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Abstract 

This paper is an overview of expert systems. Expert 

systems are Artificial Intelligence programs embodying 

the specific knowledge and experience of human experts. 

They offer users advice in specialized domains that are 

generally conceded to be difficult and requiring 

expert ise. 

The components of a.r\ expert system are the knowledge 

base, a knowledge representation subsystem, a knowledge 

acquisition subsystem, ar\ inference driver, an 

explanation capability and a natural language front end 

translator. 

The organisation of an expert system is determined 

by the solution space available, errors in the data, and 

the availability of abstraction in the system. 

In this paper the author describes software  tools, 

an  area of expert systems that is receiving increasing 

attention.  Special purpose programming  languages,  such 

as,  LISP and  PROLOG allow knowledge bases to be built 

more efficiently.    EXPERT and  EMYCIN  are  software 

programs aiding in the development of production systems. 

Another software tool, SAUI provides the user with help 

in learning and using complex expert systems.  SAUI is a 

software  package  for  general  development  for  expert 

systems.  Software tools available are becoming more  and 
1 



more sophisticated. 

Some recent areas providing practical applications 

for expert systems are medical diagnosis, equipment 

failure diagnosis, computer configuration, chemical data 

interpretation and structure, oil field service, and 

military needs. 

Areas  of  research  in  the study of expert systems 

that  are  described  in  this  thesis  are  heuristics, 

knowledge  acquisition  and  knowledge  representation. 

Heuristics are  informal  judgmental  'rules of  thumb'. 

Knowledge  representation  refers  to the  method  of 

representing an ordered set of task specific rules in  an 

expert  system.    Acquiring  new  knowledge  or refining 

existing  knowledge  is  accomplished  by the  knowledge 

acquisition methods of an expert system. 

This paper includes a comparison of two expert 

systems. CENTAUR and Rl have many differences and few 

similarities in their methods of representing, acquiring, 

utilizing, and explaining knowledge. Rl is an expert 

system used to configure VAX-11/788 computer systems. 

CENTAUR interprets pulmonary tests and diagnosis 

pulmonary diseases. The capabilities of CENTAUR and Rl 

demonstrate the potential of expert systems in the 

future. 



1. Introduction 

Expert systems are computer programs that embody the 

specific knowledge of human experts. They are one of the 

most practical products to have come out of research in 

Artificial Intelligence. The expert system provides 

useful answers to questions asked by the user in a field, 

such as, medical diagnosis. 

This thesis attempts to provide an overview of 

expert systems. This first chapter is an introduction. 

The second chapter consists of a description of expert 

systems. It contains the definition, history, 

components, organization, software tools, and 

applications of expert systems. 

There are several major research issues in studying 

expert systems. They include heuristics, knowledge 

acquisition and knowledge representation. These issues 

are discussed and illustrated in Chapter three. 

The final chapter compares two expert systems.  They 

are Rl and CENTAUR.  Rl is a configuration system for the 

VAX-i1/780  computer  systems.    When  provided  with  a 

customer's  order,  it  produces  as  output   diagrams 

configuring  the  components on the order.  CENTAUR is an 

expert system that interprets measurements from pulmonary 

function tests administered to patients  in a  pulmonary 

function   labratory.      It  then  produces  a  set  of 
3 



interpretation statements and a diagnosis for each 

patient. CENTAUR and Rl have more diffemeces that are 

discussed then similarities. 

Expert systems are a human face of information 

technology and will find an application in every sector 

and level of modern economy. 



2. Description of Expert Systems 

The beginning section of this chapter defines expert 

systems.   The intermediate sections include the history, 

components,  organisation,  and  applications of expert 

systems.  The final section describes software tools used 

in expert systems. 

S.1 Definition of Expert Systems 

fl most powerful technique for exploiting collective 

human knowledge by computer is represented by what are 

called Expert Systems [Pinkerton, 19823. Expert systems 

are Artificial Intelligence computer programs that embody 

the specific knowledge and experience of human experts. 

They are problem-solving programs that solve substantial 

problems generally conceded as being difficult and 

requiring expertise CStefik et al, 19823 for which 'good' 

algorithms are not known. [Chester, 19823 Their goal is 

to provide users with advice in specialized domains 

CBonnet, Cordier, and Kayser, 19813. 

Expert systems encapsulate the knowledge of one or 

more experts in a particular field. These systems 

consist of a global data base of assertions, a set of 

rules that represent small bits of an expert's knowledge, 

a control strategy for applying the rules to the 

assertions CChester,   19823,   a  knowledge  acquisition 



program,  an explanation program, and a natural language 

processor CWinfield, 1982]. 

The system may gradually improve its performance as 

it is used, provided its users are true experts. It does 

this by adding to the data base and also be refining the 

'rules' by which the system works. These rules are 

listed through dialogues with experts who may be able to 

point out, from their own special knowledge of cases, the 

flaws in the generalisations represented by the rules, 

own special knowledge of cases. Thus an expert system 

can evolve to a degree where its general performance is 

as good as that of a group of experts collectively, 

possibly faster than any of them, and certainly better 

than any inexperienced user. In this way the experts' 

knowledge and judgment is indirectly made much more 

widely available CPinkerton, 19823. 

The expert system performs its inferences using a 

human-like process, and must be capable of explaining its 

inference processes in a language natural to the user, if 

it is to be acceptable to the user. If an expert system 

is to follow a similar problem-solving process as a 

human, and yet it is to run on a computer it was 

suggested by Basden at a recent conference on expert 

systems, that this relationship' be represented as 

fo11ows: 

6 



Expert 

Numerical system Human 
computer [capable of 

processing struc- 
t ured informat ion] 

The aim of research into expert sytems is to move 

much closer to the human end of  the  spectrum CWinfield, 

lgasn. 

The process of designing and implementing expert 

systems is known as Knowledge Engineering CTanaka, 19823. 

Feigenbaurn defines the activity of knowledge engineering 

as follows: 

"The knowledge engineer practices the act of 
bringing the principles and tools of PI I 
research to bear on difficult applications 
problems requiring experts' knowledge 
for their solution.  The technical issue 
of acquiring this knowledge, representing 
it, and using it appropriately to construct 
and explain lines of reasoning, are 
important problems in the design of knowledge 
based systems.... The art of constructing 
intelligent agents is part of an 
extension of the programming art.  It is the 
art of building complex computer programs 
that represent and reason with the 
knowledge of the world. CFeigenbaum, 19773 

The basic idea of expert systems is putting 

knowledge to work, a non-mathematical knowledge used for 

most of the world's problems. The knowledge base of an 

expert system includes a data base consisting  of  facts, 



assumptions and beliefs, and heuristic rules CFeigenbaum, 

1982]. 

The heuristic approach rather than an algorithmic 

approach characterizes an expert system. The system 

searches for a good enough answer with the resources 

available using the knowledge of a human expert to 

improve search efficiency. This permits investigation of 

feasible modes only and the rapid elimination of "blind 

alleys". CSurnner, 19823 

For  expert  systems,  logic  is  not   the   issue, 

knowledge  is.    These  systems,  of  course,  needs  an 

inference procedure; however,  the  power  of  an  expert 

system  cornes  from  its  knowledge,  not  its  inference 

procedure. 

£.£ History of Expert Systems 

Twenty years ago Newell CNewell, 19623 surveyed 

several organisational alternatives for problem solvers. 

He was concerned with how one should go about designing 

problem solving systems CStefik et al, 19823. The 

research that followed in the area of computer problem 

solving passed through various stages. In the first 

phase attempts were made to improve on human problem 

solving performance by using various statistical 

techniques CCouch, 19763.  Statistical methods proved  to 
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be accurate for small diagnostic domains, but impractical 

for applications in real world problems CGorry, 19763. 

In the second phase attempts were made to capture 

diagnostic logic as fixed decision protocols using an 

inference-based paradigm CBleich, 19693. Although at 

times successful, it was recognized that such protocols 

suffered from inflexibility. Along the way, Artificial 

Intelligence researchers made an important discovery. 

The power of art intelligent program to perform its task 

depends primarily on the quantity and quality of 

knowledge it has about that task [Davis and Lenat, 19823. 

This observation arises not only in the work of 

artifact builders but in the work of psychologists, for 

example, the studies of Simon and his colleagues on the 

nature of "expert" thought in physics and chess playing; 

in the work of the image understanding researchersy and 

the work on understanding natural language. Human 

specialists striving for high levels of proficiency in 

their chosen fields spend years acquiring the knowledge 

and skills necessary to support such performance. 

Thus knowledge came to be seen of paramount 

importance, and Artificial Intelligence research shifted 

its focus from an inference-based paradigm to a 

knowledge-based paradigm. Knowledge is viewed as 

consisting of facts and heuristics.  The facts constitute 

9 



a body of information that is widely shared, publicly 

available, and generally agreed upon by experts in the 

field. The heuristics are more private, little discussed 

rules of good judgement. They are rules of good guessing 

and plausable reasoning that characterise expert level 

decision making in a field. 

Beginning in 1965, the Stanford Heuristic 

Programming Project focused on the development and 

exploitation of the knowledge based paradigm. It began 

in artifact construction and methodological innovation 

with the DENDRAL program, with efforts directed towards 

building a system which incorporated expert problem 

solving strategies, but which retained flexibility. 

DENDRAL solved problems of structure elucidation in 

organic chemistry, initially by a knowledge intensive 

analysis of physical spectra of the molecules [Davis and 

Lenat, 198S3. 

In 1968 when Feigenbaum presented the research work 

on DENDRAL CLindsay et al, 1980] to Michie, Professor at 

Edinburgh University in Scotland, the term of 

Episternological Engineering was proposed by Michie to 

describe such research works as DENDRAL CTanaka, 198S3. 

Epistemics is the science of communicating understanding 

via stored knowledge CAdd is, 198£3. 

The descendant of  DENDRAL,  META-DENDRAL,  analyzed 
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sets of spectral  data  and  inferred chemical rules of 

spectral analysis.    It  created  knowledge  from data, 

guided by a few basic principles. 

The first foray into clinical medicine was the MYCIN 

effort. MYCIN was a program that performed consultations 

with physicians about infectious disease diagnosis and 

antimicrobial therapy. The prod net i on rule 

representation that proved so effective in parts of 

DENDRRL was adapted to f.it the needs of medical 

knowledge. Issues in machine-facilitated knowledge 

acquisition, in the representation of knowledge, and in 

program control arose from this work CDavis and Lenat, 

198£]. MYCIN provided an inspiration for Davis' work on 

TEIRESIRS, a program designed to make possible the 

interactive transfer of expertise from a human expert to 

the knowledge base of a high performance program, in a 

dialogue conducted in a restricted subset of natural 

language CDavis and Lenat, 198£3. 

Another approach to knowledge representation was 

initiated by Minsky's theory of frames, explained by 

Minsky in 1974. fl frame is a data-structure for 

representing a stereotyped situation CMinsky, 19743. 

Minsky's frames were incorporated in the development of 

systems, such as, AM - a program that models an aspect of 

elementary mathematics research in the development of new 

11 



concepts  under the guidance of a body of heuristic rules 

CLenat,  198£];  and  CENTAUR-  a  program  designed  to 

diagnose pulmonary disease CPU kins, 1983]. 

In August, 1977, Professor Feigenbaurn presented a 

paper titled "The Art of Artificial Intelligence: Themes 

and Case Studies of Knowledge Engineering" at the 5th 

International Joint Conference on Artificial Intelligence 

held at MIT. Because of the difficulty of pronouncing 

Episemological Engineering, Knowledge Engineering was 

selected at this time, to describe the process of 

designing and implementing expert systems CTanaka, 1982]. 

Since the inception of Expert Systems many have been 

written. Some expert systems that have come into regular 

use are DENDRAL CLindsay et al, 19803; MACSYMA CMartin 

and Fateman, 1971]; PUFF 

Ci9S0"HeuristicProgrammingProjectl98tZi", 1980] and 

R'L WcQwfflott, 1980]. Macsyrna raanipulates algebraic 

expressions symbolically, including their integration and 

differentiation; Puff diagnoses pulmonary disorders; and 

Rl configures VAX systems CChester, 198£]. 

Major areas of research in the field of knowledge 

engineering are the following. 



1. Knowledge Base. 

£.'. Knowledge Representation. 

3. Knowledge Acquisition. 

4. Knowledge Utilisation. 

5. Knowledge Explanation Subsystem. 

2.3 Components of an Expert System 

fin expert system (figure below) consists of a number 

of essential components: a knowledge base, a knowledge 

representation subsystem, a knowledge acquisition 

subsystem, an inference driver, an explanation 

capability, and a natural language front end translator. 

Knowledge 
refining 
program 

Inference 
X  knowledge    engine       Natural 

-> base    <—}   (driver -f—^ language 
^       program)      processor 

Domain 
expert 

Explariat ion 
program 

User 

Figure 2-1:   Components of an Expert System 

fin expert system is a set of computer programs  that 

access  a  knowledge  base  and perform inferences on the 
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knowledge  held  there, in order to satisfy a user query. 

The expert system  must  be  capable  of  explaining  its 

inference  processes  in a  language natural to the user 

CWinfield, 19823. 

The knowledge base is a database of information 

consisting of facts, assumptions and beliefs, and 

hueristics that describe the problem to be solved and all 

the intermediate results in its solution [Chester, 198£H. 

Benerally a knowledge base is composed of information 

collected in discussions between a human expert and a 

system builder (also human at present). 

ft knowledge representation is a set of rules 

providing a formalism in a data structure, for facts and 

heuristics about a subject or specialty CTanaka, 198£H. 

Usually, an expert system will contain 40 - 800 rules. 

Several methods of representing knowledge within a 

computer are currently used: 1)Logic; £) Procedural 

representations; 3)Semantic networks; 4)Product ion 

systems; 5)Direct (analogical) representations; 

6)Semantic primitives; 7) Frames. 

