. These characteristics mean that the variable

identifiers used by VIPER cannot be asserted alone in facts to record the execution history,

even when they have been converted into atoms. (The host environment still reads them as

identifiers and will update the asserted fact to reflect any subsequent binding of the variable

in question). The variable identifiers must thus be further converted from atoms into

strings of characters, and asserted in the facts in this form. The inputs to this predicate are

an action symbol, and the two terms which are or are not unified.

A final predicate is required to record the histories of goals containing operators. As the

goal is not resolved with a clause, only two arguments are given as input, the action

symbol and the goal itself. The goal is converted into an atom, and the fact asserted.

An example trace of asserted execution history facts is given in appendix APPENDIX 1.

7.3.2 Analysing the execution history facts.

The bug-description structures developed in chapter 6 assume that the execution of an ideal

database is to be compared with that of a bugged database. The sets of facts produced by

each execution can thus be compared to determine firstly where they differ, and secondly

what the cause of that difference could be; (ie. what bug is present in the bugged database).

This analysis is made relatively simple by the conditions stipulated in chapter 6, that there

shall be only one difference between the ideal and bugged code, and that this difference

should constitute one of the range of allowed bugs.

The point where the two execution histories diverge is determined by comparing the facts

207

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

for the same-numbered step in each history. The step where a difference is detected is

returned and recorded. The number of this step is passed to a collection of bug-

recognition predicates, only one of which should succeed with a given pair of execution

histories.

As indicated in section 6.3 the version of VIPER described here has been developed by

concentrating on one of Bma et al.'s (1987) symptoms, that of a variable being instantiated

to the wrong value. The 'bug trees' described in section 6.3 suggest that a specific group

of bug recognisers can be assembled, based on the expectation that both goals will

eventually succeed. Provision has also been made to incorporate bug recognisers based on

the other symptoms defined by Bma et al. (1987): the unexpected failure to instantiate a

variable, the unexpected instantiation of a variable, and the termination issues. This

provision consists of a predicate which examines the results of the bugged and ideal

execution to ensure that they are different, and to determine which symptom is being

exhibited. According to the symptom exhibited, a collection of bug recognisers is chosen

for the analysis of the execution histories.

At VIPER'S present level of development, this symptom-recognising predicate always

chooses the same set of bug recognisers, as the code being input ensures that the same

symptom is always exhibited. These bug recognisers are based on the abstractions

developed in section 6.4 which describe a given bug's effect on execution in terms of the

success or failure of the resolutions being attempted at the point where the execution

histories differ. Each bug recogniser is called in tum, and the one which succeeds is given

as the output of the analysis. These bug recognisers are not intended to model human

inferencing. They are intended to identify the correct answer given the conditions under

which they are mn. The recognisers have two kinds of subgoal: those which succeed to

identify a given bug, and those which fail in order to prevent the recogniser succeeding

erroneously. Recognisers are present for each of the legal possibilities identified in table 2

of section 6.4. This means that a single bug may require up to three different recognisers.

208

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition,

one for each of the execution patterns that the bug may manifest.

A range of tests are defined which may be used by more than one bug recogniser. These

tests determine whether a given resolution is successful, or whether it exhibits one of a

number of kinds of failure such as 'functor failure', where the functors do not unify or

'subgoal failure' where a subgoal does not succeed. These tests look for sequences of

execution action symbols in the execution history facts which follow the first point where

the two histories differ. Where necessary, the bug recognisers retrieve and compare parts

of the two clauses which are being resolved with the goal at the point where the histories

differ. This allows the recognisers to determine the exact difference between the ideal and

bugged code. A range of predicates is defined to retrieve such features as functor, arity, or

subgoals and subgoal order for a given clause.

7.3.3 Data available after execution history analysis.

After running the ideal and bugged code through the meta-interpreter and analysing the

resulting execution histories, VIPER has the a range of information available to it.

The principal items of available information are:

• the input goal and databases;

• the result from the ideal code;

• the result from the bugged code;

• the ideal code execution history;

• the bugged code execution history;

• the execution step at which the two histories differ;

• the goal and clauses whose resolution is being attempted when the histories differ,

• the bug which causes the difference in execution.

The parts of VIPER which have yet to be described are the mechanisms which support the

tutorial exploitation of this information.

209

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

7.4 The tutorial dialogues.

7.4.1 Introduction.

VIPER has been developed to a point where a number of quite distinct dialogues may be

conducted between the system and the student. These dialogues are not intended, as they

stand, to be highly adaptive to the user. Rather, their purpose is to demonstrate the various

mechanisms that are available for use in tutoring, and which, it is claimed, could be used in

a large number of ways to support adaptive tutoring. The point of VIPER is thus that it

provides tht potential for adaptive tutoring using multiple viewpoints on the domain, and

that from this stage of development onwards, this potential can be realised using well-

known methods.

This is consistent with the research direction described in chapters 2 and 3, which calls for

an investigation of the issues involved in building a system which can tutor in terms of

several pre-defined viewpoints. The major implementational effort has gone into producing

mechanisms which can manipulate and explain viewpoints, rather than into mechanisms

which can dynamically adapt the tutoring of them.

7.4.2 Using the procedural versions of the Prolog models.

The conclusions to chapter 6 outlined the pedagogical goal of VIPER. These state that the

student should develop ability to describe Prolog execution in terms of the models defined

in section 6.5, and that they should be able to use these models to localise the bugs in the

simplified world of the bugged and ideal code. This implies that at least three kinds of

dialogue are necessary. An obvious prerequisite of using the models to localise bugs is that

a student can use them accurately to describe straightforward program execution. The first

kind of dialogue thus simply asks the student to describe the execution of a particular query

and database irrespective of whether it is bugged or not. When the models are being used

210

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

to localise the bugs, the first step must be to clearly identify the clause which contains the

bug. The second dialogue is thus focused on this task. Having identified the correct

clause, the third dialogue checks that the student has a correct understanding of the

implications of the bug by asking them to describe its effect on the program's execution.

At each stage, explanatory dialogues may also be necessary. The structures detailed in

chapter 6 are used to implement the knowledge representations of a system which can

support these dialogues.

Dialogue 1: describing execution.

The first dialogue requires the use of the re-formulated model parts of section 6.5 to

describe specific executions as a series of discrete steps. The model-parts are abbreviated

so that the events covered by each one can be offered as a set of menu choices, each of

which is associated with one of the action symbols stored in the execution history facts by

the meta-interpreter. A student makes a succession of choices from the menus to describe a

specific execution. The accuracy of these choices is checked by comparing the symbol

associated with the menu choice with the symbol stored in a trace of the execution. The full

range of menu choices and associated symbols is given in table 7, and an example of an on

screen menu is given in figure 15.

An explanation template is associated with each symbol. (These templates are related to

the individual model-parts of section 6.5, and have no relation to the templates described in

section 6.4 which describe the effects on execution of each bug). The template has slots

for such values as clause and goal that can be filled by reference to the execution history

facts and the initial database. VIPER can justify its assessment of a menu choice by stating

which model part is relevant to the current execution step, and thus which menu option

should have been selected. If further explanation is required, the slots in the relevant

explanation template can be filled with data from the relevant execution history fact, and the

resulting text presented to the student. VIPER can also demonstrate how an execution

211

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

should be described by using this explanation mechanism continuously. In this mode,

VIPER does not explain a single step in reaction to input from the student, but fills and

presents the explanation template relevant to each fact in succession. Figure 11 shows an

example of an explanation presented during this first form of dialogue in relation to rule

'Resolution 3'. Figure 12 shows an example of the rule referred to in the explanation of

figure 11 being applied to the execution step which was current at that point.

The three models of section 6.5 are interpreted as describing 19 possible situations or

events, such as 'subgoal succeeds', or 'functors of goal and clause unify'. Menu options

are available for each of these. One further option is provided for the statement that 'search

is complete'. Two other symbols are present in the execution history facts which are not

related to menu choices, but which are used by the bug recognisers described in section

7.3.2.

Figure 11. An example of the explanations used in Dialogue 1.

ICKecution Step EKplan'ation
Choos

Set

Sear

R(

Ste
1: Pro
2: Try

The co r rec t selection here Is:
> flrlty Ok. <

The model pa r t s to apply here are:
resolut lon_3:
If the functo rs unify, check the arl ty

C<in<e l]

Apply Model] Click to see model p a r t s applied.

ï ü l t l

In summary, each rule/explanation-template combination is also associated with a specific

symbol and a menu option. (See example in fig. 8). The symbols allow VIPER to check

212

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

students' input in relation to particular executions, and to compute suitable output for

explanation.

This is exemplified in table 6. This describes the case where the functors of goal and

clause unify successfully, through a combination of symbol, rule, explanation template.

The correct menu choice in this case is "Functors Ok". This choice is also associated with

the symbol '/*.

Figure 12. The explanation of figure 11 applied to the current

execution.

Choos
Set

Sear

R(

Ste
I: Pro
2: Try

EKScution Step Explanation
The correc t se lec t ion he re is:
> flrity Ok. <

The model p a r t s to apply here are:
resolut ion_3:
If the func to rs unify, check the arl ty

EZ3

(:<m< el]

The arl ty o f unhappy(__146) and of clause 1 _ _ _
Is the s a m e so resolut ion can proceed. I Ok I

The entry 'RT for 'Rule' in table 6 refers to the procedural models given in section 6.5,

where each part of each rule is given a label consisting of an abbreviation of the name of the

model ('R' for Resolution, 'SST' for Search Strategy, 'SSP' for Search Space) followed

by a number indicating the rule's position in that model. The italicised capitals in the

explanation template are placeholders for values which may be instantiated from the

relevant trace segment

213

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Table 6. The symbol, rule and explanation template combination for

the execution event where the functors of a goal and clause unify.

Symbol. V

Rule. R1

Explanation For the resolution of goal GOAL and clause CLAUSE the functors
unify.

The pedagogical purpose of this exercise is that the students should learn which model to

apply in order to describe the successive steps of an execution. Thus, before they can

choose a menu option, they have to choose the model that is cuirently applicable. This is

achieved by having buttons on the screen, one for each of 'Search Space', 'Search

Strategy', and 'Resolution'. When a student clicks on a button, the relevant menu pops

up. The selection made by the student is returned to a predicate which checks its accuracy

and takes the appropriate action. An example of the screen for the execution description

dialogue, showing the model selection buttons, is given in figure 14. An example of this

screen showing one of the menus used to describe a step in the execution, is given in figure

15.

Since the student has to make explicit choices at two distinct levels, (the model and the

model part), it is clear that this behaviour could be monitored and tutorial interventions

made at either level. At present VIPER does not analyse the student's input in any complex

way, but merely decides whether it is right or wrong at the level of the menu choice. If the

answer is correct, it is entered into the evolving execution description in the dialogue

window, and VIPER moves on the the next execution step. In the case of a wrong answer,

the action taken depends on the setting of a somewhat basic student model. With the

relevant setting 'on', VIPER responds to all wrong answers by informing the student that a

mistake has been made, and by giving the correct answer. The student can click on a

button to request further explanation. In this mode, wrong answers are not entered in the

214

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

execution description. This 'highly interventionist' mode of tutoring can be compared to

the 'model tracing' used by Anderson and Reiser's (1985) LISP tutor, which does not

allow the student to make a mistake. If the student model setting is turned 'off, then

corrections are not given, and the menu selection is entered into the evolving execution

description. The student model also keeps a numerical record for each model part of

potentially correct, correct, and wrong answers. It is assumed that these selection records

could be developed to support diagnostic analyses.

The full list of menu options and their associated symbols is given in table 7. (For each

possible choice the VIPER also has available a rule and explanation-template combination).

The 'search complete' option of the Search Strategy model is not strictly a part of the model

as given previously, but is provided so that a definite end point to the student's (or the

system's) description may be stated.

The structures described in this section (Dialogue 1) can be summarised by saying that the

procedural models of section 6.5 were abbreviated to give a series of menu options. Each

of these is associated with one or more abstract symbols, an explanation template, and a

rule. Figure 13 shows these structured relationships for the proceduralised Search Space

model.

Table 7. The proceduralised models abbreviated to a set of menu

choices, with their associated system symbols.

Menu Options and symbols for the 'procedural' Search Space Model.

Menu Options. System Symbol.

Prove new goal with search space.

Prove subgoal with search space. •?sub'

Fail: whole search space tried.

215

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Table 7 Continued.

Menu Options and symbols for the 'procedural' Search Strategy Model.

Menu Options. System Symbol.

Tiy goal with next clause. '> '

Quit this resolution. '< '

Subgoal ok. Try next subgoal. ' - H '

All subgoals ok. Parent ok.

Subgoal fails: Parent fails. ' -n'

Proved on Fact: no subgoals.

Resolves with head: try subgoals

Search complete. D

Menu Options and symbols for the 'procedural' Resolution Model.

Menu Options. System Symbol.

Functors ok. 7 ’
Functors fail.

Arityok. •>'

Arity fails. '< '

Argument pair unify. 'u '

Argument pair fail. ' -u '

All arguments unified. 'v '
Goal with operator ok. 'A '

Goal with operator fails.

216

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Figure 13. The procedural Search Space model with its associated

symbols, explanation templates and menu versions of model parts.

Procedural Search Space Model.

Rule SSPl Rule SSP2

Symbols Symbols

' ? s u b ' • - $ '

M enu form: 'P rove
subgoal with S .S p a c e '

M enu form : 'P rove new
g o a l with S .S p a c e '

Explanation:'Attempting to prove goal GOAL
using database DB'

M enu form : 'Fail:
w hole se a rc h s p a c e
t r i e d ' ^

Explanation: Search has
failed for goal GOAL. Whole
of Search Space tried.

Explanation: Attempting new subgoal
with Search Space DB

217

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

As is clear with the rule SSPl in figure 13, a single model part can have more that one

event symbol associated with it. This is consistent with the content of the procedural model

parts, which may cover more than a single possible event. (See statement of

proceduralised models in section 6.5). In the case of SSPl, the possible events are firstly,

the setting of the initial goal literal or query with the database, and secondly the setting of a

generated subgoal to be proven with the same database. The implemented meta-inteipreter

and tutoring system recognise these as separate events which merit the use of separate

menu choices and explanation templates to describe them. The other models also have

multiple symbols associated with certain model parts.

The 'execution' dialogue described above is supported by a range of predicates. All the

relevant model parts, menu choices and symbols are held in a system database, along with

the names of predicates which instantiate and present the explanation templates when this is

required. The dialogue window (see figure 14) contains the model selection buttons, a

scrolling menu which displays the evolving execution description, and a display of the

current goal in a text field. The window also contains two more scrolling menus. The first

of these records any unifications which are made in the current resolution, and the second

displays the full database for the current execution.

Each time a button is clicked, a predicate associated with the 'execution' dialogue is called,

with the number of the button as an argument. The appropriate definition of the predicate

generates a popup menu which returns the user's selection; (see figure 15). The same

predicate which called the menu now calls another predicate to assess the selection which

has been input If it is correct, the various dialogue fields and menus are updated, and the

next step is considered. If it is not correct, (and the relevant student model switch is 'on'),

the correction and explanation mechanisms described above are brought into play. When

the correction/explanation activities are completed, the call from the model button is made to

fail, so that control returns to the original dialogue which cannot end until the goal

associated with it succeeds.

218

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Figure 14. The screen for describing code execution.

Model ËHecüt idh Tutorial

Choose a model to apply: I— J
Sear ch Space '] Current Goal: blg(_l 710)

IDIth Clause: 1
Search S tra teg y

Resolution 1 Unifications:
_1710 with-.1710

S teps So Far: The Code
1: P roue new Goal In SSpace
2: Try goal w ith nex t clause
3: Functors Ok.
4: flrlty Ok.

1: big(_1710):-- hairy(_l710).
2; hair y (-1710). 5

S

Figure 15. The screen for describing code execution showing the

Resolution model menu *popped-upK to take student input.

C

C
C
[

Select a Resolution action.

Functors Ok;
Functors Fall
flrlty Ok.
flrlty Falls
Argument pair Unify
Argument pair Fail

a Cancel
1
2: Try goal w ith nex t clause
3: Functors Fall
4: Quit th is Resolution
5: Try goal w ith h ex t clause

[f

iai

1 Ok]
ge tblack , _ 2 t 0)

(lull

Je

2: huge(black,dog).
3:happy(man):--big(dog).
4: unhappy(man):-- huge(black, dog).

219

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Dialogue 2: Identifying the bugged clause.

When it is clear that the user understands and can apply the models used in the execution

dialogue, then a tutorial dealing with a specific bug may be started. (The decision about

when to proceed is currently made by the student rather than by VIPER). To provide the

information necessary for a tutorial, a set of query, ideal code, and bugged code is retrieved

from the system database. At VIPER's current level of development, the student is asked

to indicate what viewpoint they wish to work with, and a query-code set associated with

that viewpoint is chosen at random. (The different ways of analysing execution are

referred to as Viewpoints' rather than 'models' in this second phase, as the models have to

be used in conjunction with a set of inference procedures). The initial query is run with

both the ideal and bugged code, and the resulting sets of execution history facts are

analysed as described in section 7.3.2.

The second dialogue then begins. The screen for this dialogue (see figure 16) shows the

initial query, the results obtained with the ideal and the bugged code, and the bugged

database. The screen also shows a number of 'radio' buttons associated with the question

"Which clause should be changed?". ('Radio' buttons indicate alternatives from which

only one may be selected. When the user clicks on 'Ok', the number associated with the

selected button is returned as an argument). These buttons represent the clauses of the

bugged database, and each is associated with a number. (The database clauses are also

numbered).

In v ip e r 's current state, this dialogue will not terminate until the number representing the

bugged clause is selected. (Under the conditions laid down for this system, VIPER

identifies the bugged clause as the first one which fails to match its corresponding ideal

database clause). The student is not left to blindly guess the result. At the start of this

dialogue a pull-down menu is installed which enables the student to ask questions about the

ideal database; (see table 8). This is intended to allow the student to test hypotheses which

220

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

they may have formed concerning the nature of the bug, and the identity of the bugged

clause. This menu also allows them to propose candidate bugs as being responsible for the

results shown, and to ask for a complete explanation of the bug should this be desired.

Figure 16. The screen for identifying the bugged clause.

B u g p d Clause

• IDhich c lause should be
changed?

• Info, ula Questions menu.

• Choose a num ber bu tton
and click “Choice"

o i 0 5

0 2 0 6

0 3 0 7

0 4 0 8

Dk] Choice Quit

1st. Query: huge(_4828, _4829)

Bugged Result:

It
Ideal Result:

. 4 8 2 8 = b l a c k

. 4 8 2 9 = dog

. 4 8 2 8 = r e d

. 4 8 2 9 = f i s h

The Bugged Code
1: b i g (d o g) .
2 : u n h a p p y (m a n) : — h u g e (b l a c k , d o g) .
3 : b 1 g (r e d , f i s h) .
4 : h u g e (b l a c k , d o g) .

This 'Questions' menu is intended to facilitate and encourage the use of the kinds of

inference operators described in chapter 5. The explanations that are provided through the

menu are structured around versions of the "inference" operator. The options available on

the menu enable the correct line of inferencing to identify whichever of the bugs is present

from the list given in chapter 6. Where necessary, hierarchical menus allow the user to

make a general question specific. (The list of menu options is given in table 8, along with

an indication of the contents of the hierarchical popup menus). Thus the question 'what is

the functor in clause ...' is supported by a popup hierarchical menu which lists numbers

from 1 to 10. By selecting a number, the user asks to be told the functor of a specific ideal

database clause. As this operation simply retrieves information which is already explicitly

221

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

stated, it is seen as equivalent to the use of the "type 1" of "access" operator described in

chapter 5.

This data could be used, for example, to determine whether the hypothesis that the bug is a

'wrong functor' in clause N is correct. If the hypothesis was correct, the explanation

offered by the system would be structured around the 'type two' operators discussed in

chapter 5. These were described as combining two or more parts of a model via an

inference procedure to produce a previously unstated conclusion, without changing the

model, (eg. A > B, B-> C, therefore A > C). The notion of 'model' as being the thing

which is interrogated by operators must here be broadened to include both the execution

history which results from the description of a specific execution in terms of the models,

and the concept of a bug'. (This reflects the actual situation in the study described in

chapter 4, where the subjects were able to observe an on-screen simulation of a system as

well as to refer to the models as they were stated on paper). The viewpoints cannot be used

by the system to localise bugs in actual executions unless this is done, as the models of

execution only describe possible executions in abstract terms. The execution histories are

structured in terms of the models of execution, and thus constitute an application of those

models to describe actual executions. Neither VIPER nor the students using the system

could use the viewpoints to localise bugs unless an inference procedure was available

which linked the models to the execution histories.

In the broader context the operator is applied to produce the following kinds of inference:

step 1: Resolution rule 1, and functor X in bugged database clause N implies that

step 2: a goal resolves with clause N and the wrong variable binding is made,

implying that

step 3: clause N in the ideal database has a different functor.

The relevance of this to the question menu can be seen when the conclusion of the operator

is stated, ie. that step 1 implies step 3.

222

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

In the terms stated above:

step 1: Resolution rule 1, and functor X in bugged database clause N

implies that

step 3: clause N in the ideal database has a different functor.

This conclusion can be easily checked using the 'Questions' menu.

Another version of the operator is defined for the case where the goal and c\?iVist failed to

resolve, so that the desired variable binding was not made. Again, the conclusion is that

the ideal code clause N has a different functor, and this can again be checked using the

'Questions' menu. The notion of an operator is thus used to encode the kinds of inference

that can be usefully made in terms of the three models when they are applied to a specific

execution. Explanations in these terms are provided for all of the allowed bugs, and all of

the conclusions can be tested through the 'Questions' menu.

As yet VIPER makes no attempt to tutor these operators directly, other than providing

explanations structured around them. It is, however, interesting to speculate on what could

be achieved by monitoring the student's use of the 'Questions' menu to determine the

extent to which the questions being asked were relevant to the bug at hand, and to

determine the accuracy with which they were applying the kind of operators discussed

above. What is proposed here is that these operators are a useful way of capturing the

distinction between simply applying the models to describe an execution, and applying

them to localise a bug.

These menu options are supported by predicates which retrieve the ideal code from the

system database, compute the requested information, and display it to the student. The

accuracy of the code error suggested by the student is checked by consulting a database of

relevant information which is stored after the two sets of execution facts have been

analysed.

223

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Table 8. Options available on the 'Questions' menu.

Menu Option Contents of Hierarchical Menu

'What functor in clause...' Numbers 1 - 9 .

What arity in clause...' Numbers 1 - 9 .

'What arguments in clause...' Numbers 1 - 9 .

What subgoals in clause...' Numbers 1 -9 .

'Show clause...' Numbers 1 - 9 .

'Is the bug...' List of legal Bugs.

How many clauses in ideal' None

'Give Explanation' None

The explanations which are requested from the 'Questions' menu (and which are structured

around the 'inference' operators described above), are assembled by predicates which carry

out a different analysis of the execution history facts. These predicates are in this sense

'free-standing' in that their selection of material to present to the student does not depend

on the original analysis carried out by the 'bug recognisers’ described in section 7.3.2.

This involves some redundancy in the system, as it would have been a simple matter to

define a range of explanation templates, one of which could have been selected in

accordance with the bug detected by the bug-recognisers. The justification for the

redundancy is that the predicates defined to provide the explanation have different purpose

and operate in a different manner. These predicates will be referred to as the 'bug-

explainers'.

