
Lehigh University
Lehigh Preserve

Theses and Dissertations

1-1-1983

An overview of expert systems.
Jane Greenberg Cohen

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Cohen, Jane Greenberg, "An overview of expert systems." (1983). Theses and Dissertations. Paper 2356.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=preserve.lehigh.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/2356?utm_source=preserve.lehigh.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AN OVERVIEW OF EXPERT SYSTEMS

by

JANE GREENBERB COHEN

A Thesis

Presented to the Graduate Committee

in Candidacy for the Degree of

Master of Science

in

Comput i ng Sc i ence

Division of Computing and Information Science

September, 1983

Lehigh University

ProQuest Number: EP76632

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest

ProQuest EP76632

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Q§ciifi£§tg_2f-QsEizoy§I

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree of
Master of Science.

(date)

Professor in Charge

.
Chairman of Department

11

Acknowledgments

I wish to thank my husband for his continual
support and Professor Rayna for his
professional guidance in preparing this
thesis.

ill

Table of Contents

Abstract 1

1. Introduction 3

£. Description of Expert Systems 5

£.1 Definition of Expert Systems 5
£.£ History of Expert Systems B
£.3 Components of an Expert System 13
£.4 Organization of Expert Systems 17
£.5 Software Tools 39
£.6 Applications 47

3. Major Research Issues of Expert Systems 56

3.1 Heuristics 56
3. £ Knowledge Representation 61
3.3 Knowledge Acquisition 74

4. CENTAUR vs. Rl 81

4.1 knowledge representation 8£
4.£ knowledge acquisition 89
4.3 knowledge utilisation 93

References 105

Vita 4

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-8:
2-9:
3-1:
3-2:
3-3:
3-4:
3-5:
3-6:
3-7:
3-8:
3-9:
3-10:
3-11:
4-1:
4-2:
4-3:
4-4:
4-5:
4-6:

Figure 4-7:
Figure 4-8:

Components of an Expert System 13
If...Then... rule 15
Representation in Predicate Calculus £iZi
MYCIN Rule. £1
Example of Planning in NOAH 31
Example of Belief Revision in EL 34
Levels and Knowledne Sources in 37
HEARSAY-II
PROLOG data base 41
Sample Questions of Database 43
Two Heuristic Rules 58
Heuristic Rules in Eurisko 68
Rl Sample Rule. 64
Sample Section of Network. 67
Relationships of Nodes. 68
Knowledge Representation of ELI. 78
Frame of AM 73
Top Down Incorporation ' 77
Goal Up Incorporation. 78
Rule Incorporated Alone 78
Heuristic of AM 88
111ustrat i on of Component s 83
A Portion of Prototype Network. 84
Sample Slot Values for OAD. 86
Production Rules of Sixth Subtask. 86
Task on Agenda of Centaur. 95
Initial Configuration for 95
Consultat ion.
Overview of Consultation Process. 96
Illustration of explanation facility. 101

VI

Abstract

This paper is an overview of expert systems. Expert

systems are Artificial Intelligence programs embodying

the specific knowledge and experience of human experts.

They offer users advice in specialized domains that are

generally conceded to be difficult and requiring

expert ise.

The components of a.r\ expert system are the knowledge

base, a knowledge representation subsystem, a knowledge

acquisition subsystem, ar\ inference driver, an

explanation capability and a natural language front end

translator.

The organisation of an expert system is determined

by the solution space available, errors in the data, and

the availability of abstraction in the system.

In this paper the author describes software tools,

an area of expert systems that is receiving increasing

attention. Special purpose programming languages, such

as, LISP and PROLOG allow knowledge bases to be built

more efficiently. EXPERT and EMYCIN are software

programs aiding in the development of production systems.

Another software tool, SAUI provides the user with help

in learning and using complex expert systems. SAUI is a

software package for general development for expert

systems. Software tools available are becoming more and
1

more sophisticated.

Some recent areas providing practical applications

for expert systems are medical diagnosis, equipment

failure diagnosis, computer configuration, chemical data

interpretation and structure, oil field service, and

military needs.

Areas of research in the study of expert systems

that are described in this thesis are heuristics,

knowledge acquisition and knowledge representation.

Heuristics are informal judgmental 'rules of thumb'.

Knowledge representation refers to the method of

representing an ordered set of task specific rules in an

expert system. Acquiring new knowledge or refining

existing knowledge is accomplished by the knowledge

acquisition methods of an expert system.

This paper includes a comparison of two expert

systems. CENTAUR and Rl have many differences and few

similarities in their methods of representing, acquiring,

utilizing, and explaining knowledge. Rl is an expert

system used to configure VAX-11/788 computer systems.

CENTAUR interprets pulmonary tests and diagnosis

pulmonary diseases. The capabilities of CENTAUR and Rl

demonstrate the potential of expert systems in the

future.

1. Introduction

Expert systems are computer programs that embody the

specific knowledge of human experts. They are one of the

most practical products to have come out of research in

Artificial Intelligence. The expert system provides

useful answers to questions asked by the user in a field,

such as, medical diagnosis.

This thesis attempts to provide an overview of

expert systems. This first chapter is an introduction.

The second chapter consists of a description of expert

systems. It contains the definition, history,

components, organization, software tools, and

applications of expert systems.

There are several major research issues in studying

expert systems. They include heuristics, knowledge

acquisition and knowledge representation. These issues

are discussed and illustrated in Chapter three.

The final chapter compares two expert systems. They

are Rl and CENTAUR. Rl is a configuration system for the

VAX-i1/780 computer systems. When provided with a

customer's order, it produces as output diagrams

configuring the components on the order. CENTAUR is an

expert system that interprets measurements from pulmonary

function tests administered to patients in a pulmonary

function labratory. It then produces a set of
3

interpretation statements and a diagnosis for each

patient. CENTAUR and Rl have more diffemeces that are

discussed then similarities.

Expert systems are a human face of information

technology and will find an application in every sector

and level of modern economy.

2. Description of Expert Systems

The beginning section of this chapter defines expert

systems. The intermediate sections include the history,

components, organisation, and applications of expert

systems. The final section describes software tools used

in expert systems.

S.1 Definition of Expert Systems

fl most powerful technique for exploiting collective

human knowledge by computer is represented by what are

called Expert Systems [Pinkerton, 19823. Expert systems

are Artificial Intelligence computer programs that embody

the specific knowledge and experience of human experts.

They are problem-solving programs that solve substantial

problems generally conceded as being difficult and

requiring expertise CStefik et al, 19823 for which 'good'

algorithms are not known. [Chester, 19823 Their goal is

to provide users with advice in specialized domains

CBonnet, Cordier, and Kayser, 19813.

Expert systems encapsulate the knowledge of one or

more experts in a particular field. These systems

consist of a global data base of assertions, a set of

rules that represent small bits of an expert's knowledge,

a control strategy for applying the rules to the

assertions CChester, 19823, a knowledge acquisition

program, an explanation program, and a natural language

processor CWinfield, 1982].

The system may gradually improve its performance as

it is used, provided its users are true experts. It does

this by adding to the data base and also be refining the

'rules' by which the system works. These rules are

listed through dialogues with experts who may be able to

point out, from their own special knowledge of cases, the

flaws in the generalisations represented by the rules,

own special knowledge of cases. Thus an expert system

can evolve to a degree where its general performance is

as good as that of a group of experts collectively,

possibly faster than any of them, and certainly better

than any inexperienced user. In this way the experts'

knowledge and judgment is indirectly made much more

widely available CPinkerton, 19823.

The expert system performs its inferences using a

human-like process, and must be capable of explaining its

inference processes in a language natural to the user, if

it is to be acceptable to the user. If an expert system

is to follow a similar problem-solving process as a

human, and yet it is to run on a computer it was

suggested by Basden at a recent conference on expert

systems, that this relationship' be represented as

fo11ows:

6

Expert

Numerical system Human
computer [capable of

processing struc-
t ured informat ion]

The aim of research into expert sytems is to move

much closer to the human end of the spectrum CWinfield,

lgasn.

The process of designing and implementing expert

systems is known as Knowledge Engineering CTanaka, 19823.

Feigenbaurn defines the activity of knowledge engineering

as follows:

"The knowledge engineer practices the act of
bringing the principles and tools of PI I
research to bear on difficult applications
problems requiring experts' knowledge
for their solution. The technical issue
of acquiring this knowledge, representing
it, and using it appropriately to construct
and explain lines of reasoning, are
important problems in the design of knowledge
based systems.... The art of constructing
intelligent agents is part of an
extension of the programming art. It is the
art of building complex computer programs
that represent and reason with the
knowledge of the world. CFeigenbaum, 19773

The basic idea of expert systems is putting

knowledge to work, a non-mathematical knowledge used for

most of the world's problems. The knowledge base of an

expert system includes a data base consisting of facts,

assumptions and beliefs, and heuristic rules CFeigenbaum,

1982].

The heuristic approach rather than an algorithmic

approach characterizes an expert system. The system

searches for a good enough answer with the resources

available using the knowledge of a human expert to

improve search efficiency. This permits investigation of

feasible modes only and the rapid elimination of "blind

alleys". CSurnner, 19823

For expert systems, logic is not the issue,

knowledge is. These systems, of course, needs an

inference procedure; however, the power of an expert

system cornes from its knowledge, not its inference

procedure.

£.£ History of Expert Systems

Twenty years ago Newell CNewell, 19623 surveyed

several organisational alternatives for problem solvers.

He was concerned with how one should go about designing

problem solving systems CStefik et al, 19823. The

research that followed in the area of computer problem

solving passed through various stages. In the first

phase attempts were made to improve on human problem

solving performance by using various statistical

techniques CCouch, 19763. Statistical methods proved to

8

be accurate for small diagnostic domains, but impractical

for applications in real world problems CGorry, 19763.

In the second phase attempts were made to capture

diagnostic logic as fixed decision protocols using an

inference-based paradigm CBleich, 19693. Although at

times successful, it was recognized that such protocols

suffered from inflexibility. Along the way, Artificial

Intelligence researchers made an important discovery.

The power of art intelligent program to perform its task

depends primarily on the quantity and quality of

knowledge it has about that task [Davis and Lenat, 19823.

This observation arises not only in the work of

artifact builders but in the work of psychologists, for

example, the studies of Simon and his colleagues on the

nature of "expert" thought in physics and chess playing;

in the work of the image understanding researchersy and

the work on understanding natural language. Human

specialists striving for high levels of proficiency in

their chosen fields spend years acquiring the knowledge

and skills necessary to support such performance.

Thus knowledge came to be seen of paramount

importance, and Artificial Intelligence research shifted

its focus from an inference-based paradigm to a

knowledge-based paradigm. Knowledge is viewed as

consisting of facts and heuristics. The facts constitute

9

a body of information that is widely shared, publicly

available, and generally agreed upon by experts in the

field. The heuristics are more private, little discussed

rules of good judgement. They are rules of good guessing

and plausable reasoning that characterise expert level

decision making in a field.

Beginning in 1965, the Stanford Heuristic

Programming Project focused on the development and

exploitation of the knowledge based paradigm. It began

in artifact construction and methodological innovation

with the DENDRAL program, with efforts directed towards

building a system which incorporated expert problem

solving strategies, but which retained flexibility.

DENDRAL solved problems of structure elucidation in

organic chemistry, initially by a knowledge intensive

analysis of physical spectra of the molecules [Davis and

Lenat, 198S3.

In 1968 when Feigenbaum presented the research work

on DENDRAL CLindsay et al, 1980] to Michie, Professor at

Edinburgh University in Scotland, the term of

Episternological Engineering was proposed by Michie to

describe such research works as DENDRAL CTanaka, 198S3.

Epistemics is the science of communicating understanding

via stored knowledge CAdd is, 198£3.

The descendant of DENDRAL, META-DENDRAL, analyzed

10

sets of spectral data and inferred chemical rules of

spectral analysis. It created knowledge from data,

guided by a few basic principles.

The first foray into clinical medicine was the MYCIN

effort. MYCIN was a program that performed consultations

with physicians about infectious disease diagnosis and

antimicrobial therapy. The prod net i on rule

representation that proved so effective in parts of

DENDRRL was adapted to f.it the needs of medical

knowledge. Issues in machine-facilitated knowledge

acquisition, in the representation of knowledge, and in

program control arose from this work CDavis and Lenat,

198£]. MYCIN provided an inspiration for Davis' work on

TEIRESIRS, a program designed to make possible the

interactive transfer of expertise from a human expert to

the knowledge base of a high performance program, in a

dialogue conducted in a restricted subset of natural

language CDavis and Lenat, 198£3.

Another approach to knowledge representation was

initiated by Minsky's theory of frames, explained by

Minsky in 1974. fl frame is a data-structure for

representing a stereotyped situation CMinsky, 19743.

Minsky's frames were incorporated in the development of

systems, such as, AM - a program that models an aspect of

elementary mathematics research in the development of new

11

concepts under the guidance of a body of heuristic rules

CLenat, 198£]; and CENTAUR- a program designed to

diagnose pulmonary disease CPU kins, 1983].

In August, 1977, Professor Feigenbaurn presented a

paper titled "The Art of Artificial Intelligence: Themes

and Case Studies of Knowledge Engineering" at the 5th

International Joint Conference on Artificial Intelligence

held at MIT. Because of the difficulty of pronouncing

Episemological Engineering, Knowledge Engineering was

selected at this time, to describe the process of

designing and implementing expert systems CTanaka, 1982].

Since the inception of Expert Systems many have been

written. Some expert systems that have come into regular

use are DENDRAL CLindsay et al, 19803; MACSYMA CMartin

and Fateman, 1971]; PUFF

Ci9S0"HeuristicProgrammingProjectl98tZi", 1980] and

R'L WcQwfflott, 1980]. Macsyrna raanipulates algebraic

expressions symbolically, including their integration and

differentiation; Puff diagnoses pulmonary disorders; and

Rl configures VAX systems CChester, 198£].

Major areas of research in the field of knowledge

engineering are the following.

1. Knowledge Base.

£.'. Knowledge Representation.

3. Knowledge Acquisition.

4. Knowledge Utilisation.

5. Knowledge Explanation Subsystem.

2.3 Components of an Expert System

fin expert system (figure below) consists of a number

of essential components: a knowledge base, a knowledge

representation subsystem, a knowledge acquisition

subsystem, an inference driver, an explanation

capability, and a natural language front end translator.

