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Abstract
Machine Translation (MT) for language pairs with long distance dependencies and

word reordering, such as German–English, is prone to producing output that is lexi-

cally or syntactically incoherent. Statistical MT (SMT) models used explicit or latent

syntax to improve reordering, however failed at capturing other long distance depen-

dencies. This thesis explores how explicit sentence-level syntactic information can im-

prove translation for such complex linguistic phenomena. In particular, we work at the

level of the syntactic-semantic interface with representations conveying the predicate-

argument structures. These are essential to preserving semantics in translation and

SMT systems have long struggled to model them.

String-to-tree SMT systems use explicit target syntax to handle long-distance re-

ordering, but make strong independence assumptions which lead to inconsistent lexical

choices. To address this, we propose a Selectional Preferences feature which models

the semantic affinities between target predicates and their argument fillers using the

target dependency relations available in the decoder. We found that our feature is not

effective in a string-to-tree system for German→English and that often the condition-

ing context is wrong because of mistranslated verbs.

To improve verb translation, we proposed a Neural Verb Lexicon Model (NVLM)

incorporating sentence-level syntactic context from the source which carries relevant

semantic information for verb disambiguation. When used as an extra feature for re-

ranking the output of a German→English string-to-tree system, the NVLM improved

verb translation precision by up to 2.7% and recall by up to 7.4%.

While the NVLM improved some aspects of translation, other syntactic and lexical

inconsistencies are not being addressed by a linear combination of independent mod-

els. In contrast to SMT, neural machine translation (NMT) avoids strong independence

assumptions thus generating more fluent translations and capturing some long-distance

dependencies. Still, incorporating additional linguistic information can improve trans-

lation quality.

We proposed a method for tightly coupling target words and syntax in the NMT

decoder. To represent syntax explicitly, we used CCG supertags, which encode subcat-

egorization information, capturing long distance dependencies and attachments. Our

method improved translation quality on several difficult linguistic constructs, including

prepositional phrases which are the most frequent type of predicate arguments. These

improvements over a strong baseline NMT system were consistent across two language

pairs: 0.9 BLEU for German→English and 1.2 BLEU for Romanian→English.
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Lay Summary

Machine Translation (MT) is the task of translating a sentence written in some

“source” language into another “target” language, automatically, using computer algo-

rithms. MT systems have progressed significantly in the last fifty years from early rule-

based systems, involving hand crafted translation rules designed for each language by

experts, to systems based on neural networks, capable of learning complex linguistic

phenomena from a large corpus of translated sentences. Despite the progress, MT for

language pairs with long distance dependencies and word reordering, such as German–

English, is prone to producing output that is lexically or syntactically incoherent.

This thesis claims that explicit sentence-level syntactic context is required from

both the source-side and the target-side to improve machine translation when long

distance dependencies are involved. In particular, we work at the level of the syntactic-

semantic interface with representations conveying the predicate-argument structures.

These are essential to preserving semantics in translation and MT systems have long

struggled to model them.

We first augment a syntax-based statistical MT system with a Selectional Prefer-

ences feature modeling the semantic affinities between target predicates and their argu-

ment fillers. We found that our feature is not improving the system for German→ En-

glish and that often the conditioning context is wrong because of mistranslated verbs.

To improve verb translation, we proposed a Verb Lexicon model incorporating syntac-

tic context from the source sentence which carries relevant semantic information for

verb disambiguation. While this model improved some aspects of translation, other

syntactic and lexical inconsistencies still occurred. This happens because the syntax-

based MT system does not have a global representation of the source and target sen-

tence.

In contrast to syntax-based MT, MT systems based on neural networks (NMT)

are able to learn representations of the entire source sentence and translation his-

tory, which capture some long distance dependencies. Still, incorporating additional

linguistic information can improve translation quality. We proposed a method for

tightly coupling target words and syntax in NMT, and showed it improves machine

translation quality, on several difficult linguistic constructs, for German→English and

Romanian→English. We used a syntactic representation encoding the subcategoriza-

tion frame of predicates, which helped improve translation of prepositional phrases,

the most frequent type of predicate arguments.
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Chapter 1

Introduction

To correctly render the meaning of a source sentence, a translation requires syntactic

and lexical cohesion. This is harder to achieve with machine translation for language

pairs which exhibit long distance dependencies and word reordering, such as German–

English. This thesis claims that the syntactic structure of the sentence is required on

both the source-side and the target-side to improve machine translation in particular

when long distance dependencies1 are involved.

We test empirically three hypotheses. Our first hypothesis, that target-side seman-

tic affinities can improve translation of predicate-argument structures, is not confirmed

by empirical results. Our second hypothesis, that the source-side syntactic context

improves translation of verbs, is confirmed for the German→English language pair

by an increase in verb recall and precision. However, this is attained at the cost of a

small decrease in overall translation quality as measured by BLEU , an automatic met-

ric. Our third hypothesis is that explicitly modeling target language syntax in neural

machine translation improves translation quality. This is confirmed empirically, for

German→English, a high-resource pair, and for Romanian→English, a low-resource

pair. The improvements are consistent across several difficult linguistic constructs, in-

cluding prepositional phrases which are the most frequent type of predicate arguments.

1.1 Syntax for Machine Translation

Statistical machine translation (SMT) has been successfully applied to many language

pairs and domains. An SMT system breaks down the translation of a sentence into the

1We consider a dependency relation between a head and dependent which are separated by several
words and which may not fall within the n-gram language model context, to be long-distance.

1



Chapter 1. Introduction 2

translation of basic independent sub-units, with some attached translation probability.

Phrase-based SMT systems use phrase-pairs as basic translation units, which capture

local movement of words within a phrase-pair, multi-word expressions and idioms.

However, when unconstrained movement of phrases is allowed, searching for the opti-

mal ordering becomes an NP-complete problem under a phrase-based model [Knight,

1999].

Word order differences between languages account for most of the variation in

translation performance for phrase-based SMT models [Birch, 2011]. Studying the

characteristics of European language pairs [Birch, 2011] also showed that the

German→English translation direction involves the most reordering among eleven lan-

guage pairs with the same target language. For this reason, we test all of our hypotheses

on this language pair. German allows verbs to appear in different positions: in perfect

tense the main verb appears at the end of the sentence and some verbs have separa-

ble particles that are placed at the end of the sentence. Phrase-based SMT struggles

to handle word reordering for this language pair and does not handle long-distance

reordering, exemplified next. In Figure 1.1 we give an example of a translation for

the German→English language pair that requires two verbs to be re-ordered. The

first reordering involves the verb “eingebracht”, and its direct object “einen Geset-

zesvorschlag”. The translation of the second verb, “etablieren”, requires a long dis-

tance movement as it needs to be placed at the beginning of the second clause. While

the first reordering could be performed by phrase-based models, they would not handle

the second long distance movement and would potentially drop one of the verbs. In

contrast, string-to-tree SMT system can handle both cases as shown in the example

translation provided in Figure 1.1.

Source Die Kongress Abgeordneten haben einen Gesetzesvorschlag eingebracht,

um die Organisation von Gewerkschaften als Bürgerrecht zu etablieren.

Gloss Congressmen have a legislation proposed,

of the organization of trade unions as civil right to establish.

Reference Congressmen have proposed legislation to protect union organizing as a civil right.

String-to-Tree

SMT

Congressmen have tabled a bill to establish the organization of trade unions as a civil right.

Figure 1.1: Example of reordering by a German-to-English statistical machine transla-

tion (SMT) model.



Chapter 1. Introduction 3

String-to-tree SMT systems use synchronous context free grammar (SCFG) [Aho

and Ullman, 1969] rules, with syntactic annotation on the target side, to handle long

distance re-ordering and produce syntactically well-formed translations. Modeling

the target-side syntax is important for machine translation since a syntactically well-

formed sentence is more fluent and potentially more accurate. In Figure 1.2 we give

examples of SCFG rules which can reorder the verb “eingebracht” and its argument,

according to the target word order. The figure shows a target sub-tree with the align-

ment between the target non-terminals and the corresponding source spans. String-to-

tree translation rules have generic (X) non-terminal labels on the source-side that corre-

spond one-to-one with syntactic non-terminal labels on the target side. The target-side

non-terminals are either part-of-speech labels or phrase structure labels and the map-

ping between source and target spans is indicated in the SCFG rule by the subscript

numbers.

VP

SNPtabledhave

Sum,eingebrachtNPhaben

VP→ have tabled NP0 S1 ||| haben X0 eingebracht um X1

S

NPVBDhaveNP

VBDNPhabenNP

S→ NP0 have VBD1 NP2 ||| X0 haben X2 X1

Figure 1.2: Alternative synchronous context free grammar (SCFG) rules for reordering

the verb “eingebracht” and its NP argument. The target syntactic sub-tree and the

alignment of the non-terminals to the source-side spans are depicted at the top. The

corresponding SCFG rule is depicted at the bottom.

These structured translation rules allow reordering by abstracting away from the

lexical realization of the different syntactic constituents. The noun-phrase (NP) argu-

ments will be translated independently of the verb by subsequent SCFG rules rooted

in an NP non-terminal. By making these strong independence assumptions and lim-

iting the lexical context, a string-to-tree system will induce translation errors such as

incoherent lexical choices and missing words. In the previous example, the verb is

translated as “tabled” which has opposite meaning in American and British English,

while the intended and non-ambiguos translation is “proposed” or “introduced”. Even

a strong string-to-tree system for German→English only retains about 66 percent of

the meaning of the source semantic frames [Birch et al., 2013].

Previous work augmented string-to-tree systems with either global source or tar-
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Verb Relation Argument SelAssoc

see dobj PRN 0.123

movie 0.022

episode 0.001

is–hereditary nsubj disease 0.267

monarchy 0.148

title 0.082

Table 1.1: Examples of selectional association (SelAssoc) scores for different verbs.

PRN is the class of pronouns. PRN is the part-of-speech tag for pronouns, dobj is direct

object, nsubj stands for subject.

get information. For example, Weller et al. [2014] annotate SCFG rules translating

prepositional-phrases with noun-class information and [Sennrich, 2015] propose a lan-

guage model over syntactic n-grams. However, these models do not focus on the lexi-

cal semantic affinities between target predicates and their arguments. To improve rule

selection for systems based on formal SCFGs2, some proposed discriminative models

integrating a wider source context than is available in typical translation units [Braune

et al., 2015, 2016, Liu et al., 2008]. Still, these models rely more on structural differ-

ences between the target-side of SCFG rules, neglecting the lexical selection of verbs.

In this thesis, we propose softening the independence assumptions of string-to-

tree systems and improving lexical cohesion by incorporating global source and target

syntactic context. We explore two initial hypotheses: that knowledge of target-side se-

mantic affinities improves lexical cohesion of predicate-argument pairs and that global

source-side syntactic context improves lexical choices for verbs.

To achieve lexical cohesion at the level of the predicate-argument structure, we

introduce a feature to model target-side selectional preferences of predicates. Selec-

tional preferences describe the semantic affinities between predicates and their argu-

ment fillers. For example, the verb “drinks” has a strong preference for arguments in

the conceptual class of “liquids”. Therefore, the word “wine” can be disambiguated

when it appears in relation to the verb “drinks”.

A corpus driven approach to modeling selectional preferences usually involves ex-

tracting triples of (syntactic relation, predicate, argument) and computing co-occurrence

statistics. Our feature is based on the selectional association measure proposed by

2SCFG rules without explicit syntactic annotation and with generic non-terminal labels X .
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In den letzten Jahren haben mehrere Wissenschaftler den Zusammenhang zwischen ... und Krebs untersucht

pp

det
attr

pn
ROOT

det

subj

det

obja

pn

aux

Reference: In recent years , a number of scientists have studied the links [between ... and cancer]

Window context und Krebs untersucht < /s > < /s >

Syntactic context source verb parent dependents pp modifier

untersucht haben Wissenschaftler Zusammenhang <null> in Jahren

Figure 1.3: Example of window and syntactic context extracted for the source verb

untersucht (studied; highlighted in bold).

Resnik [1996] which follows this approach. We give examples of the selectional as-

sociation scores for different verbs and their arguments in Table 1.1. The verb “see”

takes on many arguments as direct objects and therefore has lower selectional asso-

ciation scores for the arguments in this syntactic relation. In contrast, the predicate

“is-hereditary”3 takes on fewer arguments for which it has stronger selectional asso-

ciation scores.

Our first hypothesis, that target-side semantic affinities can improve translation of

predicate-argument structures, is not confirmed by empirical results. According to the

analysis presented in Chapter 4, as the distance between predicates and arguments in-

creases and the target syntactic structure becomes more complex, the translation preci-

sion decreases drastically. Furthermore, verbs are often mistranslated which negatively

impacts the proposed selectional preferences feature. The analysis of verb translation

in string-to-tree systems, presented in Chapter 5, shows that 20 percent of the main

verbs are translated without lexical context and verb translation recall is as low as 45.5

percent. Therefore, we address the problem of verb translation in string-to-tree sys-

tems by incorporating the source verb context extracted from the syntactic structure of

the source sentence. Since the syntactic context is extracted from the source sentence

we can include most of the verb’s dependents, in particular the core arguments that

carry most semantic information relevant to verb disambiguation.