The hug-recognisers were implemented to carry out their function in the most

computationally efficient way that could be arranged in the given system, even though this

224

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

may have little relation to human inferencing in a similar situation. A recogniser is built for

each of the combinations of success and failure in the ideal and bugged databases which are

described in section 6.4.2. These recognisers simply identify specific sequences of

symbols at the same points in the execution histories of ideal and bugged code, and then

test for specific differences between the ideal and the bugged code. Although this is a

’black box’ solution, we would wish to claim that it can still support useful tutorial

activities. (This issue was discussed in relation to Burton and Brown’s [1979] WEST

system in chapter 2).

The hvig-explainers are intended to simulate (as far as possible) the reasoning of human

investigators in the manner described for the "inference operators" of chapter 5. As in the

example of a wrong functor given several paragraphs above, the bug-explainers assemble

the information about the bugged code and the bugged execution that might be used by a

student, and test the conclusion that is implied by this information; (ie. that there is a

specific difference between the ideal and bugged code). If the conclusion is found to be

true, the bug-explainer succeeds and its information is placed in the slots of a text template

for presentation to the student as an explanation of the bug.

When an explanation is requested, all available bug-explainers are called in turn. This

implies that only the correct one should be allowed to succeed if the explanation is allowed

to be relevant. In order to prevent irrelevant successes, some of the bug-explaining

predicates have to be given extra subgoals which are not strictly related to the inferencing

required by the operator.

The bug-explainers differ fi*om the bug-recognisers in another respect A bug-recogniser is

defined for each of the combinations of success and failure in ideal and bugged database

described in section 6.4.2. (Generally, at a given point in the execution, a given goal may

succeed in the bugged database where it fails in the ideal, may fail in the bugged where it

succeeds in the ideal, or may succeed at the same point in both). The bug-explainers do not

225

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

discriminate so finely. At a given point in the execution, they are concerned only with the

success or failure of the goal in the bugged clause. This is related to the applicable mle or

modelpart, and the conclusion or 'hypothesis' concerning the ideal code is tested. Thus in

general terms, a given bug will have two bug-explainers related to it. One deals with an

unwanted variable binding caused by success, the other with an unwanted variable binding

caused by the failure of a previous resolution. Each bug-explainer calls its own text

explanation template. This is the third form of text template used by the system. It is not

related to the templates discussed in section 6.4 which describe the effects on execution of

each bug, nor to the templates described in section 7.4.2 (Dialogue 1) which explain the

application of a specific model part at a given point in an execution.

The arguments for 'glass box' systems presented in chapter 2 may lead us to prefer the use

of the bug-explainers to that of the bug-recognisers. However, the fact that the bug-

explainers operate independently does not necessarily indicate that the bug-recognisers are

wholly redundant. It is not clear at this stage that the bug-explainers are powerful enough

to carry out an accurate analysis of the execution histories. Also, since the bug-recognisers

encode all the legal combinations of success and failure that may occur under the conditions

described in chapter 6, they constitute a very useful test of any input bugged and ideal code

sets, since the execution histories produced by the code sets should cause one of the bug-

recognisers to succeed. Such a test would be especially useful in an authoring interface,

where code sets may be input by someone other that the system designer.

Dialogue 3: Describing the bug's effect on execution.

As indicated earlier, it is desirable that the student should do more than simply identify the

bugged clause. In order to ensure that their understanding of the bug's effect is correct,

they are asked to describe the execution of the relevant goal with the bugged clause in terms

of the three models given in section 6.5. A new dialogue is initiated to carry out this

activity. This dialogue is structured around the mapping from models to bugs that is

226

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition,

described in section 6.4.

The dialogue presents a screen that shows the relevant goal and the bugged code (see figure

17). Also on the screen are a sequence of clickable buttons labeled Functor, Arity,

Arguments, Search Strategy, Search Space and Code Error. The student gives VIPER

input relating to each of these aspects of the resolution under consideration by clicking on a

button and making a selection from the menu that pops up as a result. These inputs need to

be given in the correct sequence, so usually all but the currently relevant button are

disabled. This ordering is imposed on the inputs in order to avoid incoherent

combinations, such as the statement that the functor unification fails, and that the arity test

succeeds. (According to the Resolution model, if the functor unification fails, the arity test

is not made). If the student gives an input which is logically incompatible with the

previous inputs, then an explanatory message is presented stating why that input is not

suitable, and the dialogue returned to its pre-input state. If VIPER accepts the input, then

it is entered into the dialogue screen next to the relevant button, and the screen updated

ready for the next input selection. The possible input choices for each button are given in

table 9.

The possible entries for Functor, Arity, and Arguments summarise the result of applying

the Resolution model of section 6.5 to the resolution which is being examined. The entry

for Search Strategy states whether the search continues elsewhere, pursues subgoals

.successfully or unsuccessfully, or halts at the point being examined.

The Search Space entry requires a statement that the Search Space is either 'Ok', or else

embodies one of the Search Space bugs. This accords with the conventions stated in

section 6.4.3, which require that only bugs to do with the presence or absence of clauses or

subgoals can be Search Space bugs. If the Search Space does not contain a Search Space

bug, it must be Ok'.

The final choice to be made is that of the Code Error. If the Search Space contains a bug,

227

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

then the description of this will be identical with the description of the Code Error.

Otherwise, the name of one of the other legal bugs should be entered.

Figure 17. The screen for describing the bugged execution.

Bugged Execution

Finished: Click on Ok o r Cancel

f un< tor fu n c to rs do not unify

nritg] not re le u a n t

not r e le u a n tB rg u rn en U

Se<nxh St r< i teg g) nem clause

Search Space Ok

Code l i n e n) mrong fu n c to r

Ok 1 [Cancel]

Goal:
•huge(_4828, _4829)'

lUlth Clause: 3

Unifications:

Shoup
Clause

The Code
1 : b i g (d o g) .
2 : u n h a p p y (m a n) : - - h u g e (b l a c k , doc
3 : b i g (r e d , f i s h) .
4 : h u g e f b l a c k , d o g) .

At this point the student will have described the effects of the bug in terms of the three

procedural models of section 6.5, and stated their perception of what the current bug is.

They will not have made any explicit statement concerning the binding of variables to give

the output symptom that the legal bug library is related to. Such statements could be added

as another feature of the dialogue, and would relate to the issue, (explored in chapter 6), of

which question about the bug is being asked; (ie. does the input given in this dialogue

describe the case where a success causes the wrong variable binding to be made, or the

case where an unwanted failure causes a binding to be made elsewhere).

228

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

Table 9. The input options available for each button of the 'Bugged

Execution' dialogue.

Button. Options Available.

Functor. functors unify

functors do not unify

Arity arity same

fails

not relevant

Arguments succeeds

fails

not relevant

Search Strategy new clause,

no subgoals: stops,

subgoals: succeed,

subgoals: fail.

Search Space 'Ok' + list of Search Space bugs.

Code Error List of legal bugs.

The student's input could be analysed in terms of its internal consistency, and its

relationship to the actual execution histories. Such an analysis could go well beyond the

simple correctness or otherwise of the answers, to assess the students understanding of the

models and their mapping onto the bugs and bugged execution. At its current level of

development VIPER makes no attempt to analyse the students' inputs in this way, and does

229

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

not allow students to revise their choices once they have been entered into the dialogue

screen. When a student has made choices in relation to all of the buttons, a click on an

'Ok' button ends the dialogue and gives VIPER all of the input choices. VIPER then

simply states what the correct choices were. The 'Questions' menu, with its 'Get

Explanation' option, remains available throughout this dialogue.

The correct choices to describe the execution of each bug are held in memory as a 'working

frame' the details of which are assembled by the predicate which initiates the bugged

execution dialogues. Because each of the bug-recognisers identifies a unique success-

failure combination, it is possible to store an answer template related to each one, and to

use this to provide the correct answers for describing the execution of each bug. If

necessary, two templates are stored for a bug-recogniser. The first template describes the

first goal/clause resolution in the bugged execution history which does not match the

corresponding one in the ideal execution history. If the bugged resolution fails no variable

binding can be made, and the second template will be required to describe the subsequent

resolution where a variable is bound. This issue is described in more detail in section

6.4.3.

The templates referred to in the previous paragraph are stored as a sequence of codes.

When the instantiated 'working frame' is being assembled, the template with its list of

coded entries is retrieved. The definition of each coded entry is then retrieved and entered

into the appropriate 'working frame' slot. In the case of the Search Strategy slots, some

further computation may be needed, to determine whether there are subgoals to be proved

or not, and if any are present, whether or not they succeed.

230

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

7.5 Conclusions to Chapter 7.

This chapter describes the implementation of a system designed to tutor Prolog novices

using the abstractions described in chapter 6. This system, VIPER, is based on a meta

interpreter which, when run with a query and suitable code, produces a detailed execution

history in terms of the three procedural models of section 6.5. This history is used to

facilitate three forms of dialogue between system and student. The dialogues are concerned

with describing execution, identifying the bugged clause, and describing the effect of the

bug on execution.

Section 7.2 describes in outline the meta-interpreter which reproduces a subset of Prolog

behaviour. This meta-interpreter takes a query and database as input, and produces a

detailed history of their execution in terms of the three procedural models of section 6.5.

The meta-interpreter is structured around the Resolution, Search Strategy and Search Space

models of chapter 6 and records an execution history in terms of these models.

Section 7.3 describes the mechanisms by which the execution history is recorded and

analysed. The execution histories of the ideal and bugged databases are compared to

determine the point at which they differ. A set of bug recognisers are then run in sequence

to determine the exact nature of the bug. A summary is given of the information available

to VIPER when this analysis is complete.

Section 7.4 describes the three kinds of dialogue that the system can presently support.

These dialogues are not intended to stand as examples of adaptivity to the user. Rather,

their purpose is to demonstrate the various mechanisms which are available in VIPER, and

which could be used adaptively. WE thus claim that VIPER provides the potential for

adaptive tutoring using multiple viewpoints on the domain, and that this potential can be

realised using established methods. The major implementational effort has thus gone into

producing mechanisms which can manipulate and explain viewpoints, rather than into

231

Chapter 7. VIPER: Viewpoint-based Instruction for Prolog Error Recognition.

mechanisms which can dynamically adapt the tutoring of them. We indicate where adaptive

extensions to the system would be possible.

The first form of dialogue describes the execution of a query and database. This

description may be made by the student or by VIPER. The facts of the execution history

are related to menu choices made by the student. The options on the menus summarise the

events covered by the rules of section 6.5. Inaccurate choices are corrected, and, if

requested, a demonstration is given of the relevant rule being applied. VIPER can describe

the execution by giving a series of these demonstrations consecutively. The purpose of this

dialogue is to ensure that a student understands and can apply the three models accurately to

describe execution.

The second dialogue asks the student to identify the bugged clause. Information about the

ideal code can be gained by using a 'Questions’ menu which can provide all the information

that is required to differentiate the various bugs that may be present in the bugged code.

The intention is that students should use this facility to test their hypotheses concerning the

bug. If requested, explanations of the bug will be provided by mechanisms based on the

'type two' or 'inference' operators described in chapter 5. These demonstrate how the

application of the procedural models of section 6.5 to the execution history can be

combined with inference procedures to produce testable conclusions about the ideal code.

The third dialogue checks the student's understanding of the bug's effect. They are asked

to describe the execution of the relevant goal with the bugged clause in terms of the three

models given in section 6.5. This dialogue is structured around the mapping from models

to bugs that is described in section 6.4. Students make a sequence of menu selections

which summarise the resolution of the relevant goal with the head of the bugged clause,

and the subsequent state of the Search Strategy. The students are then asked to state what

defects, if any, are present in the Search Space, and to state the nature of the Code Error.

v ip e r 's own analysis provides the correct answers.

232

Chapter 8. Evaluating VIPER.

8.1 Introduction.

The implementation described in chapter 7 supports three kinds of dialogue with the

student. These involve describing the execution of a given query and code, (Dialogue 1),

identifying the bugged clause, (Dialogue 2), and describing the effect of the bug on

program execution, (Dialogue 3). As previously indicated, these dialogues are not intended

to stand as examples of adaptivity to the user. Rather, their purpose is to demonstrate the

various mechanisms which are available in VIPER, and which, with some augmentation,

could support adaptive tutoring. The system thus claims to provide the potential for

adaptive tutoring using multiple viewpoints on the domain. It is also claimed that this

potential can be realised using well-researched techniques.

Before making any claims about the adaptive potential of the mechanisms, it is necessary to

show that these mechanisms themselves are effective as they stand. "Effective" is here

assumed to mean that the mechanisms can support a tutoring interaction that is deemed to

be useful or effective by the human users who engage in i t The central assumption is that

different viewpoints will help to localise different bugs in the code. The purpose of the

system is to tutor the skill of applying the different viewpoints in a simplified Prolog

environment, so as to localise different bugs.

The purposes of the evaluation were thus:

• To check that the components of the system functioned properly together, (ie. does

VIPER run?).

• To test the usefulness of the way in which the different viewpoints have been

encoded in the system; (ie. can VIPER exploit them usefully?).

• To test the overall design of the system; (ie. can VIPER cany out any useful

tutoring, and what are its limitations?).

233

Chapter 8: Evaluating VIPER

• To assess the usefulness of the viewpoints to Prolog beginners; (ie. are these

useful irrespective of the system's effectiveness?)

This chapter reports the evaluation of VIPER by seven students of Prolog. Some of these

were Prolog novices, and some were more experienced. They were given preparatory

materials to read, introduced to the system interface, and each offered the same basic

tutorial. The length and content of this tutorial varied according to the amount of practice

they requested, and which model of simplified Prolog execution they chose to concentrate

on at different decision points. On completion of the tutorial the students were asked to

complete a questionnaire. The results of the evaluation are based on the responses to the

questionnaires.

The evaluation thus had four parts:

• Three different viewpoints on Prolog execution were presented on paper so that

those taking part could become familiar with them.

• Using the system, the participants applied the viewpoints to describe the execution

of a specific 'Prolog' query and database. If they were required, the system

provided demonstration, explanation, and corrections during this exercise.

• When the participants could confidently apply the viewpoints to straightforward

Prolog execution, they were asked to apply the models to solve some simple

debugging problems.

• When the debugging exercises were complete, the participants were asked to

complete a short questionnaire about the system.

234

Chapter 8: Evaluating VIPER

8.2 Method and Materials.

8.2.1 A tutorial with VIPER.

VIPER was run under LPA Prolog on a Macintosh SE/30. The users who took part were a

combination of visitors, research students and research staff in a university department

VIPER was configured so that each user would be presented with the same introduction

and the same subsequent choices. The purpose of the introduction was to ensure that the

users understood the interface for Dialogue 1, the execution description dialogue, and could

confidently apply the models of section 6.5 to describe the simplified Prolog execution.

Users were instructed to start the system when they were familiar with the simplified

Prolog models. These were the models of section 6.5, and were printed on paper.

The introduction consisted of the following phases:

• Introduction to the task of Dialogue 1;

• Familiarisation with the interface;

• Demonstration of execution description by VIPER;

• Description of a very simple execution by the usen

• Description of a more complex execution by the user:

• Choice by the user of either:

a) more execution description practice, or

b) progression to part 2 of the tutorial.

If a user opted for more practice at describing code execution, the system presented them

with a new query/code combination and asked them to begin a new execution description.

When this description was complete, they were again presented with the choice of further

practice or progression to part 2. This cycle continued until the user chose to go on to part

2.

235

Chapter 8: Evaluating VIPER

While the user was becoming familiar with the interface for Dialogue 1, VIPER did not

correct the menu choices they made to describe a simple code execution. After the system

had demonstrated how execution was to be described, user input was always assessed and,

if necessary, corrected.

When the user began part 2, the new task and the new interface were introduced. This task

required them to identify the bugged clause in a database. The users were told that the bug

constituted the single allowable difference between an ideal version of the code which was

not visible, and the bugged version which they could see. They were also told that all the

tasks in the second part of the tutorial related to the symptom Variable instantiated to an

unexpected value'. They were informed of the presence of the 'Questions' menu, and told

that it could provide information about the ideal code, information about the bug, and a full

explanation of the bug and its effect. Users were then shown a list of bugs and told that

each bug related to a specific viewpoint

Dialogue 2, on its completion, leads straight into Dialogue 3. Users were thus informed

about the structure of Dialogue 3 before beginning the tutorial. They were told that they

would be shown the wrong or 'bugged' result, the correct or 'ideal' result, and, after they

had identified it, the bugged clause. They were told that they would then be asked to

describe the execution of a specific goal with the bugged clause at the point where it first

differed from that of the same goal with the 'ideal' code.

It was stated that this involved:

1) Describing the resolution of a specific goal with a specific clausehead;

2) Making statements in relation to the Search Strategy, the Search Space, and the

Code Error.

Users were then asked to select which model, (Resolution, Search Strategy, Search

Space), they wished to concentrate on. VIPER then retrieved a set of bugged and ideal

236

Chapter 8: Evaluating VIPER

code and appropriate query, the bug being related to the chosen model. (See section

6.4.3.2). The code was run through the meta-interpreter so that the execution histories

could be recorded and Dialogue 2 was begun.

Dialogue 2 concluded with the correct identification of the bugged clause. At this point,

they were reminded that the next task involved describing the bug's effect on the execution,

and Dialogue 3 began. When the student had provided input to all the slots of Dialogue 3,

no comment or assessment was made, but the coirect answers were displayed.

Users were then asked if they wished to work with another bug. If the answer was

positive, they were again asked to choose one of the models as the focus of the work, a

suitable new code set was retrieved and run, and a new iteration of Dialogue 2 was begun.

A negative answer ended the tutorial.

Users could keep selecting models and working on the problems that VIPER retrieved for

them until they decided to stop.

8.2.2 Printed Materials.

Users always had access to the following printed materials:

• A briefing document describing the purpose and structure of the evaluation.

• A printed version of the three models detailed in section 6.5.

• A printed version of the menu choices related to each model which were used to

describe execution.

• A printed version of the queries and databases used in Dialogue 1.

• A listing of the possible bugs related to each viewpoint.

These materials are given in appendix 2.

The queries and code used in Dialogues 2 and 3 are given in appendix 3.

237

Chapter 8: Evaluating VIPER

8.2.3 The Questionnaire.

The questionnaire contained 17 questions organised into 5 sections, and is given in full in

appendix 4.

The sections dealt with the following topics:

1. Experience of Prolog.

2. The Interface.

3. The Viewpoint Representations

4. The system.

5. The Viewpoints.

These sections were intended to reflect the main preoccupations underlying VIPER's

design and implementation. Section 1 was intended to determine the level of the user's

experience of Prolog. Section 2 enquired about the user's experience of VIPER's

interface. The purpose of this was to check that the Macintosh interface and small monitor

had not seriously inhibited their use of the system.

Section 3 focused on the system's representations of viewpoints and the use made of those

representations. The questions in this section were intended to determine the usefulness

both of the structures developed in chapter 6, and their implementation in VIPER as

described in chapter 7. Questionnaire section 4 was concerned with more strategic

questions such as the usefulness of adding diagnostic capabilities to the system, the

usefulness of the system's ability to focus on a specific viewpoint, and the degree of

learning that had taken place during the tutorial. Section 5 related to even more general

issues. The first question asked whether the specific viewpoints that had been used were

useful (without reference to VIPER). This was intended to check that the viewpoints

formulated in chapter 6.5 were indeed useful. The second question asked the user to

238

Chapter 8: Evaluating VIPER

suggest any other viewpoints that might also relevant with a view to possibly incorporating

them in future developments of the system.

The report of the results from the questionnaires is structured in terms of these five

sections.

8.3 Results.

The results reported here are a summation of the responses of 7 users to the questionnaire

described in section 8.2.3. These results are structured in terms of the five sections of the

questionnaire.

8.3.1 Responses to Questionnaire section 1, experience of Prolog.

Questions 1.1 and 1.2.

• How long have you been learning Prolog?

• How would you rate your ability in Prolog? (poor, fair, middling, good, very

good).

The majority of users assessed their Prolog ability as being in the middle range, with two

entries each for "fair", "middling", and "good". There was one entry of "poor". The

length of time that they had been learning Prolog did not vary consistently with this

assessment. The "poor" user had been learning for three months. One "fair" user had been

studying Prolog for a few weeks, the other for a few months. One "middling" user had a

year’s experience, while the other had ten weeks. Both of the "good" users had studied a

ten week course.

Question 1.3.

• Did you have a clear model of Prolog execution before this session?

239

Chapter 8: Evaluating VIPER

Five users felt that they had had a clear model of Prolog execution before starting the

tutorial. The user with "poor" ability stated that he did not have a good model at this time,

while one "good" user stated immediately that his understanding of Prolog was clearer after

using VIPER.

8.3.2 Responses to Questionnaire section 2, the Interface.

Question 2.1.

• Did any parts of the interface not function correctly?

Four users reported that they found no problems with the functioning of the interface,

although five users criticised the behaviour of the menu which displayed the choices made

in Dialogue 1, (describing the steps of a specific execution). This was a scrolling menu,

which meant that when more than eight choices had been made, they could not all be

viewed at the same time. Each time a new execution step was added, the menu was re

displayed with the first rather than the latest steps visible. The user thus had to scroll to the

bottom of the menu to see the latest sequence of steps each time a step choice was made.

While this was irritating, the LPA Prolog environment provided no obvious means of

correcting the behaviour. The menus this environment provides are generally designed to

take input rather than to display output.

A more serious bug caused the tutorial to terminate prematurely if certain sequences of

viewpoints were chosen as the focus for work in Dialogues 2 and 3. This was due to

characteristics of the LPA environment which affected the variable identifiers used in the

meta-interpreter and caused the executions of this interpreter to fail when they should have

succeeded. When different sequences of viewpoints were chosen, or when the LPA

system tracer was switched on, the behaviour did not occur. Two users reported this bug.

When it occurred, part 2 of their tutorial was restarted.

240

Chapter 8: Evaluating VIPER

One user was confused by the similarity of two problems set to him after choosing the

'Resolution' option twice running at the start of Dialogue 2. He believed that the problems

were the same, although this was not in fact the case.

Question 2.2.

• Did you find any parts of the interface difficult to use? (buttons, menus, etc.).

The majority of users reported that the interface was easy to use, although a number of

criticisms were made. Two users commented that the buttons were veiy easy to use.

Two users were not familiar with the Macintosh interface, and were initially slowed down

by this. They quickly became familiar with i t Two users reported some confusion over the

fact that a scrolling menu for input could contain options that were not always visible. One

of these was unfamiliar with the Macintosh, while the other suggested that all options on a

menu should be visible at the same time. This suggestion was tempered by a recognition of

the need to compromise on the use of screen space.

A number of other comments were related to the lack of screen space. One user stated that

wider menus would have been preferable, while another pointed out that when menus were

used to display the database as an aide in Dialogue 3, the ends of longer clauses were

sometimes invisible as they ran off the side of the screen.

The screen size also meant that explanation and correction appeared in a window which

overlaid parts of the main display of the current Dialogue. Some of the detail that the

explanation or correction referred to was thus obscured as the explanation was delivered.

This was criticised by one user. The same user also found a small problem with the

hierarchical menus. When the top-level (pull-down) menu item was selected, a sub-menu

appeared for as long as the mouse button was depressed. The final selection was made by

moving the cursor onto the sub-menu and releasing the mouse button when the desired item

241

Chapter 8: Evaluating VIPER

was highlighted. The user found that in moving onto the sub-menu, he sometimes

unintentionally moved down one option on the main menu.

Another user complained about the number of mouseclicks required in Dialogue 3. He

suggested that for each stage, the relevant menus should appear automatically, rather than

the user having to click on the relevant button to call up the menu.

Question 2.3.

• Did you find that any part of the interface was particularly useful?

Responses to this question were generally quite complementary, with users indicating that

all of the interface was relevant and useful, especially the frequent use of menus. Two

aspects of the interface were given a special mention. One user stated that "...the

'Questions' menu was well-designed and encouraged browsing", while another reported

that the display of the unifications made for each clause and goal in Dialogue 1 was

particularly useful.