Knowledge
refining
program

Inference
X knowledge engine Natural

-> base <—} (driver -f—^ language
^ program) processor

Domain
expert

Explariat ion
program

User

Figure 2-1: Components of an Expert System

fin expert system is a set of computer programs that

access a knowledge base and perform inferences on the

13

knowledge held there, in order to satisfy a user query.

The expert system must be capable of explaining its

inference processes in a language natural to the user

CWinfield, 19823.

The knowledge base is a database of information

consisting of facts, assumptions and beliefs, and

hueristics that describe the problem to be solved and all

the intermediate results in its solution [Chester, 198£H.

Benerally a knowledge base is composed of information

collected in discussions between a human expert and a

system builder (also human at present).

ft knowledge representation is a set of rules

providing a formalism in a data structure, for facts and

heuristics about a subject or specialty CTanaka, 198£H.

Usually, an expert system will contain 40 - 800 rules.

Several methods of representing knowledge within a

computer are currently used: 1)Logic; £) Procedural

representations; 3)Semantic networks; 4)Product ion

systems; 5)Direct (analogical) representations;

6)Semantic primitives; 7) Frames.

The method which has been used in the majority of

the more common present day expert systems is the

production system. ft production system consists of a

number of rules, each rule being of the IF...THEN... type

(see figure £.£). These rules are sometimes referred to

14

as situation action rules. That is IF some situation

occurs THEN some action is performed CWinfield, 198£D.

IF: Request is PUTON object targer
AND Object is free
AND Target is free

THEN: Delete Object is free
AND Delete Target is free
AND Delete PUTON object target
AND Move Object to Target

Figure £-2: If...Then... rule

In the modern world it is necessary for humans to

update their knowledge by deleting old outdated

information, inserting new information, and amending

existing information. Similarly, the expert system via

its knowledge refining component needs to have its

knowledge base updated to ensure that it remains an

expert in its field.

The inference engine is the program of control

strategy that drives the system. It provides a

methodology for reasoning about rules in a knowledge

representation and drawing conclusions from that

knowledge CTanaka, 1982D. It does this by attempting to

match known facts about a particular problem with one (or

perhaps more) of the productions CWinfield, 1982D. Rules

are applied mainly in the backward direction, but

sometimes the forward direction. Some systems apply them

in both directions [Chester, 19823. When a successful

match is found, the production 'fires' and the action

part of the rule is used to update the 'known facts' of

the data base. It is unlikely to be able to solve the

problem in one step and will therefore attempt to produce

a solution to a small part of the problem by setting up a

subgoal to be solved. Subgoals are established by

writing appropriate notes about them into the data base.

Using this new knowledge in conjunction with what was

already known about the problem, the knowledge

utilization program again attempts to satisfy the goal by

finding another production that is satisfied. This

process is repeated until a solution is found CWinfield,

1982].

ft natural language processor provides acceptable

communication between the expert system and the user.

Communication must be in natural language that is

understandable to the user. The system must make it easy

for the user to input requests, and obtain results. The

system should also be capable of adjusting the type of

questions it asks and the amount and type of information

it gives or requests, depending upon whether ar\ expert or

naive user is controlling the system.

The natural language front end is the part of the

expert system the user comes into contact with and is

16

therefore very important. Pi poor natural language front

end could make the sytsern unacceptable, particularly to

naive users, and these are the type of users expert

systems will be built for in the future CWinfield, 198S3.

£.4 Organization of Expert Systems

In this section a number of contemporary systems are

used to illustrate the strengths and limitations of

alternative organizational methods of building an expert

system. In an expert system the choice of search method

is one of the most important decisions. The approach of

searching for a solution is affected by characteristics

of the domain, such as size of the solution space, errors

in the data, and the availability of abstractions.

Requirements

Prescript ions

Small Solution Space
Data Reliable &• Fixed
Reliable Knowledge
Exhaustive Search
Monotonic Reasoning

■zi -? 4 ' C. >J "

Unreliable Data Time-Varying Data Big, Factorable
or Knowledge Solution Space

Combining Evi-
dence from
Multiple
Sources
Probability
Models
Fuzzy Models
Exact Models

St at e-t r i g gered
Expectations

Hierarchical
Generate and
Test

S-'

17

No Evaluator
for Partial
Solution
Fixed Order .
of Abstracted
Steps

No Fixed Se-
quence of Sub-
problems
Abstract
Search Space

Subproblems
Interact
Constraint Pro-
pagation Least
Cornm i

8

b rnent

Efficient
Guessing is
Needed
Belief Re-
vis i on for
Plausible
Reasoning

Single Line of
Reasoning Too
Weak
Multiple Lines
of Reasoning

10
Single Knowledge
Source too Weak

Heterogenous
Models Oppor-
tunistic Scheduling
Varialbe-Width
Search

_s'

11
Representat ion
Method Too
Inefficient
Turned Data
Structures
Knowledge Com-
ilation Cog-
nitive Economy

Stefik et al suggested the chart above for the

alternative cases of organising expert systems. Each box

in the figure corresponds to one of the cases. The

numbers on top of the boxes indicate the order in which

the cases are discussed. The cases are organised into a

tree structure such that a sequence of cases in a branch

18

refers to increasing elaborate considerations of a basic

idea. Case 1 requirements are small solution space,

reliable data and exhaustive search. The boxes £ through

4 consider the complications of unreliable data or

knowledge time-varying data, and a large search space.

Organising a given expert system may require combining

ideas from any of these topics. The three branches

descending from case 4 consider further the problem of a

large search space. The first branch (cases 5 through 8)

are organisations for abstracting a search space. The

third branch considers ways of making the knowledge base

more efficient. The organization of the cases is

pedagogical and it should be realized that in real system

the ideas of the varying branches may be combined.

Case 1.- Smal.1. Search_S2ace_with_Reliabie_Knowiedge
and Data

This case considers the simplest architecture for an

expert system. The first requirement is that the data

and knowledge are reliable and not filled with errors.

Ths second requirement is that search space is small and

provisions are therefore unnecessary to cope with the

limitations of computational resources. It should be

realized that in real applications few expert systems

meet these criteria.

19

fln expert system of this type could be organised

into two main parts: a memory and an inference method.

The memory would consist of a list of inferred facts that

possibly could be represented in predicate calculus CBarr

and Feigenbaum, 19883, for example

COn Blockl Blocks:
CNOT Con Blocks Tableim

Figure £-3: Representation in Predicate Calculus

The data could be stored in a frame system CBobrow, 1975]

where the indexing of facts is organized to make the most

common paths more efficient. Data which are used

together are stored in the same frame.

Case_£-_ynrgIi§bls_Data_gr_Knowledc|e

Sometimes it is necessary for expert systems to make

a judgement under pressure of time. Some of the

knowledge or data can be unreliable or unavailable.

MYCIM is an example of an expert system that

approaches reasoning with uncertainty. To accornodate

judgmental reasoning MYCIN incorporates concepts such as

"ft suggests B" or "C and D tend to rule out E" by using

numbers called certainty factors to indicate the strength

of a heuristic rule. fin example of a rule represented in

£0

IF (l)the infection is primary-bacteremia and
(£) the site of the culture is one of the sterile

sites and
(3) the suspected portal of entry of the organism

is the gastro-intestinal tract,
THEN there is suggestive evidence (.7) that the

identity of the organism is bacteroides.

Figure £-4: MYCIN Rule.

the MYCIN knowledge base is: The number "0.7" indicates

the strength of the probability that the hypothesis is

true. Evidence for and against the hypothesis is

processed separately, and the "truth" of the hypothesis

is the algebraic sum of the evidence. CRundle, 19823

Instead of using its own. formalism for reasoning

with uncertainty, MYCIN could have used Bayes' Theorem

CCatanzarite, Greenburg and Bremermann, 1981]. It could

calculate probability in light of specified evidence,

from the a priori probability of the disease and the

conditional probabilities relating the observations to

the disease. The main difficulty with Bayes Rules is the

large amount of data that are required to determine the

conditional probabilities needed in the formula.

Another approach to inexact reasoning is fuzzy logic

as discussed by Zadeh CZadeh, 19793 and others. In fuzzy

logic, the statement "X is a large number' is interpreted

£1

as having an imprecise denotation characterised by a

fuzzy set. ft fuzzy set is a set of values with

corresponding characteristic functions.

Fuzzy Proposit ion:
X is a large number.
Corresponding fuzzy set:
CX is a number C0, 103, .13
[X is a number £10,1000, .£3
[■CX > 1000}, .73

The interpretation of the proposition 'X is large'

is that if X is less than 10 it has a characteristic

function of .1, or between 10 and 1000 a characteristic

function of 0.£ and so on.

The usefulness of fuzzy logic in reasoning about

unreliable data would depend on the appropriateness of

interpreting the data as a fuzzy proposition.

Besides the use of pseudo-probability and fuzzy

approaches for reasoning with partial and unreliable

data, one could use an exact inference method. This

approach is illustrated in the expert system BftI CStefik,

19783 which is a data interpretation system that copes

with errorful data. Gfil's task is to assemble models of

complete DNft structures using incomplete information

about the digestion of molecules by enzymes CRundle,

198£3.

fln example of a rule for correcting missing data is:

If a segment appears in a complete digestion for an
enzyme, that fails to appear in the incomplete
digestion for that enzyme,

then it may be added to the list of segments for the
incomplete digestion.

This rule is based on the observation that segments

are easier to overlook in incomplete digestions than in

complete digestions.

In summary, there are several methods for reasoning

with unreliable data and knowledge. fill of the methods

require a formalization of extra meta-knowledge in order

to correct the data, take back assumptions, or combine

evidence. The available meta-knowledge is a critical

factor in viability of these approaches to a particular

applicat ion.

Case_3i_Time_yarying_data

Some expert tasks involve reasoning about situations

that change over time. The change of the situation can

be signalled by time varying- data as in the expert

system VM (Ventilator Manager) reported by Fagan CFagan

et al, 1979, Fagan, I960]. VM is a program that

interprets the clinical significance of patient data from

a physiological monitoring system by monitoring the

post-surgical progress of a patient requiring mechanical

breathing assistance.

Because a patient's situation can be affected by the

progression of disease and the response to theraputic

intervention, VM is an application containing knowledge

suitable for coping with t irne-varying data. VM has

several kinds of rules: transition rules, initiation

rules, status rules and therapy rules. The rules are

rerun periodically when VM receives a new set of

instrument measures. The following is an example of a

transition rule used to detect when a patient's state has

changed:

If (1) the current context is 'Assist' and
(£) respiration rate has been stable for £8

minutes and
(3) I E ratio has been stable for £0 minutes

Then the patient is on 'CMV (controlled mandatory
vent i1at i on)

This rule governs a transition between an 'assist'

context and a 'CMV context or state. VM uses

initialization rules to update information for a new

context and extablish new expectations for status rules.

VM's reasoning is concerned only with the previous

state and the next state. It is limited to adjacent time

intervals. Research in writing programs capable of

reasoning about distant events (requiring elaborate

representations of events and time), for example,

planning and prediction tasks, is in progress.

£§§§_£l_Large_but_factorable_solutio

This section describes a technique for coping with

very large spaces. This technique is necessary when it

is not enough to find one interpretation of data, but

every interpretation consistent with the data is

req u i red.

ft systematic approach would be to consider all

possible cases and eliminate those cases inconsistent

with the data. However, the techniques is impractical,

ft practical alternative is to use early pruning while

generating and testing solutions. Two expert systems

using this technique are DENDRftL CStefik, 198111 and Bfll

CStefik, 19783. GftI was mentioned previously.

DENDRftL generates possible molecular structures from

mass spectrometer data, nuclear magnetic renosance data

and other information. It works in three stages, using a

"generate and test" approach. First it derives a number

of constraints which the structure must satisfy, and then

generates a number of structures which satisfy these

constraints. The proposed structures are then processed

to predict their mass spectrogram and these are compared

with the observed experimental data. The program has

been accurate and used to establish new molecular

£5

structures. CRundle, 1982]

In conclusion, generate and test is appropriate

method to consider when it is important to find all

solutions to a problem. However, to be workable, the

generator must partition the solution space in ways to

allow early pruning. Often these criteria are associated

with data interpretation and diagnostic expert system

problems.

In design and planning problems one cannot tell from

a fragment of a plan or design whether that fragment is

part of a complete solution. This section considers an

approach to problem solving without early pruning. The

approach uses the technique of abstracting the search

space by emphasizing the important steps of a problem in

a fixed order. This enable the problem to be partitioned

into subproblems.

fin illustration of this is the Rl program reported

by McDermott CMcDermott, 19823. Rl configures Digital

Equipment Corporation's VAX computer system. The input

is a customer's order and the output is a set of diagrams

displaying the spatial relationship among components on

the order. Rl is capable of determining whether a

customer's order is satisfactory and adding necessary

26

components if it is not.

The configuration task can be grouped into the

following subtasks that have strong temporal

interdependance.

1. Determines whether there is anything grossly
wrong with the customer's purchase order.

£. Put the appropriate components in the CPU and
CPU expansion cabinets.

3. Put boxes in the unibus expansion cabinet and
put the appropriate components in those boxes.

4. Put panels in the unibus expansion cabinets.

5. Layout the system on the floor.

6. Do the cabling.

fin example of a rule for the third subtask follows:

If the most current active context is assigning a power
supply

and a unibus adaptor has been put in a cabinet
and the position it occupies in the cabinet is known
and there is space available in the cabinet for a

power supply for that position
and there is an available power supply
and there is no H7101 regulator available

Then add an H7101 regulator to the order.

Because of the way in which the stages in the

process have been abstracted, Rl always processes the

tasks in the same order and nevBr needs to backtrack.

CRundle, 19823. Rl, with the use of abstraction space

does very little search. This method requires a partial

ordering on decisions for a task since the consequences

of applying an operator will affect 'later' parts of the

solut ion.

The use of abstractions should be considered for

applications where there is a large search space but no

method for early pruning.

Case_6jL_No_fixed_gartitionin3_e£_

This section describes an organization appropriate

to applications that cannot with each use be partitioned

into the same subproblems. In this type of system an

abstract approach is used. The following aspects of this

approach are important:

1. Abstractions for each problem are composed
from terms (selected from a space of terms) to
fit the structure of the problem.

£. During the problem-solving process, these
concepts represent partial solutions that are
combined and evaluated.