The method which has been used in the majority of 

the more common present day expert systems is the 

production system. ft production system consists of a 

number of rules, each rule being of the IF...THEN... type 

(see figure £.£).  These rules are sometimes referred  to 

14 



as  situation  action  rules.   That is IF some situation 

occurs THEN some action is performed CWinfield, 198£D. 

IF:        Request is PUTON object targer 
AND   Object is free 
AND    Target is free 

THEN: Delete Object is free 
AND Delete Target is free 
AND Delete PUTON object target 
AND Move Object to Target 

Figure £-2:   If...Then... rule 

In the modern world it is necessary for humans to 

update their knowledge by deleting old outdated 

information, inserting new information, and amending 

existing information. Similarly, the expert system via 

its knowledge refining component needs to have its 

knowledge base updated to ensure that it remains an 

expert in its field. 

The inference engine is the program of control 

strategy that drives the system. It provides a 

methodology for reasoning about rules in a knowledge 

representation and drawing conclusions from that 

knowledge CTanaka, 1982D. It does this by attempting to 

match known facts about a particular problem with one (or 

perhaps more) of the productions CWinfield, 1982D. Rules 

are applied mainly in the backward direction, but 

sometimes the forward direction.  Some systems apply them 



in both directions [Chester, 19823. When a successful 

match is found, the production 'fires' and the action 

part of the rule is used to update the 'known facts' of 

the data base. It is unlikely to be able to solve the 

problem in one step and will therefore attempt to produce 

a solution to a small part of the problem by setting up a 

subgoal to be solved. Subgoals are established by 

writing appropriate notes about them into the data base. 

Using this new knowledge in conjunction with what was 

already known about the problem, the knowledge 

utilization program again attempts to satisfy the goal by 

finding another production that is satisfied. This 

process is repeated until a solution is found CWinfield, 

1982]. 

ft natural language processor provides acceptable 

communication between the expert system and the user. 

Communication must be in natural language that is 

understandable to the user. The system must make it easy 

for the user to input requests, and obtain results. The 

system should also be capable of adjusting the type of 

questions it asks and the amount and type of information 

it gives or requests, depending upon whether ar\ expert or 

naive user is controlling the system. 

The  natural  language  front end is the part of the 

expert system the user comes into contact  with  and  is 

16 



therefore very important. Pi poor natural language front 

end could make the sytsern unacceptable, particularly to 

naive users, and these are the type of users expert 

systems will be built for in the future CWinfield, 198S3. 

£.4 Organization of Expert Systems 

In this section a number of contemporary systems are 

used to illustrate the strengths and limitations of 

alternative organizational methods of building an expert 

system. In an expert system the choice of search method 

is one of the most important decisions. The approach of 

searching for a solution is affected by characteristics 

of the domain, such as size of the solution space, errors 

in the data, and the availability of abstractions. 

Requirements 

Prescript ions 

Small Solution Space 
Data Reliable &• Fixed 
Reliable Knowledge 
Exhaustive Search 
Monotonic Reasoning 

■zi -? 4     ' C. >J " 

Unreliable Data Time-Varying Data Big, Factorable 
or Knowledge Solution Space 

Combining Evi- 
dence from 
Multiple 
Sources 
Probability 
Models 
Fuzzy Models 
Exact Models 

St at e-t r i g gered 
Expectations 

Hierarchical 
Generate and 
Test 

S-' 

17 



No Evaluator 
for Partial 
Solution 
Fixed Order . 
of Abstracted 
Steps 

No Fixed Se- 
quence of Sub- 
problems 
Abstract 
Search Space 

Subproblems 
Interact 
Constraint Pro- 
pagation Least 
Cornm i 

8 

b rnent 

Efficient 
Guessing is 
Needed 
Belief Re- 
vis i on for 
Plausible 
Reasoning 

Single Line of 
Reasoning Too 
Weak 
Multiple Lines 
of Reasoning 

10 
Single Knowledge 
Source too Weak 

Heterogenous 
Models Oppor- 
tunistic Scheduling 
Varialbe-Width 
Search 

_s' 

11 
Representat ion 
Method Too 
Inefficient 
Turned Data 
Structures 
Knowledge Com- 
ilation Cog- 
nitive Economy 

Stefik et al suggested the chart above for the 

alternative cases of organising expert systems. Each box 

in the figure corresponds to one of the cases. The 

numbers on top of the boxes indicate the order in which 

the cases are discussed. The cases are organised into a 

tree  structure such that a sequence of cases in a branch 

18 



refers to increasing elaborate considerations of a basic 

idea. Case 1 requirements are small solution space, 

reliable data and exhaustive search. The boxes £ through 

4 consider the complications of unreliable data or 

knowledge time-varying data, and a large search space. 

Organising a given expert system may require combining 

ideas from any of these topics. The three branches 

descending from case 4 consider further the problem of a 

large search space. The first branch (cases 5 through 8) 

are organisations for abstracting a search space. The 

third branch considers ways of making the knowledge base 

more efficient. The organization of the cases is 

pedagogical and it should be realized that in real system 

the ideas of the varying branches may be combined. 

Case 1.- Smal.1. Search_S2ace_with_Reliabie_Knowiedge 
and Data 

This case considers the simplest architecture for an 

expert system. The first requirement is that the data 

and knowledge are reliable and not filled with errors. 

Ths second requirement is that search space is small and 

provisions are therefore unnecessary to cope with the 

limitations of computational resources. It should be 

realized that in real applications few expert systems 

meet these criteria. 

19 



fln  expert  system  of  this type could be organised 

into two main parts: a memory and  an  inference  method. 

The memory would consist of a list of inferred facts that 

possibly could be represented in predicate calculus CBarr 

and Feigenbaum, 19883, for example 

COn Blockl Blocks: 
CNOT Con Blocks Tableim 

Figure £-3:   Representation in Predicate Calculus 

The data could be stored in a frame system CBobrow, 1975] 

where the indexing of facts is organized to make the most 

common paths more efficient. Data which are used 

together are stored in the same frame. 

Case_£-_ynrgIi§bls_Data_gr_Knowledc|e 

Sometimes it is necessary for expert systems to make 

a judgement under pressure of time. Some of the 

knowledge or data can be unreliable or unavailable. 

MYCIM is an example of an expert system that 

approaches reasoning with uncertainty. To accornodate 

judgmental reasoning MYCIN incorporates concepts such as 

"ft suggests B" or "C and D tend to rule out E" by using 

numbers called certainty factors to indicate the strength 

of a heuristic rule.  fin example of a rule represented in 

£0 



IF (l)the infection is primary-bacteremia and 
(£) the site of the culture is one of the sterile 

sites and 
(3) the suspected portal of entry of the organism 

is the gastro-intestinal tract, 
THEN there is suggestive evidence (.7) that the 

identity of the organism is bacteroides. 

Figure £-4:   MYCIN Rule. 

the MYCIN knowledge base is: The number "0.7" indicates 

the strength of the probability that the hypothesis is 

true. Evidence for and against the hypothesis is 

processed separately, and the "truth" of the hypothesis 

is the algebraic sum of the evidence. CRundle, 19823 

Instead of using its own. formalism for reasoning 

with uncertainty, MYCIN could have used Bayes' Theorem 

CCatanzarite, Greenburg and Bremermann, 1981]. It could 

calculate probability in light of specified evidence, 

from the a priori probability of the disease and the 

conditional probabilities relating the observations to 

the disease. The main difficulty with Bayes Rules is the 

large amount of data that are required to determine the 

conditional probabilities needed in the formula. 

Another approach to inexact reasoning is fuzzy logic 

as discussed by Zadeh CZadeh, 19793 and others. In fuzzy 

logic, the statement "X is a large number' is interpreted 

£1 



as having an imprecise denotation characterised by a 

fuzzy set. ft fuzzy set is a set of values with 

corresponding characteristic functions. 

Fuzzy Proposit ion: 
X is a large number. 
Corresponding fuzzy set: 
CX is a number C0, 103, .13 
[X is a number £10,1000, .£3 
[■CX > 1000}, .73 

The  interpretation  of the proposition 'X is large' 

is that if X is less than  10  it  has  a  characteristic 

function  of  .1, or between 10 and 1000 a characteristic 

function of 0.£ and so on. 

The usefulness of fuzzy logic in reasoning about 

unreliable data would depend on the appropriateness of 

interpreting the data as a fuzzy proposition. 

Besides the use of pseudo-probability and fuzzy 

approaches for reasoning with partial and unreliable 

data, one could use an exact inference method. This 

approach is illustrated in the expert system BftI CStefik, 

19783 which is a data interpretation system that copes 

with errorful data. Gfil's task is to assemble models of 

complete DNft structures using incomplete information 

about the digestion of molecules by enzymes CRundle, 

198£3. 

fln example of a rule for correcting missing data is: 



If a segment appears in a complete digestion for an 
enzyme, that fails to appear in the incomplete 
digestion for that enzyme, 

then it may be added to the list of segments for the 
incomplete digestion. 

This rule is based on the observation that segments 

are easier to overlook in incomplete digestions than in 

complete digestions. 

In summary, there are several methods for reasoning 

with unreliable data and knowledge. fill of the methods 

require a formalization of extra meta-knowledge in order 

to correct the data, take back assumptions, or combine 

evidence. The available meta-knowledge is a critical 

factor in viability of these approaches to a particular 

applicat ion. 

Case_3i_Time_yarying_data 

Some expert tasks involve reasoning about situations 

that change over time. The change of the situation can 

be signalled by time varying- data as in the expert 

system VM (Ventilator Manager) reported by Fagan CFagan 

et al, 1979, Fagan, I960]. VM is a program that 

interprets the clinical significance of patient data from 

a physiological monitoring system by monitoring the 

post-surgical progress of a patient requiring mechanical 



breathing assistance. 

Because a patient's situation can be affected by the 

progression of disease and the response to theraputic 

intervention, VM is an application containing knowledge 

suitable for coping with t irne-varying data. VM has 

several kinds of rules: transition rules, initiation 

rules, status rules and therapy rules. The rules are 

rerun periodically when VM receives a new set of 

instrument measures. The following is an example of a 

transition rule used to detect when a patient's state has 

changed: 

If (1) the current context is 'Assist' and 
(£) respiration rate has been stable for £8 

minutes and 
(3) I E ratio has been stable for £0 minutes 

Then the patient is on 'CMV (controlled mandatory 
vent i1at i on) 

This rule governs a transition between an  'assist' 

context   and   a  'CMV  context  or  state.    VM  uses 

initialization rules to  update  information  for a  new 

context and extablish new expectations for status rules. 

VM's reasoning is concerned only with the previous 

state and the next state. It is limited to adjacent time 

intervals. Research in writing programs capable of 

reasoning about distant events (requiring elaborate 

representations  of  events and  time),   for  example, 



planning and prediction tasks, is in progress. 

£§§§_£l_Large_but_factorable_solutio 

This section describes a technique for coping with 

very large spaces. This technique is necessary when it 

is not enough to find one interpretation of data, but 

every interpretation consistent with the data is 

req u i red. 

ft systematic approach would be to consider all 

possible cases and eliminate those cases inconsistent 

with the data. However, the techniques is impractical, 

ft practical alternative is to use early pruning while 

generating and testing solutions. Two expert systems 

using this technique are DENDRftL CStefik, 198111 and Bfll 

CStefik, 19783.  GftI was mentioned previously. 

DENDRftL generates possible molecular structures from 

mass spectrometer data, nuclear magnetic renosance data 

and other information. It works in three stages, using a 

"generate and test" approach. First it derives a number 

of constraints which the structure must satisfy, and then 

generates a number of structures which satisfy these 

constraints. The proposed structures are then processed 

to predict their mass spectrogram and these are compared 

with the observed experimental data. The program has 

been  accurate  and  used  to  establish  new molecular 
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structures. CRundle, 1982] 

In conclusion, generate and test is appropriate 

method to consider when it is important to find all 

solutions to a problem. However, to be workable, the 

generator must partition the solution space in ways to 

allow early pruning. Often these criteria are associated 

with data interpretation and diagnostic expert system 

problems. 

In design and planning problems one cannot tell from 

a fragment of a plan or design whether that fragment is 

part of a complete solution. This section considers an 

approach to problem solving without early pruning. The 

approach uses the technique of abstracting the search 

space by emphasizing the important steps of a problem in 

a fixed order. This enable the problem to be partitioned 

into subproblems. 

fin illustration of this is the Rl program reported 

by McDermott CMcDermott, 19823. Rl configures Digital 

Equipment Corporation's VAX computer system. The input 

is a customer's order and the output is a set of diagrams 

displaying the spatial relationship among components on 

the order. Rl is capable of determining whether a 

customer's order is  satisfactory  and  adding  necessary 
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components if it is not. 

The configuration task can be grouped into the 

following subtasks that have strong temporal 

interdependance. 

1. Determines whether  there is anything grossly 
wrong with the customer's purchase order. 

£. Put the appropriate components in the CPU  and 
CPU expansion cabinets. 

3. Put  boxes in the unibus expansion cabinet and 
put the appropriate components in those boxes. 

4. Put panels in the unibus expansion cabinets. 

5. Layout the system on the floor. 

6. Do the cabling. 

fin example of a rule for the third subtask follows: 

If the most current active context is assigning a power 
supply 

and a unibus adaptor has been put in a cabinet 
and the position it occupies in the cabinet is known 
and there is space available in the cabinet for a 

power supply for that position 
and there is an available power supply 
and there is no H7101 regulator available 

Then add an H7101 regulator to the order. 

Because of the  way  in  which  the  stages  in  the 

process have  been abstracted,  Rl always processes the 

tasks in the same order and nevBr     needs  to  backtrack. 

CRundle,  19823.   Rl, with the use of abstraction space 

does very little search.  This method requires a  partial 



ordering on decisions for a task since the consequences 

of applying an operator will affect 'later' parts of the 

solut ion. 

The use of abstractions should be considered for 

applications where there is a large search space but no 

method for early pruning. 