3Here the verb “is” has the role of an auxiliary while the adjective “hereditary” is the semantic
predicate. In this case, the Stanford parser will attach the arguments to the semantic predicate.
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Source Oder wollen Sie herausfinden , über was andere reden ?

Reference Or do you want to find out what others are talking about ?

NMT Or would you like to find out about what others are talking about ?

Figure 1.4: Example of neural machine translation (NMT) of a German→English sen-

tence involving a subordinate clause, compared to gold standard reference. Incorrectly

translated phrase highlighted in bold.

We propose a verb specific lexicon model with the knowledge that verbs have the

most outgoing dependency relations, are central to semantic structures and therefore

would benefit most from a source-side syntactic context. In Figure 1.3 we give an

example of how we can extract all the relevant lexical context of the source verb by

following its syntactic dependency relations. In contrast, a window context centered on

the source verb provides only one content word which is not an argument of the verb.

Our second hypothesis, that the source-side syntactic context improves translation of

verbs, is confirmed for the German→English language pair by an increase in verb

recall and precision. However, this is attained at the cost of a small decrease in overall

translation quality as measured by BLEU , an automatic metric.

Although string-to-tree systems with explicit target syntax out-perform phrase-

based systems for syntactically divergent language pairs such as German–English,

both systems suffer from data sparsity and strong independence assumptions. Neural

machine translation (NMT) models address both these issues by learning distributed

representations of the source and target words and by modeling the entire source con-

text and target history when generating a translation. These are desirable properties

when trying to model long-distance dependencies and re-ordering. It has been shown

that NMT models are able to partially learn source-side syntactic information from

sequential lexical information. However, some complex syntactic phenomena such as

prepositional phrase attachment are poorly modeled [Shi et al., 2016, Bentivogli et al.,

2016]. In Figure 1.4 we give an example of a translation, produced by an NMT sys-

tem, which is locally fluent but does not capture the correct syntactic structure. The

system generates two fluent constructs in the target language involving the preposition

“about”: “find out about” and “talking about”. However, the syntactic structure of

the question requires only the second occurrence of the preposition.

Previous work has attempted to induce structure when modeling the source sen-

tence by using convolutional neural networks [Kalchbrenner and Blunsom, 2013, Cho
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et al., 2014a] or syntactically guided attentional recurrent networks [Eriguchi et al.,

2016]. Others have improved translation quality by incorporating explicit source-side

linguistic features [Luong et al., 2016, Sennrich and Haddow, 2016]. Applying target-

side linguistic factors in NMT, namely morphological tags, has also been briefly in-

vestigated [Martı́nez et al., 2016]. However, no previous work has explored the more

general problem of including target syntax in NMT: comparing tightly and loosely cou-

pled syntactic information and showing source and target syntax are complementary.

We propose a third hypothesis, that explicitly modeling target language syntax in

neural machine translation improves translation quality. In particular we investigate

the following research questions: 1) Is tight integration of words and syntax better

than multitask training? 2) Does target syntax provide complementary information to

source syntax for NMT?

We present empirical results showing that explicitly modeling target-syntax im-

proves machine translation quality, in particular on several difficult linguistic con-

structs, for German→English, a high-resource pair, and for Romanian→English, a

low-resource pair. Furthermore, a tight coupling of words and syntax improves transla-

tion quality more than multitask training. While both approaches allow the target syn-

tactic information to impact all parameters of the model during training, only the for-

mer approach makes the probability of the target words conditioned on target-syntax.

We obtain further improvements in translation quality by combining target-syntax with

source-syntax, showing that the two are complementary.

1.2 Contributions

The contributions of this thesis are:

• We explore different methods for improving robustness of string-to-tree systems

and build a state-of-the art system for German→English.

• We propose a Selectional Preferences Model which captures semantic affinities

between target predicates and their arguments. We show that the model is not

effective when used as a feature in a string-to-tree systems for German→English,

because of overlap with the language model and because of mistranslated verbs.

• We present an analysis of verb translation in string-to-tree systems for

German→English highlighting that verb translation recall is as low as 45% and

that 20% of the main verbs are translated without lexical context.
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• We propose a Neural Verb Lexicon Model to address the problem of mistrans-

lated verbs in string-to-tree systems. The model uses a rich source-side syntactic

context, including the subcategorization frame, improving verb translation pre-

cision by up to 2.7% and recall by up to 7.4%.

• We propose a novel method to incorporate explicit target-syntax in a neural ma-

chine translation system, by interleaving target words with their corresponding

combinatory categorial grammar (CCG) supertags. We show that target language

syntax improves translation quality in both high-resource and low-resource sce-

narios, and that a tight coupling of target words and syntax (by interleaving) is

better than a loose coupling as in multitask learning.

• We show that combining our method for Syntax-aware NMT (SNMT) with tar-

get CCG supertags with a complementary framework incorporating source-side

linguistic information, yields additional improvement in translation quality.

• We present a fine-grained analysis of SNMT and show consistent gains for dif-

ferent linguistic phenomena and sentence lengths.

1.3 Thesis Outline

In this section we outline the structure of this thesis and specify which parts relate to

the contributions.

Chapter 2 presents background on statistical machine translation (SMT) and neu-

ral machine translation (NMT). In Section 2.1 we present a brief overview of SMT. In

Section 2.2 we introduce string-to-tree SMT systems, followed by an overview of neu-

ral language models in Section 2.3 and finally we describe the state-of-the-art neural

machine translation models in Section 2.4.

In Chapter 3 we explore several methods of improving the robustness of string-

to-tree systems for translating into English. In section 3.2 we describe the details of

training a competitive baseline string-to-tree system. Then in section 3.3 we present

three ways of improving grammar coverage: tree restructuring, realigning verbs and

pre-processing named entities. We conclude this chapter with Section 3.4, an error

analysis of a string-to-tree system for German→English, which highlights aspects that

can be improved using global source and target syntactic context.

In Chapter 4 we explore whether a Selectional Preferences feature, which captures

semantic affinities between the target predicates and their argument fillers, is useful for
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translating ambiguous predicates and arguments. In Section 4.2 we introduce the prob-

lem of translating ambiguous predicate-argument structures with string-to-tree systems

and prior work that addresses this. In Section 4.3 we present a contrastive evaluation of

syntactic representations showing that a string-to-tree system with target-side depen-

dency relations is competitive with the string-to-tree system with target-side phrase-

structures introduced in the previous chapter. In Section 4.4 we formally describe the

selectional preference feature for dependency-based string-to-tree systems. Section 4.5

describes the experimental setup and Section 4.6 presents the results of the automatic

evaluation, as well as a qualitative analysis of the machine translated output.

In Chapter 5 we address the problem of verb translation in string-to-tree systems

and propose a Neural Verb Lexicon Model which uses the source-side syntactic context

to improve the lexical choice for verbs. In Section 5.2 we exemplify why verb trans-

lation is problematic for string-to-tree systems and contrast our proposed model with

prior work on discriminative word lexicon and rule selection models. In Section 5.3

we present a thorough analysis of verb translation conducted on a German→English

string-to-tree system, and we determine to what extent this is a problem for the state-

of-the-art system. Section 5.4 describes our proposed neural verb lexicon model and

presents ablation experiments evaluated in terms of verb prediction accuracy. Finally,

in Section 5.5, we investigate whether the verb lexicon model is able to improve trans-

lation quality by integrating the model as an additional feature for re-reranking the

output of the string-to-tree system.

In Chapter 6 we examine the benefit of incorporating sentence-level syntactic in-

formation on the target-side of NMT. We propose a method for tightly coupling words

and syntax by interleaving the target syntactic representation, in the form of CCG su-

pertags, with the word sequence. In Section 6.2 we discuss the limitations of NMT

and previous work on integrating source or target syntactic information. In Section 6.3

we describe the syntactic representation and different strategies of coupling it with the

translated words in the decoder or in the encoder of the NMT system. In Section 6.4 we

describe the experimental setup and training parameters for the NMT systems. In Sec-

tion 6.5 we evaluate the effect of target syntax on overall translation quality and make

a finer grained analysis with respect to different linguistic constructions and sentence

lengths.

In Chapter 7 we summarize our contributions to the field of machine translation

and present future research directions.
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1.4 Related Publications

In Chapter 3 we present methods for improving robustness of string-to-tree systems,

previously reported in system description papers submitted at several evaluation cam-

paigns organized by the Workshop on Statistical Machine Translation (WMT) [Nădejde

et al., 2013, Williams et al., 2014, 2015, 2016]. My contribution to the cited papers

was to design, conduct, evaluate and report the experiments for the German→English

and Romanian→English language pairs. In this chapter, we also refer to the HMEANT

evaluation results from Birch et al. [2013], comparing the string-to-tree system with

phrase-based and rule-based systems. My contribution to this paper was threefold:

training the string-to-tree system for German→English that was evaluated, manually

evaluating translations for German→English with the HMEANT annotation tool and

compiling the documentation on using the HMEANT annotation tool.

The Selectional Preferences model and experimental results presented in Chapter 4

were previously published under the title “Modeling selectional preferences of verbs

and nouns in string-to-tree machine translation” in the Proceedings of the First Con-

ference on Machine Translation (WMT 2016) [Nădejde et al., 2016a]. I designed, con-

ducted, evaluated and reported all the experiments in the cited paper. The comparison

of syntactic representations in string-to-tree systems was reported in the WMT 2016

system description paper [Williams et al., 2016]. My contribution to the cited paper

was to design, conduct, evaluate and report the experiments for the German→English

and Romanian→English language pairs, including those comparing syntactic repre-

sentations in string-to-tree systems.

The Neural Verb Lexicon Model and experimental results presented in Chapter 5

were previously published under the title “A Neural Verb Lexicon Model with Source-

side Syntactic Context for String-to-Tree Machine Translation” in the Proceedings of

the International Workshop on Spoken Language Translation (IWSLT 2016) [Nădejde

et al., 2016b]. I designed, conducted, evaluated and reported all the experiments in the

cited paper.

In Chapter 6 we presented an extended version of the work published under the

title “Predicting Target Language CCG Supertags Improves Neural Machine Trans-

lation” in the Proceedings of the Second Conference on Machine Translation (WMT

2017) [Nădejde et al., 2017]. An earlier version of this work was uploaded to the pre-

print server arXiv under the title “Syntax-aware Neural Machine Translation Using

CCG”. I designed, conducted, evaluated and reported all the experiments in the cited
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paper. Siva Reddy provided advice and examples regarding CCG supertags, as well

as the rules for grouping sentences according to linguistic constructs. Rico Sennrich

provided the code for the multitask framework in the Nematus toolkit which I used

for a subset of the experiments. Tomasz Dwojak partially implemented the “distinct

softmax” framework, which I finalized and used for one of the experiments. All the

co-authors contributed with valuable suggestions and feedback.



Chapter 2

Background

2.1 Introduction

Machine Translation (MT) is the task of translating a sentence written in some “source”

language into another “target” language, automatically, using computer algorithms.

MT systems have progressed significantly in the last fifty years from early rule-based

systems, involving hand crafted translation rules designed for each language by ex-

perts, to systems based on neural networks, capable of learning complex linguistic

phenomena from a large corpus of translated sentences and without additional linguis-

tic annotation.

Statistical Machine Translation (SMT) systems are data-driven, using statistics

about basic translation units collected from a large sentence-aligned corpus of trans-

lations, and are applicable to all language pairs for which such a corpus is avail-

able. Phrase-based SMT systems use phrase-pairs as basic translation units, which

are learned in an unsupervised manner by first inducing a word alignment and then ap-

plying heuristics to group aligned words into aligned phrases. In Figure 2.1 we show a

possible phrase-pair alignment that can be extracted from this example.

The phrase-based translation model attaches a probability to all extracted phrase-

pairs, pT M( f̄i|ēi). The translation of a sentence can be found by searching for the most

probable combination of phrase-pairs covering the entire source sentence. The proba-

bility of the translation e conditioned on the source sentence f can be computed using

a discriminative log-linear model [Och and Ney, 2002] based on K feature functions

hk(e, f ) including the translation model (TM) and a language model (LM):

12
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found guilty on all counts

für schuldig befundenin allen Anklagepunketn

Figure 2.1: Example of phrase-pairs extracted from a German-English sentence pair by

consolidating word alignments. Phrase-pair boundaries are indicated by the boxes and

source-target correspondence is marked by arrows.

P(e| f ) = exp(
K

∑
k=1

λk hk(e, f )) (2.1)

= exp(λT M

I

∑
i=1

log pT M( f̄i|ēi) (2.2)

+λLM

T

∑
i=1

log pLM(ei|e1, ...,ei−1)+ ....+λKhK(e, f )) (2.3)

Phrase-based SMT systems are good at capturing local reorderings, multi-word

expressions, idioms and other non-syntactic phrases. However, they do not model long-

distance dependencies and reordering which are often needed in some language pairs

to correctly render morphological and syntactic phenomena in the target language.

Furthermore, when unconstrained movement of phrases is allowed, searching for the

optimal ordering becomes an NP-complete problem [Knight, 1999].

Several SMT models that are formally syntactic or purely syntax driven have been

proposed in the past years in an effort to include more structural and linguistic infor-

mation into SMT. Hierarchical SMT (Hiero) models [Chiang, 2005] allow phrase-pairs

with gaps which can generate long distance re-ordering and are formally weighted syn-

chronous context free grammars (SCFG) [Aho and Ullman, 1969]. The basic transla-

tion units are rewrite rules with generic non-terminals X where the right-hand side

consists of source (α) and target (γ) pairs that are aligned.

