23,219 research outputs found

    Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies

    Get PDF
    The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin

    A fuzzy rule model for high level musical features on automated composition systems

    Get PDF
    Algorithmic composition systems are now well-understood. However, when they are used for specific tasks like creating material for a part of a piece, it is common to prefer, from all of its possible outputs, those exhibiting specific properties. Even though the number of valid outputs is huge, many times the selection is performed manually, either using expertise in the algorithmic model, by means of sampling techniques, or some times even by chance. Automations of this process have been done traditionally by using machine learning techniques. However, whether or not these techniques are really capable of capturing the human rationality, through which the selection is done, to a great degree remains as an open question. The present work discusses a possible approach, that combines expert’s opinion and a fuzzy methodology for rule extraction, to model high level features. An early implementation able to explore the universe of outputs of a particular algorithm by means of the extracted rules is discussed. The rules search for objects similar to those having a desired and pre-identified feature. In this sense, the model can be seen as a finder of objects with specific properties.Peer ReviewedPostprint (author's final draft

    Retrosynthetic reaction prediction using neural sequence-to-sequence models

    Full text link
    We describe a fully data driven model that learns to perform a retrosynthetic reaction prediction task, which is treated as a sequence-to-sequence mapping problem. The end-to-end trained model has an encoder-decoder architecture that consists of two recurrent neural networks, which has previously shown great success in solving other sequence-to-sequence prediction tasks such as machine translation. The model is trained on 50,000 experimental reaction examples from the United States patent literature, which span 10 broad reaction types that are commonly used by medicinal chemists. We find that our model performs comparably with a rule-based expert system baseline model, and also overcomes certain limitations associated with rule-based expert systems and with any machine learning approach that contains a rule-based expert system component. Our model provides an important first step towards solving the challenging problem of computational retrosynthetic analysis
    corecore