Case_6jL_No_fixed_gartitionin3_e£_ 

This section describes an organization appropriate 

to applications that cannot with each use be partitioned 

into the same subproblems. In this type of system an 

abstract approach is used. The following aspects of this 

approach are important: 

1. Abstractions for each problem are composed 
from terms (selected from a space of terms) to 
fit the structure of the problem. 

£. During the problem-solving process, these 
concepts represent partial solutions that are 
combined and evaluated. 

3. The concepts are assigned fixed and 
predetermined abstraction levels. 

4. The problem solution proceeds topdown, that is 
from the most abstract to the most specific. 

5. Solutions to the problems ars completed at one 
level before moving down to the next more 
specific level. 

6. Within each level, subproblems are solved in a 
problem independent order. 
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OBSTRIPS CSacerdoti, 19743 is an example of this 

approach. The robot planning expert system makes plans 

for a robot to move objects between rooms. In ABSTRIPS 

the abstract ions are plans. The concepts are type and 

color, inroom, etc.; and the abstraction levels are 

represented by what Sacerdoti refers to as criticality 

values. These values place the concepts in heirarchy of 

importance. In one example Sacerdoti suggested the 

following criticality assignents for concepts in a robot 

planning domain: 

Type and Color 4 
InRoom 3 
Plugged and Unplugged £ 
NextTo 1 

One should note that in all problems of the the 

domain, the hierarchy of 'Type and Color' will always be 

greater than 'InRoom'. Planning in OBSTRIPS starts where 

criticality is at a maximum. Preconditions whose 

criticality is below the current level are invisible to 

the planner and will be accounted for during a later 

level pass. After a plan is completed at one criticality 

level the criticality level is decremented. The abstract 

plan becomes more detailed as criticality level 

decreases. The sequence of abstract plans is created 

differently  for  each  problem depending on the concepts 
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employed. 

In summary, this approach utilizes a topdown 

refinement that is individually constructed to fit each 

problem in the domain. In this approach it must be 

possible to assign a criticality ordering to the domain 

concepts and what is important for one problem must be 

important for all problems CStefik et al, 198£]. 

Q§se_7i_Xn£.^!2§EtiDa_§y;kBtZ'2kIsms 

In the previous case it is assumed that similar 

kinds of decisions should be made at the same criticality 

level for each problem in the domain. This section 

explores a reasoning approach based on the least- 

commitment principle. 

This approach requires the following attributes: 

1. The ability to know when there is enough 
informat ion to make a decision. 

£. The ability to suspend problem-solving 
activity or\ a subproblem when information is 
not available. 

3. The ability to move between subproblems, 
starting work as information becomes 
available. 

4. The ability to combine informat ion from 
different subproblems. 

The   figure  above  is  an  example  of  the  least 

commitment approach used in NOfiH CSacerdoti, 1974].  NOflH 
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LEVEL 1: 
Paint the ceiling and paint the ladder. 

LEVEL 2: 
^Paint the ceiling.^ 

split ^ io i n 
"""""—Paint the   1 adder.«-^*^"^ 

LEVEL   3: 
Get   paint-get   laddei—  apply  paint   to  ceiling.- 

split JO£ri 

\ / 
Get paint- apply paint to ladder. ' 

LEVEL 3: (after conflict resolution) 
Get paint- get ladder- apply paint to ceiling—h 

split r * * 

\ et paint- join- apply paint to ladder.  

Figure £-5:    Example of Planning in NOAH 

is  a robot planning system that assigns a time ordering 

to operators in a plan as they are required. 

In figure (£.5) NOAH'starts with two subgoals which 

are expanded until a conflict is found. The conflict 

appears in LEVEL 3. If the ladder is wet it cannot be 

used to paint the ceiling. fit the time the conflict is 

resolved by altering the plan. 

In conclusion, this  approach  coordinates  decision 

making with the availability of information and moves the 

focus of the problem solving activity among subproblems. 

When there are many options and no compelling reasons for 

choices one cannot utilize this approach. 
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G3se_8£_Gue5si.ng_i.5_needed 

Below  are  listed  situations  in  reasoning  when 

guessing is important: 

1. Many problem-solvers need to cope with 
incomplete knowledge and may be unable to 
determine the best choice at some stage in the 
problem solving. 

£. A search space may be quite dense in 
so1ut ions. If so1ut ions are p1ent ifu1 and 
equally desirable then guessing is efficient. 

3. Sometimes, as in top-down refinement, there is 
an effectove way to converge the solutions by 
systematically improving approximation. 

The  difficulty  in guessing is in identifying wrong 

guesses and recovering from them.  Stallrnan and  Sussman 

CSussrnan  and Steele, . 1980] use guessing in EL, which is 

a program analysing electrical circuits. 

When analysing diodes and transistors, EL uses a 

method of assigned states that requires guessing. For 

diodes EL has two possible states (On or Off) and three 

states for transistors (active, cutoff, and saturated). 

Once a state is assumed EL can use a non guessing method, 

propagation analysis. After making an assumption EL must 

check whether the assumed states are consistent with the 

voltages and currents predicted for the devices. 

Contradiction   is  used   to  detect   incorrect 

assumptions.  When a contradiction occurs the assumptions 
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are revised through belief revisions. 

In EL an assertion is believed (or in) if it has 

well-founded support from atomic assumptions, and out 

when lacking support. If an assertion was out and 

becomes in it is unouted. In the figure below fll and fl£ 

are mutually exclusive device-state assumptions. The top 

portion of the figure demonstrates facts that are in when 

ftl is in. Arrows indicate support and dotted lines 

(although part of the data base) indicate what is out. 

In the bottom of the figure (£.S) fl£ is unouted and fli is 

outed. 

Generally dependency directed backtracking is used 

in belief revision to recover from incorrect assumptions. 

The main points are: 

1. In the event of a contradiction EL needs to 
decide what to withdraw. El must decide which 
assumptions are most unlikely to change. 

£. El must redo some of the propagation analysis. 

3. Contradictions are remembered so that choice 
combinations that are found to inconsistent 
are not tried again. 

El employs efficient guessing CBtefik et al, 1982D 

via dependency directed backtracking to recover from 

incorrect assumpt ions. 
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Figure S-6:   Example of Belief Revision in EL 

Q^§i_2l_§iQ3l§_]iine_gf_rea5oning_too._weak 

In certain instances systems gain power in the use 

of multiple lines of reasoning in problem solving. The 

two main purposes for multiple limes of reasoning are to 

broaden the coverage of an iincomplete search and to 

combine strengths of separate models. 
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The expert system HEARSAY CErman et al, 1988], a 

system for understanding speech, copes with conflicting 

demands of searching a large space with limited 

computational resources by carrying a limited number of 

solutions in parallel. 

A  good  example  of combining strengths of multiple 

models is the  expert  system  SYM CSussman  and  Steele, 

1980].    SYN  is  a  program  for determining values for 

components  (e.g.  the  resistance   of   resistors)   in 

electrical curcuits. 

SYN utilised the idea of slices or multiple views of 

a circuit which corresponds to the idea of equivalent 

circuits in electrical engineering practice. For 

example, a voltage divider can be seen as being composed 

of two alternative slices. One slice of the circuit 

describes the voltage divider as two resistors and 

another slice describes it as a single resistor. The 

program then proceeds in two redundant paths for 

information to travel in propagation analysis. The 

strengths of the different models are combined with 

forward reasoning. When using slices the problem solver 

must know how to create and combine multiple views. 

Q§§§_i®l_iiD3l§_source_of_knowI§dge_is_too_weak 

This section explores the use of multiple sources of 
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knowledge in an  expert system.  HEPfRSRY reported by Errnan 

CErman et al, 1980] is once again used as an  example. 

In HEflRBflY-II the knowledge for understanding speech 

is broken into knowledge sources of information referred 

to as heterogeneous abstraction spaces. The levels are 

heterogeneous to match the diversity of the interpetat ion 

knowledge (see figure £.7). The knowledge sources 

cooperate via an opportunistic scheduler that coordinates 

the diverse sources of knowledge and adapts to changing 

conditions of uncertainty in solutions by changing the 

breath of the search for different hypothesis. The basic 

mechanism for this is the interaction between knowledge 

source assigned credibility ratings on hypothesis and 

scheduler assigned priorities of pending knowledge source 

activations. Therefore, abiguity between competing 

hypothesis causes HEftRSOY-11 to search with more breath, 

and to delay the choice among competing hypothesis until 

more information is available. 

Case 11.£ §§D.gr.3l E§;EE§§!iQtat ion [nethods are too 
inefficient 

fls knowledge bases get larger, the efficiency 

penalty incurred by using uniform representations can 

become significant. One change in the representation of 

knowledge  that   is explored  for  expert  systems  is 
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Levels 

Data Base 
Interface 

Phrase 

Word 
Sequence 

Word 

Syllable 

Segment 

Paramet er 

Knowledge Sources 

»J3emant ics 

Predict 
> 

St 03 

Parse Concai 

; 

Word-Ct; 

Word-seq *- 

Word-Seq-Cts Verify 
WOW "" 

£Q£L 

SEG f- 

RPDL 

The knowledge sources are as follows: 
Semantics: generates interpretation for the 

informat ion syst em. 
SEE: digitizes the signal, measures parameters, 

produces labeled segmentation. 
POM: creates syllable-class hypothesis from 
segments. 

MOW: creates word hypotheses from syllable 
classes. 

Word-Ct1: controls the number of hypotheses 
that MOW makes. 

Word-Seq: creates word-sequence hypotheses 
for potential phrases. 

Word-Seq-Ctl: controls the number of 
hypotheses that Word-Seq makes. 

Predict: predicts words that follow phrases. 
Verify: rates consistency between segment 

hypotheses and contiguous word-phrase 
pairs. 

Concat: creates a phrase hypothesis from 
a varified contiguous word-phrase pair. 

RPOL: rates the credibility of hypotheses. 

Figure 2-7:   Levels and Knowledge Sources in HEARSAY-11 

knowledge  compilation. 37 Tit is technique transforms one 



representation of  knowledge into another representation 

that can be used more efficiently. 

Burton reported a system [Burton, 197&3  for taking 

PlTN  grammars  and  compiling  them into executable code. 

CStefik et al,  198S3  The compiled  grammar  could  be 

executed to  parse sentences much  more  rapidly than 

previous interpreter-based approaches. 

The promise of knowledge compilation is to make it 

possible to use general means for representing kowledge 

when an expert system is being built and debugged. Then 

the compiler can be applied to make the knowledge base 

more efficient. In addition, as hardware is changed or 

as trade offs in representation become better understood, 

the compiler can be modified to represent knowledge 

efficiently. 

In summary, the first case considers an expert 

system of a very simple architecture that requires small 

search space and data and knowledge that is reliable and 

constant. In successive cases the following attributes 

of an expert system are considered: unreliable data, 

time varying data, and big solution space. The cases of 

an expert system with a big solution space, but requiring 

organisation to accomodate other complex structures are 

developed. The organization of an expert system relects 

the availability of search space and the characteristics 
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of the knowledge base and data. 

2.5 Software Tools 

The development of expert system software tools is 

an area requiring increasing attention. Currently much 

work in knowledge engineering focuses in developing 

computer programs that aid scientists with complex 

reasoning tasks. However, building these programs is a 

time consuming task CTanaka, 19823. 

One of the techniques used in an attempt to harness 

the power of expert systems more efficiently is by 

building up the knowledge base of such systems with 

special purpose programming languages. 

The best known of these is Lisp, a language 

developed orignally as a means of proving correctness in 

programs and taken up by the artificial intelligence 

community as its major tool [McCartney, 19823. Lisp 

provides a rich, interactive editing and debugging 

environment. More fundamentally, Lisp removes the 

distinction between programs and data by treating the 

rules and heuristics in the knowledge base sometimes as 

data to be reasoned about and sometimes as code to be 

executed. CDavis and Lenat, 19823. 

fl lesser known example is Prolog, a software 

language   designed   for   artificial    intelligence 



applications,  such  as,  expert systems [Goodall, 1983]. 

Prolog stands for PROgrarnming LOGic.    It  is  based  on 

predicate  calculus [Rundle,  198SD and is very different 

from the standard  type of  programming  language  or 

notat ion. 

Prolog was originally developed at the University of 

Marseille  at  the  beginning  of the 1970s as a means of 

using  computers  to  understand  so  called   'natural' 

languages.    The study  of  natural language is closely 

allied  with  the  study  of   artificial   intelligence. 

[McCartney, 198£] Expert systems are a prime example of 

the type of the type of application to which Prolog is 

well suited. 

The rules and conditions which comprise the 

knowledge base of an expert system can be easily 

represented  by  Prolog's  data  structuring  facilities. 

[Goodall, 1983D ft Prolog program consists of a number of 

rules or facts about a subject. Once defined you can ask 

prolog questions about the subject and it will attempt to 

answer them [Rundle, 198S3. The inference engine of an 

expert system needed to manipulate these rules and 

conditions can make use of the language's own inference 

mechanism (which does not have to be the same as that of 

the expert system). 