3. The concepts are assigned fixed and
predetermined abstraction levels.

4. The problem solution proceeds topdown, that is
from the most abstract to the most specific.

5. Solutions to the problems ars completed at one
level before moving down to the next more
specific level.

6. Within each level, subproblems are solved in a
problem independent order.

28

OBSTRIPS CSacerdoti, 19743 is an example of this

approach. The robot planning expert system makes plans

for a robot to move objects between rooms. In ABSTRIPS

the abstract ions are plans. The concepts are type and

color, inroom, etc.; and the abstraction levels are

represented by what Sacerdoti refers to as criticality

values. These values place the concepts in heirarchy of

importance. In one example Sacerdoti suggested the

following criticality assignents for concepts in a robot

planning domain:

Type and Color 4
InRoom 3
Plugged and Unplugged £
NextTo 1

One should note that in all problems of the the

domain, the hierarchy of 'Type and Color' will always be

greater than 'InRoom'. Planning in OBSTRIPS starts where

criticality is at a maximum. Preconditions whose

criticality is below the current level are invisible to

the planner and will be accounted for during a later

level pass. After a plan is completed at one criticality

level the criticality level is decremented. The abstract

plan becomes more detailed as criticality level

decreases. The sequence of abstract plans is created

differently for each problem depending on the concepts

£9

employed.

In summary, this approach utilizes a topdown

refinement that is individually constructed to fit each

problem in the domain. In this approach it must be

possible to assign a criticality ordering to the domain

concepts and what is important for one problem must be

important for all problems CStefik et al, 198£].

Q§se_7i_Xn£.^!2§EtiDa_§y;kBtZ'2kIsms

In the previous case it is assumed that similar

kinds of decisions should be made at the same criticality

level for each problem in the domain. This section

explores a reasoning approach based on the least-

commitment principle.

This approach requires the following attributes:

1. The ability to know when there is enough
informat ion to make a decision.

£. The ability to suspend problem-solving
activity or\ a subproblem when information is
not available.

3. The ability to move between subproblems,
starting work as information becomes
available.

4. The ability to combine informat ion from
different subproblems.

The figure above is an example of the least

commitment approach used in NOfiH CSacerdoti, 1974]. NOflH

30

LEVEL 1:
Paint the ceiling and paint the ladder.

LEVEL 2:
^Paint the ceiling.^

split ^ io i n
"""""—Paint the 1 adder.«-^*^"^

LEVEL 3:
Get paint-get laddei— apply paint to ceiling.-

split JO£ri

\ /
Get paint- apply paint to ladder. '

LEVEL 3: (after conflict resolution)
Get paint- get ladder- apply paint to ceiling—h

split r * *

\ et paint- join- apply paint to ladder.

Figure £-5: Example of Planning in NOAH

is a robot planning system that assigns a time ordering

to operators in a plan as they are required.

In figure (£.5) NOAH'starts with two subgoals which

are expanded until a conflict is found. The conflict

appears in LEVEL 3. If the ladder is wet it cannot be

used to paint the ceiling. fit the time the conflict is

resolved by altering the plan.

In conclusion, this approach coordinates decision

making with the availability of information and moves the

focus of the problem solving activity among subproblems.

When there are many options and no compelling reasons for

choices one cannot utilize this approach.

31

G3se_8£_Gue5si.ng_i.5_needed

Below are listed situations in reasoning when

guessing is important:

1. Many problem-solvers need to cope with
incomplete knowledge and may be unable to
determine the best choice at some stage in the
problem solving.

£. A search space may be quite dense in
so1ut ions. If so1ut ions are p1ent ifu1 and
equally desirable then guessing is efficient.

3. Sometimes, as in top-down refinement, there is
an effectove way to converge the solutions by
systematically improving approximation.

The difficulty in guessing is in identifying wrong

guesses and recovering from them. Stallrnan and Sussman

CSussrnan and Steele, . 1980] use guessing in EL, which is

a program analysing electrical circuits.

When analysing diodes and transistors, EL uses a

method of assigned states that requires guessing. For

diodes EL has two possible states (On or Off) and three

states for transistors (active, cutoff, and saturated).

Once a state is assumed EL can use a non guessing method,

propagation analysis. After making an assumption EL must

check whether the assumed states are consistent with the

voltages and currents predicted for the devices.

Contradiction is used to detect incorrect

assumptions. When a contradiction occurs the assumptions

32

are revised through belief revisions.

In EL an assertion is believed (or in) if it has

well-founded support from atomic assumptions, and out

when lacking support. If an assertion was out and

becomes in it is unouted. In the figure below fll and fl£

are mutually exclusive device-state assumptions. The top

portion of the figure demonstrates facts that are in when

ftl is in. Arrows indicate support and dotted lines

(although part of the data base) indicate what is out.

In the bottom of the figure (£.S) fl£ is unouted and fli is

outed.

Generally dependency directed backtracking is used

in belief revision to recover from incorrect assumptions.

The main points are:

1. In the event of a contradiction EL needs to
decide what to withdraw. El must decide which
assumptions are most unlikely to change.

£. El must redo some of the propagation analysis.

3. Contradictions are remembered so that choice
combinations that are found to inconsistent
are not tried again.

El employs efficient guessing CBtefik et al, 1982D

via dependency directed backtracking to recover from

incorrect assumpt ions.

(a)

\

X

\ r
w
a
/T

X I
n
u

Rl

Figure S-6: Example of Belief Revision in EL

Q^§i_2l_§iQ3l§_]iine_gf_rea5oning_too._weak

In certain instances systems gain power in the use

of multiple lines of reasoning in problem solving. The

two main purposes for multiple limes of reasoning are to

broaden the coverage of an iincomplete search and to

combine strengths of separate models.

34

The expert system HEARSAY CErman et al, 1988], a

system for understanding speech, copes with conflicting

demands of searching a large space with limited

computational resources by carrying a limited number of

solutions in parallel.

A good example of combining strengths of multiple

models is the expert system SYM CSussman and Steele,

1980]. SYN is a program for determining values for

components (e.g. the resistance of resistors) in

electrical curcuits.

SYN utilised the idea of slices or multiple views of

a circuit which corresponds to the idea of equivalent

circuits in electrical engineering practice. For

example, a voltage divider can be seen as being composed

of two alternative slices. One slice of the circuit

describes the voltage divider as two resistors and

another slice describes it as a single resistor. The

program then proceeds in two redundant paths for

information to travel in propagation analysis. The

strengths of the different models are combined with

forward reasoning. When using slices the problem solver

must know how to create and combine multiple views.

Q§§§_i®l_iiD3l§_source_of_knowI§dge_is_too_weak

This section explores the use of multiple sources of

35

knowledge in an expert system. HEPfRSRY reported by Errnan

CErman et al, 1980] is once again used as an example.

In HEflRBflY-II the knowledge for understanding speech

is broken into knowledge sources of information referred

to as heterogeneous abstraction spaces. The levels are

heterogeneous to match the diversity of the interpetat ion

knowledge (see figure £.7). The knowledge sources

cooperate via an opportunistic scheduler that coordinates

the diverse sources of knowledge and adapts to changing

conditions of uncertainty in solutions by changing the

breath of the search for different hypothesis. The basic

mechanism for this is the interaction between knowledge

source assigned credibility ratings on hypothesis and

scheduler assigned priorities of pending knowledge source

activations. Therefore, abiguity between competing

hypothesis causes HEftRSOY-11 to search with more breath,

and to delay the choice among competing hypothesis until

more information is available.

Case 11.£ §§D.gr.3l E§;EE§§!iQtat ion [nethods are too
inefficient

fls knowledge bases get larger, the efficiency

penalty incurred by using uniform representations can

become significant. One change in the representation of

knowledge that is explored for expert systems is

36

Levels

Data Base
Interface

Phrase

Word
Sequence

Word

Syllable

Segment

Paramet er

Knowledge Sources

»J3emant ics

Predict
>

St 03

Parse Concai

;

Word-Ct;

Word-seq *-

Word-Seq-Cts Verify
WOW ""

£Q£L

SEG f-

RPDL

The knowledge sources are as follows:
Semantics: generates interpretation for the

informat ion syst em.
SEE: digitizes the signal, measures parameters,

produces labeled segmentation.
POM: creates syllable-class hypothesis from
segments.

MOW: creates word hypotheses from syllable
classes.

Word-Ct1: controls the number of hypotheses
that MOW makes.

Word-Seq: creates word-sequence hypotheses
for potential phrases.

Word-Seq-Ctl: controls the number of
hypotheses that Word-Seq makes.

Predict: predicts words that follow phrases.
Verify: rates consistency between segment

hypotheses and contiguous word-phrase
pairs.

Concat: creates a phrase hypothesis from
a varified contiguous word-phrase pair.

RPOL: rates the credibility of hypotheses.

Figure 2-7: Levels and Knowledge Sources in HEARSAY-11

knowledge compilation. 37 Tit is technique transforms one

representation of knowledge into another representation

that can be used more efficiently.

Burton reported a system [Burton, 197&3 for taking

PlTN grammars and compiling them into executable code.

CStefik et al, 198S3 The compiled grammar could be

executed to parse sentences much more rapidly than

previous interpreter-based approaches.

The promise of knowledge compilation is to make it

possible to use general means for representing kowledge

when an expert system is being built and debugged. Then

the compiler can be applied to make the knowledge base

more efficient. In addition, as hardware is changed or

as trade offs in representation become better understood,

the compiler can be modified to represent knowledge

efficiently.

In summary, the first case considers an expert

system of a very simple architecture that requires small

search space and data and knowledge that is reliable and

constant. In successive cases the following attributes

of an expert system are considered: unreliable data,

time varying data, and big solution space. The cases of

an expert system with a big solution space, but requiring

organisation to accomodate other complex structures are

developed. The organization of an expert system relects

the availability of search space and the characteristics

38

of the knowledge base and data.

2.5 Software Tools

The development of expert system software tools is

an area requiring increasing attention. Currently much

work in knowledge engineering focuses in developing

computer programs that aid scientists with complex

reasoning tasks. However, building these programs is a

time consuming task CTanaka, 19823.

One of the techniques used in an attempt to harness

the power of expert systems more efficiently is by

building up the knowledge base of such systems with

special purpose programming languages.

The best known of these is Lisp, a language

developed orignally as a means of proving correctness in

programs and taken up by the artificial intelligence

community as its major tool [McCartney, 19823. Lisp

provides a rich, interactive editing and debugging

environment. More fundamentally, Lisp removes the

distinction between programs and data by treating the

rules and heuristics in the knowledge base sometimes as

data to be reasoned about and sometimes as code to be

executed. CDavis and Lenat, 19823.

fl lesser known example is Prolog, a software

language designed for artificial intelligence

applications, such as, expert systems [Goodall, 1983].

Prolog stands for PROgrarnming LOGic. It is based on

predicate calculus [Rundle, 198SD and is very different

from the standard type of programming language or

notat ion.

Prolog was originally developed at the University of

Marseille at the beginning of the 1970s as a means of

using computers to understand so called 'natural'

languages. The study of natural language is closely

allied with the study of artificial intelligence.

[McCartney, 198£] Expert systems are a prime example of

the type of the type of application to which Prolog is

well suited.

The rules and conditions which comprise the

knowledge base of an expert system can be easily

represented by Prolog's data structuring facilities.

[Goodall, 1983D ft Prolog program consists of a number of

rules or facts about a subject. Once defined you can ask

prolog questions about the subject and it will attempt to

answer them [Rundle, 198S3. The inference engine of an

expert system needed to manipulate these rules and

conditions can make use of the language's own inference

mechanism (which does not have to be the same as that of

the expert system).

Writing in Prolog is quite different from writing in

40

a traditional algorithmic language. Instead of asking

'what is the algorithm that will solve my problem?' the

programmer asks 'what are the facts and rules which

describe my problem?' Having determined the facts and

rales, the programmer can than state them very naturally

in Prolog (this is where the basis in logic comes into

play) and the problem is given a formal specification,

fit this point the programmer changes the way he views the

program and considers it as a set of procedures which

when executed, will perform a controlled deduction

through the logic statements. To some degree the details

of how this deduction takes place can be left unspecified

by the programmer, since this is handled by the

language's inbuilt inference mechanism CGoodall, 1983D.

trained-on (adarns, rnx01). adarns is trained on an rnxiZil
trained-on(brown, mx0i). brown is trained on an mx01
trained-on(brown, mx0£). brown is trained on an mx0£
trained-on (carter, mxiZi3). carter is trained on an mx03
owns(avis, mx01). avis owns an mx01
owns (avis, rnxiZi3). avis owns an m><03
owns(bbc, rnxOl). bbc owns an rnx01
owns (cook, rnx0£). cook owns an mx0£
owns(cook, mx03). cook owns an mx03

Figure 2-8: PROLOG data base

Consider, for example, (see figure £.8) a number of

servicemen (adarns, brown, and carter); a number of

machines which they service (mx01, mx03, mx0£); and a

41

number of customers who own one or more machines (avis,

bbc, cook). The above Prolog database describes the

situation in detail. fill the above are 'facts' which in

this case do not contain variables. The general form of

a Prolog definition of a relationship or assertion iss

(relationship) C(subject)(object)1.

can-call-on CS, CH:- owns CC, M3, trained-on CS, Mil

The above is a prolog 'rule'. The symbol :- means 'if

or 'provided that'. S, C and M are variables becase they

start with an upper case letter. The rule says 'ft

serviceman S can call on a customer C provided that C

owns some machine M and that S has been trained on M.'

The rule can be used to locate all Cs, given an S, or all

Bs given a C, or all valid combinations of S and C.

The above facts and the single rule constitutes a

very simple Prolog program that purely describes the

serviceman/rnachine/customer world. If this were in a

Prolog database one could ask questions of the database

as in figure £.9.

Questions are preceded by a ' ?'. CGoodall, 1983]

Although, little commercial use is being made of

Prolog currently, it is likely to be only a matter of

time before it will become used in the world of business

in software departments as a tool to build expert

4£

?-~trained~on (S, mx0i).

S=adarns
More(y/n)?y
S=brown
More (y/n)?y
no
?-owri5 (bbc, M).

M=mx01
More(y/n)?y
no
?-can-cal1-on(S,avis).

S-adarns
?-can-cal1-on (brown,C)

C=avis
More(y/n)?y
C=bbc

Who is trained
on an rnx01?
adams is

and brown is

What machines
does bbc own?
an mx01

and no more
Which servicemen
can call on avis?
adams cari
On which customers
can brown call?
on avis

on bbc

Figure £-9: Sample Questions of Database

systems. [McCartney, 198E3

Some other software tools besides special purpose

programming languages are tools that have been developed

to aid the design process of the knowledge base of an

expert system.

