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Abstract. Algorithmic composition systems are now well-understood.
However, its capacity for consistently produce specific sensations in the
listener, referred as high level musical features (like coherence, emotion
or personality), is still object of discussion. Furthermore, whether or
not the machine learning processes, used for its modeling, are really
capable to capture such features to a great degree remains as an open
question. As a consequence of this lack, not all legal outputs of those
systems are considered as “good enough” for the composers. Then, even
though the number of valid outputs is huge, many times the selection
is performed manually, either using expertise in the algorithmic model,
by means of sampling techniques, or some times by chance. The present
work discusses a possible approach, that combines expert’s opinion and
a fuzzy methodology for rule extraction, for the modeling of high level
features. An early implementation able to explore the universe of outputs
of a particular algorithm by means of the extracted rules is discussed.
The rules search for objects similar to those having a desired and pre-
identified feature. In this sense, the model can be seen as a finder of
found objects.

Keywords: Algorithmic composition, musical representation, musical
features.

1 Exposition

Algorithmic composition systems (ACs), that create music by means of for-
malizable methods, are now well-understood, and documented (Nierhaus 2009,
Ferndndez 2013). Examples have followed the trend of the formalization of
thought and technology development, starting around 1000 AC with the Guido
D’Arezzo method for the generation of melodies from text material, based sim-
ply on the mapping of vowels over pitches. Later in the “musical dice game” of
the 18th century the outputs were generated, based on combinatorial structure.
Players rolled a dice to choose, for every temporal unit, a bar from a table until
complete a short piece. Although playing was trivial, the system required exper-
tise in music composition for consider the harmonic and voice-leading aspects
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of the combinations. In 1956 the Illiac suite was the first completely computer-
generated composition. The piece was composed by Lejaren Hiller and Leonard
Isaacson using a Monte Carlo method which outputs were musical notes. Over
the 20th century, compositional methods, like twelve tone technique (that as-
sured all 12 notes of the chromatic scale sounded as often as one another, and
so, preventing the emphasis of any one note), and serialism (that uses a series of
values to manipulate musical elements) used structural parameters and logical
conditions. Xenakis’ theory of sieves, is an application of logical combinations for
the generation of musical structure. With the development of techniques of ma-
chine learning composition systems are becoming more and more complex. For
example, “Autocousmatic” (Collins 2012) is an algorithmic system for electroa-
coustic music composition that incorporates machine-listening processes within
the design cycle. In this way, the system is able to assess the “worthiness” of
intermediate files from which the final output will be created. The formal struc-
ture is drawn from models based on the analysis of an exemplar corpus of pieces.
A similarity-measure is used to decide between candidates for the final mix.

Despite the extensive work developed on ACs, its capacity for accurately
produce high level musical features (like coherence, emotion or personality), is
still object of discussion. Until this moment, the representations obtained for high
level musical features were side effects of the machine learning research. This has
motivated the emergence of new paths for explicitly work on this subject. For
example, “affective algorithmic composition”, which seeks to develop systems
for the selective adjustment of emotional responses using parameterizations of
musical features (Duncan et al, 2013). In his work “Musical form and algorithmic
composition” Collins (2009) argue that “algorithmic music often seems stuck in
a static moment form, able to abruptly jump between composed sections but
unable to demonstrate much real dramatic direction.” Models for musical form
that takes into account the psychological perspective of the listener to a great
degree have not been well explored. Then, whilst it is possible to generate sections
of a composition by means of the different ACs, to achieve greater expressiveness,
it is still necessary to implement strategies to capture the relations between
sections, hierarchical layers (possibly by relating low and high level features)
and evolution of the tension.