Writing in Prolog is quite different from writing in 
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a traditional algorithmic language. Instead of asking 

'what is the algorithm that will solve my problem?' the 

programmer asks 'what are the facts and rules which 

describe my problem?' Having determined the facts and 

rales, the programmer can than state them very naturally 

in Prolog (this is where the basis in logic comes into 

play) and the problem is given a formal specification, 

fit this point the programmer changes the way he views the 

program and considers it as a set of procedures which 

when executed, will perform a controlled deduction 

through the logic statements. To some degree the details 

of how this deduction takes place can be left unspecified 

by the programmer, since this is handled by the 

language's inbuilt inference mechanism CGoodall, 1983D. 

trained-on (adarns, rnx01). adarns is trained on an rnxiZil 
trained-on(brown, mx0i). brown is trained on an mx01 
trained-on(brown, mx0£). brown is trained on an mx0£ 
trained-on (carter, mxiZi3). carter is trained on an  mx03 
owns(avis, mx01). avis owns an mx01 
owns (avis, rnxiZi3). avis owns an m><03 
owns(bbc, rnxOl). bbc owns an rnx01 
owns (cook, rnx0£). cook owns an mx0£ 
owns(cook, mx03). cook owns an mx03 

Figure 2-8:   PROLOG data base 

Consider, for example, (see figure £.8) a number of 

servicemen (adarns, brown, and carter); a number of 

machines which  they  service  (mx01, mx03, mx0£); and a 
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number of customers who own one or more machines (avis, 

bbc, cook). The above Prolog database describes the 

situation in detail. fill the above are 'facts' which in 

this case do not contain variables. The general form of 

a Prolog definition of a relationship or assertion iss 

(relationship) C(subject)(object)1. 

can-call-on CS, CH:- owns CC, M3, trained-on CS, Mil 

The above is a prolog 'rule'. The symbol :- means 'if 

or 'provided that'. S, C and M are variables becase they 

start with an upper case letter. The rule says 'ft 

serviceman S can call on a customer C provided that C 

owns some machine M and that S has been trained on M.' 

The rule can be used to locate all Cs, given an S, or all 

Bs given a C, or all valid combinations of S and C. 

The above facts and the single rule constitutes a 

very simple Prolog program that purely describes the 

serviceman/rnachine/customer world. If this were in a 

Prolog database one could ask questions of the database 

as in figure £.9. 

Questions are preceded by a ' ?'. CGoodall, 1983] 

Although,  little  commercial  use  is being made of 

Prolog currently, it is likely to be only  a matter of 

time  before it will become used in the world of business 

in software departments  as a  tool  to  build  expert 
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?-~trained~on (S, mx0i ). 

S=adarns 
More(y/n)?y 
S=brown 
More (y/n)?y 
no 
?-owri5   (bbc, M). 

M=mx01 
More(y/n)?y 
no 
?-can-cal1-on(S,avis). 

S-adarns 
?-can-cal1-on   (brown,C) 

C=avis 
More(y/n)?y 
C=bbc 

Who is trained 
on an rnx01? 
adams is 

and brown is 

What machines 
does bbc own? 
an mx01 

and no more 
Which servicemen 
can call on avis? 
adams cari 
On which customers 
can brown call? 
on avis 

on bbc 

Figure £-9:   Sample Questions of Database 

systems. [McCartney, 198E3 

Some other software tools besides special purpose 

programming languages are tools that have been developed 

to aid the design process of the knowledge base of an 

expert system. 

EXPERT and EMYCIN (essential MYCIN)  assist  in the 

development   of  production  systems CMizoguchi,  198£3. 

EMYCIN is not itself an expert system- it is a  means of 

building  such  systems and one way of getting around the 

problem of setting up the rule database. 

Essential MYCIN is the central core of MYCIN, and is 

used as a domain  independent  system  to  develop  other 
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rule-based systems. EMYCIN has been applied to expert 

systems in other medical areas, such as pulmonary 

disorders (PUFF) and psychiatry (HEftDMED) as well as 

structural analysis (SRUM). 

According to researchers at Stanford University, the 

most recent application of EMYCIN took only £0 hours to 

build. In a recent report published by "Pergarnon 

Infotech on Machine Intelligence", the system CLOT which 

was developed for diagnosing disorders of the blood 

coagulation system- "was constructed as a joint effort by 

an experienced EMYCIN programmer and a collaborating 

medical student. Following approximately 10 hours of 

discussion about the contents of the knowledge base, they 

entered and debugged in another 10 hours the preliminary 

knowledge base of some 60 rules using EMYCIN" [McCartney, 

19823. 

fl software product called fiL/X (standing for 'advice 

language') has been developed by Michie. It is designed 

for programming expert systems and was developed in 

conjunction with BP (a British company) at Dyce. Its 

successor, coded in the language C, will be available in 

the near future and run on any Unix or Unix-like 

operating system. Available at that time will be a 

component, Intelligent Terminals' rules from examples 

system, that is designed to automate the  compilation  of 
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rules  from  examples.    It  is intended to increase the 

productivity of human experts. 

Michie contends that the bottleneck in building 

expert syterns is the acquisition from the human expert of 

a huge number of rules that are only partially and 

imprecisely accessable to the conscious mind. This 

system will operate as if one were teaching an 

apprentice. Examples will be fed in and a rule will be 

produced automatically to encompass them. 

The immediate application would be an expert system 

designed for testing electronic equipment with fault 

tables. Long term application would be computer vision. 

In the not too distant future this system will be 

available as a floppy disk for the Apple computer 

CBurkitt, 198£]. 

In developing expert systems, KRL, FRL, UNIT and 

RLL, are available as general purpose representation 

systems for a knowledge base. CMizoguchi, 198£3. More 

recently, AGE (Misoguchi~17) has been proposed as a tool 

for designing general purpose knowledge base systems. 

If the tools for knowledge base systems are suitable 

to the problem domain, the necessary task of the designer 

is the task of selecting the best tool among them and 

formulating the problem in terms of the specifications of 

the tool.    The design process is highly dependent upon 
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the   software  tool  that  is  applied  to  the  problem 

[Mizoguchi, 1982], 

Another approach to software tools, is the concept 

of SOUI, the self-adaptive user interface. This tool 

would be under the category of what Waterman [Waterman, 

19783 describes as a small program that sits between the 

user and the system. The user interacts with the SAUI 

and the SflUI is capable of performing a variety of tasks 

for the user by interfacing the user with the expert 

system. The SflUI provides the user with help in learning 

and using complex expert systems. [Innocent, 19823 

Software tools, such as, SflUI are in the planning stage. 

A system called Multi-Layered Software Environment 

(MLSE) has been proposed for providing a designer of an 

expert system with a wide variety of design altemat ives 

in software tools derived from artificial intelligence 

technology. It is a collection of module packages for 

building the components of knowledge base systems. This 

system emphasizes a layered approach to building the 

software environment as a basis for developing a 

knowledge base system [Mizoguchi, 19823. 

A British company, SPL, has introduced a new 

software package called SAGE which it claims is the first 

general purpose development program for expert systems. 

In other words it is software that will enable the user 
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to  produce  their  own expert system on any subject they 

like. 

The purpose of the software tools previously 

mentioned are to alleviate the burden of writing an 

expert system and allow the user to implement a system 

with less instructuion that was available in the past. 

S.6 Applications 

Expert systems are regarded as a major computing 

development. They are the first practical implementation 

of research into artificial intelligence. One of the 

reasons for their success is that they are not apparently 

'clever' and do not make human beings feel 

inferior CMcCartney, 19SSII. Expert systems are convivial 

to the extent that they make previously scarce expertize 

available to the user. They are congenial to the extent 

that they interact with the user in his or her language 

and offer assistance in a mode that allows the user to 

retain decision making perogatives. The expert system, 

moreover, contains knowledge in a formalism natural and 

understandable to the user. The system contains an 

explanation capability to explain the 'why and how' of 

its rasoning CBendifallah, 198£]. fin expert system has 

the ability to accept rules and experience concerning a 

specific domain and make  deductions about  that  domain 
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CMcCartney, 198S3. 

Virtually any problem domain is suitable for 

solution by an expert system provided the knowledge 

necessary for solving the problem domain can be put into 

rule form. However, it is necessary to remember that if 

a problem domain generates less than about 10 rules, it 

is probably not worth using an expert system, since a 

human can solve it just as efficiently CWinfield, 1982D. 

Recent domains providing practical applications for 

expert systems are medical diagnosis and therapy; 

equipment failure diagnosis; computer configuration; 

chemical data interpretation and structure; experiment 

planning; speech and image understanding; oil field 

services; military needs; mineral exploration; military 

threat assessment and targeting; crisis management; 

science; advising about computer system use; training 

teaching; and air traffic control CFeigenbaurn, 198£]. 

Some existing practical applications of expert 

systems are listed below. 

Application Area. Name       Comment s 

Mineral exploration  Prospector  Interprets surface 
geology. 

Translation of      TflUM       Translates meteror- 
meteorological logical bulletins 
bu11itens from Eng1i sh to 

French. 
Materials handling Microcomputer EB to 

help select 
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Mass spectral 

Medical test 
analysis 
Plant pathology 

DENDRAL 

PUFF 

AQ11 

Oil platform faults  AL/X 

Medicine Psyco 
Tax advice 

Science 

System design 

Fault Diagnosis 

Medicine 

Educat ion 

TAX ADVISOR 

CONCHE 

Rl 

CRIB 

MYCIN 

BUIDON 

handling 
techniques. 
First ES. 
interprets 
mass spectra (Chern. 
analysis). 
Diagnoses- pulmonary 
diseases. 
Exceed human diag- 
nosis of soyabean 
diseases. 
Diagnosis automatic 
shutdowns. 
Diagnosis Dyspepsia 
Advice on capital 
transfer tax. 
Aids scientific 
theory formation. 
Configures DEC VAX/ 
780 Computer 
systems. 
Diagnosis computer 
hardware and 
software faults. 
Diagnosis and drug 
treatment. 
Tutor improves 
students diagnostic 
ski 1 Is. 

Particularly noteworthy are MYCIN, AQ11, PROSPECTOR, 

Rl and DENDRAL.  Medical consultation systems are a major 

application  of artificial intelligence research CKaihara 

and  Koyama,  19823.    MYCIN,  an expert  system  that 

diagnoses  blood  diseases and selects antibiotic therapy 

for bacteremia has  been mentioned  previously  in this 

paper. [Chester,  198£3 Developed at Stanford University, 

it is one of the earliest  and  simplest  expert  sytems. 

The  MYCIN system contains about 450 rules which are used 
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for diagnosis. It has been developed further by the 

addition of £00 or more rales to be used as a teaching 

aid and covering both facts and problem-solving 

strategies. The extra rules cover methods of guiding 

dialogues with the students and presenting strategies to 

the students. CRundle, 19S2D P.Q11 is a system which has a 

33'A success rate in diagnosing soyabean diseases and is 

now used by the top human experts. CEllis, 1983] 

Dendral is another well known system that originated 

at Stanford University. It is designed to determine the 

molecular structure of organic compounds from their 

chemical formulas using mass spectrograph and nuclear 

resonance data. [Chester, 198£3 The program has been used 

to establish new molecular structures CRundle, 198£]. 

One of the best known engineering expert systems is 

PROSPECTOR CBoothroyd, 198S3. PROSPECTOR is capable of 

mapping underground ore deposits from observed surface 

features CEllis, 19Q33. ft company SRI International was 

commissioned by the United States Geological Survey and 

US National Science Foundation to develop PROSPECTOR 

CRundle, 198SH. This system gives geological advice to 

mineral companies looking for the likeliest sites to find 

copper and molybdenum. CBoothroyd, 198£] 

PROSPECTOR contains  rule-based models of different 

ore deposits which can evaluate the likelihood of finding 
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a particular type of ore in a geological district, and 

select the best drilling position on the exploration site 

CRundle, 19823. The 1600 or so rules comprising 

PROSPECTOR'S knowledge base were developed by 

interviewing a number of geologists who were recognized 

experts in their field, and building up the associations 

between observable evidence and the likely underlying 

geological structure. Moreover, PROSPECTOR is capable of 

giving details of the rationale for conclusions reached 

and suggesting which data are most valuable for further 

exploration CRundle, 1S82D. 

PROSPECTOR has correctly contradicted human experts. 

The US company Fairchild was considering exploration for 

a deposit of the rare element, Molybdenum, on a site that 

its advisors told them was not worth the investment. 

PROSPECTOR said the opposite ard was proven to be correct 

CBoothroyd, 198£]. 

Digital Equipment CMcDerrnott, 198£3 has pioneered 

the use of expert systems for working out the demands of 

its customers and turning them into a machine 

configuration. Rl designs complex computer systems. The 

system has been used extensively for this purpose on 

their latest range of VAX computers. [McCartney, 198E3 

The system has about 80® rules governing the 

conf igur'at ions, together with a database describing about 
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400 components. CRundle, 19B£] Eventually, the 

configuration produced by the computer will be fed 

automatically to the factory where manufacturing will 

start under computer control CBoothroyd, 19B£]. 

Presently, expert systems cari store and amplify rare 

specialist expertise and make it more widely accessable. 

Expert system techniques offer a route to solutions to 

high software development costs, incomprehensibility of 

programs and the inability of the ordinary user to 

intervene without a programmer to help. 

ft problem in today's world is the shortage of human 

expertise. It is scarce and expensive. Human experts 

are fallible and their compacities limited and, of 

course, they are mortal. In contrast, expert systems are 

capable of reducing skill shortages. They are widely 

distributable, easy to run, duplicate and upgrade. 

Expert systems have the capability of excelling humans in 

complex problems, and they cannot resign or die. 

Some of the management concerns of the 1980's are 

the acquisition of competent management, too little time 

to solve problems, an overload of information, lack of 

trained personnel, and the availability of material 

resources. Expert systems are now capable of policy 

analysis and strategy, of augmenting management skills, 

and  formulating  and  solving existing problems.  Expert 



systems are decision oriented. They can educate 

personell, assist in exploration of resources and cut 

risks and costs of management. 

Previously people complained about the difficulty of 

conversing with computers, the difficulty in 

understanding computers and the expense in modifying and 

developing computer software. Expert systems bridge the 

man-machine gap. They talk in user language, can explain 

reasoning, and are trivial to modify. They are the best 

route in encouraging progress in automatic programming. 

There is concern that present complex computer 

systems are dangerous because, for example, they can emit 

false missile alerts, allow mistakes, such as, occurred 

at 3-mile~i5land and are hard to monitor in air traffic 

control. Expert systems return human control by 

providing a 'human window' that allows the user to 

comprehend the system and enables faults to be spotted 

and disasters averted. CEllis, 1983] 

In the future, if successfully developed, the fifth 

generation computer sytems will be excellent vehicles for 

expert systems applications CFeigenbaum, i98£]» 

Recognizing the importance of knowledge based industries 

in the £lst century, the Japanese are two years into a 

ten year program to develop 5th Generation Computers. 