EXPERT and EMYCIN (essential MYCIN) assist in the

development of production systems CMizoguchi, 198£3.

EMYCIN is not itself an expert system- it is a means of

building such systems and one way of getting around the

problem of setting up the rule database.

Essential MYCIN is the central core of MYCIN, and is

used as a domain independent system to develop other

43

rule-based systems. EMYCIN has been applied to expert

systems in other medical areas, such as pulmonary

disorders (PUFF) and psychiatry (HEftDMED) as well as

structural analysis (SRUM).

According to researchers at Stanford University, the

most recent application of EMYCIN took only £0 hours to

build. In a recent report published by "Pergarnon

Infotech on Machine Intelligence", the system CLOT which

was developed for diagnosing disorders of the blood

coagulation system- "was constructed as a joint effort by

an experienced EMYCIN programmer and a collaborating

medical student. Following approximately 10 hours of

discussion about the contents of the knowledge base, they

entered and debugged in another 10 hours the preliminary

knowledge base of some 60 rules using EMYCIN" [McCartney,

19823.

fl software product called fiL/X (standing for 'advice

language') has been developed by Michie. It is designed

for programming expert systems and was developed in

conjunction with BP (a British company) at Dyce. Its

successor, coded in the language C, will be available in

the near future and run on any Unix or Unix-like

operating system. Available at that time will be a

component, Intelligent Terminals' rules from examples

system, that is designed to automate the compilation of

44

rules from examples. It is intended to increase the

productivity of human experts.

Michie contends that the bottleneck in building

expert syterns is the acquisition from the human expert of

a huge number of rules that are only partially and

imprecisely accessable to the conscious mind. This

system will operate as if one were teaching an

apprentice. Examples will be fed in and a rule will be

produced automatically to encompass them.

The immediate application would be an expert system

designed for testing electronic equipment with fault

tables. Long term application would be computer vision.

In the not too distant future this system will be

available as a floppy disk for the Apple computer

CBurkitt, 198£].

In developing expert systems, KRL, FRL, UNIT and

RLL, are available as general purpose representation

systems for a knowledge base. CMizoguchi, 198£3. More

recently, AGE (Misoguchi~17) has been proposed as a tool

for designing general purpose knowledge base systems.

If the tools for knowledge base systems are suitable

to the problem domain, the necessary task of the designer

is the task of selecting the best tool among them and

formulating the problem in terms of the specifications of

the tool. The design process is highly dependent upon

45

the software tool that is applied to the problem

[Mizoguchi, 1982],

Another approach to software tools, is the concept

of SOUI, the self-adaptive user interface. This tool

would be under the category of what Waterman [Waterman,

19783 describes as a small program that sits between the

user and the system. The user interacts with the SAUI

and the SflUI is capable of performing a variety of tasks

for the user by interfacing the user with the expert

system. The SflUI provides the user with help in learning

and using complex expert systems. [Innocent, 19823

Software tools, such as, SflUI are in the planning stage.

A system called Multi-Layered Software Environment

(MLSE) has been proposed for providing a designer of an

expert system with a wide variety of design altemat ives

in software tools derived from artificial intelligence

technology. It is a collection of module packages for

building the components of knowledge base systems. This

system emphasizes a layered approach to building the

software environment as a basis for developing a

knowledge base system [Mizoguchi, 19823.

A British company, SPL, has introduced a new

software package called SAGE which it claims is the first

general purpose development program for expert systems.

In other words it is software that will enable the user

4£

to produce their own expert system on any subject they

like.

The purpose of the software tools previously

mentioned are to alleviate the burden of writing an

expert system and allow the user to implement a system

with less instructuion that was available in the past.

S.6 Applications

Expert systems are regarded as a major computing

development. They are the first practical implementation

of research into artificial intelligence. One of the

reasons for their success is that they are not apparently

'clever' and do not make human beings feel

inferior CMcCartney, 19SSII. Expert systems are convivial

to the extent that they make previously scarce expertize

available to the user. They are congenial to the extent

that they interact with the user in his or her language

and offer assistance in a mode that allows the user to

retain decision making perogatives. The expert system,

moreover, contains knowledge in a formalism natural and

understandable to the user. The system contains an

explanation capability to explain the 'why and how' of

its rasoning CBendifallah, 198£]. fin expert system has

the ability to accept rules and experience concerning a

specific domain and make deductions about that domain

47

CMcCartney, 198S3.

Virtually any problem domain is suitable for

solution by an expert system provided the knowledge

necessary for solving the problem domain can be put into

rule form. However, it is necessary to remember that if

a problem domain generates less than about 10 rules, it

is probably not worth using an expert system, since a

human can solve it just as efficiently CWinfield, 1982D.

Recent domains providing practical applications for

expert systems are medical diagnosis and therapy;

equipment failure diagnosis; computer configuration;

chemical data interpretation and structure; experiment

planning; speech and image understanding; oil field

services; military needs; mineral exploration; military

threat assessment and targeting; crisis management;

science; advising about computer system use; training

teaching; and air traffic control CFeigenbaurn, 198£].

Some existing practical applications of expert

systems are listed below.

Application Area. Name Comment s

Mineral exploration Prospector Interprets surface
geology.

Translation of TflUM Translates meteror-
meteorological logical bulletins
bu11itens from Eng1i sh to

French.
Materials handling Microcomputer EB to

help select

48

Mass spectral

Medical test
analysis
Plant pathology

DENDRAL

PUFF

AQ11

Oil platform faults AL/X

Medicine Psyco
Tax advice

Science

System design

Fault Diagnosis

Medicine

Educat ion

TAX ADVISOR

CONCHE

Rl

CRIB

MYCIN

BUIDON

handling
techniques.
First ES.
interprets
mass spectra (Chern.
analysis).
Diagnoses- pulmonary
diseases.
Exceed human diag-
nosis of soyabean
diseases.
Diagnosis automatic
shutdowns.
Diagnosis Dyspepsia
Advice on capital
transfer tax.
Aids scientific
theory formation.
Configures DEC VAX/
780 Computer
systems.
Diagnosis computer
hardware and
software faults.
Diagnosis and drug
treatment.
Tutor improves
students diagnostic
ski 1 Is.

Particularly noteworthy are MYCIN, AQ11, PROSPECTOR,

Rl and DENDRAL. Medical consultation systems are a major

application of artificial intelligence research CKaihara

and Koyama, 19823. MYCIN, an expert system that

diagnoses blood diseases and selects antibiotic therapy

for bacteremia has been mentioned previously in this

paper. [Chester, 198£3 Developed at Stanford University,

it is one of the earliest and simplest expert sytems.

The MYCIN system contains about 450 rules which are used

49

for diagnosis. It has been developed further by the

addition of £00 or more rales to be used as a teaching

aid and covering both facts and problem-solving

strategies. The extra rules cover methods of guiding

dialogues with the students and presenting strategies to

the students. CRundle, 19S2D P.Q11 is a system which has a

33'A success rate in diagnosing soyabean diseases and is

now used by the top human experts. CEllis, 1983]

Dendral is another well known system that originated

at Stanford University. It is designed to determine the

molecular structure of organic compounds from their

chemical formulas using mass spectrograph and nuclear

resonance data. [Chester, 198£3 The program has been used

to establish new molecular structures CRundle, 198£].

One of the best known engineering expert systems is

PROSPECTOR CBoothroyd, 198S3. PROSPECTOR is capable of

mapping underground ore deposits from observed surface

features CEllis, 19Q33. ft company SRI International was

commissioned by the United States Geological Survey and

US National Science Foundation to develop PROSPECTOR

CRundle, 198SH. This system gives geological advice to

mineral companies looking for the likeliest sites to find

copper and molybdenum. CBoothroyd, 198£]

PROSPECTOR contains rule-based models of different

ore deposits which can evaluate the likelihood of finding

50

a particular type of ore in a geological district, and

select the best drilling position on the exploration site

CRundle, 19823. The 1600 or so rules comprising

PROSPECTOR'S knowledge base were developed by

interviewing a number of geologists who were recognized

experts in their field, and building up the associations

between observable evidence and the likely underlying

geological structure. Moreover, PROSPECTOR is capable of

giving details of the rationale for conclusions reached

and suggesting which data are most valuable for further

exploration CRundle, 1S82D.

PROSPECTOR has correctly contradicted human experts.

The US company Fairchild was considering exploration for

a deposit of the rare element, Molybdenum, on a site that

its advisors told them was not worth the investment.

PROSPECTOR said the opposite ard was proven to be correct

CBoothroyd, 198£].

Digital Equipment CMcDerrnott, 198£3 has pioneered

the use of expert systems for working out the demands of

its customers and turning them into a machine

configuration. Rl designs complex computer systems. The

system has been used extensively for this purpose on

their latest range of VAX computers. [McCartney, 198E3

The system has about 80® rules governing the

conf igur'at ions, together with a database describing about

51

400 components. CRundle, 19B£] Eventually, the

configuration produced by the computer will be fed

automatically to the factory where manufacturing will

start under computer control CBoothroyd, 19B£].

Presently, expert systems cari store and amplify rare

specialist expertise and make it more widely accessable.

Expert system techniques offer a route to solutions to

high software development costs, incomprehensibility of

programs and the inability of the ordinary user to

intervene without a programmer to help.

ft problem in today's world is the shortage of human

expertise. It is scarce and expensive. Human experts

are fallible and their compacities limited and, of

course, they are mortal. In contrast, expert systems are

capable of reducing skill shortages. They are widely

distributable, easy to run, duplicate and upgrade.

Expert systems have the capability of excelling humans in

complex problems, and they cannot resign or die.

Some of the management concerns of the 1980's are

the acquisition of competent management, too little time

to solve problems, an overload of information, lack of

trained personnel, and the availability of material

resources. Expert systems are now capable of policy

analysis and strategy, of augmenting management skills,

and formulating and solving existing problems. Expert

systems are decision oriented. They can educate

personell, assist in exploration of resources and cut

risks and costs of management.

Previously people complained about the difficulty of

conversing with computers, the difficulty in

understanding computers and the expense in modifying and

developing computer software. Expert systems bridge the

man-machine gap. They talk in user language, can explain

reasoning, and are trivial to modify. They are the best

route in encouraging progress in automatic programming.

There is concern that present complex computer

systems are dangerous because, for example, they can emit

false missile alerts, allow mistakes, such as, occurred

at 3-mile~i5land and are hard to monitor in air traffic

control. Expert systems return human control by

providing a 'human window' that allows the user to

comprehend the system and enables faults to be spotted

and disasters averted. CEllis, 1983]

In the future, if successfully developed, the fifth

generation computer sytems will be excellent vehicles for

expert systems applications CFeigenbaum, i98£]»

Recognizing the importance of knowledge based industries

in the £lst century, the Japanese are two years into a

ten year program to develop 5th Generation Computers.

These computers will go radically beyond all previous

computers and put useable information technology at

everyone's elbow. Details released in Tokyo in October,

1381, to computer experts from Western countries detailed

three key elements of design.

1. Very large scale integrated components- high
power at low cost on small chips.

£. Distributed processing- distributing computer
via t e1ecommun i cat i ons and

3. Expert systems making computers behave more
like people, and also leapfrogging- current
software quagmire. CEllis, i983II

The Japanese, are committed in their Fifth

Generation project to having systems with over 10,000

rules within the decade. CMcCartney, 198£] The social and

economic goals of this project are ambitious and would

include Japan providing world-wide leadership in

information technology CParrott, 1983].

Fifth generation computer expert systems will be

primarily symbolic manipulation systems. They will be

knowledge processors with arithmetic capabilities. They

intend to meet the major commercial demands of personal

and professional expert systems from the period of 1998

to 2000. Much of today's software will appear on the

chip as hardware in these systems. The software ideas of

today are the seeds of the big ideas for the Fifth

Generation Computer expert systems CFeigenbaum, 198S3.

54

Expert systems have powerful implications for

managers, professionals and organizations. Expert

systems are a human face of information technology and

will find an application in every sector and level of

modern economy.

Expert systems will change the ways managers and

professionals operate by their ability to call an expert

system for decision making. Expert systems will have

increased capability in the future and reduced response

time. In the professions, top experts will find a new

channel to market their skills, allowing them more time

for research and checking assisted solutions. Lesser

experts, hopefully, will see expert systems as a better

type of 'manual'.

Collectively, these efforts could radically alter

the performance of organizations. If expert systems and

advanced inforrnat ion technology are to be introduced

beneficially, a coordinated strategic response may be

required. The advantages of expert systems applications

can be enormous if the applications, timing, investment

profile and employee relations are all considered.

3. Major Research Issues of Expert Systems

This chapter discusses some major research issues of

expert systems. They are heuristics, knowledge

representation and knowledge acquisition.

3.1 Heuristics

Builders of expert systems attribute the impressive

performance of their programs to the body of knowledge

they contain: a large network of facts and a large array

of heuristics. Heuristics are informal, judgmental

'rules of thumb'.

Heuretics who study heuristics extract heuristics

from experts. They decide when the existing corpus of

heuristics needs to be augmented. They represent

heuristics within the knowledge base, and evaluate the

worth of a particular heuristic in a progran; in

troubleshooting an expert system built with heuristic

rules.

Researchers of heuristics study the origin of

heuristics and the source of the power of heuristics.

The source of power of heuristics can be seen as a two

dimensional continuity CLenat, 19S£3. If a heuristic H

was useful in situation B, then it is likely that

heuristics similar to H will be useful in situations

similar to S. If one were to compute the function

56

APPROPRIATENESS (fiction, Situation), that function would

be continuous in both variables, and would vary very

slowly. Although, according to Lenat, appropriateness

can be measured in many ways (such as, efficiency and

comprehensibi1ity) and situations can vary (with

difficulty, time, importance and subject matter), it is

often useful to behave as though the function

appropriateness (action, situation) exists and is

continuous. If one does so then one is following a

heurist ic.

One must consider the continuity, stability and

observability of a domain in determining whether an

expert system utilising a heuristic search will be of

assistance. If data is not observable and cannot be

gathered then heuristics cannot be formed and evaluated.

If the environment is not continuous and canges abruptly,

the heuristics may r\ever be valid. If the changes are

continuous but too rapid to be stable then the heuristics

may have too short a lifetime before becoming useless.

According to Lenat's [Lenat, 19823 empirical results

from AM, an expert system designed to discover

mathematical concepts and conjectures, new heuristics

arise from three sources: specialization, generalization

and analogy. Specialization of existing, more general

heuristics can provide one or more new heuristics. This

57

can occur, for example, when matching more specified

observed data to a template in a computer program or it

cari occur when noting an exception to a genral heuristic,

and therefore formulating a higher precedence heuristic.

