107 research outputs found

    Experiments in morphosyntactic processing for translating to and from German

    Full text link
    We describe two shared task systems and associated experiments. The German to English system used reordering rules ap-plied to parses and morphological split-ting and stemming. The English to Ger-man system used an additional translation step which recreated compound words and generated morphological inflection

    Getting Past the Language Gap: Innovations in Machine Translation

    Get PDF
    In this chapter, we will be reviewing state of the art machine translation systems, and will discuss innovative methods for machine translation, highlighting the most promising techniques and applications. Machine translation (MT) has benefited from a revitalization in the last 10 years or so, after a period of relatively slow activity. In 2005 the field received a jumpstart when a powerful complete experimental package for building MT systems from scratch became freely available as a result of the unified efforts of the MOSES international consortium. Around the same time, hierarchical methods had been introduced by Chinese researchers, which allowed the introduction and use of syntactic information in translation modeling. Furthermore, the advances in the related field of computational linguistics, making off-the-shelf taggers and parsers readily available, helped give MT an additional boost. Yet there is still more progress to be made. For example, MT will be enhanced greatly when both syntax and semantics are on board: this still presents a major challenge though many advanced research groups are currently pursuing ways to meet this challenge head-on. The next generation of MT will consist of a collection of hybrid systems. It also augurs well for the mobile environment, as we look forward to more advanced and improved technologies that enable the working of Speech-To-Speech machine translation on hand-held devices, i.e. speech recognition and speech synthesis. We review all of these developments and point out in the final section some of the most promising research avenues for the future of MT

    Factored Translation Models

    Get PDF

    Syntactic and semantic features for statistical and neural machine translation

    Get PDF
    Machine Translation (MT) for language pairs with long distance dependencies and word reordering, such as German–English, is prone to producing output that is lexically or syntactically incoherent. Statistical MT (SMT) models used explicit or latent syntax to improve reordering, however failed at capturing other long distance dependencies. This thesis explores how explicit sentence-level syntactic information can improve translation for such complex linguistic phenomena. In particular, we work at the level of the syntactic-semantic interface with representations conveying the predicate-argument structures. These are essential to preserving semantics in translation and SMT systems have long struggled to model them. String-to-tree SMT systems use explicit target syntax to handle long-distance reordering, but make strong independence assumptions which lead to inconsistent lexical choices. To address this, we propose a Selectional Preferences feature which models the semantic affinities between target predicates and their argument fillers using the target dependency relations available in the decoder. We found that our feature is not effective in a string-to-tree system for German→English and that often the conditioning context is wrong because of mistranslated verbs. To improve verb translation, we proposed a Neural Verb Lexicon Model (NVLM) incorporating sentence-level syntactic context from the source which carries relevant semantic information for verb disambiguation. When used as an extra feature for re-ranking the output of a German→ English string-to-tree system, the NVLM improved verb translation precision by up to 2.7% and recall by up to 7.4%. While the NVLM improved some aspects of translation, other syntactic and lexical inconsistencies are not being addressed by a linear combination of independent models. In contrast to SMT, neural machine translation (NMT) avoids strong independence assumptions thus generating more fluent translations and capturing some long-distance dependencies. Still, incorporating additional linguistic information can improve translation quality. We proposed a method for tightly coupling target words and syntax in the NMT decoder. To represent syntax explicitly, we used CCG supertags, which encode subcategorization information, capturing long distance dependencies and attachments. Our method improved translation quality on several difficult linguistic constructs, including prepositional phrases which are the most frequent type of predicate arguments. These improvements over a strong baseline NMT system were consistent across two language pairs: 0.9 BLEU for German→English and 1.2 BLEU for Romanian→English

    Latest trends in hybrid machine translation and its applications

    Get PDF
    This survey on hybrid machine translation (MT) is motivated by the fact that hybridization techniques have become popular as they attempt to combine the best characteristics of highly advanced pure rule or corpus-based MT approaches. Existing research typically covers either simple or more complex architectures guided by either rule or corpus-based approaches. The goal is to combine the best properties of each type. This survey provides a detailed overview of the modification of the standard rule-based architecture to include statistical knowl- edge, the introduction of rules in corpus-based approaches, and the hybridization of approaches within this last single category. The principal aim here is to cover the leading research and progress in this field of MT and in several related applications.Peer ReviewedPostprint (published version

    Syntax-based machine translation using dependency grammars and discriminative machine learning

    Get PDF
    Machine translation underwent huge improvements since the groundbreaking introduction of statistical methods in the early 2000s, going from very domain-specific systems that still performed relatively poorly despite the painstakingly crafting of thousands of ad-hoc rules, to general-purpose systems automatically trained on large collections of bilingual texts which manage to deliver understandable translations that convey the general meaning of the original input. These approaches however still perform quite below the level of human translators, typically failing to convey detailed meaning and register, and producing translations that, while readable, are often ungrammatical and unidiomatic. This quality gap, which is considerably large compared to most other natural language processing tasks, has been the focus of the research in recent years, with the development of increasingly sophisticated models that attempt to exploit the syntactical structure of human languages, leveraging the technology of statistical parsers, as well as advanced machine learning methods such as marging-based structured prediction algorithms and neural networks. The translation software itself became more complex in order to accommodate for the sophistication of these advanced models: the main translation engine (the decoder) is now often combined with a pre-processor which reorders the words of the source sentences to a target language word order, or with a post-processor that ranks and selects a translation according according to fine model from a list of candidate translations generated by a coarse model. In this thesis we investigate the statistical machine translation problem from various angles, focusing on translation from non-analytic languages whose syntax is best described by fluid non-projective dependency grammars rather than the relatively strict phrase-structure grammars or projectivedependency grammars which are most commonly used in the literature. We propose a framework for modeling word reordering phenomena between language pairs as transitions on non-projective source dependency parse graphs. We quantitatively characterize reordering phenomena for the German-to-English language pair as captured by this framework, specifically investigating the incidence and effects of the non-projectivity of source syntax and the non-locality of word movement w.r.t. the graph structure. We evaluated several variants of hand-coded pre-ordering rules in order to assess the impact of these phenomena on translation quality. We propose a class of dependency-based source pre-ordering approaches that reorder sentences based on a flexible models trained by SVMs and and several recurrent neural network architectures. We also propose a class of translation reranking models, both syntax-free and source dependency-based, which make use of a type of neural networks known as graph echo state networks which is highly flexible and requires extremely little training resources, overcoming one of the main limitations of neural network models for natural language processing tasks
    • …
    corecore