Other remarks were ambiguous as to whether they related to the interface or the underlying

system architecture. One of these praised the part of the system relating to bug-finding,

which is taken to mean Dialogue 2, while another stated that the "help" or "error-

explanation" facility of Dialogues 2 and 3 was particularly useful.

Question 2.4

• Is there anything that you think should be added to the interface?

A number of possible additions were suggested here. One user was content with the

interface as it stood, while another simply requested a bigger screen so that his interaction

with it would involve fewer button clicks. The issue of screen size was also relevant to a

point made about overlapping windows in responses to question 2.2. The same user who

objected to their work being overlaid by an explanation also suggested a possible remedy.

242

Chapter 8: Evaluating VIPER

This involved a facility for switching the explanation window into the background, so that

a user could look at the tutorial screen with the explanation in mind, and then return to the

explanation if desired.

Other suggestions related to specific Dialogues, (1-3). Two useful points were made about

the interface for Dialogue 1. One user wanted some form of trace of the execution state,

independent of that being developed by the user. The purpose of this was to help them to

remember the overall state of the execution, this information being easily forgotten as they

concentrated on the detailed analysis required by Dialogue 1. As this user was aware of the

constraints of screen space, they suggested a remedy which would cost little. This

involved underlining or highlighting the database clause that was currently being resolved

with a goal. A different user suggested that when VIPER corrected an execution step, it

should also enter the correct answer into the display itself, rather than waiting for the user

to actively select this option.

Another suggestion was made for the Dialogue 1 interface which is more directly relevant

to the pedagogical goals of VIPER. This suggestion stated that in the description of the

execution, the model relating to each execution step should be clearly identified, and that

the changes from one viewpoint to another should be very clearly indicated by highlighting

or by sound. It was specifically stated that when the Resolution model was being applied,

the choice of model-part "all arguments unify" should also clearly indicate that the Search

Strategy model became immediately applicable. These suggestions were intended to give

more structure to the list of execution steps displayed on the menu.

This same user made some equally relevant suggestions for Dialogues 2 and 3. The

suggestions for Dialogue 2 were that the window title should state what viewpoint, and

thus what kind of bugs, were the focus of the current work, and that a 'list of possible

bugs' should be available for that viewpoint. These should prevent the user forgetting

what viewpoint they were concentrating on, and thus straying to consider unrelated bugs.

243

Chapter 8: Evaluating VIPER

The suggestion for Dialogue 3 was that when VIPER displayed the correct answers, it

should give a ’right/wrong’ appraisal of the user’s input. A different user suggested that,

having given some answers to the slots of Dialogue 3, they should be able to go back and

change them if those answers were later considered to be mistaken.

One user who became particularly enthusiastic about the system turned out to be an expert

in the field of natural language generation. This user provided some lengthy and detailed

suggestions about how the techniques of this field could be applied to enhance VIPER’s

output. As these mainly relate to mechanisms for diagnosis and explanation, they will be

dealt with as responses to question 4.1.

8.3.3 Responses to Q uestionnaire section 3, the Viewpoint

Representations.

Question 3.1.

• Please comment on the way in which the system described execution, (ie. in terms

of three viewpoints, each composed of a set of rules).

The comments on the way that the system described execution were generally veiy

positive, with some minor caveats. One user commented that the description was very

"rigorous and clear", while another stated that it should help beginners to understand

Prolog execution clearly. A different user commented that the description, while generally

good, did not clearly present the recursive nature of Prolog. This user reported an

occasional confusion about which model should be applied, and where one ended and

another began.

The models were described by one user as "...a reasonable way of conceptually

partitioning the execution process". They found that the paper versions of the models left

them rather confused, but that the execution description exercises of Dialogue 1 clarified

244

Chapter 8: Evaluating VIPER

matters considerably, and they stated that the models were well-suited to the task of

describing execution.

Some initial reservations were expressed by other users as to the number and relationship

of the different viewpoints. Several users failed at first to grasp the difference between

Search Space and Search Strategy, although all but one reported a later moment of

illumination when engaged in Dialogues 2 and 3. One maintained that there were only two

viewpoints in his opinion. Resolution and Search. This meant that he sometimes had

difficulty in locating a suitable step description in the menus of Dialogue 1. A similar

Search Space/Search Strategy difficulty was reported by another user who at first failed to

distinguish "try goal with next clause" from "prove goal with Search Space". (This user

later reported a Eureka' moment during a Dialogue 3 session).

A different conceptual difficulty arose for another user who suggested that Resolution

should be presented as "... a kind of subroutine used by Search Strategy". This was the

same user who wanted the changes from one model to another to be more clearly flagged in

Dialogue 1, and their main difficulty seems to be in grasping the relationships between the

models. This user also suggested that Resolution and Search Strategy models are more

"algorithmic" in nature than the Search Space model.

Question 3.2.

• Please comment on the way that the system used the different rule-parts; (ie. to

describe execution, to take input from the user, and to describe the effects of bugs).

This question generally evoked such responses as "fine", "quite natural", and in relation to

Dialogue 1, "very clear". In relation to the description of bugged execution the use of the

model-parts was described as "helpful" by one user, but "not always entirely clear" by

another. A third user found himself "slightly baffled" by these descriptions. (These last

two users appear to have forgotten the 'only one difference' condition under which the

bugs operate).

245

Chapter 8: Evaluating VIPER

Other users quibbled with the 'grain size' of the model-parts. One, while finding the use of

the model-parts "fairly effective", found some confusion with the steps which ended the

application of the Resolution model. After the last pair of arguments has been unified,

users such as this one frequently wanted to move on to apply the Search Strategy model. A

further Resolution step is necessary first, however, which states that all the argument pairs

have been unified.

A similar difficulty was experienced by another user in relation to the need to state that all

subgoals had succeeded after the proof of the last subgoal had been successfully

completed. The user felt that this was rather too detailed an approach, but accepted it as a

"...good rigorous approach to understanding Prolog execution", and said that they soon

got used to it.

Question 3.3.

• Please comment on the way the system related different viewpoints to different

categories of bugs.

The majority of users found the relationship between bugs and viewpoints clear and useful,

although those who had earlier had some difficulty in grasping the execution models

experienced some confusion. One user, initially confused, stated that "the more I used it

the clearer it became". Another liked the bug/viewpoint relationship because "... the

differences were made clear and thus you can see which viewpoint the bug lies in". A

third user praised the strategy as a suitable way to implement a tutorial programme.

The same users who had expressed difficulty with the Search Space/Search Strategy

distinctions in earlier responses did so again here. One user suggested that bugs such as

the 'wrong clause order' bugs could equally well be analysed as a 'missing clause' bug,

thus clearly showing that they had failed to grasp the implications of the 'only one

difference' condition on the analysis of bugs. Similar points were made by another user,

246

Chapter 8: Evaluating VIPER

although later reflection allowed them to clearly grasp the Search Space/Search Strategy

bug distinction and to report this.

Question 3.4.

• Please comment on the exercise which asked you to identify the bugged clause, and

the information available to you at this point.

The users generally liked the exercise of finding the bugged clause, with one stating that

"... the problems were simple but good examples for me". Two users explicitly stated that

all the information they required was readily available to them and easy to understand.

One user pointed out an unresolved conceptual difficulty in this exercise. This related to

the bug 'wrong clause order'. If the 'bugged' database clauses appear in the order 'A, B,

C, D', and the 'ideal' database clauses in the order 'A, D, B, C , which clause should be

labelled as the 'bugged' one? Is B' wrong because it is where 'D' should be, or is 'D'

wrong because it is in the wrong position? VIPER will, at present, insist that 'B' is the

bugged clause, as it is the first 'bugged' database clause to show a difference in the

execution histories to the 'ideal' database clauses. A possible solution for this problem is

discussed in the section on further work.

One of the more experienced users had some difficulty with the exercise of locating the

bugged clause as they could not initially suspend their knowledge of backtracking on one

problem. Even doing so, they found that it was harder to determine what the correct code

would be for Search Strategy problems, and suggested that more information on the Search

Strategy viewpoint and the nature of Search Strategy bugs should be provided.

One user again found difficulty due to a lack of appreciation of the 'only one difference'

condition. This lead them to state that a buggy program could always be fixed with a new

first clause which gave the desired result.

247

Chapter 8: Evaluating VIPER

Question 3.5.

• Were the exercises of Part 2, (describing the execution of the bugged code and

identifying the bug), useful in relating viewpoints to categories of bugs? (Please

explain).

The exercises of finding the bugged clause and of describing the execution of a goal with

the bugged clause appeared to be quite powerful catalysts of the user's understanding of the

relationship between viewpoints and bugs. A user with a few months intermittent

experience of Prolog, ("more off than on") who had reported difficulties in distinguishing

issues of Search Space from those of Search Strategy found that this exercise made them

reflect on the bugs. They realised that Search Strategy related to the clause order while

Search Space related to database contenu "...then the light clicked. Eureka!". The dialogue

is designed to promote just this sort of learning by focussing the user's attention on the

exact effects of the bug. The 'Search Space' problem was shared by a second user, who

felt that the issues could have become clearer if they had spent more time on the exercise.

A third user found the exercises useful in clarifying matters once they had grasped the

implications of the 'only one difference' condition.

The efficacy of these exercises were praised by a user who was aware that a given result

could have been caused by a number of bugs. "The system made it clear which was the

real bug. This helped in understanding which viewpoint it comes from". This user

realised that the other bug could well have been associated with a different viewpoint, and

felt that it was very useful to compare the two possibilities while using the system to find

the actual bug.

One user with only a few weeks experience of Prolog expressed some reservations. They

reported that running through the execution of the bugged clause sometimes made it clear

how the bugged behaviour was occurring but sometimes did no t The failures occurred

when the user's concentration on what the bugged clause was doing caused them to forget

248

Chapter 8: Evaluating VIPER

what it should have been doing. They also felt that, having selected a particular viewpoint

to work with, they were looking for that type of bug and ignoring the others. They

suggested that a useful additional exercise would be to have the users find a bug by

regarding the code from all viewpoints rather than selecting one initially. This indicates to

us that the design of the dialogue made its purpose clear, and that it was effective in

promoting learning by the user.

8.3.4 Responses to Q uestionnaire section 4, VIPER overall.

Question 4.1.

• The system you have just used does not yet have any diagnostic mechanisms built

into it, and can thus only adapt to a user in very limited ways. Please assume that

such mechanisms could be added, and comment on the usefulness of the resulting

system in relation to Prolog novices.

VIPER was generally well-received, with two users judging it to be already useful in its

present form. All who expressed an opinion, (five out of seven), judged that the system

augmented with diagnostic mechanisms would be useful or very useful.

Several justifications were advanced for these opinions. One was that the system allowed

novices to work in their own way, "...finding the bugs using their particular method".

Another was that VIPER already tutors the execution process well, and "...allows the user

to diagnose a range of bugs that could arise from anything from a typo to a serious

misconception". The role of diagnostic mechanisms was emphasised by a user who

pointed out that often beginners (including himself) did not understand what was missing

from their knowledge. Diagnostic mechanisms would help to identify and thus rectify such

gaps. Another user made the point that an augmented VIPER could be veiy useful, as it

would address a question "typical" of novices: "why did my code not produce the expected

result?"

249

Chapter 8: Evaluating VIPER

There were also some caveats. The lack of backtracking was seen as a drawback by one

user, on the grounds that novices might get confused when they returned to writing real

programs. It was suggested by a different user that real novices would need much more

time to practice the exercises of Dialogue 1 to ensure that they had clearly grasped the three

models before being "allowed" to go on to Dialogues 2 and 3. This user drew on their own

experience to state that the exercises of the later dialogues would then "...not only help

debugging skills, but clarify what had been learned in part 1".

One enthusiastic user provided detailed notes on how the current VIPER could be

augmented with diagnostic mechanisms and natural language generation techniques. The

first of these pointed out that the explanation/correction mechanism of Dialogue 1 does not

take the actual choice that the user has made into account, but simply states the model-part

that should have been applied. A more profitable strategy would be to compare the user’s

actual choice with the correct choice. This would allow a useful range of misconceptions to

be detected and "repaired".

Examples were given of where this strategy could be applied. A choice of ’functors fail'

when the correct answer is 'functors ok' could indicate that the use does not know what a

functor is. Alternatively, the choice of an option from Search Strategy in the middle of a

Resolution sequence could indicate that the user is baffled. The system could then offer to

explain the viewpoints to the user.

Other suggestions were made for Dialogue 2. Here, the choice of a particular clause as

being the bugged one is currently answered essentially by a 'yes' or a 'no'. The user

acknowledged that the correction of misconceptions here is a more complicated matter, but

suggested that the choice of bugged clause could be evaluated. The following was given as

an example of what response the system could make if clause 1 was chosen erroneously:

250

Chapter 8: Evaluating VIPER

"No, clause 1 would need a new functor and an additional argument for the resulting program to

give the correct result".

It was also suggested that when the user did choose the correct clause, the system could

give some explanation of why this was the correct choice, (in case the user was guessing),

or ask the user to give an explanation and critique it. The latter option was seen as more

problematic. VIPER's current bug explanation facility is seen as being quite reasonable in

relation to the former option, "...although a perfectly crafted piece of NL text could do the

job better in some circumstances".

In Dialogue 3, the canned explanations of why an answer to a particular slot are

incompatible with the answer given to the previous slot are judged to be "fine". The

suggestion for this dialogue was that the user's answers should be compared with the

correct answers and an explanation given in relation to any discrepancies. The following

example was given:

"That’s basically right, except that the bug is ’wrong functor’ rather than ’wrong arity’. If we

change the functor in "big(X, Y)" to form "huge(X, Y>", then this clause unifies with the goal,

producing the desired result".

These suggestions will be discussed below.

Question 4.2.

• The system can focus its activity on a particular viewpoint with which a student is

having difficulty or which interests them, (eg. Search Strategy or Resolution).

Please comment on the usefulness of this feature.

The ability to concentrate on a particular viewpoint was generally described by such terms

as "excellent", "essential", "very good", and "nice". The reasons for these judgements

were quite varied. One user who had only limited experience of Prolog found the

251

Chapter 8: Evaluating VIPER

Resolution bugs easy to detect as he had written a lot of theorem proving and unification

code in LISP, but found that the Search Strategy and Search Space viewpoints were new to

him. VIPER's choice mechanism allowed him to focus on these. Another user compared

the viewpoints to hypermedia in that they allowed a student to focus on sub-problems or

sub-issues rather than deal at all times with a complete problem space. This was seen as a

useful feature. One user had particular problems with Resolution, and was very pleased to

be able to concentrate on this viewpoint with considerable success.

Once again, reservations were expressed by some users. One expressed the fear that

students might simply continue to work with the viewpoint that they were best at, and

suggested that VIPER should be able to shift the focus of the work on to another viewpoint

should it become necessary. A different user made the point that although the choice

feature was very useful, a novice might not be able to understand clearly which viewpoint

they were having difficulty with.

Another response touched upon a more profound issue. This user stated that the final goal

was to become good at debugging, and that the learning of viewpoints was an excellent

way of achieving this. Their reservation concerned the way that VIPER's exercises

promoted learning in a particular direction, that is fi-om viewpoint to bug; (ie. the user

chooses a viewpoint and the system offers a bug to be solved by using that viewpoint).

The suggestion was that to promote realistic debugging, learning should also be

encouraged in the opposite direction. The question in this case would be, "given a bug,

how do I find a viewpoint that will help me to solve it?". Tutoring in these terms was seen

as an essential complement to the exercise that VIPER currently conducts. (If VIPER had

been developed to include an explicit statement of the area of application of each viewpoint,

as suggested in chapter 3, then such tutoring would have been simple to accomplish).

Also, it was stated that during the Viewpoint to bug' exercise, it should be made "very

clear" that users were not starting from a bug and looking for a viewpoint, since that is

what most of them would expect to be doing.

252

Chapter 8: Evaluating VIPER

This same user made some other pertinent points. They stated that "upward compatibility",

or an extension of the viewpoints to include the full functionality of Prolog, would be

highly desirable. One reason for this was that it would give VIPER more flexibility to cater

to users who wished to leam in the 'bug to viewpoint' direction described above. Another

reason was that it would facilitate a new exercise where the student was able to alter the

bugged code to determined whether or not the alteration produced the desired result. For

this exercise, the student would be allowed to make one change within the current

viewpoint only. The assumption behind this was that even within one viewpoint, there

may be more than one way of solving a bug, and that having a single ideal version of the

code was "...a very artificial contrivance which is not upwardly compatible". While the

use of an 'ideal code' structure may be suitable for novices, the user stated that it was very

hard for those who already had a better knowledge of Prolog to confine themselves to a

single change in relation to one piece of ideal code.

Question 4.3.

• Did working with the system add anything to your understanding of Prolog

execution? Please explain.

Two users reported that their time with the system had added little to their understanding of

Prolog, as they had already had considerable experience with the language. However, one

of these gave the opinion that "...for novices it should be excellent".

The other users reported a variety of learning outcomes which were frequently related to the

description of execution in terms of different viewpoints. Learning for one user involved

an appreciation of the fact that execution can be described in terms of different categories,

and for another, a better appreciation of what those categories were. A third user reported

that he had always viewed Prolog in terms of Search, but that he

253

Chapter 8: Evaluating VIPER

"...had never considered breaking it down into the three viewpoints to identify bugs quickly or

follow the execution from those viewpoints".

The fine-grained detail of execution was a revelation for one user who had never

considered Prolog at this level before. The user who had written theorem-provers in LISP

reported that he had learned something about how Prolog goes about proving goals, and

stated that for beginners, the system would probably be very informative.

8.3.5 Responses to Q uestionnaire section 5, the Viewpoints.

Respondents were asked to answer these questions w ithout reference to the specific

system they had just used

Question 5.1.

• Are these viewpoints on Prolog useful? (Please explain)

All users found the viewpoints useful in one way or another. One report stated that they

broke Prolog execution down into manageable chunks, and another that they would help

that user to debug in future. They were described as "...useful conceptual clarifications on

the way Prolog works" by a user who, as reported above, insisted on the need for "upward

compatibility" in developing the viewpoints. The viewpoints were useful "...both for

tutoring and for finding bugs..." according to a different user, who maintained that "...this

kind of conceptual separation is clearly necessary in viewing a complex task like Prolog

debugging". This user was satisfied with the clarity of the viewpoints, although they still

had some doubt about the distinction between Search Space and Search Strategy.

This doubt was shared by two others. One of these expressed reservations as to the

usefulness of the Search Space viewpoint, but tempered this by saying that they already

thought of Prolog in terms of Search, and so probably took the Search Space viewpoint as

given. They went on to say that novices would probably find it more useful.

254

Chapter 8: Evaluating VIPER

Question 5.2.

• Can you think of any other viewpoints which would be useful?

Only two users suggested other possible viewpoints. One reported that they viewed

'Resolution' more in terms of 'unification', ie. they viewed two resolving expressions as

tree' structures and then"... unified those in the normal way". They suggested that this

might be a useful alternative viewpoint for students such as computer scientists, but stated

that the one presented by VIPER is good for novices.

The second user suggested a viewpoint "...that reflects the 'state' of all the current

unifiers...", but qualified this by saying that it might be too confusing for novices. This

suggestion is discussed below. A further qualification was the suggestion that viewpoints

should be totally "disjoint".

8.4 Discussion.

8.4.1 Discussion of responses to Questionnaire Section 1.

This section showed that the users who took part in the evaluation had a spread of ability

from 'poor' to 'good', and that this ability did not depend simply on the length of time for

which the individual user had been learning Prolog. Although a majority of users stated

that they had a clear model of Prolog execution before the tutorial with VIPER, this did not

imply that they could leam nothing from the system, as one user who rated his ability as

good immediately stated that their understanding of execution was clearer as a result of

the tutorial.

255

Chapter 8: Evaluating VIPER

8.4.2 Discussion of responses to Questionnaire Section 2.

The responses in this section indicate that the interface was generally good at facilitating

dialogue between system and user, and certainly did not seriously impede the progress of

the tutorial. A number of problems were reported, some being related to the LPA Prolog

environment, and some to the size of the Macintosh screen. A number of suggestions were

made for improving the interface.

The problems of the scrolling menu that returned to its 'top' position, and the erroneous

variable identifiers which caused the meta-interpreter to fail, could possibly be cured after

some consultation with the Prolog environment's designers. The problem of two 'bug'

examples looking identical could be cured by making the examples more distinct.

The users who requested wider menus could be satisfied where the menu was of the

'popup' variety. Where the menus are constantly displayed as a part of a larger integrated

screen, extra code would have to be added to the system to ensure that long lines of

displayed code were fitted into the menu's present width.

Only limited responses are possible to the complaint that explanation sometimes overlaid

the tutorial display, unless the system is run on a machine with a larger screen, (eg. a

Macintosh II). As suggested in a response to question 2.4, the user could be allowed to

switch between explanation and tutorial screen. Such switching is automatically possible in

the LPA environment, but a specific mechanism would have to be installed to make this

functionality clear to a naive VIPER user. The problems reported by one user in moving

from pulldown to hierarchical menus are an unavoidable feature of the environment that

VIPER is built in.

The user who complained about the number of mouseclicks required in Dialogue 3 could be

satisfied by programming the relevant menus to popup automatically after input had been

256

Chapter 8: Evaluating VIPER

made to the preceding slot. However, there is possibly some pedagogical value in

requiring the user to positively select each button in turn before giving input to a particular

slot. The value could be that the extra button clicks help to focus the user's attention on to

the aspect of execution that is being described, and that they help the user to leam and

remember the order and relationship of the different parts of the description. A

compromise solution could involve the use of a diagnostic mechanism. In this case VIPER

would only present the popup menus automatically if the diagnostic mechanism indicated

that the user had previously understood the structure and relationships of the Dialogue 3

execution description.

The responses to question 2.3 were very satisfactory. The structures of the 'Questions'

menu and the explanation facility of Dialogues 2 and 3 were based on the 'model and

operators' formulation of a viewpoint given in chapters 3 and 4, and whose implementation

is described in chapter 7. The praise given to these parts of VIPER is taken as an indication

that this aspect of the design based on models and operators is relevant to users' needs, and

adequately implemented.

The additions suggested in responses to section 2.4 could usefully be implemented in

VIPER. The additions to Dialogue 1 which would help a user to recall the overall state of

the execution, and which would highlight the transitions from applying one model to

applying another, appear to be highly pertinent and directly related to VIPER's pedagogical

goals. If successful, the former would reduce a user's confusion, while the latter would

make the relationship between the models more explicit.

The suggestions for Dialogue 2 were equally apposite. A statement of the viewpoint being

exercised and the bugs it might involve would most likely help to structure a student's

thinking, and support their learning of the relationship between viewpoints and bugs.

An equally positive response can be given to the suggestions for Dialogue 3. The intention

that VIPER should give some assessment of a user's input to this dialogue is implicit in the

257

Chapter 8: Evaluating VIPER

system design, and is explored further below. The predicates which control this Dialogue

could well be adapted to allow a user to change previous input. In order to maintain the

logical coherence of the input after such a change, the entries for all subsequent slots would

have to be checked in turn, or new input requested.

8.4.3 Discussion of responses to Questionnaire Section 3.

The exercise of applying the three models to describe the execution of specified code seems

to have been very successful as a method of establishing a knowledge of these models as a

pre-requisite for Dialogues 2 and 3. Confusions that had been created by the paper

versions of the models were, in general, quickly dispelled. The models were praised as a

"rigorous" description of execution which was suitable for beginners, although the

relationship between the models could have been presented more clearly. The relationship

of the Search Space model to the others gave particular problems at this stage, and it is clear

that some users initially failed to appreciate the implications or relevance of this model. All

but one of these found their understanding greatly improved by the 'debugging' exercises

of Dialogues 2 and 3, and it is thus concluded that this model is relevant and useful.