X → 〈γ, α, ∼〉 (2.4)

where X is the only non-terminal label, γ, α are string of terminals and non-

terminals and ∼ is the alignment between source and target non-terminals. Based
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on the word alignment in Figure 2.1, the following hierarchical phrase pairs could be

extracted that allow the reordering of the prepositional phrase and the verb phrase. The

alignment between non-terminals is indicated by the subscript indices. The source-side

non-terminals correspond one-to-one with the target-side non-terminals:

X → 〈on all counts, in allen Anklagepunkten〉 (2.5)

X → 〈 f ound guilty X1, X1 f ür schuldig be f unden〉 (2.6)

The Hiero decoding algorithm is an extension to chart-parsing and recursively ex-

pands all non-terminals in a rule with other rules that match the source context. The

non-terminal X1 in the second rule can be expanded using the first rule, to translate the

entire verb phrase.

Hiero models have broad coverage as there are no constraints on the discontinuous

phrases. However, this leads to over-generalization. String-to-tree systems address

this problem with a fine-grained set of target-side non-terminals which correspond to

syntactic constituents and are linguistically annotated. This leads to grammatically

well-formed translations which are more fluent, and syntactically motivated word re-

ordering. Instead of the generic non-terminal label X , the target-side non-terminal will

have labels corresponding to phrase structures such as V P for verb phrase and PP for

prepositional phrase:

V P→ 〈 f ound guilty PP1, X1 f ür schuldig be f unden〉 (2.7)

String-to-tree models have been successfully applied to language pairs exhibiting

long-distance word reordering such as Chinese-English and German-English. How-

ever, these models make strong independence assumptions resulting in errors such as

syntactically and semantically incoherent verb frames. In contrast, neural machine

translation (NMT) does not make strong independence assumptions thus generating

more fluent translations and capturing some long-distance dependencies.

In the rest of the chapter we describe string-to-tree models in more detail (Sec-

tion 2.2) as well as the main ideas behind neural networks for machine translation:

neural language models (Section 2.3) and neural translation models (Section 2.4).
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2.2 String-to-Tree Statistical Machine Translation

This section aims to offer an overview of the string-to-tree SMT model on which we

base the work presented in Chapters 3, 4, and 5. This model is implemented in the

Moses toolkit [Koehn et al., 2007] and has been used for building syntax-based systems

at the University of Edinburgh.

The string-to-tree model discussed in this section was initially proposed by Galley

et al. [2004a] and then further refined by Galley et al. [2006a] as well as Williams and

Koehn [2012]. Unlike Hiero models, string-to-tree models require target sentences to

be annotated with phrase structure trees in order to extract a SCFG with syntactic non-

terminal labels. The syntactic constraints help string-to-tree systems produce more

grammatical output, but on the other hand rule out non-syntactic phrase-pairs resulting

in lower model coverage.

Fox [2002] carried out an analysis of phrasal cohesion and found several cases

for the French-English language pair where alignments cross constituents, creating

non-syntactic phrase-pairs. Such cases arise, for example, because of embedded verb

phrases and the movement of adverbs. Figure 2.2 gives an example where the verb

phrase “für schuldig befunden” and its translation “found guilty”, will not be extracted

as a valid syntactic phrase-pair because the target side is not covered by a constituent.

The same happens in the case of the modal construction “could face” and its translation

“droht”. A solution to this problem, shown to significantly increase model coverage,

is to restructure the parse trees prior to rule extraction. We discuss tree restructuring

later in this section.

2.2.1 GHKM Rule Extraction Algorithm

The GHKM algorithm (Galley Hopkins Knight Marcu, Galley et al. [2004a, 2006a])

extracts SCFG rules from a word-aligned parallel corpora for which the target sen-

tences are syntactically annotated. We describe this algorithm next, as it is the founda-

tion of the string-to-tree models which we use in this thesis.

2.2.1.1 Minimal rules

Given a source string S, a target parse tree T and the alignment A between the source

words and the leaves of the target tree, an alignment graph G can be defined. Fig-

ure 2.3 gives an example of an alignment graph. Formally the structure is a rooted,
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IN
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Figure 2.2: Example of non-constituent phrase-pairs that will not be extracted as SCFG

rules: “für schuldig befunden” → “found guilty” and “droht” → “could face”.

directed, acyclic graph constructed from T by attaching a node for each word in S, and

adding an edge between a leaf of T and a node in S if A contains an alignment for the

corresponding target and source words.

VP (0-6)[-]

PP (0-3)[4-6]

NP (1-3)[0,4-6]

NNS (2-3)[0-1,4-6]

counts

DT (1)[0,4-6]

all

IN (0)[1-6]

on

ADJP (4-5)[0-3,6]

guilty

VBN (6)[0-5]

found

befundenschuldigfürAnklagepunktenallenin

Figure 2.3: Example of an alignment graph between the source sentence (bottom) and

the target sentence’s phrase-structure tree (top). The non-terminal labels are marked

with the node’s span, in round brackets, and its complement span, in square brackets.

Each node n in T is labelled with its span and complement span. The span is defined

by the indices of the first and last words in S that are covered by n. The complement

span is the union of the spans of all other nodes n’ that are neither descendants nor

ancestors of n [Galley et al., 2006a]. In Figure 2.3 the spans are marked with round

brackets and the complement spans with square brackets. For example the span of

node PP is (0-3) since it covers the source words “in allen Anklage Punkten” and the
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NP

NNSDT

NP→ DT0 NNS1 ||| X0 X1

PP

NPIN

PP→ IN0 NP1 ||| X0 X1

VP

PPADJPVBN

V P→V BN0 ADJP1 PP2 ||| X2 X1 X0

DT

all

allen

DT → all ||| allen

NNS

counts

PunktenAnklage

NNS→ counts ||| AnklagePunkten

VBN

found

befunden

V BN→ f ound ||| be f unden

ADJP

guilty

schuldigfür

ADJP→ guilty ||| f ur schuldig

IN

on

in

IN→ on ||| in

Figure 2.4: The minimal graph fragments extracted from the alignment graph in Fig-

ure 2.3. The minimal rules extracted are written under the corresponding minimal graph

fragments.

complement span is [4-6] computed as the union of the nodes VBN(6) and ADJP(4-

5). If for some reason the alignment would indicate that the PP node also covers the

source word “für”, then the span of PP would become (0-4) and it would overlap the

complement span [4-6].

A frontier set is defined as the set of nodes n in G for which their span and comple-

ment span do not overlap. In Figure 2.3 all nodes are in the frontier set. The intuition

behind constructing the frontier set is that frontier nodes can be ordered by their spans,

since the spans are contiguous and non-overlapping. For example the PP node comes

before the ADJP node in the span induced order. A frontier graph fragment has its

root and all its children nodes in the frontier set. For each node n in the frontier set

there is a unique minimal frontier graph fragment rooted in n, which is a subgraph of

all other frontier graph fragments rooted in n. The minimal frontier graphs extracted

from the alignment graph from Figure 2.3 are shown in Figure 2.4. Finding the frontier

set and minimal frontier graphs can be done in linear time. The minimal frontier graph

fragments can be composed to reconstruct all other frontier graph fragments.

For each frontier node, a minimal rule can be extracted from the corresponding

minimal frontier graph fragment using the ordering induced by the spans. The root

node of the minimal frontier graph becomes the left hand side of the rule, and each

frontier node is assigned a variable. The right-hand side of the rule will have a target

side and a source side. The target side of the rule is built by writing the child nodes in

pre-order1. The source side is built by substituting the source words with the variables

1The child nodes are traversed from left to right.
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corresponding to the frontier nodes spanning them. Therefore, the target side will have

the variables written in pre-order and the source side in the order induced by the spans

of the frontier nodes. This way, rules model reordering but they will not try to order

constituents that cannot be ordered because of the alignment. Minimal rules cover the

training example and are consistent with the alignment. In Figure 2.4 the minimal

rules are written under the minimal frontier graph they correspond to. The alignment

between the source and target variables is indicated by the indexes, which correspond

one-to-one, and the corresponding source side labels are a generic X . Note that the

order of the source and target indexes is different in the rule rooted in the V P node.

This marks that the three spans, corresponding to the verb, adverb and prepositional

phrase, are reordered in the target. This reordering can also be identified in Figure 2.3

by the crossing alignment lines.

Unaligned words can be integrated in the alignment graph either heuristically, for

example by always choosing highest attachment, or considering attachment points to

all constituents. The later solution, proposed by Galley et al. [2006a], encodes all the

possible attachments of unaligned words in a derivation forest.

In addition to the GHKM rules extracted from the parallel data, the grammar of

a string-to-tree system also includes glue rules. The glue rules allow the system to

concatenate partial trees during decoding, although the concatenation might not form a

valid constituent. The necessity to use glue rules arises either because of computational

reasons, or because words that are unknown at test time still have to be part of the

derivation. Glue rules allow the following special non-terminals: < s > and < /s >

for beginning and end of sentence, and Q as initial non-terminal. In Table 2.1 we list

the types of glue rules allowed by the grammar.

Initial rule: Q→< s > Q0 ||| < s > X0

Final rule: Q→ Q0 < /s > ||| X0 < /s >

Top rule: Q→< s > NT0 < /s > ||| < s > X0 < /s >

Generic glue rule: Q→ Q0 NT0 < /s > ||| X0 X1

Table 2.1: The types of glue rules included in the grammar for concatenating partial

derivations. NT can be any syntactic non-terminal label.
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2.2.1.2 Composed rules

Two or more minimal rules that are in a parent-child relationship can be composed

together to obtain larger rules with more syntactic context. Galley et al. [2006a] show

that larger composed rules capture interesting linguistic phenomena, improve model

coverage and significantly improve the BLEU score as compared to using only minimal

rules.

For example, the following minimal rules can be compose to obtain the rule in

(2.7)2:

V BN→ f ound ||| be f unden (2.8)

ADJP→ guilty ||| f ür schuldig (2.9)

V P→V BN0 ADJP1 PP2 ||| X2 X1 X0 (2.10)

Analyzing the rule table, Galley et al. [2006a] observe that in the case of Chinese,

composed rules are able to correctly select subject before verb ordering, while minimal

rules only capture subject after verb. In the case of Arabic, composed rules correctly

prefer subject after verb ordering. The composed rules can capture more reordering

phenomena because they can contain more terminals and non-terminals, which other-

wise would be translated independently by several minimal rules.

DeNeefe et al. [2007] summarize that the minimal and composed rules extracted

with the GHKM algorithm (the GHKM rules) can: be phrase pairs with syntactic an-

notation, encode contextual constraints, have non-contiguous phrases, be purely struc-

tural or reorder their children. The authors also categorize the types of GHKM rules in

the following way:

• Non-lexical rules that have no lexical items on the source side, such as purely

structural rules that can potentially be applied to any source sentence.

• Lexical rules that have lexical items and outnumber the previous category. Lex-

ical rules are further distinguished in:

– Phrasal rules for which the source side and corresponding target side have

one contiguous phrase with any number of variables on either side.
2The index of the PP node changes in the resulting composed rule since it remains the only non-

terminal.
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– Non-phrasal rules that include structural rules, re-ordering rules and non-

contiguous phrases.

Furthermore, they analyze phrasal coverage by comparing phrasal rules with phrase

pairs extracted by a phrase-based system. GHKM rules manage to cover some phrases

not extracted by the phrase-based system. This is possible because GHKM rules have

no limitation on phrase size. Another more important reason is that unaligned words

make it impossible for the phrase-based extractor to extract some phrases while the

GHKM extractor can attach the unaligned words at syntactically motivated locations

and therefore cover these examples.

Overall the phrase-based system is able to extract many more phrase pairs than the

GHKM extractor. DeNeefe et al. [2007] point out that an important deficiency of the

GHKM extractor is that it does not learn many of the “useful rules” that the phrase-

based decoder uses to build the best translation. One way to recover significantly

more phrase-pairs is to increase the size of the composed rules. To avoid extracting

exponentially many composed rules some limitations are imposed on the size of the

rules. The authors define the size of the rule as the number of non-part-of-speech,

non-leaf constituent labels in the target tree. The GHKM implementation within the

Moses system [Williams and Koehn, 2012] imposes another limitation on the number

of nodes not counting target words and a limitation on the rule depth. The rule depth

is computed as the maximum distance from the root node to any of its children, not

counting pre-terminal nodes. The corresponding Moses parameters are: MaxRuleSize

for the rule size, MaxNodes for the number of nodes and MaxRuleDepth for the rule

depth. In Chapter 3 we determine what are the optimal values for these parameters for

the German→English language pair.

2.2.2 Tree Restructuring

Some phrase-pairs are covered by both phrase-based and string-to-tree translation mod-

els. However, the GHKM rules have syntactic constraints for where these phrases can

be applied. This can be a strength when the syntactic context can be used to attach the

phrase in a syntactically correct way. It can also be a weakness if the syntactic context

is too restrictive. Such a case occurs with large, flat, noun phrase (NP) structures as

shown in Figure 2.5. While a phrase-based system can apply a phrase-pair to translate

only “Prime Minister”, a string-to-tree system requires a very specific GHKM rule

that covers the entire NP structure. The syntactic constraints of this rule, with several
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NNP non-terminals, are too restrictive and cannot be applied in other contexts.