Generalization of existing, more specialised

heuristics can occur. Commonly a.ri abstraction of a

heuristic applied in a more specific area of a program

can be applied more generally to a greater domain in the

expert system. Analogy to existing heuristics and to

successful acts of creating new heuristics is the third

origin of heuristics. In AM, for example, Lenat was able

to look for examples of concept C before trying to prove

any theorems about C.

Some examples of domain heuristics in AM are

illustrated in figure 3.1 below.

His IF: ft X ft -> B,
THEN: define 6: fl-> B as G(x) = F(x,x)

H£: IF: F:ft->B, and there is some extremal
subset b of B,

-1
THEN: define and study F (b)

Figure 3-1: Two Heuristic Rules

Heuristic HI, says if a function F takes a pair of

ft's as arguments, then it's often worth the time and

energy to define G(x)=F(x,x), that is, to see what

58

happens when 'F's arguments coincide. If F is

multiplication, for example, this new function 'G'

becomes squaring. Heuristic H£ says to investigate the

inverse image of known b. If 'F' is intersection, H£ says

it's worth considering pairs of sets which map into

extremal kinds of sets (e.g. extremely small sets, such

as the empty set). This heuristic could lead to defining

the relationship of two sets having empty intersection or

disjointness.

fin expert system, EURISKO CLenat, 19Q2D, which is an

extension of the previously mentioned AM, is a program

built with heuristic rules and is capable of discovering

new heuristics as well as new mathematical concepts.

Below is an example of three heuristics in EURISKO

capable of working on heuristics as well as math concepts

domain. Meta-heuristics are heuristics which inspect,

gather data, modify and synthesize other heuristics.

Their counterpart are domain heuristics that define what

we mean by a particular domain of knowledge (i.e.

mathematic concepts), and are object level heuristics.

The first one says that if some concept f has always

led to bad results, then f should be marked as less

valuable. Concepts in EURISKO are knowledge represented

by the frame method. If a mathematical operation, like

Compose (which refers to mathematically composing two.

59

Hi£s IF: the results of performing F have
always been numerous and worthless,

THEN: lower the expected worth of F.

H13: IF: the results of performing F are
only occasionally useful,

THEN: consider creating new specializations
of F by specializing some slots of F.

H14: IF: a newly-synthesized concept has slots
that coincide in value with those of
an already existing concept

THEN: the new concept should be destroyed
because it is redundant.

Figure 3-£: Heuristic Rules in Eurisko

functions), did not ever lead to any good new math

concepts, then this hueristic would lower the number

stored on the 'worth' slot of the compose concept.

Likewise, if a heuristic, for drawing diagrams never was

utilized then its 'worth' slot would be decremented.

The second heuristic H13 says that if some concept

has been occasionally useful and frequently worthless,

then it is worthwhile to investigate specialized versions

of that concept. H13 was utilized in AM, for example, to

find new specializations of the compose concept to create

a function, composition of a function with itself. In

EURISKO H13 was further developed to apply H13 to

heuristics. In fact H13 once applied to itself. One of

the specializations resulting was heuristics which demand

that it has proven itself at least 3 times.

60

Heuristic Hi4 enables EURISKO to eliminate redundant

concepts created perhaps by other heuristic rules. The

heuristics of EURISKO are capable of operating on each

other (and themselves) to synthesize new heuristics.

The field of heuretics is a promising one for

Artificial Intelligence to investigate in helping one to

understand and construct expert systems. The power of

heuristics lies in behaving as though appropriateness

(action, situation) were time invariant and continuous in

both variables. Heuristic search is appropriate when

modeling domains that are observable, stable and

continuous. Heuristics originate from generalizing other

heuristics, specializing other heuristics, and finding

analogies to other heuristics.

EURISKO demonstrates that there is not a need to

distinguish between object level heuristics and

meta-heuristics. Continued research in heuristics will

hopefully provide new ways to improve and understand

expert systems.

3.2 Knowledge Representation

Expert systems are unique in that they use an

ordered set of task-specific rules to solve problems in a

way similar to how an expert in a particular technical

field might do it. CWebster, 19S£] These set of rules lay

61

down the relationships and correlations between

information segments in the knowledge base. Determining

the best of many possible ways of representing this

knowledge and the rules connecting different items in the

knowledge base becomes an important consideration

CGowans, 19823. Much research work is currently being

pursued into ways of representing knowledge in expert

systems CWinfield, 19823.

1. Logic
£. Procedural representations
3. Semantic networks
4. Production systems
5. Direct (analogical) representations
6. Semantic primitives
7. Frames

Several methods of representing knowledge are

currently used. Logical deduction by using predicate

calculus is one method CBarr and Feigenbaurn, 19803. In a

Procedural representation knowledge is accessed by direct

explicit calls of each procedure CWinston, 19773. When

using the semantic networks method semantic attributes

are included in the representation of a rule. The

attributes connect the rule to other rules, thereby, more

explicitly defining the attributes CCatansarite,

Greenburg and Bremermann, 19813. In a production system

the knowledge is represented by a series of productions

CWinston, 19773. find sometimes, as in direct

6£

(analogical) representations whole systems can be

powerful metaphors which facilitate a problem solution

through stong analogical features CWinston, 19773. When

semantic primitives are used each condition can be

considered a semantic token, upon which other information

can be attached CLeith, 19633. Finally, in frames the

knowledge is factual and can be represented by methods

extending from simple tables to sophisticated frame

systems CWinston, 19773.

The method which has been used in the majority of

the more common present day expert systems is the

production system. fi production system consists of a

number of rules where each rule is of the IF...THEN...

type. Sometimes these rules are referred to as situation

action rules; that is IF some situation occurs THEN some

action is performed CWinfield, 198£3.

Rl CMcDerrnott, 19B£3 is an expert system using a

production system to represent kowledge. Rl currently

has 77£ rules that enable it to configure the VftX-11/780

computer system. fin English translation of a sample rule

is shown in figure 3.3.

The first condition of this rule indicates that the

subtask in which the rule is relevant is the distributing

of massbus devices among massbuses. The remaining five

conditions specify one of the sets of constraints that

63

DISTRIBUTE-MB-DEVICES-3
IF: The most current active context is distributing

rnasbus devices
and there is a single port disk drive that has not

been assigned to a rnassbus
and there are no unassigned dual port disk drives
and the number of devices that each rnassbus should

support is known
and there is a rnassbus that has been assigned

at least one disk drive
and that should support additional disk drives
and the type of cable needed to connect the

disk drive to the previous device on the
rnassbus is known

THEN: assign the disk drive to the rnassbus.

Figure 3-3: Rl Sample Rule.

must be satisfied within this subtask in order for a disk

drive to be assigned to a rnassbus. One of the single

port disk drives on the order is assigned to one of the

massbuses when an instantiation of the rule is executed.

Various properties of production systems, which have

contributed to the popularity of this form of knowledge

representation have been listed by Davis and King CDavis

and King, 19773. They include their modularity, the

driveness and openess of control, the constrained format

of the rules, and that new rules cari be incorporated

easily CWinfield, 198:2:1.

Production systems seern to be appropriate for

domains whose methodologies are modular and subject to

frequent alteration. In contrast procedural systems seem

64

more appropriate for domains with well-defined and

i rit e g ra 1 met h od o 1 o g i es.

However, when a measure of feasibility is required

in an expert system, the procedures representing these

methods can be datadriven procedures which are allowed to

edit their own driving data in a learning system whose

methodology is capable of changing in detail as

experience is acquired [Smith and Bowen, 198£3.

I IDA (Individualized Instruction for Data Access

System) is an example containing a procedural knowledge

representation. It is a system EMeadow, Hewett, and

Aversa, 198£3 that serves as intermediary for users in

performing a complex task on another computer. Another

example is MAPLE (Microprocessor Application Expert).

MAPLE is a prototype expert system bying developed

by Bowen. It is an interactive system which assumes the

rule of a consultant expert in the field of hardware

design for microprocessor applications. Because design

of microprocessor applications using board level

components is a field for which standardised methodology

is defined, MAPLE is being implemented as a procedural

system. MAPLE's knowledge of its domain is composed of

three parts: its methodology of application design, its

access to information about the components needed in

microprocessor systems and its experience of past

65

applications. The methodology is encoded as procedures.

The approach of MAPLE to the design of microprocessor

applications is represented as a set of data-driven

procedures. Therefore, its methodology can change in

detail as it acquires experience. Component information

and application experience are stored in data files and

are therefore can be extended [Smith and Bowen, 19823.

Another method of representing knowledge is

described as a semantic network. A network provides a

particularly rich structure for entering detailed

relationships and descriptors in the domain model.

Wall is and Short 1 iffe have designed a prototype system to

expand explanatory power for medical expert systems.

They describe their system as having a semantic network

knowledge representation.

Figure 3.4 demonstrates a sample section of network

from this program showing object, parameter, value and

rule nodes.

Dotted lines indicate the following rule

IF PARAMETER-1 of OBJECT-1
is VALUE-1, and
PARAMETER-2 of OBJECT-1 is VALUE-4

THEN conclude that PARAMETER-4 of OBJECT-3 is VALUE-7

Object nodes are arranged hierarchically, with links

to the possible attributes (parameters) associated with

66

part-of

fa 1 ueVof v\a 1 uerof

VI V£ V3 V4

precond i t i on-of
V
P
\

and^

^ Rl'

/
concludes

/

Figure 3-4: Sample Section of Network.

that object. The parameter nodes arB linked to the

possible value nodes, and rules are themselves

represented as nodes with links that connect value nodes.

These relationships are summarized below in figure 3.5.

The certainty factor refers to the model developed

for the MYCIN system. A certainty factor can have a

value ranging from -1 to +1. flsk first/last (figure x)

is a property that controls whether the value of a

parameter is to be requested from the user before an

attempt is made to compute it using inference rules from

the knowledge base. The text justification of a rule is

available for when the system builder wishes to provide a

67

Type of Static Information Dynamic Infor
Node (Associated with Mode) (Consultation

Specific)

Object part of link (hierat—
node chic)

parameter list

Parameter object link
node va1ue-node 1i st

default value
text definition

Value node parameter-node link contexts for which
precondition-rule list this value is true
conclusion-rule list certainty factor
importance explanation data
complexity ask state
ask first/last

Rule node precondition list explanation data
(Boolean)

conclusion
certainty factor
rule type
complexity
text justification

Figure 3-5: Relationships of Nodes.

brief summary of the knowledge underlying that rule.

In order for the system to provide adequate

explanations, the semantic network associates a measure

of complexity with the inference rules and the concepts

about which they are concluding. A measure of importance

is associated with concepts because some concepts are key

ideas in a reasoning chain and should be maintained

regardless of their complexity CWallis and Short 1 iffe,

68

19BS3.

In this particular program the semantic network

provides a rich structure for enhancing the explanation

capabilities of reasoning programs for medical

consultat ion.

fin expert system that represents knowledge in

semantic primitives has been reported by Leith. ELI

(Expert Legislative Information) system opeates in the

field of legislation. The knowledge base of ELI contains

individual conditions that can be physically shared by

rules. The advantage of this approach is that when one

condition is common to many rules - a substantial amount

of storage can be saved. More importantly, each

condition can be treated as a semantic token representing

one chunk of causal knowledge. Similar in purpose to

systems with semantic network reprsentations the ELI

system can tell the user where a condition was extracted

from by the expert. Each conditon in this semantic

representation is a semantic token upon which other

information can be attached. The user is provided with

more information then would otherwise be possible.

Included in information that can be attached to a

semantic token are notations which ca.rt be associated both

with production rules and individual conditions

themselves. Each condition can be, for example,

69

associated with a specific piece of precedent (e.g. from

the Law Reports), or a section of legislation.

Pis parts of ar\ individual rule the conditions

represent one cause for that rule having (or not having)

been triggered. Moreover, as common elements of more

than one rule, they represent common aspects of the

pattern of triggering those rules. Causal links in ELI

are from conditon to following condition to eventual

goal.

Figure 3.6 illustrates a

representation of this aspect,

conditions and arcs represent links.

 <C> i r
<D> <E>

<G1> <G£> <G3>

two dimensional

Nodes represent

Figure 3-6: Knowledge Representation of ELI.

Thus by using a semantic primitive knowledge

representation that is hierarchically structured, an

attempt as been made to present a rich source of semantic

information to the user. The semantic representaion

provides help in judging the truth of each condition, and

also provides extra information that can be extracted

70

from the system by the user CLeith, 1983H.

Two knowledge representations that are most suited

for expert systems with reliable data and knowledge are

the logic and direct (analogical) representations.

An example of a logic reprsentation would be using

predicate calculus to represent knowledge in a list of

inferred facts CBarr and Feigenbaum, 1980]. See the

example below.

COn Cblockl block£]
COn CBlockl Blocked]
CNot COn Block£ Tablel]]

TAXMAN-I is an example of the use of direct

representations. Analogies are in the form of templates

that match a set of particular factual situations

CMcCarty et al, 19793. The TAXMAN-I system operates in

the problem domain of taxation of corporate

reorganisations.

This area of the law is well suited to an analogical

knowledge representation. The factual situation

described in TAXMAN, though complex, can be described

fairly completely using a manageable set of primitive

terms. And the operative legal concepts, such as, the

definitions of a Type B, a Type C and Type D

reorganisation have a statutory structure that is

71

articulated in unusual detail.

Constructed on a factual foundation, the TAXMAN-I

system consists mostly of propositions of the form:

'Phellis owns £50 shares of the common stock of the

Delaware corporation', 'the Delaware corporation

transferred its assets to the New Jersey

corporation',etc. The higher level conceptual structures

of this system take the form of logical templates. A

'logical' pattern is 'matched' to the lower level factual

network in both abstraction and expansion process.

TAXMAN-I's knowledge does not go beyond a tidy world

of formal financial rights and obligations. The domain

of corporate reorganization is ar\ unusually artificial

domain well suited to this representational technique.

The concepts are treated as static structures applied

timelessly to facts.

The final method considered for representing

knowledge is a frame representation. The frame method of

representation is being used more frequently then

heretofore. Although an individual frame may be

considered by itself to be a template, Minsky CMinsky,

19743 outlines how in a frame representation a set of

frames can be connected by pairwise 'difference

descriptions' into a 'similarity network'. The

similarity network can then be aggregated into a system

7£

of conceptual 'clusters' that are loosely centered around

their respective conceptual 'capitols'.