These computers will go radically  beyond  all  previous 



computers and put useable information technology at 

everyone's elbow. Details released in Tokyo in October, 

1381, to computer experts from Western countries detailed 

three key elements of design. 

1. Very large scale integrated components- high 
power at low cost on small chips. 

£. Distributed processing- distributing computer 
via t e1ecommun i cat i ons and 

3. Expert systems making computers behave more 
like people, and also leapfrogging- current 
software quagmire. CEllis, i983II 

The Japanese, are committed in their Fifth 

Generation project to having systems with over 10,000 

rules within the decade. CMcCartney, 198£] The social and 

economic goals of this project are ambitious and would 

include Japan providing world-wide leadership in 

information technology CParrott, 1983]. 

Fifth generation computer expert systems will be 

primarily symbolic manipulation systems. They will be 

knowledge processors with arithmetic capabilities. They 

intend to meet the major commercial demands of personal 

and professional expert systems from the period of 1998 

to 2000. Much of today's software will appear on the 

chip as hardware in these systems. The software ideas of 

today are the seeds of the big ideas for the Fifth 

Generation Computer expert systems CFeigenbaum, 198S3. 
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Expert systems have powerful implications for 

managers, professionals and organizations. Expert 

systems are a human face of information technology and 

will find an application in every sector and level of 

modern economy. 

Expert systems will change the ways managers and 

professionals operate by their ability to call an expert 

system for decision making. Expert systems will have 

increased capability in the future and reduced response 

time. In the professions, top experts will find a new 

channel to market their skills, allowing them more time 

for research and checking assisted solutions. Lesser 

experts, hopefully, will see expert systems as a better 

type of 'manual'. 

Collectively, these efforts could radically alter 

the performance of organizations. If expert systems and 

advanced inforrnat ion technology are to be introduced 

beneficially, a coordinated strategic response may be 

required. The advantages of expert systems applications 

can be enormous if the applications, timing, investment 

profile and employee relations are all considered. 



3. Major Research Issues of Expert Systems 

This chapter discusses some major research issues of 

expert systems. They are heuristics, knowledge 

representation and knowledge acquisition. 

3.1 Heuristics 

Builders of expert systems attribute the impressive 

performance of their programs to the body of knowledge 

they contain: a large network of facts and a large array 

of heuristics. Heuristics are informal, judgmental 

'rules of thumb'. 

Heuretics who study heuristics extract heuristics 

from experts. They decide when the existing corpus of 

heuristics needs to be augmented. They represent 

heuristics within the knowledge base, and evaluate the 

worth of a particular heuristic in a progran; in 

troubleshooting an expert system built with heuristic 

rules. 

Researchers of heuristics study the origin of 

heuristics and the source of the power of heuristics. 

The source of power of heuristics can be seen as a two 

dimensional continuity CLenat, 19S£3. If a heuristic H 

was useful in situation B, then it is likely that 

heuristics similar to H will be useful in situations 

similar to S. If  one were  to compute the  function 
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APPROPRIATENESS (fiction, Situation), that function would 

be continuous in both variables, and would vary very 

slowly. Although, according to Lenat, appropriateness 

can be measured in many ways (such as, efficiency and 

comprehensibi1ity) and situations can vary (with 

difficulty, time, importance and subject matter), it is 

often useful to behave as though the function 

appropriateness (action, situation) exists and is 

continuous. If one does so then one is following a 

heurist ic. 

One must consider the continuity, stability and 

observability of a domain in determining whether an 

expert system utilising a heuristic search will be of 

assistance. If data is not observable and cannot be 

gathered then heuristics cannot be formed and evaluated. 

If the environment is not continuous and canges abruptly, 

the heuristics may r\ever be valid. If the changes are 

continuous but too rapid to be stable then the heuristics 

may have too short a lifetime before becoming useless. 

According to Lenat's [Lenat, 19823 empirical results 

from AM, an expert system designed to discover 

mathematical concepts and conjectures, new heuristics 

arise from three sources: specialization, generalization 

and analogy. Specialization of existing, more general 

heuristics  can provide one or more new heuristics.  This 
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can occur, for example, when matching more specified 

observed data to a template in a computer program or it 

cari occur when noting an exception to a genral heuristic, 

and therefore formulating a higher precedence heuristic. 

Generalization of existing, more specialised 

heuristics can occur. Commonly a.ri abstraction of a 

heuristic applied in a more specific area of a program 

can be applied more generally to a greater domain in the 

expert system. Analogy to existing heuristics and to 

successful acts of creating new heuristics is the third 

origin of heuristics. In AM, for example, Lenat was able 

to look for examples of concept C before trying to prove 

any theorems about C. 

Some  examples  of  domain  heuristics  in  AM   are 

illustrated in figure 3.1 below. 

His  IF:   ft X ft -> B, 
THEN: define 6: fl-> B as G(x) = F(x,x) 

H£:  IF:   F:ft->B, and there is some extremal 
subset b of B, 

-1 
THEN: define and study F  (b) 

Figure 3-1:   Two Heuristic Rules 

Heuristic HI, says if a function F takes a pair of 

ft's as arguments, then it's often worth the time and 

energy  to  define  G(x)=F(x,x),  that  is,  to  see what 
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happens when 'F's arguments coincide. If F is 

multiplication, for example, this new function 'G' 

becomes squaring. Heuristic H£ says to investigate the 

inverse image of known b. If 'F' is intersection, H£ says 

it's worth considering pairs of sets which map into 

extremal kinds of sets (e.g. extremely small sets, such 

as the empty set). This heuristic could lead to defining 

the relationship of two sets having empty intersection or 

disjointness. 

fin expert system, EURISKO CLenat, 19Q2D, which is an 

extension of the previously mentioned AM,  is  a  program 

built  with heuristic rules and is capable of discovering 

new heuristics as  well  as  new  mathematical  concepts. 

Below  is  an  example  of  three  heuristics  in EURISKO 

capable of working on heuristics as well as math concepts 

domain.  Meta-heuristics are  heuristics  which  inspect, 

gather  data,  modify  and  synthesize  other heuristics. 

Their counterpart are  domain heuristics that define  what 

we  mean  by  a  particular  domain  of  knowledge  (i.e. 

mathematic concepts), and are object level heuristics. 

The first one says that if some concept f has always 

led to bad results, then f should be marked as less 

valuable. Concepts in EURISKO are knowledge represented 

by the frame method. If a mathematical operation, like 

Compose  (which  refers  to  mathematically composing two. 
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Hi£s  IF:   the results of performing F have 
always been numerous and worthless, 

THEN: lower the expected worth of F. 

H13:  IF:   the results of performing F are 
only occasionally useful, 

THEN: consider creating new specializations 
of F by specializing some slots of F. 

H14:  IF:   a newly-synthesized concept has slots 
that coincide in value with those of 
an already existing concept 

THEN: the new concept should be destroyed 
because it is redundant. 

Figure 3-£:   Heuristic Rules in Eurisko 

functions),  did  not  ever  lead  to  any  good new math 

concepts, then this  hueristic  would  lower  the  number 

stored  on  the  'worth'  slot  of  the  compose concept. 

Likewise, if a heuristic, for drawing diagrams never  was 

utilized then its 'worth' slot would be decremented. 

The second heuristic H13 says that if some concept 

has been occasionally useful and frequently worthless, 

then it is worthwhile to investigate specialized versions 

of that concept. H13 was utilized in AM, for example, to 

find new specializations of the compose concept to create 

a function, composition of a function with itself. In 

EURISKO H13 was further developed to apply H13 to 

heuristics. In fact H13 once applied to itself. One of 

the specializations resulting was heuristics which demand 

that it has proven itself at least 3 times. 
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Heuristic Hi4 enables EURISKO to eliminate redundant 

concepts created perhaps by other heuristic rules. The 

heuristics of EURISKO are capable of operating on each 

other (and themselves) to synthesize new heuristics. 

The field of heuretics is a promising one for 

Artificial Intelligence to investigate in helping one to 

understand and construct expert systems. The power of 

heuristics lies in behaving as though appropriateness 

(action, situation) were time invariant and continuous in 

both variables. Heuristic search is appropriate when 

modeling domains that are observable, stable and 

continuous. Heuristics originate from generalizing other 

heuristics, specializing other heuristics, and finding 

analogies to other heuristics. 

EURISKO demonstrates that there is not a need to 

distinguish between object level heuristics and 

meta-heuristics. Continued research in heuristics will 

hopefully provide new ways to improve and understand 

expert systems. 

3.2 Knowledge Representation 

Expert systems are unique in that they use an 

ordered set of task-specific rules to solve problems in a 

way similar to how an expert in a particular technical 

field might do it. CWebster, 19S£] These set of rules lay 

61 



down the relationships and correlations between 

information segments in the knowledge base. Determining 

the best of many possible ways of representing this 

knowledge and the rules connecting different items in the 

knowledge base becomes an important consideration 

CGowans, 19823. Much research work is currently being 

pursued into ways of representing knowledge in expert 

systems CWinfield, 19823. 

1. Logic 
£. Procedural representations 
3. Semantic networks 
4. Production systems 
5. Direct (analogical) representations 
6. Semantic primitives 
7. Frames 

Several methods of representing knowledge are 

currently used. Logical deduction by using predicate 

calculus is one method CBarr and Feigenbaurn, 19803. In a 

Procedural representation knowledge is accessed by direct 

explicit calls of each procedure CWinston, 19773. When 

using the semantic networks method semantic attributes 

are included in the representation of a rule. The 

attributes connect the rule to other rules, thereby, more 

explicitly defining the attributes CCatansarite, 

Greenburg and Bremermann, 19813. In a production system 

the knowledge is represented by a series of productions 

CWinston,   19773.      find   sometimes,  as  in  direct 
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(analogical) representations whole systems can be 

powerful metaphors which facilitate a problem solution 

through stong analogical features CWinston, 19773. When 

semantic primitives are used each condition can be 

considered a semantic token, upon which other information 

can be attached CLeith, 19633. Finally, in frames the 

knowledge is factual and can be represented by methods 

extending from simple tables to sophisticated frame 

systems CWinston, 19773. 

The method which has been used in the majority of 

the more common present day expert systems is the 

production system. fi production system consists of a 

number of rules where each rule is of the IF...THEN... 

type. Sometimes these rules are referred to as situation 

action rules; that is IF some situation occurs THEN some 

action is performed CWinfield, 198£3. 

Rl CMcDerrnott, 19B£3 is an expert system using a 

production system to represent kowledge. Rl currently 

has 77£ rules that enable it to configure the VftX-11/780 

computer system. fin English translation of a sample rule 

is shown in figure 3.3. 

The first condition of this rule indicates that the 

subtask in which the rule is relevant is the distributing 

of massbus devices among massbuses. The remaining five 

conditions specify one of the sets  of  constraints that 
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DISTRIBUTE-MB-DEVICES-3 
IF: The most current active context is distributing 

rnasbus devices 
and there is a single port disk drive that has not 

been assigned to a rnassbus 
and there are  no unassigned dual port disk drives 
and the number of devices that each rnassbus should 

support is known 
and there is a rnassbus that has been assigned 

at least one disk drive 
and that should support additional disk drives 
and the type of cable needed to connect the 

disk drive to the previous device on the 
rnassbus is known 

THEN: assign the disk drive to the rnassbus. 

Figure 3-3:   Rl Sample Rule. 

must be satisfied within this subtask in order for a disk 

drive to be assigned to a rnassbus. One of the single 

port disk drives on the order is assigned to one of the 

massbuses when an instantiation of the rule is executed. 

Various properties of production systems, which have 

contributed to the popularity of this form of knowledge 

representation have been listed by Davis and King CDavis 

and King, 19773. They include their modularity, the 

driveness and openess of control, the constrained format 

of the rules, and that new rules cari be incorporated 

easily CWinfield, 198:2:1. 

Production systems seern to be appropriate for 

domains whose methodologies are modular and subject to 

frequent alteration.  In contrast procedural systems seem 
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more appropriate for domains with well-defined and 

i rit e g ra 1 met h od o 1 o g i es. 

However, when a measure of feasibility is required 

in an expert system, the procedures representing these 

methods can be datadriven procedures which are allowed to 

edit their own driving data in a learning system whose 

methodology is capable of changing in detail as 

experience is acquired [Smith and Bowen, 198£3. 

I IDA (Individualized Instruction for Data Access 

System) is an example containing a procedural knowledge 

representation. It is a system EMeadow, Hewett, and 

Aversa, 198£3 that serves as intermediary for users in 

performing a complex task on another computer. Another 

example is MAPLE (Microprocessor Application Expert). 

MAPLE is a prototype expert system bying developed 

by Bowen. It is an interactive system which assumes the 

rule of a consultant expert in the field of hardware 

design for microprocessor applications. Because design 

of microprocessor applications using board level 

components is a field for which standardised methodology 

is defined, MAPLE is being implemented as a procedural 

system. MAPLE's knowledge of its domain is composed of 

three parts: its methodology of application design, its 

access to information about the components needed in 

microprocessor  systems  and  its  experience  of  past 
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applications. The methodology is encoded as procedures. 

The approach of MAPLE to the design of microprocessor 

applications is represented as a set of data-driven 

procedures. Therefore, its methodology can change in 

detail as it acquires experience. Component information 

and application experience are stored in data files and 

are therefore can be extended [Smith and Bowen, 19823. 

Another method of representing knowledge is 

described as a semantic network. A network provides a 

particularly rich structure for entering detailed 

relationships and descriptors in the domain model. 

Wall is and Short 1 iffe have designed a prototype system to 

expand explanatory power for medical expert systems. 

They describe their system as having a semantic network 

knowledge representation. 

Figure 3.4 demonstrates a sample section of network 

from this program showing object, parameter, value and 

rule nodes. 