NP

NNP

Abe

NNP

Shinzo

NNP

Minister

NNP

Prime

NNP

Japanese

JJ

current

NP→ JJ0 NNP1 NNP2 NNP3 NNP4 NNP5 ||| X0 X1 X2 X3 X4 X5

Figure 2.5: Example of a large noun phrase (NP) constituent and the corresponding

GHKM rule that would cover this flat structure.

To soften such constraints, and improve grammar coverage, a possible solution is

tree restructuring. Tree restructuring strategies such as binarization aim to factorize the

trees in a way that allows more sub-structures to be extracted, resulting in improved

grammar coverage. In this section we describe a few simple binarization strategies:

left binarization, right binarization and head binarization. Other more complex bina-

rization strategies have been proposed and described in [Wang et al., 2007].

By left binarization all the left-most children of a parent node n, except the right

most child, are grouped under a new node. This node is inserted as the left child

of n and receives a new label n̄. Left binarization is then applied recursively to all

new nodes until the leaves are reached. Right binarization, exemplified in Figure 2.6,

implies a similar procedure but in this case the right-most children of the parent node

are grouped together except the left most child. Head binarization will left-binarize a

constituent if the head is the first child and right-binarize it otherwise.

Some constituents of the syntax tree can be factorized only by left-binarization,

others only by right-binarization. Therefore, deterministically choosing to apply only

one binarization strategy to the entire syntax tree would be a sub-optimal solution.

A parallel binarization strategy will try to apply both left and right binarization re-

cursively to any parent node with more than two children. This results in a packed

binarization forest that allows efficient rule extraction with a dynamic programming

algorithm. Forest nodes will encode alternative binarized structures of the original

syntax tree nodes. Parallel head binarization is a case of parallel binarization with the

additional constraint that the head constituent is part of all the new nodes created by

either left or right binarization.

Because all binarization strategies were shown to bring improvements in BLEU
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Figure 2.6: Example of a large noun phrase (NP) constituent that is right-binarized and

of GHKM rules that can be extracted from this structure.

scores [Wang et al., 2007] and we do not apply the GHKM algorithm to a parse forest,

we prefer to use the simpler and more efficient left and right binarization strategies

in our work. In Chapter 3 we compare these strategies and corresponding extraction

parameters for the German→English language pair.

2.2.3 Incorporating Linguistic Information

String-to-tree systems, with their structured translation rules, allow reordering by ab-

stracting away from the lexical realization of the different syntactic constituents. How-

ever, the abstraction reduces the available lexical context and induces translation errors

such as incoherent lexical choices and missing words. Furthermore, the size of SCFG

rules is controlled to allow for efficient decoding and to avoid problems with data spar-

sity. This also limits the sentence-level syntactic and lexical context, and induces errors

such as incomplete or semantically incoherent predicate-argument structures. To ad-

dress these issues, previous work has tried to include more sentence-level linguistic

information in string-to-tree systems.

Wu and Fung [2009b] showed that semantic roles are preserved across languages

in cases where the syntactic roles are not, indicating that more consistent cross-lingual

patterns could be induced from shallow semantic frames. Semantic roles are a form of

shallow semantics that describe the relation between predicates and their arguments,

identifying event structures like “who gave what to whom”. Previous work on using

semantic role labels (SRL) for SCFG-based SMT has had two main directions: re-
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Figure 2.7: Smallest target-side tree fragment that covers all the arguments of the pred-

icate “lends” in the example “She lends a hand”.

ordering the predicate and its semantic roles [Liu and Gildea, 2010, Li et al., 2013]

and extracting rules that cover complete predicate-argument structures [Gao and Vo-

gel, 2011, Bazrafshan and Gildea, 2013].

For string-to-tree systems, Bazrafshan and Gildea [2013] proposed extracting SCFG

rules that cover complete predicate-argument structures. The GHKM extraction algo-

rithm was modified such that, for each predicate, a SCFG rule is extracted that has

the smallest tree fragment on the target side covering either all or none of the pred-

icate’s arguments. Figure 2.7 shows the tree fragment extracted for the verb “lends”

in the example “She lends a hand”. The semantic role labels of the predicate and its

arguments are added to the constituent labels. The rules covering complete semantic

frames are added to the original GHKM rules and lead to improved BLEU scores for

Chinese→English. Some example translations show better translation of predicates,

translation of complete semantic structures and improved ordering of the semantic

roles. However, the authors do not mention if they included composed GHKM rules

in the grammar of the baseline string-to-tree system. These rules also cover some of

the predicate-argument structures and would partially account for the improvements

reported. In Chapters 4 and 5, we represent the predicate-argument structure with de-

pendency relations, instead of SRL, since dependency parsers have a higher accuracy

and the representation covers the entire sentence. Another difference is that we focus

on improving lexical coherence instead of reordering, by modeling semantic affinities

between predicates and their argument.

Another approach to integrating more linguistic information in SCFG-based SMT

systems is using feature rich discriminative classifiers for rule selection [Braune et al.,

2015, 2016, Liu et al., 2008]. Rule selection involves choosing the correct target side

of a SCFG rule, considering features of the source side of the rule and surrounding

source words. Braune et al. [2015] proposed a discriminative rule selection model
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for string-to-tree systems using features such as the shape of the source-side of the

SCFG rule and the syntactic structure of the source span. However, the authors found

that most of the variability in the competing translation options was lexical and not

structural. Since their model did not include sentence-level lexical context relevant for

lexical disambiguation, translation quality did not improve. In Chapter 5, we propose a

verb lexicon model for string-to-tree systems which uses sentence-level lexical context

extracted by following the dependency relations of the source verb.

Tamchyna et al. [2016] proposed a discriminative lexicon model for phrase-based

SMT integrating complex source and target linguistic feature templates. However,

complex target feature templates cannot easily be used in string-to-tree systems be-

cause of the hierarchical chart-based decoding strategy3. Instead, [Sennrich, 2015]

proposed a language model over syntactic n-grams extracted from the target-side of the

SCFG rules, using dependency relations as syntactic annotation. In Chapter 4 we com-

pare this model with our proposed Selectional Preferences feature modeling seman-

tic affinities between target-side predicates and their arguments. Further efforts have

been dedicated to enriching the lexicon with additional linguistic features. [Williams

and Koehn, 2011] augment the string-to-tree system with feature structures encoding

morpho-syntactic attributes of target words and enforce unification-based constraints

to encourage morphological agreement.

2.3 Neural Language Models

The effectiveness of traditional n-gram language models (LM) is impaired by data

sparsity, rigid back-off strategies and lack of generalization. To understand the issue

with lack of generalization, consider the following 3-grams: “Eating a banana” and

“Eating an apple”. The LM sees these n-grams as distinct inputs and does not model

the semantic or syntactic similarity between the two objects: “banana” and “apple”.

Depending on the domain and amount of training data, semantically similar n-

grams, for example “Eating a Kiwano”, might not be seen at all during training. In such

cases different backing-off strategies are applied, such as interpolating the probabilities

of the bi-grams “Eating a” and “a Kiwano”. However, these strategies are restrictive

3Integrating a language model is also challenging in chart-based decoders, since the target context of
the lower chart cells has to be remembered until a SCFG rule is applied at later stages, combining and
possibly re-ordering the content of these cells. In phrase-based SMT, decoding is sequential left-to-right
and not hierarchical, and the target context of the previous phrase-pair is discarded as soon as the next
phrase-pair is scored.
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and cannot be adapted according to context. Data sparsity is an issue for n-gram LMs,

as the number of free parameters grows exponentially with n: |V |n, where |V | is the

size of the vocabulary.

Neural language models address these issues by representing words in a contin-

uous space where similar words are close to each other. The probability of a word

sequence is computed based on these distributed representations, which are combined

using highly parameterized non-linear functions. Because the resulting probability

function is smooth, substituting the word “banana” with a similar word such as “ap-

ple”, will result in only a small change in the probability of the word sequence [Bengio

et al., 2003]. Furthermore, neural LMs can be extended with source context and used

for generation, which forms the basis of neural MT.

In this section we describe two main types of neural LMs, one based on feed for-

ward neural networks and the other on recurrent neural networks.

2.3.1 Feed Forward Neural Networks

Similar to n-gram LMs, the neural probabilistic language model (NPLM) [Bengio

et al., 2003] is a function, implemented by a feed forward neural network, estimat-

ing the probability of the next word wk conditioned on the previous n− 1 words:

p(wk|wk−n+1, ...,wk−1). Next, we formalize the three components of an NPLM: em-

bedding layer, hidden layer and softmax layer.

The embedding layer maps each word wk from the vocabulary V to its continuous-

space representation, an m-dimensional feature vector ek ∈ Rm, where m is much

smaller than |V |. The free parameters that have to be learned for the embedding layer

are represented by a matrix E ∈ R|V |×m, where each row of the matrix corresponds

to a word embedding. The representation of the conditioning context is obtained by

concatenating the n−1 word feature vectors: c= [ek−n+1; ..;ek−1]
>, with c∈Rm∗(n−1).

The hidden layer takes as input the context vector c, applies an affine transforma-

tion followed by a non-linear function φ and outputs a vector h1 representing higher-

order features of the input sequence.

h1 = φ(Hc+d) (2.11)

where H ∈ Rh×m∗(n−1), h1,d ∈ Rh and φ is the activation function. h is the number of

hidden units, m the number of word features, n−1 the size of the context.

Several such layers can be composed in order to learn more abstract features. Some
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of the activation functions that have been reported in the literature are the tanh (φ(x) =
1−exp(−2x)
1+exp(−2x)), the sigmoid (φ(x) = 1

1+exp(−x)) and the rectified linear unit (RelU)(φ(x) =

max(0,x)).

The output of the last hidden layer is used to compute the probability distribution

over the target word vocabulary, with the help of a softmax layer. This layer applies an

affine transformation to the hidden state h1, to obtain an unnormalized score for each

target word wk and then normalizes these scores to obtain a probability distribution P̂.

y =Uh1 +b (2.12)

P̂(wk|wk−n+1, ...,wk−1) =
exp(ywk)

∑
|V |
i=1 exp(yi)

(2.13)

where U ∈ R|V |×h, y,b ∈ R|V | and ywk is the unnormalized score for the word wk.

The parameters θ = (d,b,H,U,E) of this feed forward neural network with one

hidden layer are learned jointly to maximize the log-likelihood of the training data.

The optimization is performed with back propagation and stochastic gradient ascent4.

The total number of parameters5 scales linearly with the size of the context n and

with the size of the vocabulary |V |, compared to the traditional n-gram LMs where the

number of parameters grows exponentially |V |n.

One important computational bottleneck of NPLMs is that most of the computa-

tion happens in the output layer which can account for more than 99% of the compu-

tation6 [Bengio et al., 2003]. One solution to this problem is to train self-normalizing

models, such that at inference time there is no need to compute the normalization fac-

tor [Vaswani et al., 2013, Devlin et al., 2014]. Several NPLMs using some type of

self-normalization or other optimization tricks have been used successfully as an extra

feature in the decoder of a phrase-based SMT model [Schwenk et al., 2006, Vaswani

et al., 2013, Devlin et al., 2014, Baltescu et al., 2014].

Still, using an NPLM as a feature for SMT systems is efficient only when n is

small which does not allow for modeling long-distance dependencies. Some have in-

corporated additional context by looking at the words in the source sentence [Devlin

et al., 2014, Schwenk, 2012]. In Chapter 5 we use a similar approach to incorporate

global source-side syntactic information for a Neural Verb Lexicon Model. Another

4An alternative formulation is to minimize negative log-likelihood with stochastic gradient descent.
5
∑dim(d,b,H,U,E) = h+ |V |+h∗m∗(n−1)+ |V |∗h+ |V |∗m= |V |∗(1+h)+h∗(m∗(n−1)+1)

6Considering |V | = 500,000, h = 512, m = 100, n=15 then the fraction of the total operations can
be approximated as (500,000∗513)/(500,000∗513+513∗ (100∗14+1)) = 0.997
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way to incorporate some long-distance dependencies is to condition the model on syn-

tactic n-grams which are extracted from the target-side of a string-to-tree SMT system

[Sennrich, 2015]. In Chapter 4 we compare this model with our proposed Selectional

Preferences feature modeling semantic affinities between target-side predicates and

their arguments.

2.3.2 Recurrent Neural Networks

NPLMs are able to generalize better than traditional n-gram LMs and also to model

larger contexts with fewer parameters. However, the input to the network has a fixed

dimensionality and is limited in practice because the model size scales linearly with

the size of the context. In contrast, recurrent neural networks (RNNs) are able to in-

corporate the entire, variable-length word history as context and implicitly learn long-

distance dependencies.

An RNN LM [Mikolov et al., 2010] summarizes a variable-length word sequence

w1, ...,wt−1 by reading one input word at each time step t ′ ∈ [1, t−1] and updating the

hidden state ht , a fixed-dimensional vector representation, using a recurrent function

whose parameters are shared across time steps. The last hidden state ht−1 is then

transformed using a softmax layer into the probability distribution of the next word wt .

ht =

{
φ(Wwhewt +Whhht−1 +bh), if t >= 1

0, if t = 0
(2.14)

P(wt |w1, ...,wt−1) = so f tmax(ht−1) (2.15)

P(w) =
T

∏
t=1

P(wt |w1, ...,wt−1) (2.16)

In principle, the hidden state ht is able to memorize information from the beginning

of the sequence and pass it on to later time steps. On the other hand, to update the

parameters, the loss corresponding to predictions made at later time steps has to back-

propagate through time up to the first state. Because of the vanishing gradient problem

the updates to the parameters might become insignificant and the model is not trained

adequately.