On the search for designing systems capable to consistently produced outputs
perceived by the listener with specific characteristics, two approaches have been
addressed. On one hand, some systems have followed the explicit rule paradigm,
using conditions (many times expressed as rules) given by experts. On the other
hand, other system have used machine learning tools to learn patterns and pro-
duce compositional models with the learnt parameters. However, the obtained
representations do not takes into account musical considerations and then, are
more suitable for tasks like pattern recognition. In other words, the fact that ma-
chine learning processes have effectively captured high-level features to a great
degree is still object of discussion. Moreover, designed systems have not exten-
sively incorporated perception and semantic of the form of generated music,
including the psychological sensation of the listener. Attempts to do this often
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use modules designed for the evaluation and adjustment of the outputs based
on pre-established symbolic domain (Collins 2012), like the fitness functions of
genetic algorithms to modify the outputs until the desired ones are obtained. As
a consequence of this lack, in practical implementations, the composers have to
proceed by analyzing the outputs one by one, in order to select the best outputs
among all the possible ones. This happens either in automated or assisted com-
position, in statistical models, and even in algorithms for stochastic synthesis
(see for example, Luke 2009). This means that the composer has to create all
the possible outputs and then, listen as much as possible in order to select those
with the desired expressiveness, style, etc. This process is performed by using
expertise on the model or by sampling techniques. However, the universe of all
possible valid outputs of such kind systems normally range over thousand or even
million, and so, it is impossible for the composer to explore it manually. In the
present work we introduce a methodological approach for modeling high level
musical features in the outputs produced by ACs. The model takes advantage
of fuzzy quantifiers for modeling high level features. The objective is to climb in
the semantic level by relating high level features with its representation at beat
or raw level data. A remarkable point is that the design of the system requires
the whole example to be listened before the evaluation, and so different levels of
perception in the time and form domain are taking into account. The rest of the
work is structured as follows. Section 2 present and discussed the model. Section
3 presents a general discussion of the results and elucidate possible further work.

2 Development

Given the subjective nature of the high-level features, the use of fuzzy systems to
work with them sounds feasible. Fuzzy systems are based of fuzzy logic theory,
they allow us to work with objects that are approximate or subjective rather than
exact. In the context of the modeling of musical features, fuzzy systems can help
to work without been restricted to pre-established structures for the evaluation
modules of the outputs. Then, human expertise and its associated psychological
perspective can be included within the design (or the evaluation) cycle. This
allows the system to extract the musical representation of the expert experience
as it is perceived and then, to translate it in terms of combinations of low level
variables. We have to point out that the perception of the features constitute a
subjective evaluation of the listened outputs, and so it is subjected to context
and cultural experiences. Fur this reason it could hardly vary form one listener
to other. However, it is possible, for example, to consider different opinions that
may be pondered according with the degree of experience. A general structure
of the system design is showed in Figure 1.

The system is composed by several modules, each of which can be inde-
pendently treated. The first module is the algorithmic composer or generative
system. It, either belongs to one of the stablished paradigms ! or a hybrid one.

! Different algorithm classes enable specific approaches to musical structure genera-
tion. The most popular are Statistical models including Markov models, generative



* T )
Algorithmic ( Examples
system N

Verification of
inconsistencies

Representation

/ Meta-Rules ) v
— Feature *
T extraction
* v
Algorithm for P ‘ T
meta-rules (' Evaluation ) ( Patterns )
N J/ \ /

Rules Algorithm for *
N 7 rule extraction

Fig. 1. The system architecture and process flow of the proposed approach. Squares
denoted the different modules of the system and ovals denote data.

From the system, a sample of pieces (patterns) are extracted. This sampling pro-
cess must have to take into account the characteristics of the generative system.
For example, if the system belongs to the statistical models paradigm, outputs
may be determined by a probability distribution, and so, as the training set may
be biased, the extracted rules will describe only a part of the legal outputs. Then,
the sample is evaluated by human experts by using linguistic variables in order to
categorize if they have or not the desired feature. This process can be performed
for short pieces, patterns, phrases or motifs, to explore the system’s capacities
over different scales of length and hierarchical levels. It has to be noticed that, as
the whole output is listened before the evaluation, it takes into account the differ-
ent levels of organization. For example, if dealing with rhythmic patterns it will
consider the different arranges of contrast and repetition as well as its locations
present in the whole output. Or, if dealing with melody sequences the evaluation
will consider the transitions of adjacent notes, but also relations among notes
at different points, as well as its evolution over time. In other words, this kind
of evaluation allow us to include the different semantical levels and the subjec-
tive human perception of the outputs. The representation module structure the
data in the most efficient manner for analysis and feature selection. The feature
selection module performs the feature extraction/dimensionality reduction and
prepare the data for the algorithm of analysis. The extraction algorithm takes
the linguistic evaluation and the set of patterns as input set. The extraction
algorithm is the module that analyzes the episodical behavior of the system. i.e
the occurred patterns and its association evaluation, and it is able to abstract
a model for its description. Algorithms been currently investigated are of the
type of logical rules extraction (Paz et al, 2014). The extracted rules are used
to explore and classify the universe of legal outputs of the original algorithmic