Dotted lines indicate the following rule 

IF PARAMETER-1 of OBJECT-1 
is VALUE-1, and 
PARAMETER-2 of OBJECT-1 is VALUE-4 

THEN conclude that PARAMETER-4 of OBJECT-3 is VALUE-7 

Object nodes are arranged hierarchically, with links 

to the  possible attributes (parameters) associated with 
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Figure 3-4:   Sample Section of Network. 

that object. The parameter nodes arB linked to the 

possible value nodes, and rules are themselves 

represented as nodes with links that connect value nodes. 

These relationships are summarized below in figure 3.5. 

The certainty factor refers to the model developed 

for the MYCIN system. A certainty factor can have a 

value ranging from -1 to +1. flsk first/last (figure x) 

is a property that controls whether the value of a 

parameter is to be requested from the user before an 

attempt is made to compute it using inference rules from 

the knowledge base. The text justification of a rule is 

available for when the system builder wishes to provide a 
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Type of      Static Information       Dynamic Infor 
Node        (Associated with Mode)    (Consultation 

Specific) 

Object       part of link (hierat— 
node chic) 

parameter list 

Parameter    object link 
node va1ue-node 1i st 

default value 
text definition 

Value node    parameter-node link contexts for which 
precondition-rule list this value is true 
conclusion-rule list certainty factor 
importance explanation data 
complexity ask state 
ask first/last 

Rule node     precondition list       explanation data 
(Boolean) 

conclusion 
certainty factor 
rule type 
complexity 
text justification 

Figure 3-5:   Relationships of Nodes. 

brief summary of the knowledge underlying that rule. 

In order for the system to provide adequate 

explanations, the semantic network associates a measure 

of complexity with the inference rules and the concepts 

about which they are concluding. A measure of importance 

is associated with concepts because some concepts are key 

ideas in a reasoning chain and should be maintained 

regardless of their complexity CWallis and Short 1 iffe, 
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19BS3. 

In this particular program the semantic network 

provides a rich structure for enhancing the explanation 

capabilities of reasoning programs for medical 

consultat ion. 

fin expert system that represents knowledge in 

semantic primitives has been reported by Leith. ELI 

(Expert Legislative Information) system opeates in the 

field of legislation. The knowledge base of ELI contains 

individual conditions that can be physically shared by 

rules. The advantage of this approach is that when one 

condition is common to many rules - a substantial amount 

of storage can be saved. More importantly, each 

condition can be treated as a semantic token representing 

one chunk of causal knowledge. Similar in purpose to 

systems with semantic network reprsentations the ELI 

system can tell the user where a condition was extracted 

from by the expert. Each conditon in this semantic 

representation is a semantic token upon which other 

information can be attached. The user is provided with 

more information then would otherwise be possible. 

Included in information that can be attached to a 

semantic token are notations which ca.rt be associated both 

with production rules and individual conditions 

themselves.      Each  condition  can  be,  for  example, 
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associated  with a specific piece of precedent (e.g. from 

the Law Reports), or  a section of legislation. 

Pis parts of ar\ individual rule the conditions 

represent one cause for that rule having (or not having) 

been triggered. Moreover, as common elements of more 

than one rule, they represent common aspects of the 

pattern of triggering those rules. Causal links in ELI 

are from conditon to following condition to eventual 

goal. 

Figure   3.6   illustrates   a 

representation   of   this   aspect, 

conditions and arcs represent links. 

<B>      <C> i        r 
<D>      <E> 

<G1>     <G£>      <G3> 

two    dimensional 

Nodes  represent 

Figure 3-6:   Knowledge Representation of ELI. 

Thus by using a semantic primitive knowledge 

representation that is hierarchically structured, an 

attempt as been made to present a rich source of semantic 

information to the user. The semantic representaion 

provides help in judging the truth of each condition, and 

also  provides  extra  information  that can be extracted 
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from the system by the user CLeith, 1983H. 

Two knowledge representations that are most suited 

for expert systems with reliable data and knowledge are 

the logic and direct (analogical) representations. 

An example of a logic reprsentation would be using 

predicate calculus to represent knowledge in a list of 

inferred facts CBarr and Feigenbaum, 1980]. See the 

example below. 

COn Cblockl block£] 
COn CBlockl Blocked ] 
CNot COn  Block£ Tablel]] 

TAXMAN-I is an example of the use of direct 

representations. Analogies are in the form of templates 

that match a set of particular factual situations 

CMcCarty et al, 19793. The TAXMAN-I system operates in 

the problem domain of taxation of corporate 

reorganisations. 

This area of the law is well suited to an analogical 

knowledge representation. The factual situation 

described in TAXMAN, though complex, can be described 

fairly completely using a manageable set of primitive 

terms. And the operative legal concepts, such as, the 

definitions of a Type B, a Type C and Type D 

reorganisation  have  a  statutory  structure   that   is 

71 



articulated in unusual detail. 

Constructed on a factual foundation, the TAXMAN-I 

system consists mostly of propositions of the form: 

'Phellis owns £50 shares of the common stock of the 

Delaware corporation', 'the Delaware corporation 

transferred its assets to the New Jersey 

corporation',etc. The higher level conceptual structures 

of this system take the form of logical templates. A 

'logical' pattern is 'matched' to the lower level factual 

network in both abstraction and expansion process. 

TAXMAN-I's knowledge does not go beyond a tidy world 

of formal financial rights and obligations. The domain 

of corporate reorganization is ar\ unusually artificial 

domain well suited to this representational technique. 

The concepts are treated as static structures applied 

timelessly to facts. 

The final method considered for representing 

knowledge is a frame representation. The frame method of 

representation is being used more frequently then 

heretofore. Although an individual frame may be 

considered by itself to be a template, Minsky CMinsky, 

19743 outlines how in a frame representation a set of 

frames can be connected by pairwise 'difference 

descriptions' into a 'similarity network'. The 

similarity network can then be aggregated into  a  system 
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of conceptual 'clusters' that are loosely centered around 

their respective conceptual 'capitols'. 

These  ideas  have been implemented in the AM expert 

system CLenat,  198S3.    Frames  are  used  to  describe 

mathematical  concepts.    Specific  production rules and 

procedures are  attached to  each  concept  frame.    Each 

concept   consists  of  a  collection  of  properties  or 

5 facets' of the  concept  called  slots.    Below  is ar\ 

example of a concept in AM: 

NAME: Prime Numbers 
DEFINITIONS: 

ORIBIN: Number-of-divisiors-of(x) = £ 
PREDICATE-CALCULUS: Prirne(x) <=> (for all z> 

(2 x=> (z = 1 z =><>) 
ITERATIVE: (for x>l): for i from £ to  x, i  x 

EXAMPLES: £,3,5,7,11,13,17 
BOUNDARY: £,3 
BOUNDARY-FAILURES: 0,1 
FAILURES: 1£ 

GENERALIZATIONS: Nos., nos. with even no. of divisors 
SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime 

Uniquely-addables 
CONJECS: Unique factorization, Goldbach's conjee, 

Extrerna of No-of-divisors-of 
INTU'S:  A metaphor to the effect that Primes 

are the building blocks of all numbers 
ANALOGIES: 

Macimally-divisible numbers are converse 
extremes of Number-of-divisors-of 
Factor a non-simple group into simple groups 

INTEREST: Conjectures tying Primes to Times, 
to Divisors-of, to related operations 

WORTH: 800 

Figure 3-7:   Frame of AM 

In summary,  there are many ways of representing 
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knowledge in an expert system. Although the production 

system method is most commonly used in present day expert 

systems, the frame system is gaining increasing has 

attention. This section has attempted to provide 

illustrations implementing various knowledge 

representat ion methods. 

EQ2wI§d_3e_§£9u.is.i.t ion 

3.3 Knowledge Acquisition 

To achieve high performance it is necessary to 

acquire and maintain a large knowledge base in an expert 

system. Because it is a formidable task to put an 

initial knowledge base together using a suitable 

representation, generality becomes important in the 

methods for constructing and maintaining large domain- 

specific knowledge bases CDavis and Lenat, 19B£3. 

Moreover, to enable humans to work satisfactorily in the 

modern world it then becomes necessary for thern to keep 

the knowledge base of the expert system current and 

accurate CWinfield, 1982]. 

Initially, the problem must be analysed and relevant 

knowledge extracted so that it can be put into a series 

of rules CWinfield, 198£3. When considering acquiring 

knowledge one needs to know what kind of knowledge is 

required and how much.  Are there 10 facts or 1®00 facts? 
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fire most cases covered by a dozen basic methods? There 

is a tendency to grossly overestimate. Dnce it is 

determined that a task is reasonably complicated either a 

domain expert can construct the knowledge base or a 

knowledge engineer can collaborate with the domain expert 

in ar> attempt to isolate the rules before constructing 

the knowledge base. 

The isolation of rules is a slow process and Michie 

has saxid that approximately two rules per week can be 

built into the knowledge base. However, members of SRI 

in the United States consider that rules can be extracted 

from experts in the field considerably faster. In either 

case it appears that the last few rules take the longest 

time to extract. 

In the future the Japanese propose building large 

knowledge bases of £0,000 rules (existing expert systems 

generally use hundreds of rules only). It will become 

necessary to find some way of speeding up and automating 

the way rules can be built CWinfield, 198£]. 

Besides the  formidable task of putting an initial 

knowledge base together, in open ended  problem  areas, 

such  as  medicine  or mathematics,  the  task  is never 

ending.  fl knowledge base is required to be  kept  up  to 

date CDavis  and  Lenat, 13BE1. Deleting old outdated 

information,  inserting  new  information  and   amending 
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existing information ensures that the expert system 

remains an expert in its field. In some systems the 

refining is done solely by the knowledge engineer. First 

he determines where the addition, deletion or insertion 

is necessary and then he or she alters the program 

appropriately. Refining such as this is used in Ri 

CMcDermott, 13B22. Fin easier way of maintaining an 

up-to-date knowledge base is by allowing a domain expert 

to interactively amend and extend the knowledge base via 

a special knowledge refining program EWinfield, 19823. 

ELI, an expert legislative information system 

utilizes an interactive acquisition program. In the 

previous section on knowledge representation the 

knowledge representation of ELI (see figure 3.6) was 

represented with causal links connecting condition to 

following condition to eventual goal. Experts propose 

rules that have to be linked with an existing knowledge 

base. The details of the linking depend on how knowledge 

is represented. In Eli when a rule is incorporated into 

the knowledge base there are three main techniques which 

are applied to the rule in the following order. (a) Each 

of the input conditions of the new rule is matched 

against the top level conditions until a match between an 

input and an already assimilated condition is found. (If 

a  match  is  not  found then procedure (b) is followed). 
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Then the rule number of the input rule is attached to 

this matching condition and the links to lower conditions 

are retrieved. fit this point the same matching technique 

is used on the conditions that are linked below the top 

level condition. This process will continue until there 

is not an existing match; then the remaining conditions 

from the input rule will be inserted by themselves. The 

goal base is then tested for a match with the input goal. 

If one is found then the input goal is assimilated with 

that goal, otherwise the input goal is appended to the 

existing goal list. Below figure 3.8 demonstrates the 

general pattern of integration, 

(condit ions) 

(qoals) 

Figure 3-8:   Top Down Incorporation 

(b) If procedure (a) is ineffective and no match 

occurs with the conditions at the top level then an 

attempt is made to match the input goal with an already 

assimilated goal. If a match is not found then procedure 

(c) is followed. If there is a match then the process of 

(a) is attempted in reverse. The refining program tries 

to associate the input conditons with already assimilated 
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conditions from lower levels upwards. If no further 

matches are found, then the remaining conditions are 

inserted by themselves with one being placed at the top 

level. Figure 3.9 i11ustrates the pattern of integration 

in procedure 

(cond i t i ons) 

(goal) 

Figure 3-9:   Goal Up Incorporation. 

(c) IF a matching goal is not found and therefore 

procedure B has not been successful then the conditions 

are inserted as entire rules. One condition is placed at 

the top level, the goal is placed on the goal list, and 

the remaining conditons are placed in successive levels 

above the goal. This pattern is demonstrated in figure 

3. 10. 

(conditions) 

(goal) 

Figure 3-10:   Rule Incorporated ftlone 
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Addresses in the property list of each condition 

provide the links between the conditons. Rule numbers to 

which each conditon belongs are also an attribulte of the 

property list of each condition CLeith, 19831!. 

A more difficult approach than amending and 

extending the knowledge base by an interactive refining 

program is to allow the expert system to become self 

learning. It is allowing an expert system to devise its 

own rules from information with which it is working 

CWinfield, 19823. 

fin example of this automatic method is AM. This 

system exemplifies an ideal approach to accumulating 

knowledge. AM is given a small set of primitive facts by 

the system engineer and then expands those facts without 

further assistance from the designer. This system 

accumulates knowledge by positing interesting extensions 

to its existing concepts- either by forming new concepts 

or new relationships. By starting with a small number of 

concepts of finite set theory and a large number of 

heuristics about how to extend thern and judge them it was 

able to rediscover the concept of prime numbers and the 

prime factorization theorem. [Davis and Lenat, 198S3. 

Below is an example of a heuristic used to acquire 

knowledge. 

This heuristic proposes a new task for the AM expert 
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IF the current task (Fill-in examples of X) 
and X is a predicate, 
and more than iiZ"Zi items are  known in the 

domain of x, 
and at least 1® cpu seconds were spent 

trying to randomly instantiate x, 
and the ratio of successes/failures is 

both >0 and less than a 05 
THEN add the following task to the agenda. 

(Fill-in generalizations of x), for the 
following reason: 'x is rarely satisfied; 
a less restrictive concept might 
be more interesting.'  This reason's 
rating is computed as three times the 
ratio of nonexarnples/examples found. 

Figure 3—11:   Heuristic of AM 

system. When the conditions of the rule are met then 

this task is placed on an Agenda list of future tasks. 