Dialogue 1 could be improved by making the relationships between models more explicit

The responses to question 3.2 indicated that the models of section 6.5 were generally well-

suited to their use in the system. Their use in explanations of the bugged execution could

have been clarified by a re-statement of the conditions under which the bugs were defined.

It is possible that the models could be improved by removing two parts which were judged

to be somewhat too detailed. These are the statement that all arguments of a predicate and

goal have been unified, and the statement that all subgoals of a clause have been proven.

This issue is possibly best decided by further empirical work.

The relationship between bugs and viewpoints was explored in question 3.3. Here again,

the formulation seems to have been successful and relevant. The formulation was praised

as being suitable to a tutorial program. Even with the short tutorial time available, all the

258

Chapter 8: Evaluating VIPER

users seemed to establish a clear understanding of the relationships involved. All but one

of those who had failed to appreciate the significance of the Search Space viewpoint stated

that their understanding was greatly improved by the exercises of Dialogues 2 and 3. It is

significant that the exercise of bugfinding clarified the users' understanding of the

viewpoints, as these viewpoints were in fact constructed so as to support the localisation of

bugs. This is taken as an indication that each viewpoint is indeed applicable to the

localisation of a particular range of bugs, at least in the limited world that has been

implemented, and that this quality could be tutored explicitly. In this context, a statement

of each viewpoint's applicability would be seen as an example of the 'application'

heuristics described as a component of a viewpoint in chapter 3.

The success of the Dialogues 2 and 3 in establishing a relationship between viewpoints and

bugs is clearly shown in the responses to question 3.5, where those who had failed to

understand the Search Space viewpoint again reported a significant clarification as a result

of their work in these dialogues. We take this as an indication that both the formulation of

the domain and the design of the dialogues are effective in promoting the desired learning.

The effectiveness of the viewpoint/bug mapping is shown rather perversely by the user

who complained that choosing a particular viewpoint for the exercise led them to ignore all

the possible bugs that might be related to other viewpoints. If this is to be regarded as a

problem, then it indicates that the viewpoint/bug mapping is very strong. VIPER does not

seem to achieve this by unduly constricting the user's behaviour. One user reported that

while the system made it clear which bug from which viewpoint he was studying, it also

allowed him to compare this with another hypothesised bug from a different viewpoint.

The suggestion of an additional exercise where the user had to find a bug by considering all

three viewpoints rather than the chosen one indicates that the system and dialogue design

have a clear logic that is appreciated by these users, and which implies for them that some

useful extensions could be made to VIPER. The modularity of VIPER's design and

implementation means that this extension would be very easy to implement

259

Chapter 8: Evaluating VIPER

As with the explanations of Dialogues 2 and 3, some users had forgotten the conditions

under which the bugs were defined, and again showed some confusion regarding the

viewpoint/bug relationship as a result. A re-statement of this relationship during the

Dialogues might help to rectify this.

Not surprisingly, the bugfinding exercises of Dialogue 2 seem better suited to novices than

to more experienced users of Prolog. The experienced users found some difficulty in

suspending their knowledge of backtracking, and in thinking about bugs as being only a

single difference from an ideal version of the code. The less experienced users found the

exercises more helpful in clarifying their knowledge of the relationships between

viewpoints and bugs. The access to information through the 'Questions’ menu was

appreciated as providing the data that was required in a form that was easy to understand.

This mechanism also allowed the students to explore the problem in their own manner.

The conceptual problems relating to the 'wrong clause order' bug will have to be resolved,

and VIPER's presentation structures amended accordingly. Some users may require more

support in dealing with the Search Strategy viewpoint, and Search Strategy bugs, as one

user reported a difficulty in determining what the correct code would be in this category.

A criticism of Dialogue 3 will also have to be addressed. This stated that the user's

concentration on what the bugged clause was actually doing led them to forget what it

should have been doing. This seems reasonable, and may require an augmentation of the

Dialogue to focus attention on the desired behaviour.

8.4.4 Discussion of responses to Q uestionnaire Section 4.

These responses were very encouraging. VIPER was judged to be useful even as it stood

by two of the users, and several others clearly saw a positive role for diagnostic

mechanisms. Diagnosis, and adaptive tutoring based on it, were seen as being especially

260

Chapter 8: Evaluating VIPER

important for novices who did not understand what was missing in their knowledge. Other

responses indicated how such diagnosis might be achieved using VIPER's mechanisms,

(these are discussed below). VIPER was judged to deal with a domain that was highly

appropriate to novices, and to describe execution in a way that would make it very clear to

them.

In order to answer some reservations, VIPER's domain would have to be extended to

include backtracking, and the diagnostic mechanisms would have to ensure that the

students had spent long enough on Dialogue 1 before they progressed to Dialogues 2 and

3. Both of these developments could be achieved without great difficulty.

The suggestions that were made about the siting and function of diagnostic and natural

language mechanisms are particularly welcome, as we wish to make some claims about the

diagnostic possibilities, and these suggestions frequently mirror the thinking of VIPER's

designer. The simplest case is that of Dialogue 1, where a chosen step can be compared to

the correct step in order to detect any misconceptions or confusions which the user may be

harbouring. This technique, of using a 'bug catalogue" to recognise misconceptions and

faults in a user's knowledge, has been widely used in previous systems such as

DEBUGGY (Burton 1982), and while its potential may be limited, it has at least been

carefully researched.

The suggestions for Dialogue 2 are more complex. The first of these involves explaining

why a particular choice of bugged clause is wrong. The example given in the response

appears to assume that there is only one way that the chosen clause could be changed to

produce the desired result, and it is not clear that this is in fact the case. A simpler

possibility with the current system would be to ask the user to specify which aspect of the

chosen clause they thought was defective, and have an explanation mechanism which

compared the detailed aspect with that of the ideal code. Erroneous answers at this stage

could also be the subject of diagnosis.

261

Chapter 8: Evaluating VIPER

The second suggestion for Dialogue 2, that the student should justify their choice with an

explanation of the bug which is then critiqued by VIPER, is acknowledged to be more

problematic. It is to deal with this issue that Dialogue 3 was designed.

The suggestions for Dialogue 3 are whole-heartedly supported. These recommend that

explanation should be given in relation to any discrepancies between the user’s input and

the system's own description. The only point at issue here is the degree of complexity and

sophistication that the diagnostic mechanisms which compute the explanation should seek

to achieve. The implementation of these various suggestions for extending Dialogue 3 is

discussed in the section on further work.

The second question in section 4 enquired about the usefulness of being able to concentrate

on a single viewpoint. This facility is seen as one of the major advantages of a system

incorporating multiple viewpoints, and the very positive assessments of it are gratifying.

The users did concentrate on the viewpoint that most interested them, and appreciated the

way that the viewpoints broke the 'problem space' down into smaller chunks.

The suggestion that a complementary tutorial should offer a bug and ask a student to

identify an appropriate viewpoint is intriguing. It is indeed a logical development from

VIPER's present exercises, and reflects the overall pedagogical goals of the system. Once

a student has learned what bugs may be associated with each individual viewpoint, we

would want them to apply this knowledge in a less clearly defined or 'protected' situation

of the kind suggested. This accords with our emphasis on the application of knowledge in

chapter 3, and may provide an opportunity to use the 'generalisation' strategy of Cognitive

Apprenticeship listed in section 3.3.2. The development would be simple to implement and

is discussed in the section covering further work.

Two other suggestions also inspire agreement. The first of these was that VIPER’s

viewpoints should be upwardly compatible with more elaborate ones which incorporate the

262

Chapter 8: Evaluating VIPER

full functionality of Prolog. This is quite possible. The idea was briefly discussed in

section 6.2.5, and is covered again in the section dealing with further work. The second

suggestion was that users be allowed to make a single change to the code which was within

the current viewpoint, to determine whether this produced the required result. Acceptable

changes would have to be limited to those which would rectify a specific bug. Given the

ready availability of the meta-interpreter this seems like a very sensible suggestion, and has

also been made by others^. The altered code could be run through the meta-interpreter with

the original goal to determine the result that it gave, and suitable feedback given to the

student. This could produce a system with some similarities to SOPHIE, where a student

was able to propose new measurements which were to be made under specific conditions in

an electronic circuit. The restrictions placed on the changes that could be made would

prevent the code from being changed to something that exceeded VIPER's analysis

capabilities.

The final question in this section asked whether their tutorial with VIPER had added to their

knowledge of Prolog. Little may have been expected here, given the users' considerable

experience of the language and the short time that they used the system. A quite respectable

degree of learning was, however, reported. For several users, this concerned either the

notion that execution could be described in terms of different viewpoints, or else the exact

nature and relationship of those viewpoints. A clarified perception of the relationship

between Search Space and Search Strategy was reported by some, while an improved

appreciation of how Prolog proves goals was reported by another. Even the users who

reported no learning expressed the opinion that the system would be very informative for

novices. On a general level, these responses are taken as implying that the research

direction pursued through the implementation of VIPER does have real value.

 ̂du Boulay, B., personal communication.

263

Chapter 8: Evaluating VIPER

8.4.5 Discussion of responses to Questionnaire Section 5.

These responses were consistent with those given in section 4. The viewpoints used were

judged to be useful conceptualisations of Prolog execution which were essential for the

tutoring of both execution and debugging to novices. The reservations expressed are not

deemed to be significant

Two other viewpoints were suggested which might well be useful for more specialised

users. The description of Resolution in terms of the unification of 'trees' seems to entail

more that a simple substitution of representations, as it situates the process described in a

wider and possibly more familiar context. This view may well be of use to computer

scientists approaching Prolog, as the user suggested.

Another suggestion was for a view which reflected the current state of all the unifiers. This

seems to have much in common with the 'Slices' of Weiser and (1986) and thus could

have a special relevance to more advanced debugging.

8.5 Conclusions to Chapter 8.

Section 8.1 introduced the work which was intended to evaluate the implementation

described in chapter 7. This implementation supports three kinds of dialogue which are

intended to demonstrate the various mechanisms which are available in VIPER, and which,

it is claimed, could be augmented to support adaptive tutoring by the use of well-known

methods. The evaluation is intended to demonstrate that the mechanisms as they stand can

support a tutoring interaction that is deemed to be useful or effective by the human users

who engage in it.

Section 8.2 detailed the method and materials to be employed in the evaluation. VIPER

was configured to provide a tutorial based on the three dialogues. The exact progress of

264

Chapter 8: Evaluating VIPER

this tutorial depended on choices made by the user. A variety of printed materials were

used to introduce users to the evaluation, and to support their progress through it. At the

end of the tutorial, the users were asked to complete a questionnaire which enquired into

their knowledge of Prolog, their experience of the interface, their views on the formalisms

used in the system and the overall system design, and their views on Prolog viewpoints in

general.

Section 8.3 reported the results of this questionnaire, which were generally very

favourable. Some improvements to the interface were suggested, and the formalisms used

by the system were judged to be well-suited to the needs of novices. This was especially

true of the description of execution which was judged to be rigorous and clear. In spite of

some reservations expressed about the role of the Search Space viewpoint, the responses

demonstrated that real learning had been achieved even with the system as it stood. This

frequently involved the association of specific bugs with specific viewpoints. The strength

of this mapping indicated that the formalisms developed in chapter 6 are well-suited to the

tutoring of bug localisation, at least in the limited domain that has been implemented. A

number of specific proposals were made for the augmentation of the system with diagnostic

mechanisms.

These results were discussed in detail in section 8.4, and conclusions drawn as to their

significance and relevance to future development of the system. It is concluded that the

research direction is a fruitful one, and that much could be gained by augmenting VIPER

with diagnostic mechanisms whose potential and design have been demonstrated with other

systems. Other possible developments, such as those which would allow the user to make

limited changes to the code are also discussed.

265

Chapter 9. A Discussion of VIPER.

Introduction.

This chapter considers the issues raised in VIPER's design and implementation. Some are

issues which motivated the project, and others are issues which emerged from its

execution.

These issues are discussed under the following headings:

• The viewpoint formalisation.

• The design goals of VIPER.

• VIPER's design as a realisation of these goals.

• Cognitive Apprenticeship.

• VIPER and other domains.

•Future Work.

9.1 The viewpoint formalisation.

This section relates the method of formalising viewpoints which is presented in chapters 3

and 5 and used for the implementation of chapter 7 to some of the issues raised in the

thesis. A number of major points about viewpoint structure are made, followed by some

less significant ones in relation to tutoring system design.

The discussion of viewpoints in chapter 2 identified two general roles for multiple

viewpoints in tutoring systems. The first role was the use of multiple viewpoints on a

domain to support a single activity in that domain, as where SOPHIE II (Brown et al.

1976) uses quantitative and qualitative views to support the debugging of electronic

circuits. This is the role most relevant to VIPER, where different viewpoints are used to

support the single activity of debugging in a simplified domain. We would thus claim to

have successfully implemented a system to utilise multiple viewpoints in this manner.

266

Chapter 9: A Discussion of VIPER

The second role identified in chapter 2 was the use of different viewpoints to support

different activities, as with STEAMER (Hollan et al. 1984). The essential point in this case

was that the way an individual perceived the system was dependent on the activities they

wished to carry out with it. As VIPER is only aimed at the single activity of debugging,

this role is not seen as relevant, and is not discussed any further.

The final structure for formalising viewpoints which is presented in chapter 5 describes

three classes of operators which are applied to a model to produce inferences. The

implementation described in chapter 7 uses only the first two of these, the simple "access"

operator, and the "inference operator" which links two separate parts of the model to make

an inference. The third class of operator is designed to transform the model by adding or

deleting information. This class of operator was omitted in order to keep the

implementation project within the relevant constraints of time and space. It is envisaged

that this operator could well have a role in future work, where it could be used to simulate

misconceptions in relation to the various viewpoints on Prolog execution, or else to

simulate a user's progress from elementary to more advanced viewpoints.

Two other points emerge from the discussion of chapter 3. The first is that, to enable

adaptive tutoring, the viewpoints, or the process that chooses them, should encode

information about the relevant goals and learning histories of the students. The very limited

student modeling capabilities built into VIPER mean that this facility has not been

implemented, but is discussed further in terms of future work.

It was also suggested in chapter 3 that the viewpoint formalisation should be modular, so

as to facilitate the diagnosis of student errors and misconceptions. The viewpoints

described in chapters 6 and 7 are in fact highly modular, but the advantages of this for

diagnosis have not been demonstrated, as no diagnostic capabilities have yet been added to

the system. The possibilities of doing so are discussed in the section on future work. The

evaluation discussed in chapter 8 does indicate a different benefit of the modularisation, as

267

Chapter 9: A Discussion of VIPER

it shows that the viewpoints do help the users to divide up the 'problem space' of

debugging in to smaller, more manageable, parts.

A number of less specific, or less significant points can also be made about the viewpoint

formalisation. The first of these relates to the discussion in chapter 3 of Cognitive

Apprenticeship, and the points raised by Brown, Collins and Duguid (1989). Brown et

al. s analysis sets the goal that the viewpoints used by a system should support the

successful execution and explanation of tasks in the relevant domain, in order for tutoring

to be embedded in ongoing practice. We would claim success in relation to this goal.

VIPER can demonstrate and critique descriptions of code execution, and can localise and

explain bugs in a simplified domain by using the viewpoints that are tutored.

Another general point arises from the discussion of chapter 3. This indicated that the

formalisation of a viewpoint should encode information about the viewpoint's area of

application. This information should make clear the connection between seeing a problem

in a different way, and solving it. This encoding has not been carried out explicitly in

VIPER, but is implicit in the mapping from the models onto the bugs. This point is

discussed further in the section on VIPER's design. An explicit statement of the area of

application of a viewpoint would allow a specific strategy to be stated for choosing a

viewpoint to solve a problem, as suggested by Stevens, Collins, and Goldin (1979), and

would enable the tutoring and explanation of the relationship between viewpoints.

In chapter 2 the discussion of the previous use of viewpoints in ITS concluded that such

viewpoints could be characterised in two ways. Firstly, they were seen as complementary

modes of analysis, both of which might be required for the solution of a given problem.

Secondly, they referred to the same set of objects, but identified and structured them in

different ways. VIPER's viewpoints are only complementary when they are used to

describe code execution. They have been explicitly formulated so that when they are used

for debugging in the simplified domain, it is not necessary to use the viewpoints in

268

Chapter 9: A Discussion of VIPER

combination to characterise the bugs. The second characterisation is more relevant. The

operators which provide explanations of the bugs in terms of the different viewpoints do

analyse the code in different terms, and do observe and respond to different features in the

execution histories. We can thus claim a consistent account of viewpoints, from the

identification of their significant features, to their formalisation and implementation.

9.2 Design goals of VIPER.

This section considers a number of goals for VIPER's design which are mainly articulated

in chapter 3. These goals specify how the use of multiple viewpoints should be related to

tutoring, explanation and demonstration in the chosen domain.

The goals stated in section 3.2 indicated that the implemented system should be able to tutor

using two or more viewpoints on a given domain.

In operational terms this meant that the system should be able to:

a) tutor viewpoints independently;

b) make clear the area of application for each one;

c) tutor the relationship between viewpoints and their use in combination.

The first of these goals, the ability to tutor the viewpoints independently, has been achieved

in relation to the debugging exercises by allowing the student to choose the viewpoint they

wish to work on and providing mechanisms which tutor in relation to it. (It is not claimed

that these mechanisms are intelligent). The pedagogical value of this is that the large

problems of debugging, and learning about debugging, are reduced to manageable

'chunks' which can be tackled individually. This facility is thus a central feature of

VIPER's design. As some of the responses to the evaluation suggest, the next

development step could well be to put all the viewpoints 'back together', having learned

269

Chapter 9: A Discussion of VIPER

them individually, so that the student has to find a bug without knowing which viewpoint it

is related to.

The second goal, that of making clear the area of application for each viewpoint, has been

achieved, although the only explicit statement of the relationship between viewpoints and

bugs was in the printed materials given to the evaluation participants. The conventions

which map the viewpoints onto the bug catalogue (see chapter 6), and the exercises which

identify the bug, implicitly make clear the kinds of bugs which can be localised with each

viewpoint, (as they were designed to do). An example of this can be seen in the evaluation

responses where those users who could not see the point of the Search Space viewpoint

suddenly understood that it related to missing or extra clauses. Thus the lack, in the

system, of an explicit statement of each viewpoint's area of application did not seem to

impede those students who took part in the evaluation. Were such a statement to be

provided, however, it might well be useful in the correction of misunderstandings in

relation to the use of a particular viewpoint. This would be particularly relevant if students

were asked to find a bug without knowing which viewpoint it was related to, and attempted

to apply the wrong viewpoint.

The third goal, that of tutoring the relationship between viewpoints, and their use in

combination, was not attempted in VIPER.

Section 3.2 also sets the goal that the system must be able to provide explanation in relation

to each viewpoint. This was achieved in the execution description exercise by providing

explanations structured around the different parts of each model, and by including a facility

which could demonstrate the application of the model parts to the current execution step.

Explanations in the bugfinding exercises were structured around the differences between

the bugged and ideal code, and the patterns of resolution success and failure in the

execution. The predicates that produce these explanations are examples of the "inference

operators" described in chapter 5. Once identified, the mapping conventions related the

270

Chapter 9: A Discussion of VIPER

different bugs to the different viewpoints. The inferences and observations stated in the

explanations could be replicated by the student using the 'Questions' menu.

The desire for 'glass box' representation of domain, and the demands of Cognitive

Apprenticeship for demonstrations of expertise in the domain, required that the system

should be able to execute the domain tasks itself using the relevant viewpoints. For the

exercise of describing code execution, this was achieved by repeatedly using the predicates

which applied the correct model part to the current execution step. For the bugfinding

exercises, the explanations are themselves demonstrations of expertise in the domain, as

each uses an explicit inference procedure to discriminate between the various possible

bugs.

9.3 VIPER's design.

The focus of this section is the system implementation described in chapter 7. The issues

raised relate to VIPER and debugging, black-box verses glass-box solutions, explanation,

the dialogue structures and the system architecture.

9.3.1 VIPER and Debugging.

The viewpoint formalisation given in chapter 3 was intended to:

a) allow the tutoring system to function successfully in the relevant domain;

b) give demonstration and explanation in relation to each aspect of the domain;

c) set tasks which relate directly to the real-world domain.

The first two of these goals have been realised, as described in section 9.1 above. The

third has been realised in a limited sense. The nature of this limited realisation is now

discussed in relation to the three procedural models of Prolog used in the system, and the

simplified debugging domain in which they are applied.

271

Chapter 9: A Discussion of VIPER

The three models of section 6.5 which form a part of VIPER's domain specify a subset of

Prolog's behaviour. Thus describing code execution using these models in VIPER is in

principle no different from describing code execution in the 'real world' where such code

might be written. The limitation on the achievement here is a result of the omission from

the models of several crucial aspects of Prolog, such as backtracking and the use of the

'cut'. This deficiency could be addressed by extending the models to specify the full

functionality of Prolog. Within this limitation the models seem to have been very

successful, giving novice students a clear and rigorous means of describing and predicting

execution.

The discussion becomes more complex in relation to the 'debugging' exercises supported

by VIPER. As described in chapter 6, these exercises are carried out in a much-simplified

domain. This strategy is seen as necessary both to support the activities of novices and to

define a manageable domain. For novices the domain can be seen as analogous to the

'shallow end' of the swimming pool, while the use of an 'ideal' version of the code allows

us to circumvent the intractable problems of building a real debugger; (see section 2.4).

The assumption behind VIPER's exercises is thus that they are usefully related to the real

world, and that any learning which takes place during an interaction with the system will

transfer to that real world. This is not to claim that VIPER's activities are fully 'authentic'

as Brown et al. (1989) would advocate, nor that they constitute an explicit 'theory of

debugging' which is to be tutored. Neither claim can be made due to the artificial

limitations and simplifications of the domain formulation.

The claim is that rather than having a theory of debugging explicitly represented, VIPER

embodies such a theory. In this sense the use of different viewpoints on Prolog is a theory

of debugging, even if VIPER does not support a real debugging environment. In other

words, the viewpoints are authentic, (if incomplete), even if the 'debugging' domain is not,

and it is to facilitate the learning of these viewpoints that VIPER has been designed. We

would argue that the viewpoints have the domain transparency that Brown (1989)

272

Chapter 9: A Discussion of VIPER

advocates, since that they are learned in order to localise bugs, and not just for their own

sakes. The most detailed assumption here is that their application in the simplified domain

will transfer usefully to the real domain. This can only be tested empirically, although the

indications from the first evaluation of chapter 8 are positive, with even experienced Prolog

students having 'Eureka' moments in relation to the significance of particular viewpoints.

The domain as it stands could be considerably enriched by upgrading it to include bugs

which reflect the full functionality of Prolog, while still analysing these in relation to an

'ideal' version of the code.

At this point it is worth digressing briefly to consider what a more 'authentic' exercise in

debugging might entail, assuming that the same meta-interpreter and execution-history

architecture is used for the system representations. Generally it entails an inability to

choose between different 'fixes' for a program, so that the system cannot test and critique a

student's understanding of the effects of the original bug. This can be demonstrated by a

hypothetical exercise where the student is allowed to make a single change to the bugged

code, the change being limited to one of the 'approved' bugs. All that would have to be

specified for this would be the desired result, so that there is no longer any need to have an

'ideal' version of the code. The changed code could be run through the meta-interpreter

and the result reported. There are, however, always many ways of fixing a bugged piece

of code, and the exercise just described gives no basis for choosing among them, or for

critiquing a student's understanding of the bug. Since the symptom under examination in

VIPER means that the query always succeeds ultimately, then there are many cases where

simply re-ordering the clauses will produce the correct result. Alternatively, a new clause

could always be inserted at the beginning of the database.