These ideas have been implemented in the AM expert

system CLenat, 198S3. Frames are used to describe

mathematical concepts. Specific production rules and

procedures are attached to each concept frame. Each

concept consists of a collection of properties or

5 facets' of the concept called slots. Below is ar\

example of a concept in AM:

NAME: Prime Numbers
DEFINITIONS:

ORIBIN: Number-of-divisiors-of(x) = £
PREDICATE-CALCULUS: Prirne(x) <=> (for all z>

(2 x=> (z = 1 z =><>)
ITERATIVE: (for x>l): for i from £ to x, i x

EXAMPLES: £,3,5,7,11,13,17
BOUNDARY: £,3
BOUNDARY-FAILURES: 0,1
FAILURES: 1£

GENERALIZATIONS: Nos., nos. with even no. of divisors
SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime

Uniquely-addables
CONJECS: Unique factorization, Goldbach's conjee,

Extrerna of No-of-divisors-of
INTU'S: A metaphor to the effect that Primes

are the building blocks of all numbers
ANALOGIES:

Macimally-divisible numbers are converse
extremes of Number-of-divisors-of
Factor a non-simple group into simple groups

INTEREST: Conjectures tying Primes to Times,
to Divisors-of, to related operations

WORTH: 800

Figure 3-7: Frame of AM

In summary, there are many ways of representing

73

knowledge in an expert system. Although the production

system method is most commonly used in present day expert

systems, the frame system is gaining increasing has

attention. This section has attempted to provide

illustrations implementing various knowledge

representat ion methods.

EQ2wI§d_3e_§£9u.is.i.t ion

3.3 Knowledge Acquisition

To achieve high performance it is necessary to

acquire and maintain a large knowledge base in an expert

system. Because it is a formidable task to put an

initial knowledge base together using a suitable

representation, generality becomes important in the

methods for constructing and maintaining large domain-

specific knowledge bases CDavis and Lenat, 19B£3.

Moreover, to enable humans to work satisfactorily in the

modern world it then becomes necessary for thern to keep

the knowledge base of the expert system current and

accurate CWinfield, 1982].

Initially, the problem must be analysed and relevant

knowledge extracted so that it can be put into a series

of rules CWinfield, 198£3. When considering acquiring

knowledge one needs to know what kind of knowledge is

required and how much. Are there 10 facts or 1®00 facts?

74

fire most cases covered by a dozen basic methods? There

is a tendency to grossly overestimate. Dnce it is

determined that a task is reasonably complicated either a

domain expert can construct the knowledge base or a

knowledge engineer can collaborate with the domain expert

in ar> attempt to isolate the rules before constructing

the knowledge base.

The isolation of rules is a slow process and Michie

has saxid that approximately two rules per week can be

built into the knowledge base. However, members of SRI

in the United States consider that rules can be extracted

from experts in the field considerably faster. In either

case it appears that the last few rules take the longest

time to extract.

In the future the Japanese propose building large

knowledge bases of £0,000 rules (existing expert systems

generally use hundreds of rules only). It will become

necessary to find some way of speeding up and automating

the way rules can be built CWinfield, 198£].

Besides the formidable task of putting an initial

knowledge base together, in open ended problem areas,

such as medicine or mathematics, the task is never

ending. fl knowledge base is required to be kept up to

date CDavis and Lenat, 13BE1. Deleting old outdated

information, inserting new information and amending

75

existing information ensures that the expert system

remains an expert in its field. In some systems the

refining is done solely by the knowledge engineer. First

he determines where the addition, deletion or insertion

is necessary and then he or she alters the program

appropriately. Refining such as this is used in Ri

CMcDermott, 13B22. Fin easier way of maintaining an

up-to-date knowledge base is by allowing a domain expert

to interactively amend and extend the knowledge base via

a special knowledge refining program EWinfield, 19823.

ELI, an expert legislative information system

utilizes an interactive acquisition program. In the

previous section on knowledge representation the

knowledge representation of ELI (see figure 3.6) was

represented with causal links connecting condition to

following condition to eventual goal. Experts propose

rules that have to be linked with an existing knowledge

base. The details of the linking depend on how knowledge

is represented. In Eli when a rule is incorporated into

the knowledge base there are three main techniques which

are applied to the rule in the following order. (a) Each

of the input conditions of the new rule is matched

against the top level conditions until a match between an

input and an already assimilated condition is found. (If

a match is not found then procedure (b) is followed).

76

Then the rule number of the input rule is attached to

this matching condition and the links to lower conditions

are retrieved. fit this point the same matching technique

is used on the conditions that are linked below the top

level condition. This process will continue until there

is not an existing match; then the remaining conditions

from the input rule will be inserted by themselves. The

goal base is then tested for a match with the input goal.

If one is found then the input goal is assimilated with

that goal, otherwise the input goal is appended to the

existing goal list. Below figure 3.8 demonstrates the

general pattern of integration,

(condit ions)

(qoals)

Figure 3-8: Top Down Incorporation

(b) If procedure (a) is ineffective and no match

occurs with the conditions at the top level then an

attempt is made to match the input goal with an already

assimilated goal. If a match is not found then procedure

(c) is followed. If there is a match then the process of

(a) is attempted in reverse. The refining program tries

to associate the input conditons with already assimilated

77

conditions from lower levels upwards. If no further

matches are found, then the remaining conditions are

inserted by themselves with one being placed at the top

level. Figure 3.9 i11ustrates the pattern of integration

in procedure

(cond i t i ons)

(goal)

Figure 3-9: Goal Up Incorporation.

(c) IF a matching goal is not found and therefore

procedure B has not been successful then the conditions

are inserted as entire rules. One condition is placed at

the top level, the goal is placed on the goal list, and

the remaining conditons are placed in successive levels

above the goal. This pattern is demonstrated in figure

3. 10.

(conditions)

(goal)

Figure 3-10: Rule Incorporated ftlone

78

Addresses in the property list of each condition

provide the links between the conditons. Rule numbers to

which each conditon belongs are also an attribulte of the

property list of each condition CLeith, 19831!.

A more difficult approach than amending and

extending the knowledge base by an interactive refining

program is to allow the expert system to become self

learning. It is allowing an expert system to devise its

own rules from information with which it is working

CWinfield, 19823.

fin example of this automatic method is AM. This

system exemplifies an ideal approach to accumulating

knowledge. AM is given a small set of primitive facts by

the system engineer and then expands those facts without

further assistance from the designer. This system

accumulates knowledge by positing interesting extensions

to its existing concepts- either by forming new concepts

or new relationships. By starting with a small number of

concepts of finite set theory and a large number of

heuristics about how to extend thern and judge them it was

able to rediscover the concept of prime numbers and the

prime factorization theorem. [Davis and Lenat, 198S3.

Below is an example of a heuristic used to acquire

knowledge.

This heuristic proposes a new task for the AM expert

79

IF the current task (Fill-in examples of X)
and X is a predicate,
and more than iiZ"Zi items are known in the

domain of x,
and at least 1® cpu seconds were spent

trying to randomly instantiate x,
and the ratio of successes/failures is

both >0 and less than a 05
THEN add the following task to the agenda.

(Fill-in generalizations of x), for the
following reason: 'x is rarely satisfied;
a less restrictive concept might
be more interesting.' This reason's
rating is computed as three times the
ratio of nonexarnples/examples found.

Figure 3—11: Heuristic of AM

system. When the conditions of the rule are met then

this task is placed on an Agenda list of future tasks.

Pis a result the generalisations of one concept x form new

concepts in the knowledge base and AM processes each new

concept to acquire the necessary information to fill in

the 5lots of the frames involved CLenat, 198E3.

In summary, acquisition of knowledge is an important

research question. By initially acquiring a large

knowledge-base and thereafter maintaining it, an expert

system can attain high performance. The two methods of

refining an expert system are manual, interactive, and

automatic. Perfecting the acquisition of knowledge

automatically is a goal of expert systems in the future.

80

4. CENTAUR vs. Rl

In this chapter two expert systems, Rl arid CENTOUR

are compared. The similarities and differences of their

methods of representing, acquiring, utilising, and

explaining knowledge will be discussed.

As mentioned in previous chapters, Rl is a program

that configures VfiX-LL/780 computer systems. When

provided with the input of a customer's order, it

determines what, if any modifications have to be made to

the order to design a functional system. As output it

produces a number of diagrams manifesting how the varous

components on the order are to be associated. This

program is regularly used by Digital Equipment

Corporations' manufacturing organisation CMcDermott,

1981='].

The other expert system is called CENTAUR CPU kins,

1983]. It performs tasks in the domain of pulmonary

(lung) physiology. CENTAUR interprets measurements from

pulmonary function tests administered to patients in a

pulmonary function labratory. The labratory contains

equipment designed to measure the amount of gas in the

lungs and the rates of flow of gases into and out of the

lungs. CENTAUR is an expert consultant to the pulmonary

physiologist. It produces a set of interpretation

statements and a diagnosis for each patient.

81

4.1 knowledge representation

CENTAUR utilises a combination of the frame and

production rule methods to represent knowledge, ft frame

is a structure that ties together knowledge about a given

situation, and provides expectations about what objects

will be present in the situation and what events will

occur in the situation. The frame-like structures of

CEiMTflUR are prototypes, and prototype components.

Following Minsky's frame terminology each prototype

contains slots of information associated with it. Each

5lot provides a 'place' for information in the prototype.

Missing information is therefore evident, and the system

realizes how complete the solution to a problem is or is

not. The system attempts during a run to fill each slot

of a particular frame with a value. The value determines

whether the expectations specified by the prototype are

the same as those in the input.

Some of the slots in each frame are the component

slots. Each compnonent is itself a frame. Therefore the

value of a component slot is actually a set of

'sub-frames' of knowledge (see figure 4.1).

The frames of CENTOUR are referred to as prototypes.

The prototype components contain object-level domain

knowledge representing one of the principal

characterising features of the prototype. Meta-level

8£

frame

s 1 ot s values
PI a
B b

Component
Component
Component

r. \
D ... s • - •
E —i • - »

Component C
slots

X
Y

values
X

y

inference
rules

Cr
1
.lie
ist]
 —>

Figure 4-1: Illustration of Components

knowledge is represented by other slots in the frame.

These slots include slots that control knowledge, slots

that give general information about a prototype and slots

specifying production rules to used during a

consultat ion.

The frames of CENTAUR are specifically designed to

complement production rules. The prototypes provide the

explicit context which guides the more fine grained

reasoning of the production rules. The rules are

attached to slots in each prototype. Rules are one type

of value for slots in a prototype. Rules are organized

in a frame according to stages in which they are

relevant. Each group of rules is the value of a slot

representing knowledge to be applied during a particular

stage of the consultation.

The CENTAUR knowledge base contains £4 prototypes,

83

£1 of which represent disease patterns. These prototypes

are linked together in a hierarchial network specifying

the relationship between prototypes- A portion of the

hierarchy of this group is illustrated in figure x.

CONSULTATION

(domain)

PULMONARY DISEASE

(diseases)

NORMAL MEURDMUSCULAR
DISEASE

RESTRICTIVE OBSTRUCTIVE DIFFUSION
LUND DISEASE AIRWAYS DISEASE DEFECT

(degrees of OAD)
 1

(subtypes of OAD)

MILD MODERATE MODERATELY SEVERE
OAD OAD SEVERE OAD OAD

ASTHMA

EMPHYSEMA

BRONCHITIS

Figure 4-2: A Portion of Prototype Network.

A consultation prototype, a review prototype and

pulmonary function prototype that interprets pulmonary

tests comprise the remaining 3 of the £4.

The various slots of each frame are:

84

1. Component slots. Each prototype contains 6 to
8 component slots that point to a component
frame that comprises some characteristic
feature of a pulmonary disease. The component
slots have a value determined by the component
prototype. The component prototype evaluates
the results of a pulmonary function test and
reports a value representing its significance
to the component slot.

£. Prototype control slots. Slots that at
s pec ific times cont ro1 the cons u11 at i on.

3. Prototype rule slots. There are five
different types of rules. Triggering rules
trigger tasks to be placed on an agenda.
Inference rules are rules tried when a value
is needed for a component. The remaining
three rule slots are fact-residual rules that
attempt to account for residual facts;
refinement rules that refine diagnosis; and
summary rules that summarise information.

4. General information slots include bookkeeping
information and English phrases to communicate
with the user.

5. Certainty measure slots indicate how certain
the system is that the prototype matches the
data in each case. The value of this measure
ranges from -1000 to 1800.

6. Invocation records slots, such as, Intriggers
and Origin slots, record information which is
used in explaining why a system is exploring a
given prototype.

Examples of slot values of a particular prototype

are below in figure 4.3.

Rl uses a different approach. The configuration

task of Rl can be viewed as a series of subtasks that

have strong temporal interdependencies. Each subtask is

represented in the knowledge base by production rules.

85

AUTHOR: Cohen
DATE: 9-0CT-S3 17:13:29
SOURCE: Fallat
POINTERS: (degree MILD-OAD) (degree MODERATE-DAD)...

(subtype ASTHMA) (subtype EMPHYSEMA)...
HYPOTHESIS: There is Obstructive Airways Disease.

IF-CQNFIRMED: Deduce the degree of OAD
Deduce the subtype of OAD

ACTION: Deduce any finding associated with OAD
Print the findings associated with OAD

FACT-RESIDUAL RULES: RULE 157, RULE 158,...
REFINEMENT RULES: RULE036, RULE038, RULE039,. . .
SUMMARY RULES: RULE053, RULE054, RULE055, RULE083,,..

COMPONENTS:
TOTAL LUNG CAPAC. PLAUSIBLE VALUES:)180

IMPORTANCE MEASURE: 4
REVERSIBILITY INFERENCE RULES: RULE

019,RULE0S0,RULE0££. . .
IMPORTANCE MEASURE: 0

Figure 4-3: Sample Slot Values for OAD.

The first subtask is to determine whether there are

major problems with the order and to rectify them if

possible. This task is composed of 196 rules. The

second subtask involves 87 rules for putting whatever

components belong in the CPU and CPU expansion cabinet

into those cabinets. The third subtask is to put boxes

into the unibus expansion cabinets, and to put unibus

modules into the boxes. This subtask involves £56 rules.

The fourth subtask involves in its 30 rules assigning

panels to cabinets and associating those panels with

unibus modules and with whatever devices the modules

86

serve. Generating a floor layout for the system is the

fifth subtask of 61 rules. The last subtask is to

specify what cables are to be used to connect each device

to the other devices to which it'has been assigned.