The long short-term memory (LSTM) neural network [Hochreiter and Schmidhu-

ber, 1997] avoids the vanishing gradient problem by introducing a memory cell7. The

7The derivative of the memory cell ∂ct
∂ct−1

is close to 1.
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LSTM also introduces a gating mechanism which controls the amount of information

from the current input that can update the memory cell and the amount of information

from the memory cell that is passed as the current hidden state. First, the previous hid-

den state is partially updated given the current input to get an intermediate state u. This

intermediate state is modulated by the input gate i to allow some of the hidden units

to be added to the previous memory cell. To obtain the new hidden state the updated

memory cell is transformed using a non-linear function and the result is modulated by

the output gate o.

ut = tanh(Wxuxt +Whuht−1 +bu) (2.17)

it = σ(Wxixt +Whiht−1 +bi) (2.18)

ot = σ(Wxoxt +Whoht−1 +bo) (2.19)

ct = it�ut + ct−1 (2.20)

ht = ot� tanh(ct) (2.21)

Several extensions to LSTMs have been proposed such as adding a forget gate

which resets part of the memory cell or simplifying the equations as in the gated re-

current unit (GRU)[Cho et al., 2014b].

The memory cell and the gating mechanisms allow LSTMs and GRUs to sum-

marize long sequences and to capture some long distance dependencies. These two

properties turn out to be essential for modeling the translation of an input sequence

into a target sequence. Moreover, a new sequence can be generated with RNNs by

iteratively sampling from the distribution over the next word P(wt |w1, ...,wt−1). To

generate a translation, an input sentence can be summarized using one RNN and the

last hidden state can be passed as context for a second RNN which outputs one target

word at a time. In the next section we see how this simple idea can be improved to

build a state-of-the-art NMT system.

2.4 End-to-end Neural Machine Translation

2.4.1 Encoder-decoder RNN

To learn a neural translation model, Sutskever et al. [2014], Cho et al. [2014b] proposed

encoding the source sentence x using an RNN and then using the last hidden state as
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context for another RNN which generates a target sentence y. The encoder−decoder

RNN learns the conditional probability distribution of the sequence of target words

given the sequence of source words, which is represented by the last hidden state c of

the encoder RNN:

P(y1, ....yT |x1, ...xS) =
T

∏
t=1

P(yt |c,y1, ...yt−1) (2.22)

P(yt |c,y1, ...yt−1) = g(c,ht ,yt−1) (2.23)

ht = f (ht−1,yt−1,c) (2.24)

where g is the softmax function which outputs a probability distribution over the

target vocabulary, and f is an RNN function such as the LSTM in Sutskever et al.

[2014] or the GRU in Cho et al. [2014b]. Kalchbrenner and Blunsom [2013] proposed

to use a convolutional neural network for the encoder, which to some extent could im-

plicitly learn the hierarchical aspects of the source language without using an explicit

syntactic representation.

The encoder−decoder RNN showed promising results as an end-to-end machine

translation model [Sutskever et al., 2014] and was also used to improve the output of

an SMT system by rescoring an n-best list [Cho et al., 2014b].

2.4.2 Encoder-decoder RNN with Attention

A major drawback of the encoder-decoder RNN is that performance degrades sig-

nificantly as the length of the sentences increases [Cho et al., 2014a]. Sutskever

et al. [2014] claim that by reversing the order of the source words they create more

short-term dependencies between the first target words and their corresponding source

words, thus solving the issues with back-propagation for long sequences8. This might

be true for mostly monotonic translation, as is the case for the French→English lan-

guage pair which was used in their evaluation. However, in the case of target languages

which have flexible word order, such as German, it does not seem possible to create

short-term dependencies just by reversing the order of the source sentence.

Bahdanau et al. [2015] argue that the encoder−decoder RNN cannot handle long

sentences because the fixed-size context vector does not have enough capacity to sum-
8The problem of learning the model parameters with back-propagation for long sequences is ex-

acerbated in the translation scenario since there are approximately twice as many time-steps than in a
monolingual scenario. The partial derivatives are computed and multiplied for all the source and target
RNN states.
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marize a long sentence9. Instead, they propose to adapt the source context for each

target word by computing a soft-attention over all encoder states. The adapted context

ci is a weighted sum over the encoder states, where the weights quantify how relevant

is a particular source state s j for computing the current target state hi. The attention

weights αi j are recomputed for each target word, based on the activations ei j of a feed-

forward neural network a which is conditioned on the previous decoder state hi−1 and

the encoder state s j. All the components of the network, including the attention model

a, are trained jointly similar to an encoder− decoder RNN. Another extension pro-

posed by Bahdanau et al. [2015] is to use a bi-RNN encoder which concatenates the

states−→s j of a forward-pass RNN with the states←−s j of a backward-pass RNN. This new

hidden state s j = [−→s j ;←−s j ] summarizes both the preceding and following words, and is

not biased by more recent inputs as was the case in the simple RNNs. We formalize

below the new attention model, decoder and conditional probability distribution of a

target sequence.

s j = [−→s j ;←−s j ] (2.25)

ei j = a(hi−1,s j) (2.26)

αi j =
exp(ei j)

∑
S
k=1 exp(eik)

(2.27)

ci =
S

∑
j=1

αi js j (2.28)

hi = f (ci,hi−1,yi−1) (2.29)

P(yi|ci,y1, ...yi−1) = g(ci,hi,yi−1) (2.30)

P(y1, ....yT |x1, ...xS) =
T

∏
i=1

P(yi|ci,y1, ...yi−1) (2.31)

where g is the softmax function which outputs a probability distribution over the

target vocabulary, and f is an RNN function such as the LSTM or GRU.

Bahdanau et al. [2015] report significant improvements with this new architecture

over the baseline encoder−decoder RNN, in particular for long sentences. However,

they do not present ablation results to determine how much of the improvement is due

to the bi-RNN and how much due to the attention model. The authors also point out that

9If the size of the hidden state is increased, then all the other parameter matrices have to be scaled
accordingly. This results in a larger number of parameters which will be harder to learn given limited
training data.
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the limited target vocabulary significantly affects the performance of the NMT system,

since generating UNK tokens (for unknown words) results in lower BLEU scores.

To allow for open source and target vocabularies, Sennrich et al. [2016b] pro-

pose splitting words into byte-pair-encoding (BPE) sub-units. The BPE sub-units are

learned by iteratively merging the most frequent character sequences, starting with

single characters and stopping when the maximum number of allowed merge opera-

tions has been reached. The resulting vocabulary size is equal to the number of initial

characters plus the number of allowed merges. Since the most frequent words will be

represented by one BPE unit, this encoding offers a good trade-off between the size of

the target vocabulary and the length of the encoded sequence. This trade-off is impor-

tant because the time complexity of NMT is linear in the size of the target vocabulary

and super linear in the lengths of the source and target sequences. Other approaches

to open vocabulary include using character-level sequences [Chung et al., 2016] and

using Huffman encoding [Chitnis and DeNero, 2015].

In Chapter 6 we use the Nematus toolkit [Sennrich et al., 2017] implementing an

encoder-decoder RNN with attention and computing the f function using two GRU

layers coupled by the attention model. We also use BPE encoding to represent source

and target words.

2.4.3 Strengths and Limitations of NMT

Bentivogli et al. [2016] perform a detailed analysis of the NMT and phrase-based SMT

output for English→German, showing that NMT improves translation quality in par-

ticular with respect to morphology and word order. Aspects that can still be improved

include modeling of long sentences and reordering of prepositional phrases (PP) and

subjects.

Sennrich [2017] evaluate the performance of NMT systems for English→German

on several linguistic phenomena using contrastive translations with automatically in-

duced errors. The evaluation is in terms of the accuracy with which the system dis-

tinguishes the reference translation from the contrastive translation. The results show

accuracy is about 95% for subject-verb agreement of adjacent words, but goes down to

90% when the distance between the two words increases. Other types of errors that are

still problematic for NMT, with accuracies around 90%, are the deletion of negative

polarity markers and translation of separable verb particles10.

10Some German verbs have particles which are separated from the main verb and often placed at the
end of the sentence.
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Shi et al. [2016] study the extent to which the NMT encoder learns syntactic infor-

mation about the source language. They use the hidden states of a pre-trained NMT

encoder to predict syntactic labels such as voice and tense, or the entire serialized

parse tree of the source sentence. They find that the NMT encoder captures more

sentence-level syntactic information compared to an auto-encoder. However, the NMT

encoder induces roughly twice as many bracketing errors, compared to an encoder

trained specifically to predict parse trees11. The NMT encoder also confuses the part-

of-speech of the head words 16 times more often. Furthermore, prepositional phrase

attachment errors are the most prevalent when either encoder is considered.

In a monolingual study, Linzen et al. [2016] show that LSTMs learn subject-verb

number agreement with high accuracy. However, when provided with explicit supervi-

sion the network is able to learn the agreement more accurately than when it is trained

as a language model. Still, more errors occur for complex constructs, when the subject

and verb are separated by an interleaving relative clause or multiple attractor nouns

with a different number than the subject.

These studies suggest that NMT systems handle some difficult linguistic structures

surprisingly well. However, NMT can still be improved with explicit linguistic su-

pervision, in particular on difficult linguistic constructs such as prepositional phrase

attachment and on long sentences which involve long distance dependencies.

2.4.4 Incorporating Linguistic Information

Incorporating source-side linguistic information in NMT, either as distant supervision

[Luong et al., 2016] or as explicit features in the encoder [Sennrich and Haddow, 2016,

Eriguchi et al., 2016], has been previously explored.

Luong et al. [2016] use a multitask learning framework with a shared encoder to

co-train a translation model and a source-side syntactic parser. In Chapter 6 we use

multitasking to incorporate target-side syntactic information.

Eriguchi et al. [2016] extend the LSTM encoder representing source words in con-

text, with a tree-LSTM encoding the phrase structure of the source sentence. The tree-

LSTM constructs the sentence representation by combining recursively and bottom-up

the representations of binary phrase structures. The phrase structures are obtained by

parsing the source sentence using a head-driven phrase structure grammar (HPSG).

11An NMT encoder is coupled with a decoder that predicts the serialized parse tree of the source
sentence. The decoder is trained to predict parse trees, without updating the parameters of the encoder.
This is compared to an encoder-decoder system trained end-to-end to predict the serialized parse tree.
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Sennrich and Haddow [2016] generalize the embedding layer of NMT to include

explicit linguistic features such as dependency relations and part-of-speech tags:

ht = RNN(ht−1, [xt ;m1
t ...;mK

t ]) (2.32)

where there are K features and mk
t are feature embeddings which are learned jointly

with the word embeddings xt and the other parameters of the NMT model. The source-

side linguistic features improve a baseline NMT system, for example by helping with

word sense disambiguation: the word “close” will be translated to German as “nah”

when used as an adjective and as “schließen” when used as a verb. In Chapter 6 we use

this framework to show source and target syntax provide complementary information.

Integrating explicit linguistic information in the decoder is more challenging as this

requires incrementally generating words and appropriate linguistic factors with limited

target context. Martı́nez et al. [2016] propose a factored NMT decoder which gener-

ates lemmas and morphological tags, with the purpose of reducing the size of the target

vocabulary. The factors are generated independently with distinct softmax functions,

their corresponding embeddings are combined (e.g. by addition) and the result is used

as context for computing the next decoder state. The authors also explore generat-

ing the morphological tag conditioned on the lemma embedding. However, neither of

the factored decoder architectures lead to an improvement in translation quality. In

Chapter 6 we propose a method for incorporating target syntax in the decoder by inter-

leaving the words with their corresponding CCG supertags. Our approach allows for

target words to be generated conditioned on their syntactic category and the previous

lexical and syntactic context.

2.5 Syntactic Representations

In this section we describe the syntactic representations used in this thesis to extract

sentence level information, such as the subcategorization frame of verbs.

2.5.1 Dependency relations

Dependency relations represent the grammatical structure of a sentence as binary rela-

tions between a head and a dependent, which cover the entire sentence forming either a

tree or a graph. The Stanford dependencies manual [de Marneffe and Manning, 2008]

defines a set of 50 grammatical relation types for English and a basic representation in
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which each word in the sentence participates in a relation, such that a dependency tree

is formed.

The collapsed representation of Stanford dependencies merges dependencies in-

volving function words, such as prepositions and conjuncts, in order to obtain direct

dependencies between content words. This representation is suitable for representing

the syntactic-semantic relations between verbal or nominal predicates and their argu-

ments. We give an example of the two representations in Figure 2.8.

Bell based in LA makes and distributes computer products

nsubj

vmod

ROOT

prep pobj cc
conj

nn

dobj

Bell based in LA makes and distributes computer products

nsubj

vmod

ROOT

prep in
conj and

nn

dobj

Figure 2.8: Example of Stanford typed dependency relations for the sentence “Bell,

based in LA, makes and distributes computer products.”. The basic representation is

shown on top and the collapsed representation on the bottom (adapted from de Marn-

effe and Manning [2008]).