The exercise could be constrained by such means as prohibiting certain fixes, insisting that

a fix related to a particular model should be used, or stating that a particular clause should

be changed, but none of these solve the essential problem of inability to choose between

alternative possible fixes. The result would be a rather superficial exercise where the

273

Chapter 9: A Discussion of VIPER

desired result was obtained without the student being helped to appreciate how each

viewpoint could localise particular bugs. Also, if the student's change does not produce

the desired answer, then the system has no means of explaining why, or demonstrating the

'correct' change, unless it assumes that one of the many possible changes is in fact the

'correct' one. Having the system generate all possible solutions would create a very large

set of alternatives, and it is not clear how this would be tutorially useful. The point seems

to be that for 'real-life' debugging, there are many other constraints beyond that of getting

the 'right result' which determine the fix to be used, and which are artificially absent when

a 'debugging exercise' is set.

An alternative approach could be to develop a 'theory of debugging' based on the model-

parts of section 6.5, as these are an abstract description of code execution. This approach

again assumes that an 'ideal' version of the code is used, but does not require the 'only one

difference between bugged and ideal code' condition and could thus claim to be more

authentic. The idea of 'inference operators' given in chapter 5 could be used to define

sequences of model-parts fi*om a single model, each of which would constitute a particular

'operator', and would describe some part of a given execution history. These operators

make explicit information which is only implicit in the model, by the use of an inference

procedure. The example given previously was: (A > B, B -> C) -> (A -> C).

In the following examples, '->' should be read as 'implies', while 'trace evidence' should

be read as indicating that evidence for the described condition will be found in the relevant

execution history, thus allowing the operator to succeed. These examples are intended to

be similar in structure to the explanations available in VIPER via the "Questions" menu.

The provision of these explanations is described in chapter 7.

The following could be examples of such operators for the Search Strategy model:

1. 'Try next clause' with clause X -> success -> trace evidence.

2. Try next clause' with clause X -> fail -> trace evidence.

274

Chapter 9: A Discussion of VIPER

3. 'Try next clause' with clause X > success > subgoals succeed > trace evidence.

4. 'Try next clause' with clause X > success > subgoals fail > trace evidence.

5. 'Try next clause' with clause X > success > desired value present > trace

evidence.

(For brevity's sake the parts of these operators do not exactly match the form of the

Search Strategy menu choices for describing execution).

A sequence of such 'operators' would form an abstract description of a particular execution

history in terms of the specified model. (This would be different to the standard execution

history description of VIPER's fist dialogue, as model parts relating to other models would

be omitted). The task set for the student would be to identify the expected sequence of

such operators which would produce the desired result, as opposed to the actual one which

produces the bugged result. The system would know the desired operator sequence from

its inspection of the execution history of the ideal code.

Such a scheme would have the advantage of relating the viewpoint models directly to the

bugged behaviour, (although how a clear mapping is to be achieved is a question which

would require further research), and of providing a formalised means by which the system

could make inferences and provide explanation. It would also allow each bug to be

described in terms of each model. However, the same problem arises as with the other

alternative exercises. If the student's suggested sequence of operators does not exactly

match that shown by the ideal code, how is the system to know that it may not, in fact,

describe a perfectly legal path to the desired result? In addition, the need to leam about the

structure and interaction of the operators represents a large cognitive overhead which would

be of little immediate benefit to the student.

We conclude from this digression that while VIPER's domain and exercises may well be

'inauthentic' in some senses, it is not at all clear how a useful tutorial system could be built

275

Chapter 9: A Discussion of VIPER

which was more 'authentic' without being a full-blown debugger, assuming that such a

thing can be built.

The earlier decision to use a simplified bug domain rather than to attempt to build a

debugger seems to have been vindicated. The decision allowed us to concentrate on

building mechanisms which described and tutored each bug's effect on execution (see

chapter 6). The benefits of this seem to have been a clarity in the mapping from viewpoints

to bugs which aids both the novice and experienced Prolog user. Not only does this

mapping make the bugs which can be localised with each viewpoint very clear, but, as the

evaluation responses in relation to the bugfinding exercises show, it promotes a more

complete and accurate learning of the viewpoints themselves.

The simplified domain did seem well-suited to the needs of novices. Those who took part

in the evaluation were quickly able to set about the bugfinding exercises, once they had

understood the models and the 'ideal code with one difference' conditions.

9.3.2 Black boxes and Glass boxes.

The issue of black and glass boxes was discussed in section 2.1.4 with reference to WEST

(Burton and Brown 1979), and it was noted that in some cases they could profitably be

used in combination for tutoring where the tutored domain was not over large. As stated in

section 3.1, we do not wish to claim that representations based on viewpoints have a

'psychological reality', but rather that they are useful performance simulations of reasoning

in the domain. This discussion is relevant to VIPER as two different 'bugfinding'

mechanisms are used by the system. As described in chapter 7, the 'bug-recognisers'

exploit the structure of the domain to identify the specific version of the bug that is present

as efficiently as possible, and make no pretence of being useful for explanation of this

process. With the specific version of the bug identified, a text template describing its effect

and nature can be composed. The 'bug-explainers' do not carry out such a detailed

analysis, but identify the bug in sufficient detail to provide an explanation of it which is

276

Chapter 9: A Discussion of VIPER

structured around the 'inference operators' of chapter 5 and the viewpoint-to-bug mappings

of chapter 6. It is this structure that gives the explanations their generality.

The bug-explainers are thus intended to be a 'glass-box' representation of the domain, and

as such were certainly an improvement on the 'bug-recognisers'. Our intention was that,

as they were structured around explicit and uniformly-structured inference procedures, the

students would be able to explore and check this inference procedure themselves by using

the 'Questions' menu, once an explanation had been delivered. It is not clear that this

exploration occurred, and it has to be said that the reaction to the explanations was mixed.

Some students found them very helpful, while others apparently failed to grasp the

structure of the domain and only found the explanations confusing. We assume that with

more prolonged exposure to the system the structure of the explanations would become

more meaningful to those who found them initially confusing.

The presence of the two bug-identifying mechanisms in VIPER does constitute a degree of

redundancy, although they support quite different functions. This could be avoided by

developing the 'bug-explainers' to be as powerful at discriminating versions of bugs as the

'bug-recognisers'. Alternatively, the 'bug-recognisers' could be given a new role in an

author interface for VIPER. Since they efficiently identify all versions of all bugs that the

system can support, they could constitute a useful check on all new code which is input to

VIPER to be used for tutoring. As well as identifying the specific version of a bug that

was present, the bug-recognisers would also check that the input code conformed to the

limitations on input code that VIPER's meta-interpreter requires.

9.3.3 Successful and unsuccessful aspects of VIPER's dialogues.

The tutoring goal of the system was that students should leam to associate specific

viewpoints with the bugs that each one can localise. This section briefly summarises the

aspects of VIPER's dialogues which the evaluation shows to be a) successful in furthering

277

Chapter 9: A Discussion of VIPER

this goal, and b) unsuccessful in this context. The 'weak' nature of the evaluation is

recognised, and these findings are presented as at best 'indicative'.

The successful aspects of the dialogues were:

• The three procedural models were all relevant to describing execution, and were

rigorous, clear, and suited to the needs of novices.

• These procedural models mapped clearly onto the bugs and were thus meaningful,

providing a useful learning environment for novices.

• The 'Questions' menu gave the desired information in an easily understood form.

• The 'Questions' menu allowed students to investigate a bug by their own methods.

• The explanation provided by the system was generally effective in all dialogues.

• The interface was, with some reservations, adequate to the demands placed upon it.

• The dialogue structures were able to promote some learning without augmentation

for diagnosis of the students.

• Learning the viewpoints was useful even for experienced users.

The unsuccessful aspects of the dialogues were:

• Some aspects of the interface, often due to the limited screen size or technical

difficulties.

• Changes from applying one viewpoint to applying another were not highlighted.

• Answers given to describe the effects of a bug could not be revised.

• The lack of the full functionality of Prolog caused problems for some of the more

experienced users who had to 'suspend' their knowledge of some aspects of the

language.

9.3.4 System architecture.

This topic is discussed more extensively in section 9.5. Essentially, VIPER's architecture

is that of a meta-interpreter, (or 'simulation') which provides a rich execution history of a

278

Chapter 9: A Discussion of VIPER

process. A range of inference procedures are then built to exploit the information in this

history in relation to the different viewpoints that are to be tutored. This architecture

satisfies the design goals of section 9.2 as is discussed in that section. The strategy of

building a number of inference procedures on top of a rich underlying representation is

similar to that used in STEAMER (Hollan et al. 1984) which is based on a rich numerical

model of a steam propulsion plant, but which supports many different views of the

domain. As is demonstrated below, the execution history produced by VIPER's meta

interpreter can be used to support quite different viewpoints on Prolog execution, providing

that the relevant domain formulations and dialogue mechanisms are developed.

9.4 Cognitive Apprenticeship.

Chapters 2 and 3 discussed the relevance of Cognitive Apprenticeship as an educational

philosophy which could be used to support the design of tutoring systems. This section

briefly explores this issue in relation to VIPER.

A central tenet of Cognitive Apprenticeship is that the use and practice of knowledge to be

learned should always have a central place in the tutoring system design process; see

(section 2.6.2). We have tried to live up to this dictum by ensuring that each part of

VIPER and its domain serve the goals of firstly describing execution clearly and

unambiguously, and secondly localising bugs in a simplified domain. The results from the

evaluation of chapter 8 seem to validate this approach.

The tutoring strategies of Cognitive Apprenticeship were related to the viewpoint

formalisation in chapter 3 in terms of Modeling, Scaffolding, giving different problem

decompositions, and general practice. VIPER's dialogues can be described as examples of

these strategies. For Modeling, VIPER provides a demonstration of execution description

in the first dialogue. In the bugfinding dialogues, the explanations of bugs that are offered

are intended to be a demonstration of the inference procedures that can be used to identify a

bug. For Scaffolding VIPER offers the three procedural models of execution and the

279

Chapter 9: A Discussion of VIPER

operators that act upon them. The possibility of different problem decompositions is made

very clear by the different explanations which could be generated for the same symptom,

ie. different models would imply different bugs, and even with the same model, a number

of different bugs could cause the bugged behaviour. It is only the condition of having a

single difference from the ideal code that allows any choice between the alternatives. As

the dialogues stand, the students choose which viewpoint the bug is to be related to, but, as

described above, a more general tutorial involving all three viewpoints could easily be

constructed for more general practice.

In section 2.6 three kinds of 'transparency' advocated by Brown (1989) were discussed.

These were Domain, Internal, and Embedding transparency. The first two of these seem

relevant to VIPER. Domain Transparency is concerned with selecting a viewpoint which

matches the student's goals. There can be only a limited demonstration of this in VIPER,

as all the viewpoints are directed to the goal of debugging. However, the evaluation was

able to demonstrate that students could select a viewpoint which matched their interest, as

when the student who wished to leam about resolution, and the student who wished to

leam about search chose the relevant viewpoint to work on. The system could be made

much more adaptive if a wider range of viewpoints was implemented in it.

Brown's (1989) Intemal Transparency describes the degree to which the models and

inference mechanisms of the system match those of experts in the world, and thus the

degree to which implicit leaming is promoted. The intention is that students should enter

the culture of the domain and not that of 'schoolwork'. No strong claims can be made

here. Certainly, the three models of execution were designed to be used in the 'real world',

and may well (when complete) be used by some practitioners for debugging, but the social

dimension of VIPER's knowledge is non-existent. Some implicit leaming may occur, as

when students describing execution in the first dialogue leam when to change from one

model to another. The explanations of the bugs in the bugfinding dialogues may also

280

Chapter 9: A Discussion of VIPER

promote some implicit learning of the inference procedures by which bugs may be

localised.

These remarks indicate to us that Cognitive Apprenticeship is a suitable educational

philosophy to support the design and implementation of tutoring systems that utilise

multiple viewpoints, even though many of its demands are difficult to satisfy, and only a

few have been satisfied in VIPER.

9.5 VIPER and other domains.

9.5.1 Introduction.

VIPER as described in chapter 7 does not constitute an ITS. Rather it is seen as an

'enabling technology' which could support the rapid implementation of an ITS. The

purpose of this section is to show how VIPER is relevant to future work in tutoring

systems. This is done by taking the solutions to the problem formulated in chapter 2, (ie.

how are viewpoints to be conceptualised and how implemented?), and showing how these

solutions can be generalised to another view of Prolog, and to another domain altogether.

Finally, some remarks are made about a domain where VIPER's solutions could not be

applied. The issue of diagnosis is not discussed here, but is dealt with in the section on

future work.

Design decisions were taken at three levels during the implementation of VIPER:

• The formulation of procedural models of a subset of Prolog behaviour to enable

novices to describe execution to the system.

• The formulation of a simplified domain of debugging, and the specification of

'inference operators' which mapped the procedural models onto a catalogue of bugs.

• The construction of an underlying representation for VIPER, of a meta-interpreter

which produces an execution history rich enough to support:

1) the models for execution description;

281

Chapter 9: A Discussion of VIPER

2) the models and operators for bug localisation;

3) other viewpoints on Prolog.

It is the third level of design, that dealing with the underlying representation, that is the

focus of this section. The solutions exemplified here can be generalised in two ways.

Firstly, the actual meta-interpreter and execution history implemented in VIPER can be

used to support the tutoring of a new viewpoint on Prolog execution. The second form of

generalisation is to apply the 'simulation and process-history' strategy used in VIPER to a

completely new domain. Both forms of generalisation are now demonstrated. In each case

the discussion deals first with the viewpoint formulations that the domain requires, and

then with the underlying simulation that produces the process history to support them.

9.5.2 Another viewpoint on Prolog.

The view chosen for this exercise is that of the 'Slices' detailed by Weiser and Lyle (1986).

In general terms, a slice is a partial account of an execution in terms of its data flow, which

could, for instance, detail all the places where a specific variable is affected or changed. It

is a more advanced view of execution than those discussed previously, and is of

considerable use in debugging.

A new set of model and operators would be required to formalise the 'Slicing' viewpoint,

but once this had been developed, VIPER's meta-interpreter and execution history would

immediately support it without further change.

The viewpoints which utilise the process history.

The skill to be tutored in this case would be the application of an appropriate model of

Prolog execution to determine at which points in the execution a specific variable is bound,

unbound, or fails to be bound. The viewpoint that this application of a model formalises

could be constructed in terms of the structures given in chapters two and three, ie. in terms

282

Chapter 9: A Discussion of VIPER

of a model with three classes of operators which draw inferences from it, and with some

heuristics which state the viewpoint's area of applicability.

It seems likely that the 'Slicing' model would need to describe a less detailed reading of

execution than the procedural models of section 6.5. These models could be used to

describe 'slices' quite easily, as this would not require the special conditions given in

chapter 6 to map them onto a bug catalogue in a limited domain. The important point is that

the models, in combination, produce an exhaustive description of execution, and would

need to be adjusted to summarise or exclude irrelevant parts of the execution. We now give

an approximation of a slicing model which, in accordance with VIPER's original models,

does not cater for backtracking:

1. The Target' variable is defined as the variable whose execution history we wish to examine, or

any variable to which it is bound.

2. If the resolution of a goal literal and clausehead/fact is about to be attempted, check for the

presence of the target variable in either the goal or the clausehead/fact.

3. If the target variable is present in the resolving goal and clausehead/fact,

a) report the identity of the parent goal and resolving clausehead/fact

b) report the details of the current head resolution;

c) report the presence and success or failure of any subgoals.

4. If the target variable is not present in the resolving goal or clausehead/fact ignore this head

resolution.

This model should produce an edited version of the code's execution history, which would

only relate to resolutions of a goal literal and clausehead or fact which contained the 'target'

variable, and those subgoals which confirmed or denied any bindings made in such head

resolutions. The form of the operators used on such a model, and the inferences made with

them, would depend on precisely how the model was to be used. If the resultant system is

supposed to tutor the use of this model for debugging, then the debugging domain and the

relationship of this model to it would have to be carefully designed and made explicit.

283

Chapter 9: A Discussion of VIPER

The production of the process history.

No changes would be required to VIPER’s meta-interpreter, or to the execution histories

that it produces, in order to support the slicing model. These already encode the unique

variable identifiers used in an execution, so that an abstraction of the whole history, relating

only to the resolutions, or parts of resolutions, where the specified variable was affected,

would be relatively easy to produce. This is in fact the kind of activity, ('Retrospective

Zooming') for which Eisenstadt (1985) developed the meta-interpretation technique used in

VIPER.

9.5.3 A different domain.

The alternative domain chosen is that of WHY (Stevens, Collins and Goldin 1979), which

was described in chapter 2. These authors built a tutoring system with a single, 'scriptal'

view of its domain, the causes of heavy coastal rainfall. They described how a second

'functional' view of the domain would be required if the system was to cope with a number

of the misconceptions that they detected in their students. One of these, the 'sponge'

misconception, described rainfall as being a result of moist air being squeezed against

mountains. Stevens et al. did not implement a system with this second viewpoint.

We now demonstrate how such a second view of the rainfall domain could be

implemented, (along with the initial 'scriptal' view), using the design strategies developed

in VIPER. This would require that both scriptal and functional models of coastal rainfall be

developed, along with the operators that draw inferences on them, and, at some point, a

statement of their area of application. Once this had been done, it would be possible to

specify the information that had to be available in the process histories to which the

viewpoints would be applied. A suitable simulation could then be built which represents

the crucial factors and their interactions, and which could generate a process history in the

terms required. We then show how such a system could support the distinction of the

284

Chapter 9: A Discussion of VIPER

correct and bugged accounts of rainfall, ie. the condensation as opposed to the 'sponge*

account.

The viewpoints which utilise the process history.

The model for the first kind of viewpoint, that describing the "scriptal" account of rainfall,

has been defined for us by Stevens et al. (1979). "Scripts" are "...generic knowledge

structures..." which represent knowledge about classes of phenomena, and "...a partially

ordered sequence of events linked by temporal or causal connectors". The knowledge has

a hierarchical structure where the detail of one script is expanded by a subscript. The

scripts describe the relationships of sets of "roles" such as "AIR-MASS" or "BODY-OF-

WATER " which are bound to specific entities in the real world to describe a specific real-

world process such as the evaporation of water over the Gulf Stream and it deposition as

heavy rainfall on Ireland.

Examples of these scripts show a series of processes such as evaporation or movement due

to wind pressure, linked by 'precedes' or 'causes’ relations as in the following:

Heavy Rainfall.

1. A warm air mass over a warm body of water absorbs a lot of moisture from the body of water.

Precedes:

2. Winds carry the warm moist air mass from over the body of water to over the land mass.

Precedes:

3. The moist air mass from over the body of water cools over the land area.

Causes:

4. The moisture in the air mass from over the body of water precipitates over the land area.

(Stevens et al. 1979 p. 14 of 1982 reprint).

These examples could be readily expressed in either procedural, ('if there is a warm air

mass over a warm body of water then the humidity increases over time.) or declarative (A

warm air mass over warm water gives an increase in humidity over time') form. The

285

Chapter 9: A Discussion of VIPER

knowledge represented in each script could be represented by a series of such statements

which together constitute a model, and inferences made on this model as described in

chapter 5. The hierarchical nature of the scripts could be represented by implementing each

level as a different model, which, when combined with its own operator and heuristic set

would constitute a viewpoint. The description of the evaporation process which Stevens

et. al. give as a sub-script of the "Heavy Rainfall" representation, would thus be

represented as a separate viewpoint, as Resolution is distinguished from Search Strategy in

VIPER. A student's knowledge of such models could then be tested against the execution

history stored for a given run of the simulation.

Other forms of viewpoint are necessary however, as Stevens et al.'s (1979) paper argues

forcefully. Our purpose here is to demonstrate that these too could be represented by the

viewpoint formalism of chapters 3 and 5. The main extra viewpoint discussed by Stevens

et al. is the "functional" viewpoint, which is required in order to combat a range of

misconceptions such as the sponge' model of precipitation and the cooling by contact

with mountains' bug. The functional viewpoint describes a number of factors which are

not intended to be causally linked or temporally ordered, but which vary in relation to each

other and which produce a specific result. Condensation is described in these terms. The

description (see below) is in terms of "ACTORS " which have a "ROLE " in the process and

are affected by a set of "FACTORS". The "RESULT " is due to the "FUNCTIONAL

RELATIONSHIP " that holds between the "FACTORS" and the "ACTORS". These

relationships are expressed in a form which resembles predicate calculus. There is, for

example, a positive "FUNCTIONAL RELATIONSHIP" between the "FACTOR" of the

temperature of the water source, and the "RESULT" of increased humidity in the air mass.

As it is stated by Stevens et al. (1979) this functional model does not describe the degree or

rate of change in the factors and the result, although it may specify necessary conditions

such as WARM" for the water source. Stevens et al. (1979) give the following example

of a functional model for evaporation:

286

Chapter 9: A Discussion of VIPER

Actors.

Source: Large-body-of-water.

Destination: Air-mass.

Factors.

Temperature(Source).

Temperature(Destination).

Proximity(Source, Destination).

Functional-relationship.

Fositive(Temperature(Source)).

Positive(Temperature(Destination)).

Positive(Proximity(Source, Destination)).

Result.

Increase(Humidity (Destination)).

(Stevens et al. 1979 p. 16 of 1982 reprint).

The collection of statements which represent the functional knowledge could be seen as a

model which acts as the core of a viewpoint as described in chapter 3. This viewpoint is

completed by providing the three classes of operators to act on the model which are

described in chapter 5, and a set of heuristics which govern its application.

The production of the process history.

The ordered and causally-connected process described by the scriptal model could be

simulated in much the same way as the power station of chapter 4 was simulated, if the

crucial variables such as temperature and humidity are defined for each of the "roles"

mentioned in the scripts. In terms of Stevens et al.'s (1979) example, such a simulation

would show that the longer a warm air mass was above a warm body of water, then the

higher would be its humidity, and the longer it was subject to a wind from a specific

direction, the closer it would be to a given land mass. If the simulation also caused the

values associated with each "role" to be plotted against time, then this would provide the

287

Chapter 9: A Discussion of VIPER

sort of 'execution history' used in VIPER which could support a variety of viewpoints if it

were rich enough in information. Such an execution history could thus take the form of a

series of values for the relevant factors calculated and recorded by the simulation against

elapsed time, ie. each value would be calculated and recorded at the end of each elapsed

time interval. This could give an execution history of which the examples in table 10 could

be segments. An alternative way of structuring the process history would be to record the

simulation data in segments which were related ioevents in the simulated system, rather

than to the passing of (simulated) time.

Table 10. Examples of possible execution history segments for a

proposed 'Heavy Rainfall' tutor.

Elapsed Time: 1

Role. Instance. Factor. Value.

Body of Water Gulf Stream Temperature 10

Wind South-westerlies Strength 20 knot

Land Mass Ireland Precipitation 0

Air Mass Temperature 12

Air Mass Moisture content 30

Air Mass Distance to Land 200 km.

Air Mass Volume 100%

Air Mass Altitude 0 m.

288

Chapter 9: A Discussion of VIPER

Table 10 Continued.

Elapsed Time: 50

Role. Instance. Factor. Value.

Body of Water Gulf Stream Temperature 10

Wind South-westerlies Strength 25 knots

Land Mass Ireland Precipitation 10

Air Mass Temperature 2

Air Mass Moisture content 15

Air Mass Distance to Land 0 km.

Air Mass Volume 200%

Air Mass Altitude 400 m.