The rules used in the subtasks are considered domain

knowledge rules. There are four types of rules involved.

There are rules that generate a new subtask. Another

quarter deal with adding missing prerequisite components

in the order. Pi fourth of the domain knowledge rules

create or extend partial configuration. The final fourth

of rules is composed of rules that retrieve partial

descriptions of components from the data base and rules

that do various sorts of computations. The rules

containing knowledge directly related to the subtasks add

up to 4S0. The remaining £9£ rules of Rl contain more

general knowledge. Approximately one third of the

remaining rules is used to generate output after the

sixth subtask is completed. Another third consists of

rules to exit from a subtask when there is nothing left

to do. The final third of general knowledge rules is

composed of rules whose function is to do counting tasks

and rules that generate 'empty' data structure for the

domain knowledge rules to use CMcDermott, 198S3.

Examples of some production rules from the sixth

subtask or context are in the figure below. In expert

87

flSSISIM-POWER-SUPPLY-i
IF: the most current active context is assigning a

power supply
and an SBI module of any type has been put in a

cabinet
and the position it occupies in the cabinet

(its nexus)
is known

and there is space available in the cabinet
for a power supply for that nexus

and there is no available power supply
and the voltage and frequency of the components

on the order is known
THEN: find a power supply of that voltage and

frequency and add it to the order.

flSSIBN-POWER-SUPPLY-£
IF: the most current active context is assigning

a power supply
and an SBI module of any type has been put in

a cabinet
and the position it occupies in the cabinet

(its nexus) is known
and there is space available in the cabinet

for a power supply for that nexus
and there is an available power supply

THEN: put the power supply in the cabinet in the
available space.

flSSIGN-POWER-SUPPLY-a
IF: the most current active context is assigning

a power supply
and a unibus adaptor has been put in a cabinet
and the position it occupies in the cabinet

(its nexus) is known
and there is space available in the cabinet for

a power supply for that nexus
and there is an available power supply
and there is no H7101 regulator available

THEN: add an H7101 regulator to the order.

Figure 4-4: Production Rules of Sixth Subtask.

systems it is important to determine an appropriate

knowledge representation in order to attain high

aa

performance. Both of these systems are successful in

that aspect. CENTAUR utilizes a frame system including

production rules to represent the variety of types of

knowledge within its system. Rl achieves that goal by

dividing its task into sequential subtasks each

consisting entirely of production rules.

4.2 knowledge acquisition

How knowledge is represented in a system can be ari

indicator as to how well knowledge can be acquired in a

system. An advantage to using production rules to

represent knowledge is that they are modular. Therefore

rules can be added, deleted, or modified without directly

affecting other rules. They are uniform in structure

with all knowledge being encoded in the same constrained

syntax that can easily be understood in order to examine

it or modify it.

The disadvantage of production systems is that the

organisation of the knowledge base makes it difficult to

identify groupings of similar rules when it would be

useful to make mod ificiations to sets of rules or in

identifying interactions between rules. Adding or

modifying rules can have an indirect effect on other

rules when the type of explicit grouping found in various

slots in a frame is not present. Furthermore, the same

89

sy ntax of all rules can make it more difficult to

identify the function of the knowledge of the system and

therefore locate it when refining.

CENTAUR'S organisation of knowledge around

prototypical cases allows for knowledge acquisition. The

user can easily identify the affected set of knowledge

when changes to the knowledge base are desired. In

CENTRUR the entire consultation process is a prototype.

The various stages of the consultation are listed as

separate control tasks in control slots of this

prototype. This representation allows for the

flexibility of adding or omitting a stage, and of more

easily experimenting with the control modifications. For

example, the 'refinement' stage which uses additional

expert ise to improve upon an interim cone1 usion was

easily omitted during the systems early stages of

development. During the consultation, points at which

specific control knowledge is used are clearly defined.

This results in it being less difficult than in

production systems to predict the effects of the

modifications that are made. Besides the consultation

prototype, another prototype called review allows the

user to specify one of the prototypes, and then reviews

for him the 'typical' features expected in that prototype

and control knowledge associated with the prototypes.

90

Information associated with the domain knowledge, such as

the context in which the knowledge is applied, or the

purpose or function of the knowledge in the consultation,

is represented explicitly by each prototype. Explicit

representation of control knowledge and access to

reviewing frames provide a method of acquiring and

refining knowledge. Another aid to knowledge aquisition

is the key word CONTROL that has been defined, so that a

user of the system can further inquire about the control

task motivating a current line of reasoning-

Furthermore, each of the component frames in CENTAUR

contains a slot called inference rules. The inference

rules consist of a set of production rules used to infer

a value for the component. The constrained syntax of the

ru1es also allow for ease in acquisit ion and

mod ifiabi1ity of values for components.

The knowledge of CENTAUR is organized in a manner

that it is easy to locate and modify the system. Several

aids are an integral part of knowledge acquisition. In

Rl knowledge acquisition is not quite as easy.

In Rl the major configuration task is divided into 6

subtasks. When a modification to Rl's domain knowledge

becomes apparent, a knowledge engineer must determine

which subtask needs to be refined. In a production

system, within the subtask it is not always easy to

91

identify the function of the knowledge and therefore

locate the necessary rule. However, once the offending

rule is located the knowledge engineer asks the expert

what he would have done differently and how he would have

known to do that different thing. Sometimes in Rl a

known feature of a production rule can be used to signal

a different action. To make Rl's performance acceptable

it is only necessary to copy the offending rule and add a

condition to it. Mostly, though, additional information

not yet represented in Rl's knowledge base is required.

What McDermott refers to as 'rule splitting' in this case

is necessary. One rule becomes two, the two rules

discriminating between two previously undifferentiated

states. However, information gathering rules for the two

rules are also added to production memory CMcDermott,

19823.

In summary, Rl's production rules are modular. Once

a rule has been located it is not difficult to modify.

Centaur, using frames to represent knowledge provides a

more explicit way of locating a chunk of knowledge. The

prototypes represent blocks of basic knowledge that

include clearly defined 'hooks' for any additional rules

necessary to elaborate upon this basic knowledge. The

purpose of the knowledge attached to the slots of a frame

is explicit, making the effects of such modification

9£

readily predictable. However, neither system is

automaticaly modifiable. CENTAUR interactively via the

'review' prototype and the 'control' function provides

specific knowledge about the system. However, CENTAUR

does not interactively incorporate knowledge in a fashion

demonstrated by the previously mentioned ELI. Moreover,

neither system appears to provide a method of modifying

or acquiring knowledge for groupings of similar rules

that are part of each subtask or each prototype.

4.3 knowledge utilization

To allow for the future multiple use of teaching

besides diagnosing with the same knowledge base,

designers of CENTAUR chose to separate the control

structure within the system from the inference knowledge.

Therefore, the control can later be modified without

interfering with the inference knowledge.

Control knowledge in CENTAUR is represented within

each prototype. This provides context specific control.

The system specifies what to do in a given context as

part of the domain knowledge and separates this control

knowledge from inferential knowledge used in the

consultat ion.

The control knowledge represented in prototype slots

is a type of meta-knowledge applied as strategies to

specify the next goal of the system. The control

structure of CENTAUR can be simply stated. CENTAUR

maintains an Agenda of tasks to be performed during

consultation. The system interpreter executes the top

task on the agenda and when the task is finished, the

process repeats. When the Agenda is empty the system

terminates. A task is an action to be taken by the

system. It is re presented as a call to a LISP predicate

function. Tasks are initiated from prototype control

slots and from tasks themselves as they are being

executed. Each task entry includes a source for the task

and a reason that a task was added to the Agenda. Tasks

are executed in last-in, first-out order. Once a task is

executed it is removed from the Agenda. The reasons

associated with each control task are generated from the

name of the prototype and the name of the control slot

where the task originated (see figure 4.5). The reasons

briefly explain what the system is doing.

The consultation process can be considered to

proceed in stages that represent the sequence of events.

Initially the syst em conf i g urat i on for the consu11 at i on

task is shown in Figure 4.6.

Knowledge in the TO-FILL-IN and IF-CONFIRMED control

slots of the prototype direct these tasks.

Key stages of the consultation process including the

94

TASK: Order the Hypothesis List.

SOURCE: Task adding new prototype to the hypothesis
1 ist.

REASON: Because new prototypes have been added
to the Hypothesis List, it should be
checked to see that it is ordered
according to which prototype best
fits the facts.

Figure 4-5: Task on Agenda of Centaur.

AGENDA
FILL-IN current prototype
CONFIRM current prototype

Current Prototype
CONSULTATION

Figure 4-6: Initial Configuration for Consultation.

role of the control slots are summarised below in figure

4.7.

The stages are described in more detail below:

1. Initial Data: Values for an initial set of
parameters including standard pulmonary
function test results are entered.

£. Triggering Prototypes: Triggering rules
suggest prototypes. Certainty measures of
suggested prototypes are increased.

3. Scoring and selecting a current prototype.
Certainty measures determine the order of
prototypes in a hypothesis list.

4. Filling in Prototype. The prototype
components are filled in with facts already
determined in the case. If new prototypes are

Initial Dat a

I—} iriggering Rules

Current Proto- f—
type is
Selected

_ To-Fill-In Slot
and Object level
Inference Rules

IF-Confirmed Slot.
I f-D i sconf i rrned
Slotl

Fact-Residual
Rules

I
Refinement Rules

I
Summary. Rules

fiction Blot

INITIAL STAGES
Entering Initial Data

Triggering Prototypes

Scoring and Selecting
Current Prototype

hilling in Prototype

Testing Match

Accounting for Data

REFINEMENT STAGE
Refinement Diagnosis

FINAL STAGES
Summarizing Results

Printing Results

Figure 4-7: Overview of Consultation Process.

suggested then the computation returns to the
'triggering rules' stage.

Testing Match. An attempt is made to confirm
the prototype by matching the actual facts of
the case to expected values of the prototype.
If tasks in the if-confirmed slot or
if-disconfirmed slot suggest further sets of
protot ypes then the consu11at i on ret urns to
stage 3.

Accounting for Datas Fact residual rules are
applied in an attempt to account for
discrepancies in data.

96

7. Refining diagnosis: Refinement vales are
applied to produce a final diagnosis of
pulmonary disease.

8. Summarizing Results. Summary Rules are
applied.

9. Printing Results: Tasks controlling printing
are added to the agenda CAikins, 19833.

The approach for searching for a solution in CENTAUR

is called Generate and Test. In CENTAUR'S terminology

prototypes represent the classes of hypotheses. One or

more hypotheses are generated that explains the

phenomena. These hypotheses are then tested against

empirical data. Due to the hierarchy of the hypotheses

only a small subset are considered at any one time.

Initial input data is available to 'trigger' hypotheses

classes that are most likely to match when tested.

CENTAUR is unique in providing three search strategies.

They are confirmation, elimination and fixed-order. The

user can choose one of these three strategies to fill

these slots. A 'confirmation strategy' which selects the

prototype that is the best match to the data and attempts

to confirm that prototype; an 'elimination strategy'

which selects the prototype that is the worst match to

the data and attempts to eliminate that prototype, and a

'fixed-order' strategy, which always explores prototypes

in a preset order.

97

Each prototype selected as a possible hypothesis has

a Certainty Measure, indicating how certain the system is

that the prototype matches the data. The Certainty

Measure ranges from -100® to 1000. The Certainty Measure

slot has a value that contains dynamic information that

can change as the consultation continues. The hypothesis

with the highest Certainty Measure represents the current

best hypothesis. The current best hypothesis at the end

of the consultation becomes the system diagnosis.

CENTAUR5s control and inference methods are quite

different from that of Ri. The configuration task

performed by Rl requires finding an acceptable

configuration within a space of possible configurations.

Rl always proceeds through the same sequence of subtasks.

Therefore it does not require an agenda of tasks for

control. Rl generates only a single hypothesis- the

solution. In Rl, the knowledge that other systems would

use to test hypotheses is part of the generator. The

inference method utilised by Rl is a form of Match. The

Match method can be divided into states. Initially,

Match is in a state that consists of descriptions of the

components ordered for the configuration. Intermediate

states are sets of descriptions of partial configurations

and the as yet configured components. fit each point that

a decision is made, the constraint knowledge about what

98

next step can be taken is provided by Ri's rules. These

is no need for backtracking in determining the next

acceptable step. The final state is of course when the

conf i gurat ion is cornp 1et e.

In the Match method, Rl's rules can be divided into

three categories, (i) Operator rules that take the actual

next step in creating or extending a partial

configurator!. (£) Sequencing rules that determine the

order in which decisions need to be made so that

backtracking is not necessary. (3) Information gathering

rules provide the information needed for operator and

sequencing rule selection. The consequences of applying

an operator must bear only on aspects of the solution

that have not yet been determined.

Match, however is not capable of performing the

entire inference task. The subtask of placing modules in

the unibus is formulated by a Generate and Test method

that finds ar\ optimal sequence that fits within spatial

and power-load constraints.

In summary, the use of Match as an inference method

is appropriate to the structure of the configuration

domain. It avoids search and limits the cost of running

the program. Pin Agenda for control and the more typical

inference method of Generate and Test is used in CENTAUR

and is more appropriate for its analytical task. CENTAUR

99

is given a single complex set of data and the task of the

program is to decompose the data and determine the

relationship of the data. The configuration task of Ri

is synthetic. R:L is given a set of components and its

task is to impose relationships on those components and

form a comp 1 e>< object.

The explanation capabilities of a system are a

critical factor in the acceptance by users of large

knowledge-based consultation systems. Both CENTAUR and

Rl have explanation capabilities referred to as tracing.

In CENTAUR tracing can be performed during the

consultation at different levels that range from 0 to 3.

The user is asked in the initial stage of the

consultation what level of trace he requires. The

explanation of how the system is coming to a particular

conclusion is then placed in brackets throughout the

consultation. Pin example of tracing is illustrated in

figure 4.8 below.

The trace [Trigger for ASTHMA and CM 900] explains

to the user that his response to the question referral

diagnosis has triggered the system to generate the

hypothesis that asthma is the diagnosis with a certainty

measure of 900. The trigger for the Normal prototype

refers to no disease in the patient. OflD (obstructive

airways disease) is another hypothesis that the system

100

Tracing level (0-3)
•**£
Agenda Printing?
**No
Consultation Strategy;
*#Conf i rrnat i on

(The two stars preceeding a comment represent the
users response. The user has chosen a tracing
level of £. Below information given as
explanations of the trace are within brackets.)