grammars, transition networks, chaos and self-similarity, genetic algorithms, cellular
automata, neural networks, as well as other artificial intelligence methods.
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system looking for inconsistencies until a terminal criteria for the quality of the
obtained rules is meet. In order to perform a higher level analysis we include
an algorithm for the construction of meta-rules, that take the extracted rules
as input and perform the extractions of new rules of higher level. It should be
noticed that this module does not starts until the iterations of the previous steps
finish. Also, the extracted rules used to explore and classify the universe of legal
outputs can also be used for the implementation of generative frameworks.

2.1 Implementation

For the first implementation of the methodology we used a generative model,
based on probability templates, for beat patterns generation in the context of
UK garage proposed by Collins(2003). UK Garage might be characterized by a
high tempo, around 140 bpm, with a triplet swing groove, and the renowned ‘2
step’ feel (Collins 2003). In the usual 4/4 metric at the second and fourth beats
we found a definite snare strike, and at some point, we can found at the first and
third beats a kick. A simplified model of the style can be codify in a regular grid
of 16 points per bar (swing variations can be incorporated during performance).
This points correspond with each of the sixteenth notes. The beat patterns are
modeled in templates as being played of three independent sixteen bits streams,
for instruments kick, snare and hihat. These streams codify the information
presence/absence for the instruments. For simplify the data representation in
the analysis the original algorithm was restricted to considered only cases when
one instrument strikes at the same time. Although this can appear as a great
simplification, produced patterns are still valid cases of the original, i.e it is a
subset of the space of states. The set of probabilities (independent for each strike
and taken from 0.0 to 1.0) are:

/ /kick
[0.7, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3]

//snare
[0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.3]

//hihat
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7]

This template can produce 128 valid outputs. From these, we produced short
examples composed by 8 bars length. The first 4 bars correspond with a partic-
ular output of the system and the following 4 bars with another. We represent
each output in an array containing 32 sixteenth notes, 16 from the first pattern
and 16 from the second.
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32]

At each entrance for representing the different values that the variables can
take we adopt the following convention: kick = 1, snare = 2, hi-hat = 3, and
silences = 4. The cardinality of all possible outputs taken in this way is 16384
(128 times 128). It should be notice that all this cases including the extreme
cases are valid outputs. From this set we extracted a sample to be evaluated
by an expert. However, as different outputs have different probabilities, first all
probabilities were calculated, and associated with each one of the 128 possible



cases. Then, we create a sample to explore the space. We were interested in being
sure that even the rare patterns, those with lower probability (probabilities range
between 0.000101 and 0.070560), would represent interesting outputs. After the
exploration we decided that all the space was interesting enough. By taking this
into account, patterns were selected in a manner that every possible variation
(class) in the training data were equally represented. From this set we create
all possible combinations (400) among patterns. Then, combinations of each
pattern with itself were removed. This was due that, for this experiment, we
were interested in patterns constituted by different parts. So, the resulting (380)
patterns will constitute our universe. Based on this set we trained and tested
our model. Although the size of this set could appear small in comparison with
the complete test set (of 16384 patterns), the amount of time needed for listen
and evaluate the pieces makes the use of bigger sets impractical. However, the
algorithm’s restrictions, seeking to emulate a particular musical style, suggest
that it is possible to obtain good results with few but well labeled data (as will
be shown below).