These execution history segments are intended to represent two widely separated stages of

a specific run of a heavy-rainfall simulation. At 'Elapsed time: 1' the air mass is over a

warm water mass at sea level, and being driven towards a land mass by a twenty-knot

wind. The precipitation over the land attributable to the current air mass is zero. The data

recorded after the next time interval, (not shown here), should show an increase in its

moisture-content, with relatively constant temperature, altitude, and volume. The distance

to the land mass should have decreased.

The data shown for 'elapsed time: 50' indicates that the air mass is now over the land, and

that its altitude and volume have increased,while its temperature and moisture content have

fallen, and precipitation has occurred.

We assume that the starting values and data of the simulation could be set to represent

conditions where rainfall would occur in varying degrees, or not at all.

289

Chapter 9: A Discussion of VIPER

The scriptal viewpoint could interpret this execution history through the application of

operators such as those described in chapters 3 and 5. An example of an 'inference

operator' would be one which interrogated the execution history to see if the following was

tme:

1. The arrival of a moisture-laden air mass at the land causes it to cool.

2. Cooling of a moisture-laden air mass causes precipitation.

Therefore the arrival of a moisture-laden air mass at the land causes precipitation.

What we also require is that the execution history produced by the simulation of

evaporation and rainfall should be interpretable in terms of the functional model described

above. This would be possible if the "ACTORS " and "FACTORS " could be mapped onto

elements in that history. This mapping need not be direct, but could be the result of

whatever inferencing or transformation is required. In fact, the " ACTORS " such as

"'Large-body-of-water'" and "'Air-mass'" do map easily onto the "'roles'" of the scriptal

knowledge, as do the " FACTORS " such as their temperature and proximity. A functional

interpretation of the execution history then, would require that the values of the various

" FACTORS " expressed in it should vary in a relationship which does not contradict the

various "FUNCTIONAL RELATIONSHIPS'' described by the functional model. If, for

instance, the execution history of the simulation showed a rise in the temperature of the

water source, then the functional model would predict a rise in the humidity of the air mass,

but would not attempt to describe any causal connection between the two events. An

"inference operator" which could made this inference would test the execution history to see

if the following was true:

1. Source temperature X at time 1 and source temperature X+ at time 2 indicates a rising source

temperature.

2. A rising source temperature from time 1 to time 2 indicates an increase in destination’s moisture

content from time 1 to time 2.

Therefore source temperature X at time 1 and source temperature X+ at time 2 indicates an increase

in destination's moisture content from time 1 to time 2.

290

Chapter 9: A Discussion of VIPER

As Stevens et al. describe, the usefulness of the functional viewpoint is shown by its use in

combating misconceptions. A functional model of precipitation of the type described in the

scripts would describe a relationship between the altitude of an air mass, its volume, its

temperature, and its ability to support water vapour. As the air mass rises, it is forced to

expand and thus its temperature drops causing the precipitation. If this functional model

were applied to interpret a simulation's execution history for some precipitation of this

kind, then, unless the functional model is to be violated, a fall in temperature must be

accompanied by a rise in altitude and an increase in volume. An attempt to explain the

precipitation in terms of a 'cooling by contact with the mountains' misconception would not

give the expanded volume or the increased altitude. The 'sponge' misconception, which

sees the air mass squeezed against the mountains and forced to drop its moisture would

give a reduced volume and a stable altitude. A wide range of tutorial exercises could be

based on these relationships.

Two of the factors discussed in the functional model, altitude and volume, have no place in

the scriptal model. It is thus clear that they would have to be specially included in the

simulation of the rainfall process if the functional viewpoint on precipitation is to be

supported. The cost of this seems very small in terms of the possible benefits that could be

gained. The point to be made is that an ITS can be built with multiple viewpoints available

to it if these are defined beforehand, and a sufficiently rich underlying representation built

to support them.

The foregoing paragraphs have shown how the architecture and viewpoint formalisation

used in VIPER could be applied to implement a system in another domain. The other

domain chosen was the 'heavy coastal rainfall' domain of WHY (Stevens et al. 1979), one

of the systems which first drew attention to the need for multiple viewpoints to be used in

tutoring systems.

291

Chapter 9: A Discussion of VIPER

9.5.4 A domain that cannot be implem ented using VIPER's

strategies.

Since the design and implementation strategy used in VIPER relies on interpreting the

execution history of some process, then any purely declarative domain such as the

geography domain of SCHOLAR. (Carbonell 1970) cannot be implemented in this way.

There is no process to be described and thus there is no execution history to be interpreted

in terms of a model and operators. However, if we bear in mind the dictum from Cognitive

Apprenticeship that the use of knowledge should always have a central place in the design

of tutoring systems, then some possibilities for VIPER-like implementations do become

apparent. The application of declarative knowledge to achieve some purpose must involve

the execution of some procedure. The simulation of this procedure could give rise to an

execution history which could be interpreted in the manner described above.

9.6 Future Work.

9.6.1 Introduction.

This section summarises the possible extensions and improvements that could be made to

the domain formulations, the models of execution, and to VIPER itself, and where

necessary indicates how these might be achieved. The section considers in turn the domain

and models, the VIPER architecture, and each of the three dialogues described in chapter 7.

For the architecture and for each dialogue, a sub-section considers how the system could be

extended to allow the diagnosis of student errors, misconceptions, and needs. This is to be

achieved using methods which have already been reported in the literature by other

researchers. It is assumed that the ability to perform such diagnosis would make VIPER

more adaptable to the individual student.

292

Chapter 9: A Discussion of VIPER

9.6.2 Domain Models and Domain.

The domain formulation given in chapter 6 could be expanded significantly at two distinct

levels. The first of these would use the current system and execution models to implement a

debugging domain for the other symptoms described by Bma et al. (1987) that were

introduced in section 2.4. The two other variable-related symptoms were the unexpected

failure to instantiate a variable, and the unexpected instantiation of a variable. The bug

tree' for 'the unexpected instantiation of a variable' is given in figure 5, and a similar 'tree'

could be developed for the 'failure to instantiate a variable' symptom. For VIPER to be

able to tutor in relation to these symptoms, code would have to be added that could analyse

execution traces with a different combination of expected and actual results than those dealt

with by the present system, which expects both queries to ultimately succeed and give a

variable binding. The provision for the addition of this code is described in section 7.3.2.

Other additions would also be necessary. The precise effect of each bug in relation to each

symptom would have to be determined in abstract terms and stored in template form in the

manner described for the 'instantiation to an unexpected value' symptom in section 6.4.

This would allow critiquing of the answers given in relation to each symptom in the third

dialogue described in chapter 7, where the student is asked to describe the effect and nature

of each bug.

It is possible that VIPER could be extended to deal with the termination symptoms

described by Brna et al. (1987), but this would certainly require a more radical re

formulation of the domain.

The second level of expansion for the domain formulation would enable VIPER to tutor in

relation to a wider range of viewpoints than those detailed in chapter 6. An indication of

how this could be done is given in relation to the 'slicing' viewpoint in section 9.5.2.

293

Chapter 9: A Discussion of VIPER

Other possible candidates^ for implementation as viewpoints are:

1. Dices, (Weiser and Lyle 1986); (smaller versions of 'slices').

2. Prolog as an operator-dependent rewrite language.

3. The 'pointer' model from C implementations of Prolog, where the pointers are

changed to unify variables.

4. Prolog as a loop-based procedural language, using such constructs as

'do until'.

5. Prolog as a declarative language with search.

6. Prolog as a resolution theorem prover.

7. Prolog as having 'plastic' syntax, where a program can be data and vice versa.

8. Prolog as a rule-based system akin to productions.

9. Prolog as an object-oriented system where the clauses are objects sending

messages (Kahn 1989).

In order to provide tutoring based on one of the radical reformulations given above, it

would be necessary to extend VIPER, as the new viewpoint might well require information

that is not at present provided by the execution history generated by VIPER's meta

interpreter. The meta-interpreter and tracing mechanisms would thus have to be augmented

to provide suitable execution histories, and appropriate dialogue mechanisms would have to

be provided to exploit them. The point to be made here is that radical reformulations can be

tutored if they are programmed into the various system components.

The use of such alternative viewpoints could help to remedy one of the theoretical

weaknesses of Cognitive Apprenticeship, that it does not allow for the occasional radical

^courtesy of Mike Brayshaw 1989, personal communication.

294

Chapter 9: A Discussion of VIPER

reformulations of the domain that actual practice sometimes demands. Others may wish to

argue that Cognitive Apprenticeship does promote such reformulations in its

encouragement of the search for different problem decompositions and reflection. This

could only be effective if the alternative viewpoints had been previously learned.

A less radical development of VIPER's viewpoints would involve expanding the models of

section 6.5 to describe the full functionality of Prolog. The added functionality would

include Backtracking, embedded variables, and the use of 'cut', 'fail', 'not', and the full

range of operators. Some of the changes that would be required to cater for such

developments are summarised in section 6.2.6. Where backtracking was to be described,

additional information would have to be included concerning the order in which subgoals

are 're-done', and the order in which variable bindings are un-bound. In order to produce

an appropriate execution history, the meta-interpreter of chapter 7 would have to be

extended to reflect the full range of Prolog behaviours.

Two minor developments of the models and domain as they stand could lead to the

resolution of some of the difficulties revealed by the evaluation described in chapter 8. One

such development would be to simply remove those parts of the models which state that 'all

arguments have been unified' and 'all subgoals have been proved'. They were originally

included in the models to help improve their clarity by indicating when specific stages of

the resolution were complete. However, several students seemed to find them tiresome and

unhelpful. Were they to be removed from the models, then the code which steps through

the execution history to describe an execution and to check students' descriptions would

have to be adjusted to ignore the symbols relating to these model parts. The predicates

which identify particular bugs and the meta-interpreter which produces the execution

history would not need to be altered.

A slightly more serious difficulty is that related to the 'wrong clause order' bug. This

problem is exemplified in detail in relation to question 3.4 of section 8.3.3, and is

295

Chapter 9: A Discussion of VIPER

essentially about which clause to label 'bugged' when two clauses need to have their

positions swapped. At present VIPER assumes that the first clause that shows a difference

to the ideal code must be the bugged one. At the point where a student has to make such

decisions, (the second dialogue described in chapter 7), VIPER already 'knows' what the

bug is. It would thus be a simple matter to include a predicate which only related to this

bug, and which allowed either answer to the question 'which is the bugged clause' to be

correct.

9.6.3 System Architecture.

Two possible developments at the system architecture level have been described elsewhere.

The possibility (and the inherent difficulties) of allowing the student to make limited

changes to the bugged code in order to determine the new outcome were discussed in

section 9.3.1. Section 9.3.2 considered the development of the explanation predicates used

in the 'bugfinding' exercises to replace the 'bug-recognisers' described in chapter 7 in

order to give a more consistently 'glass-box' representation of the domain.

D iagnosis.

Diagnosis pertinent to each of the three dialogues of chapter 7 is described below. A more

general level of diagnosis could be made before any of these dialogues had been initiated.

For the evaluation described in chapter 8, VIPER was configured to ask students which

viewpoint they wished to work on, and then choose a debugging problem related to that

viewpoint. A more technically sophisticated solution would involve the system gaining

information about the student's goals. If sufficient information about the use of viewpoints

was available to the system, then a viewpoint suited to the student's goals could be chosen.

Information about goals could be obtained most simply by asking the student about them at

the start of their tutorial. Goals expressed during the evaluation involved learning more

about such factors as Resolution or Search Strategy.

296

Chapter 9: A Discussion of VIPER

Other possible goals could involve learning about bugs connected with clause order, or

learning to localise bugs when the bug may be related to any of the three viewpoints. If

VIPER was able to determine that clause order bugs were to be localised in relation to the

Search Strategy viewpoint, then this viewpoint could be revised, and a range of suitable

problems chosen for the student's tutorial. All that would have to be added to the current

system is the information detailing what each bug is good for, (plus the means of retrieving

this) and a means of selecting and scheduling the problems. The information detailing the

application of each viewpoint, (ie. what goals each one could serve), is described in chapter

3 as a necessary part of an implemented viewpoint, although this information is only

implicitly present in VIPER; (see sections 9.1 and 9.2).

To serve the goal of learning to localise bugs that could be related to any of the three

viewpoints, even less has to be added to the system. VIPER simply has to choose a

problem and initiate the bugfinding dialogues without indicating which viewpoint the

problem relates to.

Were a wider range of viewpoints to be implemented, as section 9.6.2 suggests is possible,

then a much wider range of goals could be served.

As well as adapting the tutoring to a student's goals, it could be adapted to their experience,

assuming that information about this could be obtained. The evaluation showed examples

of users who had written theorem-proving programs in other languages, and who

deliberately chose to work on the Resolution viewpoint as this was most familiar to them.

Where the system is dealing with a complete novice, then such information could be very

useful in determining which model of execution should be tutored first to introduce Prolog.

297

Chapter 9: A Discussion of VIPER

9.6.4 Dialogue 1: Execution Description.

A number of possible developments have been suggested for this dialogue at different

points in the thesis. They are summarised here, along with some possibilities that have not

been mentioned previously.

The possible extensions to dialogue 1 are as follows:

• The facility which automatically provides an explanation of the correct execution

step in response to mistaken student input can be switched on or off. Control of this

switching could be given to the student via a menu option.

• At present when a new resolution is to be attempted, the student merely indicates

this fact via menu choices. The execution history actually stores the number of the

clause with which the goal is to be resolved, and the student could be asked to

supply this as a part of the execution description.

• It was evident from the evaluation that some students forgot which clause was

being resolved with the current goal, even though the number of this clause was

displayed in the dialogue window. As this number is available to the dialogue

predicates, the relevant clause in the code listing could be highlighted as an aid to

memory while the students concentrate on the details of the execution. Predicates for

performing this operation are provided by the LPA MacProlog environment.

• In order to popup the relevant execution history menu to make a selection from it,

students have to click on a button to indicate which model they wish to apply for

each step of the execution. Some novices found the choice of models for application

confusing, and asked for assistance to be provided with this. Such assistance could

be provided through the predicates which grey-out or 'disable' buttons if both of the

non-applicable buttons were greyed out.

• The mechanism described in the previous point could also be used to indicate

which model was currently being applied if the non-applicable buttons remained

'disabled' while the dialogue relating to a particular step was being conducted.

298

Chapter 9 : A Discussion of VIPER

• When execution description involves a change from applying one model to

applying another, some explanation of this change could be given indicating why the

change was necessary. Such explanation would help students to understand when

the different models should be used for execution description. The explanation

could be provided through text templates similar to those which currently explain the

individual execution steps. The choice of template for presentation to the student

could be keyed to the pattern of execution symbols in the execution history which

corresponded to the change of viewpoint.

D iagnosis

The version of Dialogue 1 described in chapter 7 involves the use of all three models of

section 6.5 to describe the total execution. Since the responses to student input are

dependent on an analysis of the symbols contained in each segment of the execution

history, it would not be difficult to limit the dialogue to describing the execution in terms of

a single model eg. Resolution. Steps in the execution history with symbols relating to

other models than the selected one could simply be ignored.

Such a strategy could be adopted in response to:

• a student's requests or goals;

• a student's errors;

• a student's learning history.

Adapting the tutoring in this way in response to the student's goals would require some

form of modeling such as that described in section 9.6.3. Adapting it in response to the

student's errors would require at least the minimalist numerical modeling described in

section 7.4.2, which keeps a numerical record for each model part of potentially correct,

correct, and wrong answers. If a particular model or model part showed a particularly high

score for wrong or missed-potentially-correct answers, then it would seem to be a sound

299

Chapter 9: A Discussion of VIPER

tutorial tactic to focus attention on that model by excluding the other two from the execution

description.

VIPER at present keeps no record of a student's learning history. However, where a

novice was being introduced to the domain and the three models of execution, such a model

could be useful, and could be implemented in terms of the 'overlay' modeling first used in

SCHOLAR (Carbonell 1970). Such a model would record those aspects of the models

with which the student was known to be familiar, and the description of execution could

then be limited to those aspects. Such a model, possibly coupled with the minimal

numerical model described above, could also be used to determine when a student had a

sufficient knowledge of the models used for execution description to progress to the

dialogues dealing with the localisation of bugs.

A more sophisticated form of diagnosis could relate to the nature rather than the quantity of

erroneous execution steps chosen by a student. A comparison of the correct step with the

one actually chosen may well yield information about misconceptions in the student's

knowledge of the domain. The efficacy of this technique has been demonstrated with such

systems as BUGGY (Brown and Burton 1978) and DEBUGGY (Burton 1982), although

it does not attempt to deal with the issue of why a student has a particular misconception.

We are not proposing an exercise of the complexity of DEBUGGY, which attempted to

diagnose multiple interacting bugs, and also the inconsistent application of a bugged

procedure. What is proposed here is an enumeration of the well-known bugs in describing

Prolog execution, and an attempt to match these to the student's input.

BUGGY attempts to achieve such a match by assembling fine-grained sub-skills until a

model which matches the student's performance is achieved. An extended VIPER could

attempt the same matching by an analysis of the sequences of execution symbols that a

student's input represented. A range of common bugs are defined for us by Fung et al.

(1987) and Taylor (1988), although the exploitation of these would require a meta

300

Chapter 9: A Discussion of VIPER

interpreter and tutorial capability which reflected the full functionality of Prolog. An

example of a misconception which could be detected in this way is the 'facts first'

misconception detailed by Fung et al. Students with this misconception assume that Prolog

immediately attempts to resolve a goal literal with a fact that could prove it, rather than with

any other clauses of compatible functor and arity that are prior to the fact in the database.

If, as suggested above, students were asked to indicate which clause was next to be

resolved with the current goal literal, then the repeated skipping of compatible clauses could

indicate that this misconception was present.

Many of the misconceptions catalogued by Fung et al. relate to backtracking and the use of

the cut. If VIPER's models and mechanisms were upgraded to describe these aspects of

Prolog, then it is likely that many more misconceptions could be 'caught' in the manner

described above. In fact, the current execution pattern described by VIPER would then

become a perfect specification of the 'try once and pass' misconception which assumes that

a resolution fails completely whenever a subgoal first fails.

9.6.5 Dialogue 2; Identifying the bugged clause.

The evaluation of chapter 8 gave rise to suggestions for two minor augmentations which

could improve the clarity of this dialogue for students, by providing more support

structures for them. The first of these was that the dialogue should provide some statement

of the viewpoint that was currently chosen for the exercise, and of the possible bugs

associated with it. This would constitute the explicit statement of the area of application of

each viewpoint that was discussed in section 9.2. If more screen space were available,

then the problems involved in providing such information would be trivial.

The second suggested augmentation would be equally simple to implement, and would also

require additional screen space. This calls for a re-statement of the conditions under which

the bugs and their mapping onto the models are defined.

301

Chapter 9 : A Discussion of VIPER

A more ambitious project would be to tutor directly the inference operators associated with

each viewpoint, rather than just using them to structure the explanations given in Dialogues

2 and 3. Such a tutorial tactic follows rationally from the insistence that these operators are

an essential element of a viewpoint, but it is not clear to what extent they actually reflect the

methods used by students or practitioners in the domain, and thus to what extent they

would be useful to students. Empirical work could be undertaken to investigate this topic.

D iagnosis.

A diagnostic possibility for this dialogue is to monitor the student's use of the 'Questions'

menu to determine whether the questions being asked are relevant to the current bug, and

whether they reflect an accurate application of the operators embodied in the explanations.

Considerable difficulties are foreseen here. One of the comments made about the

'Questions' menu during the evaluation was that it allowed students to explore the bug in

their own way. If this is in fact a positive quality of the dialogue, then it would seem

perverse to impose the analytical methods favoured by the system as being the 'correct'

path to a solution. There is also a more practical problem. If a set of bugged code

contained five clauses, then a student may choose to ask questions about the four that did

not contain the bug in order to eliminate them, before asking about the one clause that is

suspected. How is the system to distinguish this purposeful activity from lost meandering?

9.6.6 Dialogue 3: Describing the bug's effects.

As with the other dialogues, a number of minor augmentations are considered here before

dealing with more ambitious ideas.

The suggested minor developments are as follows:

• Make the different menus for each template slot, ('functor', 'arity' etc.) pop up

automatically when the previous slot had been filled. This mechanism could

302

Chapter 9: A Discussion of VIPER

possibly be governed by some unsophisticated modeling which would ensure that

the student has already learned the sequence of descriptions to be made in this

dialogue.

• Allow the revision of input given as answers to previous slots in the dialogue. As

pointed out in section 8.4.2, this would necessitate that the consistency of the entries

in slots subsequent to the revised one would have to be checked, or new input

requested.

• Add a predicate to this dialogue which determines which part of a bugged execution

is to be described. In the case of the 'variable instantiated to the wrong value'

symptom the questions could be:

a) where and how does the 'ideal' binding fail to occur?

b) where and how is the 'bugged' binding made?

• Add a question to the descriptions of the head matching asking for details of any

variable bindings that take place there. The information required to check the

accuracy of answers to this question is already present in the execution history

created by VIPER. All that would be required to implement the development is a

predicate which would include the relevant data in the template which describes the

effect of the bug.

D iagnosis.

The most necessary development in relation to this dialogue is that which would allow

some critiquing of the answers that the student gives as input to the different slots of the

dialogue. The student's answers can be analysed in terms of their internal consistency, and

also in terms of their relationship to the actual execution histories. After some discussion,

we conclude that any analysis of student input to the Search Strategy and Code Error slots

should concentrate on the student's knowledge of the mapping from viewpoints to bugs.

Where other parts of the dialogue reveal difficulties related to the description of execution,

these should be remedied using a version of the execution description dialogue.

303

Chapter 9: A Discussion of VIPER

The first answers a student gives in this dialogue describe the matching of a clause head

and goal literal. These have to be internally consistent, as VIPER will not otherwise accept

them. Repeated unacceptable answers to this section could be taken to indicate that revision

of the Resolution model was required. The answer to the Search Strategy slot requires the

student to indicate whether a new clause is sought for resolution, or an attempt made to

complete the proof with the current clause by dealing with any subgoals. If the head

resolution has succeeded, then the possibility of proving subgoals must be considered.

Answers that suggest moving on to a new clause when the head resolution has succeeded

are at present rejected by the system, but could be taken as an indication that the Search

Strategy model needs to be re-tutored. Answers that relate to the presence of subgoals

when in fact there are none, or which do not relate to them when they are present, seem to

indicate an error so gross as to be uninformative in this case.

Answers that give inaccurate predictions of the success or failure o f subgoals that are

present would indicate an inaccurate application of the three models of execution. The

augmented system could deal with this by reverting to an execution-description dialogue

which started with the resolution of the current goal literal and clause in the context of the

other clauses used to obtain the bugged result. If the student makes mistakes in describing

the execution, these should reveal the misconceptions in their models of execution, and

could be diagnosed as described in section 9.6.4.

The student’s answer to the Search Space slot begins the process of mapping the specific

execution description onto the bug catalogue. It is their knowledge and application of this

mapping that must now be assessed.

The first level of this assessment concerns the linking of specific bugs with specific

viewpoints as described in section 6.4.3. A Search Space entry of 'Ok' must be followed

by a Code Error relating to either the Search Strategy or the Resolution viewpoints. Where

the Search Space entry is one of the Search Space bugs, then the Code Error must also be

304

Chapter 9: A Discussion of VIPER

this bug, given the 'only one difference' condition described in chapter 6. Answers that do

not conform to these requirements indicate that the students have not understood the

conventions that underlie VIPER's domain formulation. This could be remedied by

tutoring and exercises which revise and explain these conventions.

A more profound level of assessment would relate the (hopefully consistent) student's

answers to the actual executions recorded in the execution histories and to the actual

difference between the ideal and bugged code. Where their description of the head

resolution and Search Strategy differed from the actual pattern of execution, then this

would again indicate a failure to correctly apply the execution models, and could be dealt

with as described above.