We use the Stanford typed dependencies in Chapter 4 to model selectional pref-

erences of verbs and nouns in string-to-tree systems. For prepositional modifiers we

use the collapsed representation, which we obtain by processing the prep and pobj

tree nodes during decoding. The GHKM rule extraction algorithm used for training

a dependency-based string-to-tree system requires dependencies to be converted from

the basic representation to constituency representation.

A dependency representation can be converted into a constituency tree by first ap-

plying heuristic projectivization [Nivre and Nilsson, 2005] (resulting in a projective

dependency graph) followed by a lossless conversion [Sennrich and Haddow, 2015].

A dependency graph is projective if all its arcs are projective. An arc is projective if

all the words inside its span are connected to words within this span. The algorithm
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for graph projectivization [Nivre and Nilsson, 2005] applies lifting operations on non-

projective arcs to connect the dependent to the head word of its original head. The

constituency representation allows only one pre-terminal child for each node, which is

the head word of that span.

Figure 2.9 gives an example of a phrase annotated with the Stanford Neural Net-

work dependency parser [Chen and Manning, 2014b] (left), and its constituency repre-

sentation (right). The node NNP is the only pre-terminal child of the ROOT node and

the corresponding terminal node “Minister” is the head word of the entire span.

The Prime Minister of India

dep
nn

ROOT

prep pobj

ROOT

prep

pobj

NNP

India

IN

of

NNP

Minister

nn

NNP

Prime

det

DT

The

Figure 2.9: Dependency relations (left) and the corresponding constituency tree (right).

Different dependency relations are defined for languages other than English. In

Chapter 6 we use the ParZU [Sennrich et al., 2013] dependency parser for German

which is trained on the TüBa-D/Z dependency tree bank Gastel et al. [2011] and the

SyntaxNet [Andor et al., 2016] dependency parser for Romanian trained on the Uni-

versal Dependencies (UD) treebank [Nivre et al., 2016].

The UD proposes a reduced set of 40 grammatical relations that allow consistent

annotation across languages. We list the UD dependency relations in Table 2.2. The

ParZU parser assigns the special label avz to separable verb particles, which are placed

at the end of the sentence12. We use this dependency relation to provide relevant

source-side context for verb translation in Chapter 5.

2.5.2 CCG supertags

Combinatory categorial grammar (CCG) is a lexicalized formalism in which words

are assigned with syntactic categories, i.e., supertags, that indicate context-sensitive

morpho-syntactic properties of a word in a sentence. The CCG supertag can be either

12For example, the verb particle an in the sentence Er kommt morgen an..
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Core dependents of clausal predicates
Nominal dependency Predicate dependency Other

nsubj csubj xcomp

nsubjpass csubjpass

dobj ccomp

iobj

Non-core dependents of clausal predicates
Nominal dependency Predicate dependency Modifier word

nmod advcl advmod

neg

Special clausal dependents
Nominal dependency Auxiliary Other

vocative aux mark

discourse auxpass punct

expl cop

Noun dependents
Nominal dependency Auxiliary Other

nummod acl amod

appos det

nmod neg

Case-marking, prepositions, possessive
case

Coordination
conj cc punct

Compounding and unanalyzed
compound mwe goeswith

name foreign

Loose joining relations
list parataxis remnant

dislocated reparandum

Other
Sentence head Unspecified dependency

root dep

Table 2.2: The Universal Dependencies (UD) relations. Reproduced from Nivre et al.

[2016].
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a primitive type or a complex type, which is interpreted as a function accepting argu-

ments and returning a result. For a complex type, the CCG supertag describes the type

of its arguments, the order in which these are accepted and the type of the result.

A complex type has the form X/Y or X\Y , where X and Y can be a primitive

type, such as S, NP, VP, or a complex type. The rightward-combining functor X/Y

accepts an argument of type Y to the right and returns a result of type X . The leftward-

combining functor X\Y accepts an argument of type Y to the left and returns a result

of type X .

Figure 6.2 gives an example of a sentence annotated with CCG supertags. The

supertag for the ditransitive verb “receives”, ((S[dcl]\NP)/PP)/NP, encodes the sub-

categorization frame of the verb: two arguments to the right, the first being a preposi-

tional phrase (PP) and the second a noun phrase (NP), and one NP argument (subject)

to the left. After the verb accepts the rightward arguments, the result is another func-

tion that maps a subject NP into a sentence (S). The CCG supertag also exhibits the

feature [dcl], indicating that the resulting sentence is declarative. Features can encode,

for example, whether a sentence is a question or the tense of the verb.

CCG defines combinators which allow the composition of adjacent supertags. The

successive application of combinators, represented with a derivation tree, results in

a final category, usually of type S. The combinators include forward and backward

application, forward and backward composition and type raising.

Several CCG supertags can be assigned to the same word, depending on its context.

A CCG supertagger ranks each possible supertag, based on sentence-level features.

Given the possible CCG supertags for each word, a CCG parser finds the most probable

sequence which forms a valid derivation. In our work, we consider only the most

probable sequence of CCG categories, which we obtain using the EasySRL parser

[Lewis et al., 2015], and we discard the derivation tree. We use the most probable

CCG supertag sequence to encode sentence level syntactic constrains locally, at word

level, which can be easily integrated either in the NMT encoder or decoder.

Consider a decoder that has to generate the following sentences:

1.
What city is the Taj Mahal in?

(S[wq]/(S[q]/NP))/N N (S[q]/PP)/NP NP PP/NP

2.
Where is the Taj Mahal?

S[wq]/(S[q]/NP) (S[q]/NP)/NP NP

If the decoding starts with predicting “What”, it is ungrammatical to omit the

preposition “in”, and if the decoding starts with predicting “Where”, it is ungrammat-
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Tokens: Obama receives Netanyahu in the capital of USA

CCG: NP ((S[dcl]\NP)/PP)/NP NP PP/NP NP/N N (NP\NP)/NP NP

Figure 2.10: Example of a CCG supertag annotation.

ical to predict the preposition. Here the decision to predict “in” depends on the first

word, with several other words in between. However, if we rely on CCG supertags,

the supertags of both these sequences look very different. The supertag (S[q]/PP)/NP

for the verb “is” in the first sentence indicates that a preposition is expected in fu-

ture context. Furthermore, it is likely to see this particular supertag of the verb in the

context of (S[wq]/(S[q]/NP))/N but it is unlikely in the context of S[wq]/(S[q]/NP).

Therefore, a succession of local decisions based on CCG supertags will result in the

correct prediction of the preposition in the first sentence, and omitting the preposi-

tion in the second sentence. Since the vocabulary of CCG supertags is considerably

smaller than that of possible words13, reducing data sparsity, the NMT model is better

at generalizing over and predicting the correct CCG supertags sequence.

Predicting the CCG supertag for a target verb can help the NMT decoder generate

the correct number of arguments, in the correct order, especially if the source and

target languages have different word orders. For the German→English language pair,

knowing wether a subordinate clause is expected can also be useful, as this triggers a

reordering of the verb and its arguments in English. Figure 2.11 gives an example of a

subordinate clause where the German verb “bezeichnete” comes at the end, while the

corresponding English verb “referred” is reordered before the object “to Prentiss”. In

Chapter 6, we come back to this example showing how an NMT system using CCG

supertags in the decoder can correctly handle the re-ordering.

Source ... dass Lamb in seinem Notruf Prentiss zwar als seine Frau bezeichnete ...

Gloss ... that while Lamb in his 911 call Prentiss as his wife referred ...

Reference ... that while Lamb referred to Prentiss as his wife in the 911 call ...

Figure 2.11: Example of re-ordering inside a subordinate clause in German→English

translation.

CCG supertags also help during encoding if they are given in the input, as we

13In our experiments, hundreds vs ten-thousands.
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can see with the case of PP attachment in Figure 2.10. This sentence contains two

PP attachments and could lead to several disambiguation possibilities (“in” can at-

tach to “Netanyahu” or “receives”, and “of” can attach to “capital”, “Netanyahu” or

“receives” ). These alternatives may lead to different translations in other languages.

However the supertag ((S[dcl]\NP)/PP)/NP of “receives” indicates that the preposi-

tion “in” attaches to the verb, and the supertag (NP\NP)/NP of “of” indicates that it

attaches to “capital”, thereby resolving the ambiguity.

Translation of the correct verb form and agreement can be improved with CCG

since supertags also encode tense, morphology and agreements. For example, in the

sentence “It is going to rain”, the supertag (S[ng]\NP[expl])/(S[to]\NP) of “going”

indicates the current word is a verb in continuous form looking for an infinitive con-

struction on the right, and an expletive pronoun on the left.

In Chapter 6, we show that using CCG supertags as target syntax in a NMT de-

coder can improve translation quality. We also show that CCG supertags are useful as

additional source-side linguistic features in the encoder.

2.6 Conclusion

In this chapter, we presented an overview of the two translation systems used through-

out this thesis: string-to-tree SMT and sequence-to-sequence with attention NMT.

Both systems are able to model syntax and capture long distance dependencies to some

extent. This chapter also described representations for additional linguistic informa-

tion useful in addressing the limitations of the systems. The remainder of the thesis

discusses approaches to incorporate these representations into the systems.



Chapter 3

Improving Robustness of

String-to-tree Systems

3.1 Introduction

Training string-to-tree MT systems requires a pipeline of tools for data pre-processing

and language annotation. The interaction between these annotation tools greatly im-

pacts the quality and robustness of the resulting SCFG. For example, the extraction of

translation rules is affected by the characteristics of the syntactic annotation, such as

tree depth and branching direction, as well as by the syntactic constituents that break

the alignment heuristics.

In this chapter we explore several methods of improving the robustness of string-

to-tree systems for translating into English. Several experiments were conducted for

German→English, which is the primary language pair used throughout this thesis.

This language pair is challenging for SMT because of the difference in word order and

morphological richness between the two languages.

The main contributions we bring at this stage are threefold. Firstly, we propose

in Section 3.2 two methods for improving the consistency between the string-to-tree

system and the target syntactic representation for German→English translations. More

specifically, through the 1) use of an appropriate tokenization strategy and 2) the se-

lection of extraction parameters that match the degree of nestedness of the English

syntactic structures Secondly, we propose three methods to make the string-to-tree

systems more robust: tree restructuring, realigning verbs and pre-processing named

entities. Thirdly, we present experiments with neural language models aimed at im-

proving generalization. These experiments are reported in Section 3.3.

40
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We conclude this chapter with Section 3.4, an error analysis of a string-to-tree

system for German→English, which highlights aspects that can be improved using

semantic and syntactic features. The string-to-tree systems described in this chapter

were state-of-the-art for German→English at WMT2013 and WMT2014, mainly due

to improving the robustness of the SCFG. In Table 3.1 we summarize the progress

of the string-to-tree systems for German→English over several WMT evaluation cam-

paigns. We report both BLEU scores and the ranking according to manual evaluation.

We compare the results with those of a phrase-based system [Durrani et al., 2013, 2014,

Haddow et al., 2015, Williams et al., 2016] and of a neural machine translation system

[Jean et al., 2015, Sennrich et al., 2016a]. The referenced syntax-based systems were

trained by the author of this thesis. The novelties of each system are described in this

chapter.

2013 2014 2015 2016

System BLEU Rank BLEU Rank BLEU Rank BLEU Rank

Phrase-based 26.6 4-5 28.0 4-6 29.3 2-3 35.1 5-7

Syntax-based 26.3 2-3 28.2 2-3 28.7 3-5 34.4 2-5

Neural - - - - 27.6 6-7 38.6 1

Table 3.1: Comparing state-of-the-art translation systems for German → English that

participated at WMT2013-2016. We report cased BLEU scores as well as the ranking

interval for each system according to manual evaluation.

For German→English, the referenced phrase-based systems perform word reorder-

ing as a pre-processing step using the clause restructuring method proposed by Collins

et al. [2005]. This method relies on the parse tree of the source sentence and on

linguistically-motivated transformations to reorder the verb according to the English

word order. As discussed in Section 2.5, in German, the verb is placed at the end of

the subordinate clause. One of the transformations proposed by Collins et al. [2005]

accounts for reordering the verb in a subordinate clause. The proposed transformations

also include moving the subject to directly precede the head of the clause and moving

the separable verb particle to immediately precede the verb.

At WMT2013 and WMT2014, the string-to-tree system was ranked highest among

the constrained systems, with the first rank going to online commercial systems trained

on larger data sets. Indirectly, this shows that the string-to-tree systems perform bet-

ter at long-distance reordering of the verb and its arguments than the pre-reordering
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method proposed for phrase-based systems.

At WMT2016, a neural machine translation system performed much better than

both the string-to-tree and phrase-based systems. These results underlie our decision to

explore the benefit of integrating target-syntax in a neural machine translation system,

which we describe in Chapter 6.

3.2 Baseline setup

In this section we describe a baseline string-to-tree system for translating into English.

We introduce two methods for making the string-to-tree systems more consistent with

the target syntactic representation: using an appropriate tokenization strategy and se-

lecting extraction parameters that match the degree of nestedness of the English syn-

tactic structures. The experiments reported in this section were previously described

in Nădejde et al. [2013].