The training set was evaluated by experts focussing in the perception of the
“transition quality” between parts, considered as a high-level feature. We define
the transition quality as “how good patterns match together” when they are per-
ceived by a particular listener, in terms of the quality of the individual patterns
and by considering the contrasts and repetition sensation between the parts.
More precisely, this notion corresponds with a “motif coherence”, (or coherence
between rhythmic cells) of musical patterns. The evaluation of the transition
will depend on the contrast and repetition points between parts A and B and on
the moments on which those contrast and repetitions points are situated in the
structure. For example, suppose that A and B are rhythmical motifs composed
by 4 bars each one, as in our case. In the context of occidental music (at which
the UK garage belongs), it could be considered that if the 4th bar of A coincides
with the 4th bar of B, it will produce a greater sensation of coherence than if the
2nd bar of A coincides with the 4th bar of B. The evaluation was made by using
linguistic variables (fuzzy quantifiers (Kosko, 1986)) defined as low, medium or
high. The evaluated training set was processed with the Fuzzy inductive reason-
ing methodology and the algorithm for logic rules extraction (FIR + LR_FIR).
A detailed explanation of both algorithms can be found in (Paz et al, 2014,
Castro el al 2011). Each time, this rules were used for the classification of the
training set, looking for inconsistencies, and then, for the classification of the
universe created with the sample patterns. After the definitive training set were
selected, several tests were performed using other training sets. Some of them
were chosen randomly, and others by sampling the possible patterns considering
its probabilities (e.g those with higher probability). It is remarkable that in the
performed tests, the classification of the training set throws no inconsistencies,
and that the proportion of classified patterns remains. In the same sense, after
processing the rest of the universe (test data), the proportion of patterns that
can be classified by rules is also similar among tests. And the order in the num-
ber of inconsistencies (in the test set 380 patterns) remains around ten percent.
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The rules are expressed in the IF THEN form. Variable’s number, for example
V24 or V32, correspond to its location at the 32 sixteenth notes. The values in
antecedents are 1=Kkick, 2=snare, 3=hihat, 4=silence. In consequences (system’s
output V33) are 1 = low transition quality, 2 = medium transition, and 3 = high
transition quality. The expressions “Spec” and “Sens” stand for the usual speci-
ficity and sensitivity measures for the rules. The set of extracted rules are show
below. They describe (or encode) the combination of variables that, according