The student's statement concerning the Search Space and Code Error identifies a specific

member of the bug catalogue as being present in a specific clause, and the accuracy of this

can be checked by reference to the description template assembled by the predicates which

initiate this dialogue. Where the student identifies the wrong Code Error, the system could

easily be augmented to show the student the relevant parts of the bugged and ideal clauses

concerned, along with a statement to the effect that the difference described by the student

did not in fact exist. This statement could also suggest that the Code Error described by the

student should have led them to form a hypothesis which could have been checked using

the 'Questions' menu. The system could be equipped to demonstrate this by defining

predicates for each bug which state the implied condition of the ideal code, and retrieve the

information required to check whether it is true. The predicates needed to extract the

information which would show the students that they have made a mistake, or which

would check the generated hypotheses, are already implemented to serve the options

available on the 'Questions' menu.

A more subtle reaction to a student's mistake at this level would be to determine whether

the change implied by the Code Error they name would in fact produce the desired result in

305

Chapter 9: A Discussion of VIPER

the bugged code. Implementing such an approach would create a number of problems.

The student would have to be prompted to specify exactly what change they would make to

rectify the Code Error they have described, and the system would have to be able to check

that the proposed change was within the constraints of the bug catalogue and the conditions

under which the different code executions are analysed. If the student's answer did not

produce the desired result, then a second round of execution description would have to be

undertaken for the changed code to determine why it behaved as it did. This would most

likely cause the student to forget or lose sight of the original execution being described in

the dialogue. This exercise also seems to defeat the point of only allowing a single

difference between the ideal and bugged code, which was to define a simple and tractable

domain for both system and student.

We conclude that diagnosis carried out on the student's input to the Search Strategy and

Code Error slots of this dialogue should concentrate on the student's mapping of

viewpoints onto bugs, as this mapping was designed to be simple, and is, in essence, the

knowledge that the system was designed to tutor. There seems to be little point in

supporting complex diagnoses in an artificially simplified domain. Where difficulties or

misconceptions related to the description of execution are diagnosed, they should be dealt

with in a version of the execution description dialogue.

9.7 Conclusions to Chapter 9.

Section 9.1 considers the goals set for the viewpoint formalism in chapters 2 and 3 in the

light of the subsequent implementation. It is concluded that a number of these goals have

been successfully reached, and that the formalism is thus a useful one. A system has been

built which utilises multiple viewpoints to carry out a single task, and which employs two

of the classes of operators described in chapter 5. These viewpoints allow the system to

perform the relevant tasks in the domain to be tutored, and conform to the description of

referring to the same set of objects, but identifying and structuring them in different ways.

306

Chapter 9: A Discussion of VIPER

Section 9.2 considers design goals for VIPER detailed in chapter 3. These goals relate the

use of multiple viewpoints to tutoring, explanation and demonstration in the chosen

domain. VIPER successfully tutors each viewpoint independently, and makes their area of

application clear implicitly. VIPER does not tutor the relationship between the viewpoints.

VIPER is able to provide explanation and demonstration for each of the three dialogues

described in chapter 7.

Section 9.3 discusses the actual design of VIPER in terms of debugging, black-box verses

glass-box solutions, explanation, the dialogue structures and the system architecture. The

execution description and debugging tasks of VIPER are related to such tasks in the 'real

world'. It is concluded that execution description in VIPER is directly equivalent to the

'real world' task, although it is limited to a subset of Prolog behaviour. In relation to

debugging, it is maintained that the execution models used in VIPER are authentic even if

the simplified domain is not. VIPER is described as embodying a theory of debugging

rather than directly tutoring such a theory. The possible difficulties involved in attempting

to implement such a theory for tutoring are explored, and the claim made that the decision

to use a simplified domain was vindicated.

In section 9.3.2 the issue of black-boxes and glass-boxes is discussed in relation to

VIPER's design. Both forms were used, with the glass boxes intended to provide

explanation. This explanation provision was partially successful. The glass boxes could

be developed to carry out all system functions and thus eliminate any redundancy.

Section 9.3.3 summarises the successful and the unsuccessful aspects of the three

dialogues described in chapter 7, while section 9.3.4 draws attention to the 'meta

interpreter and execution history' architecture used in VIPER.

The relevance of Cognitive Apprenticeship as an educational philosophy is the focus of

section 9.4. We claim to have followed the dictum that the use and practice of the

307

Chapter 9: A Discussion of VIPER

knowledge to be learned should have a central role at all stages of the design process, and

discuss the means by which the tutorial tactics of modeling, giving scaffolding,

emphasising different problem decompositions and then general practice are realised in

VIPER. Our success in achieving Brown’s (1989) Domain and Internal transparency is

discussed, showing greater success with the former than with the latter.

Section 9.5 demonstrates how VIPER is relevant to future work in tutoring systems. The

solutions used in VIPER are generalised to another view of Prolog, and to another domain

altogether. A domain where VIPER's solutions could not be applied is identified. This

generalisation is done in terms of VIPER's underlying representation of a 'simulation' and

execution history. The implementation of Weiser and Lyle's (1986) 'slicing' viewpoint is

demonstrated for our Prolog behaviour subset using the viewpoint formalism of chapters 3

and 5 and the point is made that VIPER's meta-interpreter and execution history production

predicates would not have to be altered.

The section goes on to demonstrate how the viewpoint formalism and design strategy used

for VIPER could be applied to implement the system described but not implemented by

Stevens, Collins and Goldin (1979). This system would have been an extension of the

WHY system, and would have described heavy coastal rainfall in terms of 'scriptal' and

'functional' viewpoints. This demonstration involves defining examples of scriptal and

functional viewpoints in terms of the formalisation of chapters 3 and 5, and producing an

outline specification for a simulation of the rainfall-producing process and the execution

histories that it would create. In this case, none of VIPER's actual components could be

used. Section 9.5.4 notes that systems using multiple viewpoints for purely declarative

domains cannot be implemented in this way.

In section 9.6 a wide range of future work is considered. This deals with possible

improvements and extensions to the domain models and the domain formulation, and to

VIPER itself. The possible work on VIPER is described in terms of the system

308

Chapter 9: A Discussion of VIPER

architecture, and each of the three dialogues described in chapter 7. Each of these aspects

of the system is discussed firstly in relation to general improvements or extensions that

could be made, and then in terms of any diagnostic capabilities which could be added to the

system. A range of diagnostic possibilities and methods for implementing them are

suggested.

309

Chapter 10. Conclusions.

Chapter 9 discussed VIPER and its design in detail. This chapter states our general

conclusions in relation to the research goals stated in chapter 3, and the pedagogical goals

which may be served by the implementation of multiple viewpoints in a tutoring system.

10.1 Research Goals.

10.1.1 The viewpoint formalism.

The goals stated in section 3.2 required us to find a suitable representation for formalising

viewpoints in order for them to be implemented in a tutoring system in such a way that the

system could itself perform the domain tasks. Rather than identify research on viewpoints

with the intractable area of research on belief systems, we decided to investigate the

question of how a tutoring system might be designed to use a range of pre-defined

viewpoints, (see section 2.1.6), and what could be achieved by such an exercise. In order

to represent these kinds of viewpoints we developed the formalism of a model interrogated

by operators which produced varying inferences from the same model. Three classes of

such operators are defined in section 5.3. In VIPER, three different viewpoints were

implemented using three different models, with operators from the first two of the operator

classes. These viewpoints were found to be of great utility in enabling the system to

perform tasks in the domain and to provide explanations of those tasks.

The models themselves were tutored to the students through VIPER's critique of their

description of execution, and found to be a very clear and rigorous basis for understanding

the subset of Prolog behaviour that they represented. The discussion of further work

indicates how the viewpoint formalism could be applied both to other views of Prolog and

to other domains altogether.

310

Chapter 10: Conclusions

The utility of the model-and-operators formalism for the representation of viewpoints was

also tested through its use in a protocol analysis study. Here, it was used to formalise the

inferences displayed by two groups who had been asked to control a simulated system.

One of the groups was asked to use a functional model, and the other a structural model.

This formalisation used all three classes of operators described in section 5.3, and was able

to deal with the wide variety of inferencing displayed by the system controllers.

The third class of operator, that which changes the central model by adding or deleting

information, was not tested in the implementation of VIPER, so that no further

conclusions concerning its utility for this purpose can be drawn here.

The final component of the viewpoint formalism proposed in chapter 3 is a set of heuristics

which together describe the area to which the relevant viewpoint may be applied. The

utility of this component was not tested in the protocol analysis study described in chapter

4, as the respondents involved were instructed about which viewpoint to use. We had at

this point concluded that it was necessary to develop a detailed formulation of the model

and operators before investigating descriptions of how they were to be employed.

This heuristic component was not explicitly implemented in VIPER, but was of

fundamental importance in the formulation of the simplified debugging domain. This

formulation mapped the three models of execution onto the restricted bug catalogue in such

a way that each bug was clearly identified with a particular viewpoint. This aspect of the

design was shown to be significant in the evaluation of VIPER, where several users clearly

indicated that it helped them to grasp the fact that particular bugs could be localised with

particular viewpoints.

We conclude from these remarks that the use of a model and the first two classes of

associated operators from section 5.3 is a very successful method of implementing pre

defined viewpoints for tutoring systems. The third class of operator may promise much

311

Chapter 10: Conclusions

but its utility in an implementation has not been demonstrated. The use of heuristics which

detail a viewpoint's area of application has not been demonstrated in terms of an explicit

representation, but has been shown to be of great importance for the formulation and

tutoring of a domain.

10.1.2 The system architecture.

The performance goals of VIPER stated in section 3.2 were that it should be able to tutor in

a specific domain using two or more viewpoints on that domain. This required that there

should be a system architecture and a domain representation which could support each of

the viewpoints to be tutored, assuming that the viewpoints were implemented in the manner

described in section 3.3.

The solution to this requirement has been demonstrated in the domain of Prolog debugging

for novices in the form of a meta-interpreter which produces a very detailed execution

history for each execution. This execution history supports tutoring in relation to execution

in terms of the Resolution, Search Strategy, and Search Space viewpoints. This involves

the use of a variety of model and operator combinations. When execution histories for

ideal and bugged code sets are compared and analysed, the architecture also supports

tutoring in terms of these three viewpoints in relation to a simplified debugging domain.

The discussion of further work has indicated how this tutoring could be made much more

adaptive, and also how the same meta-interpreter and execution history used in VIPER

could be used to support tutoring in relation to other views of Prolog. The discussion also

indicated how the same design strategy could be used to implement a version of WHY

(Stevens et al. 1979) which actually did utilise the two viewpoints described by Stevens et

al. This implementation would use a simulation and process history to tutor the domain of

heavy coastal rainfall in terms of scriptal and functional viewpoints.

312

Chapter 10: Conclusions

We thus wish to claim that the strategy of using a meta-interpreter or simulation to produce

a history of some process which is sufficiently detailed and structured to support tutoring in

terms of multiple viewpoints on the relevant domain, is a robust and flexible means of

implementing systems which can tutor in terms of multiple pre-defined viewpoints. This

method is most suited to domains where distinct processes can be described.

10.1.3 Cognitive Apprenticeship.

Sections 2.6 and 3.3.2 discussed the suitability of Cognitive Apprenticeship as an

educational philosophy which could support the design of systems which tutored with

multiple viewpoints. This philosophy implied that the systems should have an 'authentic*

view of the domain, and that the end use of the knowledge being taught should be

considered at all stages of design. It suggests the tutorial strategies of modeling, giving

scaffolding, asking for different problem decompositions, and giving general practice, and

emphasises the social dimensions of situated knowledge. The extent to which VIPER

achieves these goals is discussed in section 9.4, and it is concluded that partial success has

been achieved in relation to the provision of authentic domains, and that the use of the

knowledge was indeed considered at all stages in design. The tutorial strategies suggested

effective forms of dialogue which were, or could easily be, implemented in VIPER. The

greatest omission in VIPER's design is in relation to the social dimensions of the

knowledge being taught.

These points lead us to conclude that Cognitive Apprenticeship is an educational

philosophy well-suited to the design of multiple-viewpoint systems, as it makes a clear

contribution to all stages of the process. At the stage of domain formulation, the

philosophy establishes the criteria that the formulations must be relevant to those used by

practitioners in the real world, and also to the student's intended use of the knowledge.

For system design and implementation the philosophy suggests a range of effective

interrelated tutoring strategies, and sets the design goal of providing an environment that is

313

Chapter 10: Conclusions

as close as possible to that found in the real world. In emphasising the social aspects of

knowledge, the philosophy suggests a direction for future research and development which

promises increasingly effective systems.

10.2 Pedagogical goals served by the use of multiple

viewpoints.

This research is motivated by goals which are ultimately pedagogical. We wish to build

systems which support learning. It is in this context that the problem of using multiple

viewpoints was originally identified. This being so, we must summarise the pedagogical

goals that VIPER has shown to be served by the use of multiple viewpoints.

10.2.1 Adaptation to the goals of the student.

The evaluation detailed in chapter 8 demonstrated that students found it very useful to be

able to structure their interaction with VIPER by selecting a viewpoint which matched their

goals (eg. learning more about Resolution) and which formed the basis of the exercises.

The possibility of the system being augmented to adapt its tutoring by itself selecting the

viewpoint is discussed under the title of Euture work' in section 9.6. The point is made

that this selection could also be made on the basis of the student's experience. This facility

would become more significant were a wide range of viewpoints to be implemented. A list

of such viewpoints is given in section 9.6.2, and an example of how they might be

implemented is given in section 9.5.2. The availability of such a range of domain

formulations would make it clear that neither system nor student could simply rely on one

formulation of the domain. It would thus be necessary for both parties to pay attention to

the utility of each viewpoint, ie. to the meta-knowledge which detailed how each

formulation was to be used. This process was observed in the evaluation described in

chapter 8, where users reported a strong appreciation of the kinds of bugs that could be

localised with each viewpoint. We thus wish to claim that the use of multiple viewpoints

314

Chapter 10: Conclusions

facilitates adaptation to the student’s goals or experience, and can promote learning in

relation to the meta-knowledge relevant to each viewpoint.

10.2.2 Explanation in terms of different viewpoints.

One of the goals stated in chapter 3 was that the viewpoint formulation should enable the

system to perform the different domain tasks that it tutored. This goal was realised, so that

VIPER can describe and demonstrate execution, identify the bugged clause and the bug,

and describe the effects of the bug on execution. This ability to perform each of the tasks

in terms of the viewpoints it is tutoring allows VIPER to provide explanation and

demonstration of each task in terms of each viewpoint. The system structures that support

this are described in chapter 7. The use of multiple viewpoints thus allows the provision of

explanation in terms of each one.

10.2.3 Sub-dividing the domain.

The execution models divided the subset of Prolog that they described in to smaller, distinct

and clearly-described sub-divisions that had several beneficial effects for the student that

are apparent in the evaluation of chapter 8. The different models, and the parts that

constituted them, could be learned incrementally, so that individual learning tasks were

small, and, when accomplished, showed clear progress. The identification and clear

exposition of a range of viewpoints also helps students to themselves determine the areas in

which they are weak, and thus to structure and focus their learning activities.

10.2.4 The elimination of misconceptions.

This is not a topic about which we can make strong claims based on VIPER's

implementation and evaluation. The problem was introduced in the context of using

multiple viewpoints by Stevens et al. (1979), who described how the use of a 'functional'

viewpoint could help to rectify misconceptions which arose when tutoring was

315

Chapter 10: Conclusions

accomplished using a single 'scriptal' viewpoint. In section 9.5.3 we have indicated how a

system using VIPER's design strategy could be built to support and tutor the two

viewpoints on heavy rainfall of which were described by Stevens et al. (1979), although

they only implemented one of them. We also indicated how the process history produced

by such a system could be interpreted in terms of the functional viewpoint so as to combat

the 'cooling by contact' and 'sponge' misconceptions. The construction of such a system

is not seen as inherently problematic.

In chapter 9.6.4 we describe how VIPER could be augmented through the use of a

technique which had been previously described by such authors as Brown and Burton

(1978) to recognise 'bugs' in the student's knowledge and procedural skills. The previous

work shows this augmentation to be quite feasible, if of limited value. This augmentation

would allow some misconceptions in the student's knowledge of the domain to be

recognised and described in terms of the system's viewpoints. Appropriate tutoring could

also be given in terms of these viewpoints.

If the meta-knowledge relating to the application of each viewpoint was represented

explicitly in VIPER, this would clarify the relationship between viewpoints and allow the

diagnosis and correction of problems which arose from their mis-application.

Our claim here must thus be that, were further work to be undertaken, the implementation

of multiple viewpoints could help VIPER to detect and remedy some misconceptions in the

student's knowledge of the domain.

316

Chapter 10: Conclusions

10.3 Summary of Claims.

The strong claims made in chapter 10 may be summarised as follows:

• The use of a model and the first two classes of operator described in section 5.3 is

a very successful method of implementing pre-defined viewpoints for tutoring

systems. The heuristics detailing a viewpoints area of application have been shown

to be of great importance in the formulation and tutoring of a domain.

• The strategy of using a meta-interpreter or simulation to produce a detailed history

of a process and of using this history to support tutoring in terms of multiple

viewpoints on the relevant domain is an effective method of implementing systems

which can tutor in terms of multiple pre-defined viewpoints. This method is most

suited to domains where distinct processes can be described.

• The educational philosophy of cognitive apprenticeship is well-suited to support the

design of tutoring systems that use multiple viewpoints on their domains.

• The use of multiple viewpoints facilitates the system's adaptation to the student's

goals and experience.

• The use of multiple viewpoints allows explanation to be provided in terms of each

one.

• The identification and careful tutoring of a range of viewpoints helps students to

determine their own areas of weakness, and thus to structure and focus their

learning.

317

References.

Anderson J.R. and Reiser B.J. (1985). "The LISP tutor". Bvte vol. 10, no. 4, pp. 159-
175.

Bma P., Bundy A., Pain H. and Lynch L. (1987). "Programming tools for Prolog
environments", in Hallam J. and Mellish C., (Eds.), Advances in Artificial
Intelligence, pp. 251-264. John Wilev and Sons.

Bma P., Bundy A., Pain H., and Lynch L., (1987b). "Impurities in the Proposed Prolog
Story". Working Paper no. 212 Dept, of Artificial Intelligence, Edinburgh University,
Edinburgh, UK.

Bma P., Bundy A. and Pain H. (1988). "Prolog: a survey of available tools". DAI
Technical Paper no. 3. Dept, of Artificial Intelligence, University of Edinburgh,
Edinburgh, UK.

Brown J. S. and Burton R. R. (1978). "Diagnostic models for procedural bugs in basic
mathematical skills". Cognitive Science vol. 2, pp. 155-191.

Brown J. S. and Burton R. R. (1975) "Multiple Representations of Knowledge for
Tutorial Reasoning", In Bobrow D. and Collins A. (Eds.), Representation and
Understanding: Studies in Cognitive Science. Academic Press, New York.

Brown J. S., Burton R. R. and de Kleer J. (1982) "Pedagogical, natural language, and
Knowledge engineering techniques in SOPHIE I, II, and III." in Sleeman D. H. and
Brown J. S. (Eds.) Intelligent Tutoring Svstems. Academic Press, London.

Brown J.S. Burton R.R. and Zdydel F. (1973). "A model-driven question-answering
system for mixed-initiative computer-assisted instmction". IEEE Transactions on
Svstems. Man. and Cvbemetics. vol. 3, pp. 248-257.

Brown J.S., Collins A. and Duguid P. (1989). "Situated Cognition and the Culture of
Teaming". Educational Researcher vol. 18 no. 1 pp. 32-42.

Brown J. S. Rubinstein R. and Burton R. R. (1976) "A Reactive leaming environment for
computer-assisted electronics instmction". BBN Report 3314. Bolt, Beranek and
Newman Inc., Cambridge, Mass.

Bundy A., Pain H., Bma P. and Lynch L. (1985). "A proposed Prolog story". D.A.I.
Research Paper no. 283. University of Edinburgh, Edinburgh, UK.

Burton R.R. (1975). Semanticallv-centred Parsing. Doctoral dissertation, Univ. of
Califomia, Irvine, California.

Burton R.R. (1976). "Semantic grammars: an engineering technique for constmcting
natural language understanding systems". BBN Report 3453. (ICAI Report 31. Bolt
Beranek and Newman Inc., Cambridge, Mass. U.S.A.

Burton R.R. (1982). "Diagnosing bugs in a simple procedural skill", in Sleeman D.H.,
and Brown J.S., (Eds.), Intelligent Tutoring Svstems. Academic Press, London.

Burton R.R. and Brown J.S. (1979). "An investigation of computer coaching for informal
leaming activities". Int. J. of Man-Machine Studies. 11, pp. 5-24. Reprinted in

318

References
Sleeman D. and Brown J.S. (Eds.) (1982) Intelligent Tutoring Svstems. Academic
Press, London.

Byrd L. (1980). "Understanding the control flow of Prolog programs", in Tamlund S.
(Ed.), Proceedings of the Logic Programming Workshop. Debrecen, Hungary, 1980.

Carbonell J.R. (1970). "AI in CAI: an artificial intelligence approach to computer-assisted
instruction". IEEE Transactions on Man-Machine Svstems. vol. 11, no. 4, pp. 190-
202.

Clancey W.J. (1979). "Tutoring Rules for guiding a case-method dialogue". Int. Jrnl.
Man-Machine Studies, vol. 11. pp. 25-49.

Clancey W.J. (1983). "The Epistemology of a Rule-Based expert System - a Framework
for Explanation.", in Artificial Intelligence vol. 20, No. 3.

Clancey W.J. (1985). "Heuristic Classification", Artificial Intelligence 27, pp. 289-350.

Clancey W.J. (1987). Knowledge-Based Tutoring. The GUIDON Program. MIT Press.

Collins A., Brown J.S. and Newman S. (1987). "Cognitive Apprenticeship: teaching the
craft of reading, writing and mathematics" in Resnick L.B. (ed.) Cognition and
Instruction. Lawrence Erlbaum, Hillsdale, NJ.

Cumming G. and Self J.A. (1989b). "Intelligent educational systems: identifying and
decoupling the conversational levels". In press.

de Kleer J. and Brown J.S. (1983). "Assumptions and ambiguities in mechanistic mental
models" in Centner D. and Stevens D.L. (Eds.) Mental Models. Lawrence Erlbaum
Associates, Hillsdale, NJ.

di Sessa A. A. (1986). "Models of Computation", in Norman D. A. and Draper S. W.
(Eds.) User Centered Svstem Design. Lawrence Erlbaum Associates, Hillsdale, NJ.
and London.

du Boulay B., O'Shea T. and Monk J. (1981). "The black box inside the glass box:
presenting comnputing concepts to novices." Int. J. Man-Machine Studies, vol. 14,
pp. 237-249.

Eisenstadt M. (1984). "A Powerful Prolog trace package" in Collected HCRL papers from
ECAI-84: the 6th. European Conference on Artificial Intelligence, Pisa, Italy, Sept.
1984, HCRL Tecnical Report no. 10, HCRL, The Open University, Milton Keynes,
UK.

Eisenstadt M. (1985). "Tracing and debugging Prolog programmes by retrospective
zooming". H C ^ Technical Report no. 17. The Open University, MiltonKeynes,
UK.

Fagin R. and Halpem J.Y. (1987). "Belief, awareness, and limited reasoning." Artificial
Intelligence, vol. 34, pp. 39-76.

Fung P., du Boulay B. and Elsom-Cook M.T. (1987). "An initial taxonomy of novices'
misconceptions of the Prolog interpreter". CAL Research Group Technical Report no.
69. lET, The Open University, Milton Keynes, UK.