Pis a result the generalisations of one concept x form new 

concepts in the knowledge base and AM processes each new 

concept to acquire the necessary information to fill in 

the 5lots of the frames involved CLenat, 198E3. 

In summary, acquisition of knowledge is an important 

research question. By initially acquiring a large 

knowledge-base and thereafter maintaining it, an expert 

system can attain high performance. The two methods of 

refining an expert system are manual, interactive, and 

automatic. Perfecting the acquisition of knowledge 

automatically is a goal of expert systems in the future. 
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4. CENTAUR vs. Rl 

In this chapter two expert systems, Rl arid CENTOUR 

are compared. The similarities and differences of their 

methods of representing, acquiring, utilising, and 

explaining knowledge will be discussed. 

As mentioned in previous chapters, Rl is a program 

that configures VfiX-LL/780 computer systems. When 

provided with the input of a customer's order, it 

determines what, if any modifications have to be made to 

the order to design a functional system. As output it 

produces a number of diagrams manifesting how the varous 

components on the order are to be associated. This 

program is regularly used by Digital Equipment 

Corporations' manufacturing organisation CMcDermott, 

1981=']. 

The other expert system is called CENTAUR CPU kins, 

1983]. It performs tasks in the domain of pulmonary 

(lung) physiology. CENTAUR interprets measurements from 

pulmonary function tests administered to patients in a 

pulmonary function labratory. The labratory contains 

equipment designed to measure the amount of gas in the 

lungs and the rates of flow of gases into and out of the 

lungs. CENTAUR is an expert consultant to the pulmonary 

physiologist. It produces a set of interpretation 

statements and a diagnosis for each patient. 
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4.1 knowledge representation 

CENTAUR utilises a combination of the frame and 

production rule methods to represent knowledge, ft frame 

is a structure that ties together knowledge about a given 

situation, and provides expectations about what objects 

will be present in the situation and what events will 

occur in the situation. The frame-like structures of 

CEiMTflUR are prototypes, and prototype components. 

Following Minsky's frame terminology each prototype 

contains slots of information associated with it. Each 

5lot provides a 'place' for information in the prototype. 

Missing information is therefore evident, and the system 

realizes how complete the solution to a problem is or is 

not. The system attempts during a run to fill each slot 

of a particular frame with a value. The value determines 

whether the expectations specified by the prototype are 

the same as those in the input. 

Some of the slots in each frame are the component 

slots. Each compnonent is itself a frame. Therefore the 

value of a component slot is actually a set of 

'sub-frames' of knowledge (see figure 4.1). 

The frames of CENTOUR are  referred to as prototypes. 

The  prototype  components  contain  object-level  domain 

knowledge   representing    one    of   the   principal 

characterising  features  of  the  prototype.  Meta-level 
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Figure 4-1:   Illustration of Components 

knowledge  is  represented  by  other slots in the frame. 

These slots include slots that control  knowledge,  slots 

that give general information about a prototype and slots 

specifying    production   rules   to   used   during   a 

consultat ion. 

The frames of CENTAUR are specifically designed to 

complement production rules. The prototypes provide the 

explicit context which guides the more fine grained 

reasoning of the production rules. The rules are 

attached to slots in each prototype. Rules are one type 

of value for slots in a prototype. Rules are organized 

in a frame according to stages in which they are 

relevant. Each group of rules is the value of a slot 

representing knowledge to be applied during a particular 

stage of the consultation. 

The CENTAUR  knowledge base contains £4 prototypes, 
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£1 of which represent disease patterns. These prototypes 

are linked together in a hierarchial network specifying 

the relationship between prototypes- A portion of the 

hierarchy of this group is illustrated in figure x. 

CONSULTATION 

(domain) 

PULMONARY DISEASE 

(diseases) 

NORMAL MEURDMUSCULAR 
DISEASE 

RESTRICTIVE   OBSTRUCTIVE     DIFFUSION 
LUND DISEASE  AIRWAYS DISEASE   DEFECT 

(degrees of OAD) 
 1  

(subtypes of OAD) 

MILD  MODERATE  MODERATELY SEVERE 
OAD     OAD     SEVERE OAD  OAD 

ASTHMA 

EMPHYSEMA 

BRONCHITIS 

Figure 4-2:   A Portion of Prototype Network. 

A consultation prototype, a review prototype and 

pulmonary function prototype that interprets pulmonary 

tests comprise the remaining 3 of the £4. 

The various slots of each frame are: 
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1. Component slots. Each prototype contains 6 to 
8 component slots that point to a component 
frame that comprises some characteristic 
feature of a pulmonary disease. The component 
slots have a value determined by the component 
prototype. The component prototype evaluates 
the results of a pulmonary function test and 
reports a value representing its significance 
to the component slot. 

£. Prototype control slots. Slots that at 
s pec ific times cont ro1 the cons u11 at i on. 

3. Prototype rule slots. There are five 
different types of rules. Triggering rules 
trigger tasks to be placed on an agenda. 
Inference rules are rules tried when a value 
is needed for a component. The remaining 
three rule slots are fact-residual rules that 
attempt to account for residual facts; 
refinement rules that refine diagnosis; and 
summary rules that summarise information. 

4. General information slots include bookkeeping 
information and English phrases to communicate 
with the user. 

5. Certainty measure slots indicate how certain 
the system is that the prototype matches the 
data in each case. The value of this measure 
ranges from -1000 to 1800. 

6. Invocation records slots, such as, Intriggers 
and Origin slots, record information which is 
used in explaining why a system is exploring a 
given prototype. 

Examples of slot values of a particular prototype 

are below in figure 4.3. 

Rl uses a different approach. The configuration 

task of Rl can be viewed as a series of subtasks that 

have strong temporal interdependencies. Each subtask is 

represented in the knowledge base by production rules. 
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AUTHOR: Cohen 
DATE: 9-0CT-S3 17:13:29 
SOURCE: Fallat 
POINTERS: (degree MILD-OAD) (degree MODERATE-DAD)... 

(subtype ASTHMA) (subtype EMPHYSEMA)... 
HYPOTHESIS: There is Obstructive Airways Disease. 

IF-CQNFIRMED: Deduce the degree of OAD 
Deduce the subtype of OAD 

ACTION: Deduce any finding associated with OAD 
Print the findings associated with OAD 

FACT-RESIDUAL RULES: RULE 157, RULE 158,... 
REFINEMENT RULES: RULE036, RULE038, RULE039,. . . 
SUMMARY RULES: RULE053, RULE054, RULE055, RULE083,,.. 

COMPONENTS: 
TOTAL LUNG CAPAC.   PLAUSIBLE VALUES:)180 

IMPORTANCE MEASURE: 4 
REVERSIBILITY       INFERENCE RULES: RULE 

019,RULE0S0,RULE0££. . . 
IMPORTANCE MEASURE: 0 

Figure 4-3:   Sample Slot Values for OAD. 

The first subtask is to determine whether there are 

major problems with the order and to rectify them if 

possible. This task is composed of 196 rules. The 

second subtask involves 87 rules for putting whatever 

components belong in the CPU and CPU expansion cabinet 

into those cabinets. The third subtask is to put boxes 

into the unibus expansion cabinets, and to put unibus 

modules into the boxes. This subtask involves £56 rules. 

The fourth subtask involves in its 30 rules assigning 

panels to cabinets and associating those panels with 

unibus modules and  with  whatever  devices  the  modules 
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serve. Generating a floor layout for the system is the 

fifth subtask of 61 rules. The last subtask is to 

specify what cables are to be used to connect each device 

to the other devices to which it'has been assigned. 

The rules used in the subtasks are considered domain 

knowledge rules. There are four types of rules involved. 

There are rules that generate a new subtask. Another 

quarter deal with adding missing prerequisite components 

in the order. Pi fourth of the domain knowledge rules 

create or extend partial configuration. The final fourth 

of rules is composed of rules that retrieve partial 

descriptions of components from the data base and rules 

that do various sorts of computations. The rules 

containing knowledge directly related to the subtasks add 

up to 4S0. The remaining £9£ rules of Rl contain more 

general knowledge. Approximately one third of the 

remaining rules is used to generate output after the 

sixth subtask is completed. Another third consists of 

rules to exit from a subtask when there is nothing left 

to do. The final third of general knowledge rules is 

composed of rules whose function is to do counting tasks 

and rules that generate 'empty' data structure for the 

domain knowledge rules to use CMcDermott, 198S3. 

Examples  of  some  production  rules from the sixth 

subtask or context are in the figure below.    In  expert 
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flSSISIM-POWER-SUPPLY-i 
IF: the most current active context is assigning a 

power supply 
and an SBI module of any type has been put in a 

cabinet 
and the position it occupies in the cabinet 

(its nexus) 
is known 

and there is space available in the cabinet 
for a power supply for that nexus 

and there is no available power supply 
and the voltage and frequency of the components 

on the order is known 
THEN: find a power supply of that voltage and 

frequency and add it to the order. 

flSSIBN-POWER-SUPPLY-£ 
IF: the most current active context is assigning 

a power supply 
and an SBI module of any type has been put in 

a cabinet 
and the position it occupies in the cabinet 

(its nexus) is known 
and there is space available in the cabinet 

for a power supply for that nexus 
and there is an available power supply 

THEN: put the power supply in the cabinet in the 
available space. 

flSSIGN-POWER-SUPPLY-a 
IF: the most current active context is assigning 

a power supply 
and a unibus adaptor has been put in a cabinet 
and the position it occupies in the cabinet 

(its nexus) is known 
and there is space available in the cabinet for 

a power supply for that nexus 
and there is an available power supply 
and there is no H7101 regulator available 

THEN: add an H7101 regulator to the order. 

Figure 4-4:   Production Rules of Sixth Subtask. 

systems  it  is  important  to  determine  an appropriate 

knowledge representation  in  order  to  attain  high 
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performance. Both of these systems are successful in 

that aspect. CENTAUR utilizes a frame system including 

production rules to represent the variety of types of 

knowledge within its system. Rl achieves that goal by 

dividing its task into sequential subtasks each 

consisting entirely of production rules. 

4.2 knowledge acquisition 

How knowledge is represented in a system can be ari 

indicator as to how well knowledge can be acquired in a 

system. An advantage to using production rules to 

represent knowledge is that they are modular. Therefore 

rules can be added, deleted, or modified without directly 

affecting other rules. They are uniform in structure 

with all knowledge being encoded in the same constrained 

syntax that can easily be understood in order to examine 

it or modify it. 

The disadvantage of production systems is that the 

organisation of the knowledge base makes it difficult to 

identify groupings of similar rules when it would be 

useful to make mod ificiations to sets of rules or in 

identifying interactions between rules. Adding or 

modifying rules can have an indirect effect on other 

rules when the type of explicit grouping found in various 

slots  in  a frame is not present.  Furthermore, the same 
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sy ntax of all rules can make it more difficult to 

identify the function of the knowledge of the system and 

therefore locate it when refining. 

CENTAUR'S organisation of knowledge around 

prototypical cases allows for knowledge acquisition. The 

user can easily identify the affected set of knowledge 

when changes to the knowledge base are desired. In 

CENTRUR the entire consultation process is a prototype. 

The various stages of the consultation are listed as 

separate control tasks in control slots of this 

prototype. This representation allows for the 

flexibility of adding or omitting a stage, and of more 

easily experimenting with the control modifications. For 

example, the 'refinement' stage which uses additional 

expert ise to improve upon an interim cone1 usion was 

easily omitted during the systems early stages of 

development. During the consultation, points at which 

specific control knowledge is used are clearly defined. 

This results in it being less difficult than in 

production systems to predict the effects of the 

modifications that are made. Besides the consultation 

prototype, another prototype called review allows the 

user to specify one of the prototypes, and then reviews 

for him the 'typical' features expected in that prototype 

and  control  knowledge  associated  with the prototypes. 
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Information associated with the domain knowledge, such as 

the context in which the knowledge is applied, or the 

purpose or function of the knowledge in the consultation, 

is represented explicitly by each prototype. Explicit 

representation of control knowledge and access to 

reviewing frames provide a method of acquiring and 

refining knowledge. Another aid to knowledge aquisition 

is the key word CONTROL that has been defined, so that a 

user of the system can further inquire about the control 

task motivating a current line of reasoning- 

Furthermore, each of the component frames in CENTAUR 

contains a slot called inference rules. The inference 

rules consist of a set of production rules used to infer 

a value for the component. The constrained syntax of the 

ru1es also allow for ease in acquisit ion and 

mod ifiabi1ity of values for components. 

The knowledge of CENTAUR is organized in a manner 

that it is easy to locate and modify the system. Several 

aids are an integral part of knowledge acquisition. In 

Rl knowledge acquisition is not quite as easy. 

In Rl the major configuration task is divided into 6 

subtasks. When a modification to Rl's domain knowledge 

becomes apparent, a knowledge engineer must determine 

which subtask needs to be refined. In a production 

system, within the subtask  it  is  not  always  easy  to 
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identify the function of the knowledge and therefore 

locate the necessary rule. However, once the offending 

rule is located the knowledge engineer asks the expert 

what he would have done differently and how he would have 

known to do that different thing. Sometimes in Rl a 

known feature of a production rule can be used to signal 

a different action. To make Rl's performance acceptable 

it is only necessary to copy the offending rule and add a 

condition to it. Mostly, though, additional information 

not yet represented in Rl's knowledge base is required. 

What McDermott refers to as 'rule splitting' in this case 

is necessary. One rule becomes two, the two rules 

discriminating between two previously undifferentiated 

states. However, information gathering rules for the two 

rules are also added to production memory CMcDermott, 

19823. 

In summary, Rl's production rules are modular. Once 

a rule has been located it is not difficult to modify. 