The string-to-tree system used across all experiments is trained with the Moses

toolkit implementing GHKM rule extraction and Scope-3 parsing [Williams and Koehn,

2012]. The English side of the parallel corpus was parsed using the Berkeley parser

[Petrov et al., 2006] and German compounds were split using the script provided with

Moses. The parallel corpus was word-aligned using MGIZA++ [Gao and Vogel, 2008].

5-gram language models were trained using SRILM toolkit [Stolcke, 2002] with mod-

ified Kneser-Ney smoothing [Chen and Goodman, 1998] and then interpolated using

weights tuned on the development set. The feature weights for each system were tuned

on development sets using the Moses implementation of minimum error rate training

[Och, 2003].

The datasets used throughout this thesis were provided by the WMT evaluation

campaigns [Federmann et al., 2013, Bojar et al., 2014, 2015, 2016]. In Table 3.2 we

give the number of parallel sentences used for training, tuning and evaluating the base-

line German→English string-to-tree system. We also use all available monolingual

data for the language models. The systems described in the following sections were

trained on data provided at different editions of WMT. This allowed us to compare re-

sults with the other state-of-the-art systems on the same evaluation sets. However, for

German→English, the data sets had similar sizes for all experiments, and we report the

corpus statistics in Appendix A. Throughout this thesis, we use cased BLEU [Papineni

et al., 2002] as the automatic evaluation metric, which computes the modified (by clip-

ping) corpus-level precision over n-grams found in the machine translation, compared
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to those in the reference translation.

Language pair Train Tune Test

German→English 4,434,060 2,400 3,000

Table 3.2: Corpus statistics for parallel data. The number of sentences is reported for

the WMT13 datasets.

Tokenization We make the rule-extraction process more consistent with the target

syntactic representation by matching the tokenization strategy for English sentences

with that of the syntactic parser. This results in fewer parser errors affecting the qual-

ity of the extracted synchronous grammar. We change the quotation marks, which are

very frequent in the training data, to opening and closing quotation marks to match the

punctuation style of the Penn Treebank. We also added Penn Treebank style tokeniza-

tion rules1. These rules split contractions such as I’ll→ I ’ll, Don’t→ Do n’t, Maria’s

→ Maria ’s, in order to correctly separate the verbs, negation and possessives that are

parsed as separate constituents. By dealing with these contractions, word alignment

becomes more consistent and more synchronous rules can be extracted.

Rule Extraction We performed experiments for the German→English language pair

to determine the optimal parameters for the rule extraction algorithm, which we de-

scribed in Section 2.2.1.2: Rule Depth, Rule Size, Node Count. For efficiency reasons

we used a subset of the parallel training data. We chose the parameters

Rule Depth=5, Node Count=20, Rule Size=5 considering a tradeoff between increas-

ing the average BLEU score and not increasing the grammar size to a large extent. We

report the results of varying these parameters in Table 3.3. We use the same parame-

ters for all language pairs which have English as a target language. Other non-default

decoder parameters that we used are: max-chart-span=25, the maximum span of a

derivation and cube-pruning-pop-limit=1000, the number of hypotheses created for

each chart span.

1The tokenization rules were adapted from http://www.cis.upenn.edu/˜treebank/
tokenizer.sed and integrated in the Moses tokenization script under the option -penn.
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Depth Nodes Size Grammar size BLEU

3 15 3 2,572,222 19.17

4 20 4 3,188,970 19.30

5 20 5 3,668,205 19.42
5 30 5 3,776,961 19.42

5 30 6 4,340,716 19.43

Table 3.3: Evaluating the impact of the rule extraction parameters on grammar size and

translation quality. Cased BLEU scores are averaged over newstest2009, 2010, 2011.

This table was adapted from Nădejde et al. [2013].

3.3 Improving robustness

In this section we describe several methods of improving grammar coverage, making

the string-to-tree system more robust. Firstly, we reduce the number of translation rules

that drop the verb by re-aligning verbs. Secondly, we increase the number of extracted

rules through restructuring constituency trees, thus reducing the structures that break

heuristics regarding alignment. Thirdly, we improve the translation of named entities,

which are often the main arguments of verbs, by avoiding that the compound splitting

algorithm is applied to them.

3.3.1 Verb dropping

A major problem for German→English machine translation is the tendency to drop

verbs. This is caused on the one hand by the failure of IBM models to properly align

the German verb to its English equivalent because of the difference in word order.

On the other hand, the verb might not be reordered in the translated sentence which

can result in lower language model scores and BLEU scores. To reduce the number of

translation rules which have a verb on the source-side but no aligned verb on the target-

side, we propose the following method for realigning verbs prior to rule extraction.

First the source and target verbs are identified by their part-of-speech tags. Then the

un-aligned source verbs are aligned to the target verb for which IBM model 1 predicts

the highest translation probability. Finally, using the updated alignment we extract new

SCFG rules. Table 3.4 shows that when realigning verbs, the number of rules in the

grammar that drop the target verb is almost three times lower and the output has more
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translated verbs. However, there is no change in BLEU scores.

newstest2012 newstest2013

System Vb drop rules #Vb BLEU #Vb BLEU

Baseline 1,038,597 9,216 23.21 8,418 26.27

Realigned verbs 391,231 9,471 23.26 8,614 26.26

Reference translation - 9,992 - 9,207 -

Table 3.4: Verb (Vb) dropping statistics. For each system we report the number of rules

in the grammar that drop the verb on the target, the total number of verbs in the output

(#Vb) and the BLEU score. This table was adapted from Nădejde et al. [2013].

3.3.2 Tree restructuring

Improving grammar coverage by restructuring constituency trees was previously ex-

plored for other language pairs [Wang et al., 2007]. Our contributions are to show that

tree restructuring strategies are useful for the German→English language pair and to

adapt the extraction parameters accordingly.

In this work we restructure the target constituency trees before rule extraction using

binarization, which we describe in Section 2.2.2. Since binarization strategies increase

the tree depth and number of nodes by adding virtual non-terminals, we increase the

extraction parameters to: Rule Depth = 7, Node Count = 100, Rule Size = 7.

Table 3.5 shows the BLEU scores for the baseline system [Nădejde et al., 2013]

and two systems employing different binarization strategies, as well as the resulting

grammar sizes. The grammar size is computed after filtering out the rules that do not

contain any of the source words in the evaluation sets, and would therefore not be used

for translating these evaluation sets. Results show that the right binarization strategy

improves translation quality more than left binarization, and also allows for more rules

to be extracted.

3.3.3 Compound Splitting of Named Entities

Named entities, such as person and place names, often appear as arguments of the verb

– for instance, as the subject or a prepositional modifier. While most named entities are

not well represented in the training data, some have sub-units that are frequent words
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BLEU Grammar size

system dev test dev test

baseline 23.2 26.3 11,649,415 11.404.047

+ left binarization 23.5 26.4 21,779,125 21,387,976

+ right binarization 23.7 26.8 25,133,512 24,706,277

Table 3.5: German to English results on the dev (newsdev2012) and test (new-

stest2012) sets. Grammar sizes reported after filtering the rule table for the dev/test

sets. This table was adapted from Williams et al. [2014].

which the compound splitter over-splits. For example, the script provided with Moses

for compound splitting will split the city names in the following phrase “Florstadt

nach Bad Salzhausen” into “flor Stadt nach Bad Salz hausen”. This is then wrongly

translated by the baseline system as “Flor after bath salt station” instead of “from

Florstadt to Bad Salzhausen”. To avoid over-splitting named entities, we apply a 3–

class named entity tagger [Finkel et al., 2005, Faruqui and Padó, 2010] on the German

side of the corpus prior to splitting. By marking the named entities (persons, locations,

organizations) we prevent the compound splitter from splitting these. We remove the

annotations after compound splitting and prior to rule extraction.

BLEU

system newstest2015 newstest2016

baseline 28.6 33.5

+ NER before split 28.8 33.8

Table 3.6: German→English translation results when avoiding over-splitting of named

entities by running named entity recognition (NER) before splitting. This table was

adapted from Williams et al. [2016].

In Table 3.6 we compare a baseline German→English string-to-tree system with

the system that does not over-split named entities. Both system are trained with right

binarization of the parse trees and with the following non-default parameter value:

max-chart-span = 50. This limits sub derivations to a maximum span of 50 source

words. In addition we use sparse features to determine the non-terminal labels for

unknown words similar to the English→German systems described by Williams et al.

[2014] and Sennrich et al. [2015]. The results show that annotating named entities

before splitting leads to an improvement of 0.3 BLEU . For future work, we propose
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BLEU

system newstest2014 newstest2015

Hiero 27.7 28.0

String-to-tree 28.7 28.7

+ bilingual NLMs 28.6 28.7

Table 3.7: German→English translation results with bilingual neural language models

(NLMs). This table was adapted from Williams et al. [2015].

to manually evaluate the translation accuracy of named entities and investigate to what

extent is the accuracy of the named entity recognizer impacting translation peformance.

3.3.4 Neural Bilingual Language Models

In the previous sections we presented several methods for improving grammar cov-

erage. Still, the translation model does not generalize well since it is estimated by

counting and the translation rules are limited to just a few lexical items. Neural bilin-

gual language models (BiNNLMs) improve generalization by representing the words

in a continuous vector space. These models are also able to condition target words

on a larger source context, even if that particular source context does not appear in

the training data. In this section we present experiments with BiNNLMs, which were

previously reported in Williams et al. [2015].

The bilingual language models are trained with the NPLM toolkit [Vaswani et al.,

2013]. We use 250-dimensional input embedding and the hidden layer, and input and

output vocabulary sizes of 500,000 and 250,000 respectively. The first BiNNLM is a

5-gram model with an additional context of 9 source words, the affiliated source word

and a window of 4 words on either side. The second second model is a 1-gram model

with an additional context of 13 source words.

In Table 3.7 we compare the Hiero system2 [Chiang, 2007], the baseline string-to-

tree system and the string-to-tree system augmented with the two bilingual neural lan-

guage models. The Hiero system overgeneralizes in terms of re-ordering and performs

worse than the string-to-tree system which produces more grammatical translations.

Adding the BiNNLMs did not improve the BLEU scores. Birch et al. [2014] previously

reported that the BiNNLMs, trained with the same hyper-parameters, did not improve

the phrase-based system for the German→English translation task at IWSLT2014.

2For the Hiero baseline system we use max-chart-span = 15.
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Similarly, Haddow et al. [2015] report that the BiNNLMs did not improve the phrase-

based system for the French→English news translation task at WMT2015. Our result

for the string-to-tree system support previous observations, that BiNNLMs are not

helpful when translating into English, a morphologically poor language, for which

strong n-gram LMs are available.

3.4 Error Analysis

In this section, we analyze the output of a string-to-tree system and identify specific

errors that we address in the rest of this thesis. Firstly, we present the results of the

evaluation of a string-to-tree system using the HMEANT [Lo and Wu, 2011] metric,

showing that the semantic frames are not translated accurately. Secondly, we per-

form an error analysis to determine which co-occurring errors in the translation and its

syntactic parse tree lead to the mis-translation of the semantic frames. This analysis

shows that the string-to-tree system has problems with prepositional phrase (PP) and

noun phrase (NP) attachment, and also with verb translation.

3.4.1 HMEANT evaluation

Machine translation output is most commonly evaluated with automatic metrics such

as BLEU [Papineni et al., 2002], METEOR [Lavie and Denkowski, 2009] and TER

[Snover et al., 2009]. These metrics compute word overlap or compare shallow surface

properties between machine translated output and reference translations. However,

they are not able to capture how much of the meaning of the source sentence is retained

in the machine translation output. HMEANT [Lo and Wu, 2011] is a human evaluation

metric which proposes to measure the semantic overlap between the translation and

the reference by looking at the semantic frames of predicates.

Annotators are tasked with identifying and labeling the verbal predicates in a sen-

tence and their corresponding semantic roles, in both the translation and the reference.

Next, the annotator tries to align the predicates and then the corresponding semantic

roles. The HMEANT metric computes an f-score from the counts of correctly aligned

predicates and semantic roles between the translations and references. The HMEANT

score computed over a test set should indicate how good the system is at translating the

core information in the source sentence such as who did what to who, when, where

and why.
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In Birch et al. [2013], we investigated how reliable HMEANT is for evaluating MT.

The German→English string-to-tree system we included in the analysis was described

in Section 3.2. The overall HMEANT scores averaged across annotators and sentences,

presented in Table 3.8, show that the string-to-tree system is better at translating the

semantic frame of verbs than the rule-based or phrase-based systems. The improved

HMEANT score can be attributed to the system translating more predicates. Nonethe-

less, all systems perform poorly at retaining the meaning of the source sentence.

Language Pair System BLEU HMEANT Aligned predicates

Phrase–based 35.1 63.4 234

German→English String–to–tree 34.4 66.7 245

Rule–based 29.5 62.5 236

Table 3.8: Comparison of HMEANT score averaged across sentences and annotators

and (smoothed sentence) BLEU score for three MT systems. This table was adapted

from Birch et al. [2013].

We make a few observations regarding the process of identifying and matching the

semantic frames, which we considered in the rest of this thesis. Firstly, only verbs

are marked as the head of a semantic frame. Therefore many semantic frames were

not annotated because the verb was missing or because the head of the semantic frame

was a noun. Secondly, prepositional phrases attached to a noun can often change the

semantics of a sentence.