Gentner D. and Gentner D.R. (1983). "Flowing Waters or Teeming Crowds: Mental
Models of Electricity", in Gentner D. and Stevens D. L. (Eds.) Mental Models.
Lawrence Erlbaum Associates, Hillsdale, NJ.

319

References

Gentner D. and Stevens D.L. (Eds.) (1983). Mental M odels. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Hollan J. D., Hutchins E. L. and Weitzman L. (1984). "STEAMER: an interactive
inspectable simulation-based training system." A.I. Magazine, vol. 5, no. 2, pp. 15-
27.

Johnson W.L. (1987). "Modeling programmers' intentions" in Self J.A. (Ed.) Artificial
Intelligence and Human Leaming: intelligent computer-aided instruction. Chapman
and Hall, London.

Johnson W.L. and Soloway E.M. (1984) "PROUST: knowledge-based program
debugging". Proceedings of the Seventh International Software Engineering
Conference. Orlando, Florida, pp. 369-380.

Johnson-Laird P.J. (1983). Mental Models. Cambridge University Press.

Kahn K.M. (1989). Objects - A fresh look. Research paper. Xerox Palo Alto Research
Centre, 3333 Coyote Hill Road, Palo Alto Ca. 93304.

Kieras D.E. (1984). "A Simulation Model for proceedural inference from a mental model
for a simple device". Technical Report.No. 15. UARZ/DP/TR-84/ONR-15.
University of Arizona, Dept, of Psychology, Tucson, U.S.A.

Kieras D. E. and Bovair S. (1984). "The role of mental models in leaming to operate a
device". Cognitive Science. 8, pp. 255 - 273.

Komfeld W.A. and Hewitt C. (1981). "The scientific community metaphor". IEEE
Transactions on Svstems. Man and Cvbemetics. 11, pp. 24-33.

Larkin J.H., McDermott J., Simon D P. and Simon H.A. (1980), "Expert and novice
performance in solving Physics Problems", Science vol. 208 pp. 1335-1342.

Lesgold A. (1988). "Toward a theory of curriculum for use in designing intelligent
instmctional systems" in Mandle H. and Lesgold A. (Eds.) Leaming Issues for
Intelligent Tutoring Svstems". Springer-Verlag, New York, Berlin.

Martins J.P. and Shapiro S.C. (1988). "A model for belief revision". A rtificial
Intelligence. 35, pp. 25-79.

McKeown K.R. (1988). "Generating goal-oriented explanations". Intemational Joumal of
Expert Svstems. vol. 1 pt. 4. pp. 377-395.

Minsky M. (1981). "A Framework for representing knowledge." in Haugeland J. (Ed.)
Mind Design. The MIT press, Cambridge MA, pp. 95-128.

Moyse R. (1989). "Knowledge Negotiation implies multiple viewpoints", in Bierman D.
Breuker J. and Sandberg J. (Eds.). Artificial Intelligence and Education: Proceedings
o the 4th. Intemational Conference on AI and Education. Amsterdam, Netherlands,
pp. 140-149.

Moyse R. (1991). "Multiple viewpoints imply Knowledge Negotiation". Interactive
Leaming Intemational. vol. 7 no. 1 in press.

Newell A. and Simon H.A. (1972). Human Problem Solving. Prentice-Hall, Englewood
Cliffs, New Jersey, U.S.A.

320

References

O’Shea T. and Smith B. B. (1987)."Understanding Physics by violating the laws of
nature: Experiments with the Alternate Reality Kit". Proceedings of the Conference on
Computer-Assisted Leaming. (CAL'87), University of Strathclyde.

Pain H. and Bundy A. (1985). "What stories shall we tell novice Prolog programmers?",
in Hawley R. (Ed.) Artificial Intelligence Programming Environments. Ellis-
Horwood. Also published as Dept, of Artificial Intelligence research paper no. 269,
Edinburgh University.

Pea R. (1986). "Language-independent conceptual "bugs" in novice programming" in
Joumal of Educational Computing Research, vol. 2, (1).

Perkinson H.J. (1984). Leaming from our mistakes. Westport, Greenwood.

Schank R.C. (1973). Identification of Conceptualisations underlying natural language", in
Computer Models of Thought and Language.. Schank, R.C. and Colby K.M. (Eds.)
Freeman, San Francisco.

Self J.A. (1988a). "The use of belief systems for student modelling". Paper given at the
European Congress on Artificial Intelligence and Training, Lille.

Self J.A. (1988b). "Knowledge, belief and user-modelling". In O'Shea T. and Sgurev V.
(Eds.), Artificial Intelligence III: Methodologv. Svstems. Applications. Elsevier
Science Publications B.V. (North-Holland).

Self J.A. (1989). "The Case for Formalising Student Models, (and Intelligent Tutoring
Systems generally)". Paper given at the 4th. Conference on Artificial Intelligence and
Education, Amsterdam, May 1989.

Self J.A. (1990). "Computational Viewpoints" in Moyse R. and Elsom-Cook M.T.
(Eds.), Knowledge Negotiation, (in Press), Paul Chapman, London.

Shapiro D.G. (1981). "Sniffer: a system that understands bugs". A.I. Memo no. 638.
Massachusetts Institute of Technology, Mass.

Shortliffe E. H, (1976). Computer-based Medical Consultations: MYCIN. American
Elsevier Publishers, New York.

Smith R.B. (1986). "The Alternate Reality Kit: An animated environment for creating
interactive simulations". Proceedings of the 1986 IEEE Computer Societv Workshop
on Visual Languages. (Dallas, Texas), pp. 99-106.

Stevens A. L. and Collins A. (1980). "Multiple conceptual models of a complex system"
in Snow R.E., Federico P. and Montague W.E. (Eds.) Aptitude Learning and
Instruction Volume 2: Cognitive Process Analyses of Leaming and Problem Solving.
Lawrence Erlbaum, Hillsdale, NJ.

Stevens A. L., Collins A. and Goldin,S. (1979). "Misconceptions in Students'
Understanding". Int. Jnl. of Man-Machine Studies, 1979, 11, pp. 145-156.
Reprinted in Sleeman D. and Brown J.S. (Eds.) (1982) Intelligent Tutoring Svstems.
Academic Press, London.

Stevens A.L. and Roberts B. (1983). "Quantitative and Qualitative Simulations in
Computer Based Training". Joumal of Computer-Based Instruction, vol. 10, no. 1,
pp. 16-19.

321

References

Stevens A. and Steinberg C. (1981). "A typology of explanations and its application to
intelligent computer-aided instruction". Report no. 4626. Bolt, Beranek and Newman
Inc. Cambridge, Mass. U.S.A.

Souther A., Acker L., Lester J. and Porter B. (1989). "Using view types to generate
explanations in intelligent tutoring systems". Proceedings of the 11th. Annual
Conference of the Cognitive Science Society, University of Michigan, Ann Arbor,
Michigan, USA. pp. 123-129.

Suthers D. (1988). "Providing multiple views of reasoning for explanation". Proceedings
of ITS-88. Montreal, June 1-3 1988, pp. 435-442.

Taylor J. (1988). "Programming in Prolog: an in-depth study of problems for beginners
leaming to program in Prolog". Cognitive Science Research Paper no. 111. School of
Cognitive and Computing Sciences, University of Sussex, Sussex, UK.

Weiser M. and Lyle J. (1986). "Empirical studies of programmers", in Proceedings of the
1st. Workshop on Empirical Studies of Programmers. Soloway E. and Iyengar G.
(Eds.), Ablex NJ. pp. 187-197.

Wenger E. (1987). Artificial Intelligence and Tutoring Svstems. Morgan Kaufmann
Publishers Inc. Los Altos, Ca.

White B.Y. and Frederiksen J.R. (1986). "Intelligent Tutoring Systems based upon
qualitative model evolutions". In the Proceedings of the Fifth National Conference on
Artificial Intelligence. Philadelphia, Pennsylvania.

Whitehead A.N. (1932). The Aims of Education and Other Essays. Williams and
Northgate Ltd., London.

Woolf B.P. (1988). "Representing complex knowledge in an intelligent machine tutor" in
Self J. ÿ d .) Artificial Intelligence and human leaming: intelligent compter-aided
instruction. Chapman and Hall, London.

Young R. M. (1983). "Surrogates and Mappings: Two Kinds of Conceptual Models for
Interactive Devices" in Gentner D. and Stevens D. L. (Eds.) (1983). Mental Models.
Lawrence Erlbaum Associates, Hillsdale, NJ.

322

Appendix 1.

An example execution history from VIPER.
Query: unhappy(X)

Code: unhappy(man):- huge(black, dog).
huge(red, fish).
huge(black, dog).

Result: unhappy(man).

Execution History.
history(1,1, ?, ' u n h a p p y a l l , '[database]*).

history(l, 2, >, 'unhappy(_186)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

history(l, 3, /, 'unhappy(_186>', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

history(l, 4, >, 'unhappy(_186)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

history(1, 5, u, ['_', '!', '8', '6'], [m, a, n], no_clause).

history(l, 6, 'v'̂ ', 'unhappy(_186)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]’).

history(l, 7, +**, 'unhappy(_186)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

history(l, 8, '?sub', subgoal, 1, no_clause).

history(l, 9, >, 'huge(black, dog)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

history(l, 10,\ 'huge(black, dog)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

history(l, 11, <, 'huge(black, dog)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

history(1,12, >, 'huge(black, dog)', 2, '[[huge(red, fish)],.]').

history(l, 13,/, 'huge(black, dog)', 2, '[[huge(red, fish)],.]').

history(l, 14, >, 'huge(black, dog)', 2, '[[huge(red, fish)],.]').

history(l, 15, '-u', [b, 1, a, c, k], [r, e, d], no_clause).

history(l, 16, '-v ', 'huge(black, dog)', 2, '[[huge(red, fish)],.]').

history(l, 17, <, 'huge(black, dog)', 2, '[[huge(red, fish)],.]').

history(l, 18, >, 'huge(black, dog)', 3, '[[huge(black, dog)],.]').

history(l, 19,/, 'huge(black, dog)', 3, '[[huge(black, dog)],.]').

history(l, 20, >, 'huge(black, dog)', 3, '[[huge(black, dog)],.]').

history(l, 21, u, [b, 1, a, c, k], [b, 1, a, c, k], no_clause).

history(l, 22, u, [d, o, g], [d, o, g], no_clause).

history(l, 23, 'huge(black, dog)', 3, '[[hugc(black, dog)],.]').

history(l, 24, +*, 'huge(black, dog)', 3, '[[huge(black, dog)],.]').

history(1, 25, +, subgoal, 1, no_clause).

history(l, 26, ++, subgoal, all, no_clause).

history(l, 27, +***, 'unhappyC186)', 1, '[unhappy(man), [58,45], [huge(black, dog)],.]').

Appendix 2.

The documents used for VIPER's evaluation.

Appendix 2.1: VIPER evaluation briefing document.

V i e w p o i n t - b a s e d I n s t r u c t io n f o r P r o l o g E r r o r R e c o g n i t i o n .

VIPER is the prototype of a tutoring system which is designed to incorporate multiple

viewpoints on the domain of bug localisation in Prolog for beginners. The central

assumption is that different viewpoints will help to localise different bugs in the code. The

purpose of the system is to tutor the skill of applying the different viewpoints in a

simplified Prolog environment, so as to localise different bugs.

• The purposes of this evaluation are:

• To check that the components of the system function properly together; (ie. does it
run?).

• To test the usefulness of the way in which the different viewpoints have been

encoded in the system; (ie. can the system exploit them usefully?).

• To test the overall design of the system; (ie. can it carry out any useful tutoring,

and what are its limitations?).

• To assess the usefulness of the viewpoints to Prolog beginners; (ie. are these

useful irrespective of the system's effectiveness?)

• The evaluation has four parts.

• Three different viewpoints on Prolog execution will be presented on paper so that

those taking part can become familiar with them.

• Using the system, the participants will apply the viewpoints to describe the

execution of a specific 'Prolog' query and database. If required, the system can

provide demonstration, explanation, and corrections during this exercise.

• When the participants can confidently apply the viewpoints to straightforward

Prolog execution, they will be asked to apply the models to solve some simple

debugging problems.

• When the debugging exercises are complete, the participants will be asked to

complete a short questionnaire about the system.

II

Appendix 2: Evaluation Documents

The Viewpoints.

The viewpoints encoded in the system describe a simplified version of Prolog execution.

This does not include backtracking or the use of the 'cut'. Thus when a goal or subgoal

has tried all available clauses without success, it, and its parent goal, immediately fail

completely, and there is no attempt to 're-do' any goals.

The Debugging exercises.

• The system will describe a query, a simple Prolog database, and the result obtained by

running the query with the database. The result always involves the binding of a variable

in the query to a particular value. The system will also describe a different result, where

the variable is bound to a different value. This different result is taken to be the correct

one. This implies that the database of clauses shown contains a bug. A number of

different bugs are associated with each of the viewpoints on Prolog execution which were

explored in the first part of the evaluation, and it is one of these which produces the

incorrect result.

• The correct result is produced by an ideal version of the code, and it is important to note

that there is only one difference allowed between the bugged and the ideal code, that of the

bug which gives the different result.

• The participants are asked to:

• Indicate which clause contains the bug. They may ask questions about the ideal

code via a menu.

• When the correct clause has been selected, the participants are asked to describe the

execution of the bugged clause with the relevant goal in terms of the three viewpoints

on Prolog execution rehearsed earlier. Finally, they are asked to state which bug

from the available range is present in the visible code. If required, the system can

provide an explanation of the current bug.

m

Appendix 2: Evaluation Documents

Appendix 2.2: Models used in VIPER’s evaluation for the
description of a subset of Prolog Execution.

The student describes the execution of a simplified version of Prolog through menu

selections in terms of the three models given below. The system can demonstrate this skill.

Search Strategy.
1. If there is a goal, try to resolve it with the head of the first/next database item.
2. If the head resolves consider subgoals.
3. If there are untried subgoals set the first as a goal with the full Search Space.
4. If there are no subgoals, or none left untried, the goal fi’om the head resolution
succeeds.
5. If a subgoal fails, or the head resolution fails, the whole resolution fails. .
6. If a resolution fails, try to resolve the goal with the next item in the database.

Resolution.
1. Check the functors. If they unify, continue
2. If the functors do not unify, fail.
3. If the functors unify, check the arity.
4. If the arity is different, fail.
5. If the arity is the same, attempt to unify the arguments.
6 . U n t r ie d a r g u m e n t s u n i f y i f t h e y a r e o n e o f t h e f o l l o w i n g :

a) identical constants.

b) A v a r ia b le b o u n d t o t h e v a l u e o f t h e o t h e r te r m , (a c o n s t a n t) .
c) An unbound variable and a constant
d) 2 unbound variables.
e) 2 v a r ia b le s b o u n d to th e s a m e v a lu e .

7. If any pair of arguments do not unify, fail.
8. If there are no arguments, or none left untried, return to search strategy.
9. If a goal contains an operator, and can be evaluated as 'true' with the current
variable bindings, the goal succeeds.
10. If a goal contains an operator, and cannot be evaluated as 'true' with the current
variable bindings, the goal fails.

IV

Appendix 2: Evaluation Documents

Search Space.
1.A goal and generated subgoals must be proved within the same Search Space.
2. If all Search Space clauses are tried without success, a goal fails.

Appendix 2.3: The menu options relating to each model.

Search Strategy.
• Try goal with next clause
• Quit this resolution
• Subgoal Ok: try next subgoal
• All subgoals Ok, parent Ok
• Subgoal fails: parent fails
• Proved on fact, no subgs.
• Resolves with head, try subgs.
• Search complete

Resolution.
• Functors Ok.
• Functors fail
•Arity Ok.
• Arity fails
• Argument pair unify
• Argument pair fail
• All arguments unified
• Goal with operator Ok.
• Goal with operator fails.

Search Space.
• Prove new goal with S.Space
• Prove subgoal with S.Space
• Fail: whole S.Space tried

If an incorrect choice is made, the system will immediately correct it. If required, the

system will demonstrate the application of the relevant rule to the current step of the

execution.

Appendix 2: Evaluation Documents

Appendix 2.4: The queries and program databases used in
Dialogue 1.

Query Database

big(X) big(X):- hairy(X).

hairy(X).

unhappy(Person) unhappy(man):- big(X).

big(dog).

huge(red, fish).

huge(black, dog).

unhappy(Person) big(dog)

unhappy(Y):- big(Y), green(Y).

unhappy(Y):- biue(Y).

green(fish).

green(dog).

blue(alien).

unhappy(X) big(dog)

unhappy(Y):- big(Y), green(Y).

unhappy(Y):- biue(Y).

green(fish).

green(dog).

blue(alien).

gparent(pete, paul) gparent(X, Y):- parent(X, Z), parent(Z, Y).

parent(pete, helen).

parent(helen, paul).

VI

Appendix 2: Evaluation Documents

Appendix 2.5

The possible bugs associated with each viewpoint.

Resolution:

Wrong functor.

Wrong arity.

Wrong argument.

Wrong Operator.

Search Space.

Missing clause.

Extra clause.

Wrong subgoal.

Missing subgoal.

Extra Subgoal.

Search Strategy.

Wrong clause order.

Wrong subgoal order.

v n

Appendix 3.

The queries and code used for Dialogues 2 and
3 of the evaluation.

Resolution Viewpoint.

Query Ideal Program Database Bugged Program Database

huge(X, Y) big(dog).
unhappy(man):- huge(black, dog).
huge(red, fish).
huge(biack, dog).

big(dog).
unhappy(man):- huge(biack, dog).
big(red, fish).
huge(black, dog).

huge(X, Y) big(dog).
unhappy(man):- huge(black, dog).
big(red, fish).
huge(black, dog).

big(dog).
unhappy(man):- huge(b!ack, dog).
huge(red, fish).
huge(biack, dog).

precious(X,Y
)

big(dog).

unhappy(man):- huge(biack, dog).
precious(red, bird).
precious(biack, cat).

big(dog).

unhappy(man):- huge(biack, dog).
precious(tasty, red, bird).
precious(black, cat).

huge(X, Y) big(dog).
unhappy(man):- huge(biack, dog).
huge(tasty, red, fish).
huge(b!ack, dog).

big(dog).
unhappy (man):- huge(black, dog).
huge(red, fish).
huge(black, dog).

wild(red, D) big(dog).
unhappy(man):- huge(black, dog).
wild(red, fish).
wild(red, beastie).

big(dog).
unhappy(man):- huge(b!ack, dog).
wild(green, fish).
wild(red, beastie).

huge(red, D) big(dog).
unhappy(man):- huge(biack, dog).
huge(fish, red).
huge(red, dog).

big(dog).
unhappy(man):- huge(b!ack, dog).
huge(red, fish).
huge(red, dog).

v m

Appendix 3: Code for Dialogues 2 and 3

Search Strategy Viewpoint.

Queiy Ideal Program Database Bugged Program Database

unhappy(X) big(dog).
unhappy(Y):- green(Y), big(Y).
unhappy(Y):- blue(Y).
green(fish).
green(dog).
blue(alien).

big(dog).
unhappy(Y):- big(Y), green(Y).
unhappy(Y):- blue(Y).
green(fish).
green(dog).
blue(alien).

heavy(red,
D)

big(truck).

heavy(red, truck).

unhappy(man):- heavy(black,
truck).
heavy(red, train).

big(truck).

unhappy(man):- heavy(black,
truck).
heavy(red, train).

heavy(red, truck).

huge(red, D) big(dog).
huge(red, fish).
unhappy(man):- huge(biack, dog).
huge(red, dog).

huge(red, dog).
big(dog).
unhappy(man):- huge(black, dog).
huge(red, fish).

unhappy(X) big(dog).
unhappy(Y):- big(Y), green(Y).
unhappy(Y):- blue(Y).
green(fish).
green(dog).
blue(aiien).

big(dog).
unhappy(Y):- green(Y), big(Y).
unhappy(Y):- blue(Y).
green(fish).
green(dog).
blue(alien).

IX

Appendix 3: Code for Dialogues 2 and 3

Search Space Viewpoint.

)

Query Ideal Program Database Bugged Program Database

height(F, D) blg(clGud).
height(cloud, low).

unhappy(man):- height(cloud,
low).
helght(mountain, high).

big(cloud).
unhappy(man):- height(cloud,
low).
height(mountain, high).

huge(F, D) big(dog).
unhappy(man):- huge(black, dog).
huge(black, dog).

big(dog).
huge(red, fish).
unhappy(man):- huge(black, dog).
huge(black, dog).

huge(F, D) big(dog).
huge(red, fish).
huge(black, dog).
unhappy(man):- huge(black, dog).

big(dog).
huge(black, dog).
unhappy(man):- huge(black, dog).

unhappy(X) big(dog).
unhappy(Y):- big(Y).
unhappy(Y):- blue(Y).
huge(fish).
blue(alien).

big(dog).
unhappy(Y):- big(Y), green(Y).
unhappy(Y):- blue(Y).
huge(fish).
blue(alien).

unhappy(X) big(dog).
unhappy(Y):- big(Y), green(Y).
unhappy(Y):- blue(Y).
green(fish).
green(dog).
huge(fish).
blue(alien).

big(dog).
unhappy(Y):- huge(Y), green(Y).
unhappy(Y):- blue(Y).
green(fish).
green(dog).
huge(fish).
blue(alien).

unhappy(X) big(dog).
unhappy(Y):- big(Y), green(Y).
unhappy(Y):- blue(Y).
huge(fish).
blue(alien).

big(dog).
unhappy(Y):- big(Y).
unhappy(Y):- blue(Y).
huge(fish).
blue(alien).

X

)

Appendix 4.

The Evaluation Questionnaire.

Section 1. Experience of Prolog.

•1.1 How long have you been leaming Prolog?

• 1.2 How would you rate your ability in Prolog? (poor, fair, middling, good, very

good).

• 1.3 Did you have a clear model of Prolog execution before this session?

Section 2. The Interface.

• 2.1 Did any parts of the interface not function correctly?

• 2.2 Did you find any parts of the interface difficult to use? (buttons, menus, etc.).

• 2.3 Did you find that any part of the interface was particularly useful?

• 2.4 Is there anything that you think should be added to the interface?

Section 3. The Viewpoint Representations

• 3.1 Please comment on the way in which the system described execution, (ie. in

terms of three viewpoints, each composed of a set of rules).

• 3.2 Please comment on the way that the system used the different rule-parts; (ie. to

describe execution, to take input from the user, and to describe the effects of bugs).

• 3.3 Please comment on the way the system related different viewpoints to different

categories of bugs.

• 3.4 Please comment on the exercise which asked you to identify the bugged clause,

and the information available to you at this point.

• 3.5 Were the exercises of Part 2, (describing the execution of the bugged code and

identifying the bug), useful in relating viewpoints to categories of bugs? (Please

explain).

XI

)

Appendix 4: The Evaluation Questionnaire

Section 4. The system.

• 4.1 The system you have just used does not yet have any diagnostic mechanisms

built into it, and can thus only adapt to a user in very limited ways. Please assume

that such mechanisms could be added, and comment on the usefulness of the

resulting system in relation to Prolog novices.

• 4.2 The system can focus its activity on a particular viewpoint with which a student

is having difficulty or which interests them, (eg. Search Strategy or Resolution).

Please comment on the usefulness of this feature.

• 4.3 Did working with the system add anything to your understanding of Prolog

execution? Please explain.

Section 5. The Viewpoints.

Please answer these questions without reference to the specific system you have just

used.

• 5.1 Are these viewpoints on Prolog useful? (Please explain)

• 5.2 Can you think of any other viewpoints which would be useful?

XII

