We describe a fully data driven model that learns to perform a retrosynthetic
reaction prediction task, which is treated as a sequence-to-sequence mapping
problem. The end-to-end trained model has an encoder-decoder architecture that
consists of two recurrent neural networks, which has previously shown great
success in solving other sequence-to-sequence prediction tasks such as machine
translation. The model is trained on 50,000 experimental reaction examples from
the United States patent literature, which span 10 broad reaction types that
are commonly used by medicinal chemists. We find that our model performs
comparably with a rule-based expert system baseline model, and also overcomes
certain limitations associated with rule-based expert systems and with any
machine learning approach that contains a rule-based expert system component.
Our model provides an important first step towards solving the challenging
problem of computational retrosynthetic analysis