Centaur, using frames to represent knowledge provides a 

more explicit way of locating a chunk of knowledge. The 

prototypes represent blocks of basic knowledge that 

include clearly defined 'hooks' for any additional rules 

necessary to elaborate upon this basic knowledge. The 

purpose of the knowledge attached to the slots of a frame 

is  explicit,  making  the effects  of such modification 
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readily predictable. However, neither system is 

automaticaly modifiable. CENTAUR interactively via the 

'review' prototype and the 'control' function provides 

specific knowledge about the system. However, CENTAUR 

does not interactively incorporate knowledge in a fashion 

demonstrated by the previously mentioned ELI. Moreover, 

neither system appears to provide a method of modifying 

or acquiring knowledge for groupings of similar rules 

that are part of each subtask or each prototype. 

4.3 knowledge utilization 

To allow for the future multiple use of teaching 

besides diagnosing with the same knowledge base, 

designers of CENTAUR chose to separate the control 

structure within the system from the inference knowledge. 

Therefore, the control can later be modified without 

interfering with the inference knowledge. 

Control knowledge in CENTAUR is represented within 

each prototype. This provides context specific control. 

The system specifies what to do in a given context as 

part of the domain knowledge and separates this control 

knowledge from inferential knowledge used in the 

consultat ion. 

The control knowledge represented in prototype slots 

is  a  type  of  meta-knowledge  applied as strategies to 



specify the next goal of the system. The control 

structure of CENTAUR can be simply stated. CENTAUR 

maintains an Agenda of tasks to be performed during 

consultation. The system interpreter executes the top 

task on the agenda and when the task is finished, the 

process repeats. When the Agenda is empty the system 

terminates. A task is an action to be taken by the 

system. It is re presented as a call to a LISP predicate 

function. Tasks are initiated from prototype control 

slots and from tasks themselves as they are being 

executed. Each task entry includes a source for the task 

and a reason that a task was added to the Agenda. Tasks 

are executed in last-in, first-out order. Once a task is 

executed it is removed from the Agenda. The reasons 

associated with each control task are generated from the 

name of the prototype and the name of the control slot 

where the task originated (see figure 4.5). The reasons 

briefly explain what the system is doing. 

The consultation process can be considered to 

proceed in stages that represent the sequence of events. 

Initially the syst em conf i g urat i on for the consu11 at i on 

task is shown in Figure 4.6. 

Knowledge in the TO-FILL-IN and IF-CONFIRMED control 

slots of the prototype direct these tasks. 

Key stages of the consultation process including the 
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TASK:    Order the Hypothesis List. 

SOURCE:  Task adding new prototype to the hypothesis 
1 ist. 

REASON:  Because new prototypes have been added 
to the Hypothesis List, it should be 
checked to see that it is ordered 
according to which prototype best 
fits the facts. 

Figure 4-5:   Task on Agenda of Centaur. 

AGENDA 
FILL-IN current prototype 
CONFIRM current prototype 

Current Prototype 
CONSULTATION 

Figure 4-6:   Initial Configuration for Consultation. 

role  of the control slots are summarised below in figure 

4.7. 

The stages are described in more detail below: 

1. Initial Data: Values for an initial set of 
parameters including standard pulmonary 
function test results are entered. 

£. Triggering Prototypes: Triggering rules 
suggest prototypes. Certainty measures of 
suggested prototypes are increased. 

3. Scoring and selecting a current prototype. 
Certainty measures determine the order of 
prototypes in a hypothesis list. 

4. Filling in Prototype. The prototype 
components are filled in with facts already 
determined in the case.  If new prototypes are 



Initial Dat a 

I—} iriggering Rules 

Current Proto- f— 
type is 
Selected 

_ To-Fill-In Slot 
and Object level 
Inference Rules 

IF-Confirmed   Slot. 
I f-D i sconf i rrned 
Slotl 

Fact-Residual 
Rules 

I 
Refinement Rules 

I 
Summary. Rules 

fiction Blot 

INITIAL STAGES 
Entering Initial Data 

Triggering Prototypes 

Scoring and Selecting 
Current Prototype 

hilling in Prototype 

Testing Match 

Accounting for Data 

REFINEMENT STAGE 
Refinement Diagnosis 

FINAL STAGES 
Summarizing Results 

Printing Results 

Figure 4-7:   Overview of Consultation Process. 

suggested then the computation returns to the 
'triggering rules' stage. 

Testing Match. An attempt is made to confirm 
the prototype by matching the actual facts of 
the case to expected values of the prototype. 
If tasks in the if-confirmed slot or 
if-disconfirmed slot suggest further sets of 
protot ypes then the consu11at i on ret urns to 
stage 3. 

Accounting for Datas Fact residual rules are 
applied in an attempt to account for 
discrepancies in data. 

96 



7. Refining diagnosis: Refinement vales are 
applied to produce a final diagnosis of 
pulmonary disease. 

8. Summarizing Results. Summary Rules are 
applied. 

9. Printing Results: Tasks controlling printing 
are  added to the agenda CAikins, 19833. 

The approach for searching for a solution in CENTAUR 

is  called  Generate  and Test.  In CENTAUR'S terminology 

prototypes represent the classes of hypotheses.   One  or 

more   hypotheses   are   generated   that  explains  the 

phenomena.  These  hypotheses  are  then  tested  against 

empirical  data.   Due to the hierarchy of the hypotheses 

only a small subset  are  considered  at  any  one  time. 

Initial  input  data is available to 'trigger' hypotheses 

classes that  are  most  likely  to  match  when  tested. 

CENTAUR  is  unique in providing three search strategies. 

They are  confirmation, elimination and fixed-order.   The 

user  can  choose  one  of these three strategies to fill 

these slots.  A 'confirmation strategy' which selects the 

prototype that is the best match to the data and attempts 

to confirm  that  prototype;  an  'elimination  strategy' 

which  selects  the  prototype that is the worst match to 

the data and attempts to eliminate that prototype, and  a 

'fixed-order'  strategy, which always explores prototypes 

in a preset order. 
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Each prototype selected as a possible hypothesis has 

a Certainty Measure, indicating how certain the system is 

that the prototype matches the data. The Certainty 

Measure ranges from -100® to 1000. The Certainty Measure 

slot has a value that contains dynamic information that 

can change as the consultation continues. The hypothesis 

with the highest Certainty Measure represents the current 

best hypothesis. The current best hypothesis at the end 

of the consultation becomes the system diagnosis. 

CENTAUR5s control and inference methods are quite 

different from that of Ri. The configuration task 

performed by Rl requires finding an acceptable 

configuration within a space of possible configurations. 

Rl always proceeds through the same sequence of subtasks. 

Therefore it does not require an agenda of tasks for 

control. Rl generates only a single hypothesis- the 

solution. In Rl, the knowledge that other systems would 

use to test hypotheses is part of the generator. The 

inference method utilised by Rl is a form of Match. The 

Match method can be divided into states. Initially, 

Match is in a state that consists of descriptions of the 

components ordered for the configuration. Intermediate 

states are sets of descriptions of partial configurations 

and the as yet configured components. fit each point that 

a decision is made, the constraint knowledge  about  what 
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next step can be taken is provided by Ri's rules. These 

is no need for backtracking in determining the next 

acceptable step. The final state is of course when the 

conf i gurat ion is cornp 1et e. 

In the Match method, Rl's rules can be divided into 

three categories, (i) Operator rules that take the actual 

next step in creating or extending a partial 

configurator!. (£) Sequencing rules that determine the 

order in which decisions need to be made so that 

backtracking is not necessary. (3) Information gathering 

rules provide the information needed for operator and 

sequencing rule selection. The consequences of applying 

an operator must bear only on aspects of the solution 

that have not yet been determined. 

Match, however is not capable of performing the 

entire inference task. The subtask of placing modules in 

the unibus is formulated by a Generate and Test method 

that finds ar\ optimal sequence that fits within spatial 

and power-load constraints. 

In summary, the use of Match as an inference method 

is appropriate to the structure of the configuration 

domain. It avoids search and limits the cost of running 

the program. Pin Agenda for control and the more typical 

inference method of Generate and Test is used in CENTAUR 

and is more appropriate for its analytical task.  CENTAUR 
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is given a single complex set of data and the task of the 

program is to decompose the data and determine the 

relationship of the data. The configuration task of Ri 

is synthetic. R:L is given a set of components and its 

task is to impose relationships on those components and 

form a comp 1 e>< object. 

The explanation capabilities of a system are a 

critical factor in the acceptance by users of large 

knowledge-based consultation systems. Both CENTAUR and 

Rl have explanation capabilities referred to as tracing. 

In CENTAUR tracing can be performed during the 

consultation at different levels that range from 0 to 3. 

The user is asked in the initial stage of the 

consultation what level of trace he requires. The 

explanation of how the system is coming to a particular 

conclusion is then placed in brackets throughout the 

consultation. Pin example of tracing is illustrated in 

figure 4.8 below. 

The trace [Trigger for ASTHMA and CM 900] explains 

to the user that his response to the question referral 

diagnosis has triggered the system to generate the 

hypothesis that asthma is the diagnosis with a certainty 

measure of 900. The trigger for the Normal prototype 

refers to no disease in the patient. OflD (obstructive 

airways disease) is another hypothesis  that  the  system 
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Tracing level (0-3) 
•**£ 
Agenda Printing? 
**No 
Consultation Strategy; 
*#Conf i rrnat i on 

(The two stars preceeding a  comment represent the 
users response.  The user has chosen a tracing 
level of £.  Below information given as 
explanations of the trace are within brackets.) 

 PATIENT -7  
1)Patient's identifying number: 
**7446 
£)referral diagnosis: 
**flSTHMft 

[Trigger for ASTHMA and CM 900] 
3) RvYRV-predicted: 
**£Si 
4)TI_C (body box) observed/predicted: 
*#139 
5)FVC/FVC-predicted: 
**81 

[Trigger for NORMAL and CM 5003 
6>FEVi/FVC ratio: 
*#40 

[Trigger for DAD and CM 900] 

Figure 4-8:   Illustration of explanation facility. 

explains is being considered. 

In Rl it appears that there is one level of tracing 

in the system. The trace is separate from the output of 

the system and describes the process and subtasks 

fo11owed to attain a con fig urat ion (see figure 4.9) of 

the order. 

1. MflJOR-SUBTfiSK-TRftNSITION 
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SET-UP 

53. NOTE-CUSTOMER-GENERATED-EXCEPTIONS 
55. NOTE-UNSUPPORTED-COMPONENTS 
57. CHECK-VOLTAGE-AND-FREQUENCY 
104. CHECK-FOR-TYPE-OR-CLASS-CHANGES 
110. VERIFY-SBI-AND-MS-DEVICE-ADEQUACY 
111. COUNT-SBI-MODULES-AND-MB-DEVICES 
1£6. GET-NUMBER-OF-BYTES-AND-COUNT- 

CONTROLLERS 
137. FIND-UBA-MBA-CAPACITY-AND-USE 
145. VERIFY-MEMORY-flDEQUACY 
146. PARTITION-MEMORY 
160.       ASSING-UB~MODULES-EXCEPT~THOSE-CONNECTING- 

TO-PANELS 
177.       VERIFY-UB-MODULES-FOR-DEVICES-CONNECTING- 

TO-PANELS 
FIND-ATTRIBUTE-OF-TYPE-IN-SYSTEM 

173. VERIFY-COMPDMENT-OF-SYSTEM 
£07.       NOTE-POSSIBLY-FORGOTTEN-CONPONENTS 
£13.       CHECK-FOR-MISSINC-ESSENTIAL-COMPONENTS 
£15.MAJ0R-SUBTA5K-TRANSITIQN 
£16.    DELETE-UNNEEDED-ELEMENTS-FROM-WM.... 

Within both systems it appears that explanatory 

knowledge is not represented separately from its 

performance knowledge. It, therefore, does not need to 

be modified when changes are made to the performance 

knowledge. The method of tracing in CENTAUR explains as 

the program is arriving at decisions the reason for these 

decisions. An expert user is better able to understand 

the process of the consultation program than in Ri. Rl 

describes the trace separately from the output. 

In summary,  there  are  many  differences  and  few 

similarities  between  the expert systems CENTAUR and Rl. 

CENTAUR utilises basically a fr-'ame method  for  knowledge 
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representation. Pi It hough, the individual frames do 

include production rules. Rl's knowledge, in contrast is 

entirely represented by production rules. 

CENTPiUR's system has several tools for knowledge 

acquisition. The systems explicit representation of 

control knowledge, the 'review' prototype and the CONTROL 

function provide aids in locating where rnodificiations 

are necessary. The constrained syntax of the inference 

rules in the system makes modifications easy. Because Rl 

is not a frame system, locating the rules to be changed 

is slightly more difficult. However, the six sequential 

subtasks of Rl allow the user to determine fairly easily 

which subtask is involved. Once the rules for 

modification are located, Rl either adds conditions to 

the particular rule or splits the rule into two 

rules- thus developing each rule separately. 

Another contrast between Rl and CENTAUR is their 

method of utilising knowledge. CENTAUR'S control 

knowledge is located within the individual frames and is 

separate from inference knowledge of the system. The 

control knowledge provides information to an Agenda of 

tasks that executes tasks on a last-in, first-out basis. 

The inference method is 'generate and test'. Hypotheses 

are triggered from initial input data and then tested to 

confirm if they are the best  diagnosis.    Searching  of 
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hypotheses is done by eonf irmat ion, elimination, or 

fixed-order strategies. Rl's system is different. The 

subtasks provide a structure that eliminates the need for 

an Agenda. The inference method is called 'Match'. The 

first stage of 'Match' consists of descriptions of 

components ordered. Intermediate stages contain sets of 

descriptions of partial configurations and yet unfigured 

components.  The final stage is the total configuration. 

Both Rl and CENTAUR use trace to provide the user 

with explanations. The trace in CENTAUR is more 

elaborate and is available during the consultation. 

Although the systems are very diffemt they are each 

successful  in  providing expert information to the user. 

The methods of representation,  acquisition,  utilization 

and  explanation  are  appropriate  to  their  individual 

requirements. 
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