 PATIENT -7
1)Patient's identifying number:
**7446
£)referral diagnosis:
**flSTHMft

[Trigger for ASTHMA and CM 900]
3) RvYRV-predicted:
**£Si
4)TI_C (body box) observed/predicted:
*#139
5)FVC/FVC-predicted:
**81

[Trigger for NORMAL and CM 5003
6>FEVi/FVC ratio:
*#40

[Trigger for DAD and CM 900]

Figure 4-8: Illustration of explanation facility.

explains is being considered.

In Rl it appears that there is one level of tracing

in the system. The trace is separate from the output of

the system and describes the process and subtasks

fo11owed to attain a con fig urat ion (see figure 4.9) of

the order.

1. MflJOR-SUBTfiSK-TRftNSITION

101

SET-UP

53. NOTE-CUSTOMER-GENERATED-EXCEPTIONS
55. NOTE-UNSUPPORTED-COMPONENTS
57. CHECK-VOLTAGE-AND-FREQUENCY
104. CHECK-FOR-TYPE-OR-CLASS-CHANGES
110. VERIFY-SBI-AND-MS-DEVICE-ADEQUACY
111. COUNT-SBI-MODULES-AND-MB-DEVICES
1£6. GET-NUMBER-OF-BYTES-AND-COUNT-

CONTROLLERS
137. FIND-UBA-MBA-CAPACITY-AND-USE
145. VERIFY-MEMORY-flDEQUACY
146. PARTITION-MEMORY
160. ASSING-UB~MODULES-EXCEPT~THOSE-CONNECTING-

TO-PANELS
177. VERIFY-UB-MODULES-FOR-DEVICES-CONNECTING-

TO-PANELS
FIND-ATTRIBUTE-OF-TYPE-IN-SYSTEM

173. VERIFY-COMPDMENT-OF-SYSTEM
£07. NOTE-POSSIBLY-FORGOTTEN-CONPONENTS
£13. CHECK-FOR-MISSINC-ESSENTIAL-COMPONENTS
£15.MAJ0R-SUBTA5K-TRANSITIQN
£16. DELETE-UNNEEDED-ELEMENTS-FROM-WM....

Within both systems it appears that explanatory

knowledge is not represented separately from its

performance knowledge. It, therefore, does not need to

be modified when changes are made to the performance

knowledge. The method of tracing in CENTAUR explains as

the program is arriving at decisions the reason for these

decisions. An expert user is better able to understand

the process of the consultation program than in Ri. Rl

describes the trace separately from the output.

In summary, there are many differences and few

similarities between the expert systems CENTAUR and Rl.

CENTAUR utilises basically a fr-'ame method for knowledge

10£

representation. Pi It hough, the individual frames do

include production rules. Rl's knowledge, in contrast is

entirely represented by production rules.

CENTPiUR's system has several tools for knowledge

acquisition. The systems explicit representation of

control knowledge, the 'review' prototype and the CONTROL

function provide aids in locating where rnodificiations

are necessary. The constrained syntax of the inference

rules in the system makes modifications easy. Because Rl

is not a frame system, locating the rules to be changed

is slightly more difficult. However, the six sequential

subtasks of Rl allow the user to determine fairly easily

which subtask is involved. Once the rules for

modification are located, Rl either adds conditions to

the particular rule or splits the rule into two

rules- thus developing each rule separately.

Another contrast between Rl and CENTAUR is their

method of utilising knowledge. CENTAUR'S control

knowledge is located within the individual frames and is

separate from inference knowledge of the system. The

control knowledge provides information to an Agenda of

tasks that executes tasks on a last-in, first-out basis.

The inference method is 'generate and test'. Hypotheses

are triggered from initial input data and then tested to

confirm if they are the best diagnosis. Searching of

103

hypotheses is done by eonf irmat ion, elimination, or

fixed-order strategies. Rl's system is different. The

subtasks provide a structure that eliminates the need for

an Agenda. The inference method is called 'Match'. The

first stage of 'Match' consists of descriptions of

components ordered. Intermediate stages contain sets of

descriptions of partial configurations and yet unfigured

components. The final stage is the total configuration.

Both Rl and CENTAUR use trace to provide the user

with explanations. The trace in CENTAUR is more

elaborate and is available during the consultation.

Although the systems are very diffemt they are each

successful in providing expert information to the user.

The methods of representation, acquisition, utilization

and explanation are appropriate to their individual

requirements.

104

References

Heuristic Programming Project 1980. Heuristic Programming
Project. Stanford: Stanford University 1980.

Addis, T.R. Knowledge Refining for a Diagnostic Aid (fin
Example of Applied Epistemics). J. Man-Mach. Stud.,
19S£, 17, 151-64.

Aikins, J. Prototypical Knowledge for Expert Systems.
QEtif* lD£§IIi3§D£§5 1983, £0, 163-210.

Barr, A. ; Feigenbaum, E. Pi. The Handbook of BctifiEAs*!
lD£§IIiJ3§ID£:f?" Stanford: Computer Science
Department, Stanford University 1988.

Bend if al lah, S. Knowied ge-based Deci.si.on Suggort Systems:
§£!!~.ial Sinriificance, pages £92-98. Society for
General Systems Research with the American
Association for the Advancement of Science, 198£.

Bleich, H. L. Computer Evaluation of Acid-base Disorders.
J. Clin. Invest., 1969, 48, 1689-1696.

Bobrow, D. G. Regr§§gD*§ti2D §D^ UQ9l§E§;!i§.D!=iiD5- New
York: Academic Press 1975.

Bonnet, A. 5 Cordier, M. 0. ; Kayser, D. An ICAI. System for
Is^cQiU'S Ssriyati.yes in Mathemati.es, pages 135-41.
IFIP World Conference on Computers in Education,
1981.

Boothroyd, D. The Revolution of the Non-Expert System.
Engineer , 198£, £55, 59-63.

Burkitt, A. How Donald Michie Was Flipped Off His Feet By
AI (Artificial Intelligence). Comguting, 198£, 10,
OC~CK

Burton, R. R. Semantic Grammar: an Engineering I§EQnigue
££!£ G2D§tcyE£iQS N§tmC§i !=§D3y§a§ UQderstandina
Systems, s Bolt Beranek and Newman 1976.

Catanzarite, V. A. ; Greenburg, A. G. ; Bremermann, H. J.
Computer Consultation in Neurology: A Review of the
Field, and a Comparison of the Neurologist System to
Previous Programs. J. Qlin. Qomgut., 1981, i©,
64-84.

105

Chester, D. Elements of Knowledge-Based Exp_ert Systems,
pages 42-48. , 1982.

Couch, R. D. Computer Diagnosis Review and Comment. Path,
flnr.. , 1976, 11, 141-159.

Davis, R. ; King, J. fln Overview of Production Systems.
!!!§etline Intelligence, 1977, 8, 300-322.

Davis, R. ; Lenat, D. Knowledge Based Systems in
BEJiif l£l§I Intelligence. New York: McGraw-Hill
1 soda

Ellis, P. Expert Systems- ft Key Innovation in
Professional and Managerial Problem Solving. Inf.
ftge , 1983, 5, 2-6.

Errnan, L. D. ; Hayes-Roth, F. ; Lesser, V. R. ; Reddy, D.
R. ; The HEftRSflY-II Speech Understanding System
Integratinn Knowledge to Resolve Uncertainty. ftCM
Comgut. Surveys, 1980, 12, 213-253.

Fagan, J. M. VM: Representing t ime-degendent Relations i_n
a Medical Setting. PhD thesis, Stanford University,
1980.

Fagan, L. M. ; Kunz, J. C. ; Feigenbaum, E. ft. ; Osborn, J.
■J- B^gresentat ion of Dynamic QHnical Knowledge
Measurement lDt§!CE!Cetatign ID £b§ Intensive Care
UDI£» pages . Internat. Joint Cionf. Artificial
Intelligence, 1979.

Feigenbaum, E. ft. The ftrt of B££i£i£i§I Intelligence: I.
Ih§D3§s and Case Studies of Knowledge Engineering,
pages 1014-1029. Internat. Joint Conf. ftrtif.
Intelligence, 1977.

Feigenbaum, E. ft. Innovation and Symbol !!!§QiSklI§i.iQD ID
Fifth Generation Comguter Systems, pages 223-6. ,
198t!.

Boodall, ft. Language of Intelligence (Prolog). Syst. Int.
, 1983, II, 21-4.

Gorry, G. ft. Knowledge-based Systems for Clinical Problem
Solving. Decision Making and Medical Care, 1976, ,

Gowans, J. Expert Systems. Microcomgut. Printout » 1982,

106

3, 66-67.

Innocent, P.R. Towards Self-ftdaDtive Interface Systems.
Int. J. Man-Mach. Stud. , 1982, 16, £87-99.

Kaihara, S.; Koyama, T. Medical Consultation System with
Practical Requirements-Development of Mecs-AI. In
Qomguter Science and lechngiogies, : North-Holland,
198£.

Leith, P. Hierarchically Structured Production Rules.
Comgut. J. , 1983, £6, 1-5.

Lenat, D. • B. The Nature of Heuristics. ftrtif. Inteil. ,
198£, 19, 189-£49.

Lindsay, R. K. ; Buchanan, B. S. ; Feigenbaum, E. ft. ;
Lederberg, J. @£Eli£ations of 9c£i£i£iai.
lQtgil_i.gence for Organic QbgQ3istry_- the DENDRflL
Project- New York: McGraw-Hill 1980.

Martin, W. ft. and Fateman, R. J. The MftCSYMfi System,
pages £3-£5. Symposium on Symbolic and Algebraic
Manipulation, 1971.

McCartney, J. Expert Systems: Expertise Captured in a
System. Data Processing, 198£, £4, £6-£7.

McCarty, L. T. ; Sridharan, M.S.; Sangster, B.C. The
Ifflfilsnientation of IQXMftN !L i fin i><BgCi[!]gQt Lu
Qctificial iDi.§IIi3§Qce and Legal Reasoning.
Technical Report, Rutgers University, 1979.

McDermott, J. Ri: an Exgert in the Cgmguter Systems
Domain, pages £69-£71. Conference of Artificial
Intelligence, 1980.

McDermott, J. Rl: ft Rule-based Configurer of Computer
Systems. Qrtif. Inteil. , 198£, 19, 39-88.

Meadow, C. T. ; Hewett, T. T. ; flversa, E. S. ft Computer
Intermediary for Interactive Database Searching, I.
Design. J. fim. Soc. Inf. Sen. , 198£, 33, 3£5-33£.

Minsky, M. A Framework for Representing Knowledge,
ftI Memo 306.

Mizoguchi, F. ft Software Environment for Developing
Knowledge Base Systems. In Cgmguter Science and

107

Technologies, : North-Holland, 198£.

Newell, A. Some Problems of Basic Organization ID.
Ecobiem- Solving Programs, pages . , 1962.

Parrott, J. Why Artificial Challenges Need Real Answers.
CojSfiyt- Manage. , 1983, , 18~£0.

Pinkerton, J. M. M. The Advance of Information
Technology. ICL. Tech. J., 198£, 3, 119-36.

Rundle, T. The Betting of Knowledge (Expert Systems).
Cornfiut. Syst. , 1982, £, 41-42.

Sacerdoti, E. D. Planning in a Hierarchy of Abstraction
Spaces. Artif. Intelligence, 1974, 5, 115-135.

Smith, M. F.; Bowen, J. A. Knowledge and Experience-based
Systems for Analysis and Design of Microprocessor
Applications Hardware. Microprocess. and Microsyst.
, 1982, 5, 515-18.

Stefik, M. J. Inferring DMA Structures from Segmentation
Data. Artif. Intelligence, 1978, , 85-114.

Stefik, M. J. Planning with Constraints. Artif.
Intelligence, 1981, 16, 111-140.

Stefik, M. ; Aikins, J. ; Balzer, R. ; Bendit, J. ; Birnbaum,
L; Hayes-Roth, F. ; Sacerdoti, E. The Organization of
Expert Systems, A Tutorial. Artif. Intel 1, 1982, IB,
135-173.

Sumner, B. C. Knowledge-based Systems Maintenance
SfiBlications (ATET, pages 47£-473. , 198£.

Sussman, B. J. ; Steel, B. L. CONSTRAINTS- A Language for
Expressing Almost-hierarchial Descriptions.
BlZiiflcial Intelligence, 1980, , 1-39.

Tanaka, K. Resume of Knowledge Engineering in Japan. In
QetOBii*§r Science ad Technologies, : North-Holland,
198£.

Wallis, J. W.; Shortliffe, E.H. Explanatory Power for
Medical Expert Systems; Studies in the
Representation of Causal Relationships for Clinical
Consultations. Methods Inf. Med., 198£, 21, 127-136.

108

Waterman, D. A. ft Rule-based Approach to Knowledge
Acqui s it ion for Man-roach i ne Int eract ion.
international JourDil 2f MilD~Machine Studies, 197Q,
10, 693-711.

Webster, R. Planting art Expert. Micro. Degis. , 198£, i4,
107-8.

Winfield, M. J. Expert Systems: fin Introduction for the
Layman. Comgut. BulK , 198£, £, 6-7.

Winston, P. Artificial lDt§IIiflsnce. Reading: ftddison-
Wesley Publishing, Inc. 1977.

Zadeh, L. A. A Theory of Approximate Reasoning. Machine
lDtgIIlfl§D£§» 1979, , .

109

Vita

The author was born in Mew York City on March £4,

1958 to Ned and Freda Greenberg. She became a Rotary

Exchange Student in Argentina from 196S-1967.

Mrs. Cohen graduated from Pennsylvania State

University with High Distinction in 1971 with a Bachelors

of Science. While there Mrs. Cohen became a menber of

Alpha Larnda Delta freshman sorority; CWENS national

sophomore society for academic and extra curricular

activities; and Phi Kappa Phi national honor society for

high academic performance in the sciences. In 1978, she

received a Master of Education degree from Lehigh

University.

During her professional career she has taught

elementary school. Mrs. Cohen then became a Reading

Specialist at the elementary and college levels. She

became a graduate student in Computer Science in January,

198£ at Lehigh University. In the summer of 198£ she was

a graduate assistant in that field.

Mrs. Cohen is married to Robert Cohen and has two

children, Zachary and Samuel.

110

	Lehigh University
	Lehigh Preserve
	1-1-1983

	An overview of expert systems.
	Jane Greenberg Cohen
	Recommended Citation

	tmp.1451580486.pdf.2PB8P