with the model, will produce a transition perceived as “low, medium and high”.
LOW rules
IF V24 - 4 AND V32 - 1 THEN V33 - 1 Spec= 1 Sens=0.33
IF V16 - 1 AND V24 - 4 THEN V33 - 1 Spec= 1 Sens=0.18
IF V16 - 2 AND V17 - 4 AND V24 - 2 THEN V33 - 1 Spec= 1 Sens=0.078
IF V16 - 1 AND V26 - 2 AND V32 - 2 THEN V33 - 1 Spec= 1 Sens=0.078
IF V8 - 3 AND V24 - 3 THEN V33 - 1 Spec= 1 Sens=0.078
IF V10 - 2 AND V24 - 2 AND V26 - 2 AND V32 - 4 THEN V33 - 1 Spec= 1 Sens=0.078
IF V10 - 2 AND V16 - 2 AND V32 - 4 THEN V33 - 1 Spec= 1 Sens=0.078
IF V8 - 4 AND V26 - 2 AND V32 - 4 THEN V33 - 1 Spec= 1 Sens=0.078
IF V16 - 2 AND V24 - 2 AND V26 - 2 THEN V33 - 1 Spec= 1 Sens=0.059
IF V16 - 3 AND V24 - 3 AND V32 - 1 THEN V33 - 1 Spec= 1 Sens=0.059
IF V8 - 4 AND V20 - 4 AND V32 - 3 THEN V33 - 1 Spec= 1 Sens=0.059
MEDIUM rules
IF V4 - 4 AND V24 - 2 AND V32 - 2- 3 THEN V33 - 2 Spec= 1 Sens=0.2
IF V10 - 4 AND V24 - 2 AND V32 - 2 THEN V33 - 2 Spec= 1 Sens=0.14
IF V10 - 4 AND V17 - 1 AND V32 - 4 THEN V33 - 2 Spec= 1 Sens=0.11
IF V8 - 4 AND V20 - 1 AND V32 - 3 THEN V33 - 2 Spec= 1 Sens=0.11
IF V16 - 1 AND V24 - 2 AND V32 - 3 THEN V33 - 2 Spec= 1 Sens=0.086
IF V16 - 2 AND V24 - 2 AND V32 - 2 THEN V33 - 2 Spec= 1 Sens=0.086
IF V8 - 1 AND V24 - 2 AND V32 - 3 THEN V33 - 2 Spec= 1 Sens=0.086
IF V8 - 1 AND V16 - 1 AND V32 - 4 THEN V33 - 2 Spec= 1 Sens=0.057
IF V16 - 3 AND V24 - 4 AND V32 - 4 THEN V33 - 2 Spec= 1 Sens=0.057
IF V8 - 2 AND V24 - 3 AND V32 - 4 THEN V33 - 2 Spec= 1 Sens=0.057
IF V10 - 4 AND V24 - 4 AND V32 - 4 THEN V33 - 2 Spec= 1 Sens=0.057
IF V16 - 1 AND V26 - 4 AND V32 - 4 THEN V33 - 2 Spec= 1 Sens=0.057
IF V8 - 4 AND V24 - 1 AND V26 - 2 AND V32 - 3 THEN V33 - 2 Spec= 1 Sens=0.057
HIGH rules
IF V16 - 2- 3 AND V24 - 1 AND V32 - 1 THEN V33 - 3 Spec= 1 Sens=0.38
IF V24 - 1 AND V26 - 2 AND V32 -1 THEN V33 - 3 Spec= 1 Sens=0.34
IF V10 - 4 AND V24 - 1 AND V32 -1 THEN V33 - 3 Spec= 1 Sens=0.28
IF V16 - 3 AND V24 - 1 AND V26 - 2 THEN V33 - 3 Spec= 1 Sens=0.24
IF V8 - 2 AND V24 - 1 AND V26 - 2 THEN V33 - 3 Spec= 1 Sens=0.17 1
IF V8 - 1 AND V16 - 1 AND V24 - 3 AND V32 - 3 THEN V33 - 3 Spec= 1 Sens=0.069
IF V24 - 1 AND V32 - 2 THEN V33 - 3 Spec= 1 Sens=0.069

With these rules we explored the universe of all possible outputs. The results
after the classification were: The total amount of patterns that satisfied at least
one rule 10656. From this 5512 one low, 4080 one medium, and 2432 one high.
Crossed patterns were: one rule low and one high = 192. One rule low and
one medium = 1112. One medium and one high = 88. Finally patterns that
satisfy rules low, medium and high = 24. In order to validate the model, we
implement a “blind review” process of the classified outputs. Around %60 of the
outputs were classified and %14 perceived with the desired property. However,
when reviewing the misclassified outputs is is clear that the rules are expressing
a partial property of the pattern and that more information is needed. This
could be improved by using another level of analysis that can be performed by
inspection or by using an algorithm for extraction of meta rules (rules of rules).
However, it is important to take into account that as the rules are more specific
they tend to describe particular patterns, and so, even though the outputs are
the desired ones, the search could be limited.

3 Recapitulation

Although the system is in its primary implementation, the approach sounds
promising. The obtained representation classified around 60% of all the possi-



ble patterns (with A+B structure) produced by the original system. This is a
good result if we consider that the system is labeling instances unlabeled before.
Furthermore, the analysis of all possible patterns considered with the same prob-
ability, allowed us to find patterns classified as high, that otherwise would have
been difficult to obtain with the original model (the smallest associated proba-
bility is 0.0001). Remember that the decision of considered all the patterns with
the same probability was taken when exploring the less probable patterns with
the original probability distribution, patterns considered as “highly” interesting
were found. Early programmed versions for pattern generation have been probed
in the context of live performances with good results. This implementations were
designed by filtering out the low and medium outputs. Other versions oriented
to “desk composition” can include other options for selecting the patterns ac-
cording to rules, for example by choosing those rules supported by great amount
of instances for the main parts, and less supported rules for short passages.
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