Other issues of interest for modeling semantic information in string-to-tree systems

are the embedding of semantic frames within other frames and that identifying and

matching the semantic roles between reference and machine translation output is hard

even for humans.

In this thesis, we opted to use dependency relations to represent the predicate-

argument structure, motivated by these challenges and the modest success of inte-

grating semantic role labels (SRL) with SMT [Wu and Fung, 2009a, Li et al., 2013].

Dependency parsers are more accurate and robust than SRL parsers and are also avail-

able for a multitude of languages [Nivre et al., 2016]. In Chapter 4 we use dependency

relations to model semantic affinities between target predicates (verbal and nominal)

and their core and prepositional modifiers. In Chapter 5 we use dependency relations

to identify the subcategorization frame and arguments of the source verbs, which are

then used as context to predict the correct lexical choice for the target verb.
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Category Description

PP Attachment Incorrectly attached prepositional phrase

NP Attachment Incorrectly attached noun phrase

Modifier Attachment Incorrectly attached adjectives and adverbs

Clause Attachment Transformation involving an S node

NP Structure Transformations involving Noun Phrase structure

VB Errors involving missing or mistranslated verbs

Reordering Errors involving word reordering

Surface form Errors in the surface form, when meaning is lost

Table 3.9: Error types considered in manual error analysis of string-to-tree MT system.

3.4.2 Manual Error Analysis

Before ending the chapter, in this section we present an error analysis of the target

syntactic structure generated by the string-to-tree system for German→English. Iden-

tifying the most frequent errors allows us to deconstruct the translation of predicate-

argument structures into smaller problems, and informs the design of the models pre-

sented in the following two chapters.

Ideally, error detection should be done automatically similarly to the analysis of

monolingual syntactic parsers performed by the Berkeley Parser Analyser3 [Kummer-

feld et al., 2012a]. This analyser provides linguistic intuitions about different types

of parsing errors. The output of a syntactic parser is transformed into the human-

annotated gold standard parse tree and the transformations are classified into error

types. However, automatic classification of error types in the output of string-to-tree

systems is hard, since there are many acceptable translations with possibly distinct

syntactic structures. Providing gold annotated parse trees for each acceptable trans-

lation would be time consuming. Instead, we conduct a manual error analysis of the

translations and the corresponding syntactic trees produced by the string-to-tree sys-

tem. We describe the error categories in Table 3.9, grouping the categories proposed by

Kummerfeld et al. [2012a] above the line and the categories that correlate the syntactic

errors with the mistranslation of the predicate-argument structures below the line.

We conducted the error analysis on 50 sentences randomly selected from the WMT

2013 test set 4. The total number of errors for each category is reported in Table 3.10.

3Berkeley Parser Analyserhttp://code.google.com/p/berkeley-parser-analyser/
4A subset of the sentences used for the HMEANT evaluation.
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Error type Error count % of sentences

PP attachment 20 30

NP attachment 28 38

Modifier attachment 22 34

Clause attachment 17 24

NP structure 12 22

VB 26 42

Reordering 29 42

Surface form 31 44

Table 3.10: Error count and percentage of sentences affected by each type of error

category. Results aggregated over 50 sentences.

In the case when a sentence has multiple errors, for example an attachment error and

a reordering error, we count all the errors. Therefore, the percentages reported in the

third column do not sum to 100%.

Although we counted many syntactic errors involving attachment, not all generate

surface form errors. Surface form errors are caused by a combination of verb errors

or attachment errors and reordering errors. However, even though the surface form

may be correct, the attachment errors can negatively impact the performance of target-

side features such as the selectional preference model (Chapter 4) and the neural verb

lexicon model (Chapter 5). The neural verb lexicon model addresses the problem

of mistranslated or missing verbs, which affects almost half of the sentences. To im-

prove translation of NP and PP modifiers, we propose the selectional preference model

capturing the semantic affinities between predicates and their arguments.

Next we give examples of mistranslated predicate-argument structures, and com-

ment on how the errors considered in the manual analysis relate to incomplete sub-

categorization frames and to mistranslated or wrongly attached arguments.

In the example in Figure 3.1 the semantic frame of the verb “secured” is mistrans-

lated. The subcategorization frame is incomplete because the subject is mistranslated

and attached to a noun phrase instead of the verb. The semantic frame should have the

following interpretation: “[The plagiarizer]AGENT secured [the Chinese rights to the

Freudenberg brand]PAT IENT ”. For this example we counted the following errors:

• PP attachment – PP “of the Freudenberg brand” is wrongly attached. It should
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TOP

.

.

VP

PP

NN

brand

NNP

Freudenberg

DT

the

IN

of

NP

NP

followers

IN

of

NP

NNS

rights

JJ

Chinese

DT

the

VBD

secured

CC

but

Source: “Doch sicherte sich der Nachahmer weiterhin die chinesischen

Rechte an der Marke Freudenberg.”

Reference: “However, the plagiarizer still secured the Chinese rights to the

Freudenberg brand.”

Figure 3.1: Example of mistranslated semantic frame for the verb “sicherte (secured)”.

modify the NP “the Chinese rights”.

• NP attachment – NP “followers” is mistranslated and wrongly attached to the

NP “the Chinese rights”. It should be translated as “plagiarizer” and attached as

the subject of the verb “secured”.

• Reordering – NP “followers” should come before the verb “secured”.

• Surface form – The semantic frame of the verb “secured” is mistranslated.

In the example shown in Figure 3.2, the meaning is lost because the source verb

“eintreten” is mistranslated as “happen” instead of “beat down”. The language model

context was not enough to disambiguate the verb. In addition, an NP attachment error

occurs because “small bag of drugs” should be attached to the verb “confiscate” to

form another verb phrase.

A final example is shown in Figure 3.3, where the entire sub-categorization frame

of the verb is mistranslated. The verb “scheiterten” is mistranslated as “failed” instead

of “lost” and its arguments are either in a wrong order or mistranslated.

The semantic frame should have the following interpretation:

“[The Companies]AGENT lost [a challenge to the laws]PAT IENT [two months ago]T EMP

[in the Australian Supreme Court]LOC”. The system generated many prepositional

phrases which are underspecified with respect to their syntactic function and semantic

role. The system does not have access to semantic information to distinguish the sub-

ject and the object, or to assign the correct order of the arguments. For this example
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S

VP

NP

PP

NNS

drugs

IN

of

NNS

amounts

JJ

small

VB

confiscate

TO

to

NP

NNS

doors

DT

no

VB

happen

MD

will

ADVP

probably

NP

investigators

Source “Kriminalbeamte zwar wahrscheinlich keine Türen eintreten werden

, um kleinere Mengen der Drogen zu beschlagnahmen.”

Reference “Drug agents will probably not beat down doors to seize a small bag

of the drug.”

Figure 3.2: Example of a mistranslated verb: “eintreten (beat down)”.

S

.

.

VBD

failed

PP

PP

NN

law

DT

the

IN

that

NN

ruling

PRP

its

IN

in

NNP

Court

PP

NNP

Supreme

NNP

Australian

DT

the

IN

on

PP

ADVP

RB

ago

NNS

months

CD

two

NP

NP

...

NNS

companies

DT

the

IN

since

TOP

...

Source “... seit die Konzerne ... vor zwei Monaten am obersten australischen

Gerichtshof mit ihrer Anfechtung der Gesetze scheiterten.”

Reference “ ... two months ago since the companies ... lost a challenge to the

laws in Australia’s high court.”

Figure 3.3: Example of mistranslated semantic frame for the verb “scheiterten (lost)”.

we counted the following errors: one modifier attachment, one PP attachment and two

NP attachment.

3.5 Conclusion

In this chapter we presented several methods for improving the robustness of string-to-

tree systems. In the baseline system, we addressed issues regarding tokenization and

rule extraction parameters. Then we improved grammar coverage using tree restruc-

turing, verb re-alignement and pre-processing of named entities. We also explored

improving generalization with neural language models. Finally, the error analyses

showed that the string-to-tree systems have problems with translating the semantic



Chapter 3. Improving Robustness of String-to-tree Systems 54

frames of verbs and more specifically with the attachment of noun phrases and prepo-

sitional phrases. Based on the issues identified with these analyses, we propose using

dependency relations to model semantic fitness between predicates and their arguments

(Chapter 4), as well as to identify relevant source context for improving translation of

verbs (Chapter 5).



Chapter 4

A Selectional Preferences Model

4.1 Introduction

In the previous chapter, we showed that string-to-tree systems can achieve state-of-

the-art results for German→English, a language pair exhibiting long distance word

reordering. Still, according to the error analyses, even a competitive string-to-tree

system does not translate the semantic frames accurately. In this chapter, we explore

whether knowledge about semantic affinities between the target predicates and their

argument fillers is useful for translating ambiguous predicates and arguments. We

use the term semantic affinity to refer to the co-occurrence behavior of the predicates

and the semantic classes of their arguments, which we quantify using the selectional

association measure of Resnik [1996].

We propose a selectional preferences feature based on the selectional association

measure of Resnik [1996] and integrate it in a string-to-tree decoder. The feature

models selectional preferences of verbs for their core and prepositional arguments as

well as selectional preferences of nouns for their prepositional arguments.

In previous work [Wu and Fung, 2009a, Liu and Gildea, 2010, Li et al., 2013] Se-

mantic Role Labels (SRL) were used to represent the predicate-argument structures.

However, this representation poses the following problems: SRL do not cover all the

words in a sentence, SRL parsers have lower accuracy than syntactic parsers, and it is

hard to integrate SRL directly in the decoder. Furthermore, SRL for nominal predi-

cates is less accurate than for verbal predicates. For these reasons, we prefer depen-

dency relations as a syntactic-semantic interface to representing the verbal and nominal

predicates and their arguments.

We present a contrastive evaluation of syntactic representations showing that a

55
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string-to-tree system with target-side dependency relations is competitive when com-

pared to the string-to-tree system with target-side phrase-structures, described in the

previous chapter. We then use a dependency-based string-to-tree system as baseline

and build the selectional preferences feature on top of the target-side dependencies.

We compare our feature with a variant of the neural relational dependency language

model (RDLM) [Sennrich, 2015] and find that neither of the features improves auto-

matic evaluation metrics. For one variant of the proposed feature, we found a slight

improvement in automatic evaluation metrics when translating short sentences as well

as an increase in precision for verb translation. We conclude that mistranslated verbs

and errors in the target syntactic representation produced by the decoder are negatively

impacting these features.

This chapter is structured as follows. In Section 4.2 we describe why string-to-

tree systems may translate the predicates or their arguments incorrectly and survey

prior work that addresses this. In Section 4.3 we present a comparison of target-side

representations for string-to-tree systems. In Section 4.4 we formally describe the

selectional preference feature for dependency-based string-to-tree systems. Section 4.5

describes the experimental setup and Section 4.6 presents the results of the automatic

evaluation, as well as a qualitative analysis of the machine translated output.

4.2 Background

String-to-tree systems suffer from errors such as scrambled or mis-translated predicate-

argument structures, which are reflected in the HMEANT evaluation presented in Sec-

tion 3.4.1 . We give examples of mistranslated verbal and nominal predicates in Table

4.1.

In example a) the baseline system MT1 mistranslates the verb “besichtigt” as

“viewed”. The system MT2 which uses information about the semantic affinity be-

tween the verb and its argument produces a better translation: “visited”. The semantic

affinity is quantified using the selectional association measure [Resnik, 1996]. The

score shown on the right, for the verb “visited” and argument “trip” in the syntactic

relation prep on 1 is indicating a stronger affinity than for the baseline translation. In

example b) the baseline system MT1 mistranslates the noun “Aufnahmen” as “record-

ings” while the system MT2 produces the correct translation “images” which is a

better fit for the prepositional modifier “from the telescope”. One error that both sys-

1Prepositional modifier with the syntactic head “on”.
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(relation, predicate, argument) SelAssoc

a)

SRC Bei nur einer Reise können nicht alle davon besichtigt werden.

REF You won’t be able to visit all of them on one trip .

MT1 Not all of them can be viewed on only one trip. (prep on, viewed, trip) -0.154

MT2 Not all of them can be visited on only one trip. (prep on, visited, trip) 1.042

b)

SRC Eine der schärfsten Aufnahmen des Hubble-Teleskops

REF One of the sharpest pictures from the Hubble telescope

MT1 One of the strongest recordings of the Hubble telescope (prep of, recordings, telescope) -0.0004

MT2 One of the strongest images from the Hubble telescope (prep from, images, telescope) 0.3917

Table 4.1: Examples of errors in the predicate-argument structure produced by a string-

to-tree MT system. a) mistranslated verbal predicate b) mistranslated nominal predi-

cate. Selectional association (SelAssoc) scores are shown on the right. Higher scores

indicate a stronger semantic affinity. Negative scores indicate a lack of semantic affinity.

tems make is to translate “schärfsten” as “strongest” instead of “sharpest”. While

this is also a semantic error, we do not address the problem of selectional preferences

of adjectives with our feature.

String-to-tree MT systems handle long distance reordering with synchronous CFG

rules such as the rule in Figure 4.1.

ROOT

PREPVBZNSUBJRB

PREPNSUBJsichVBZRB

ROOT→ RB0 NSUBJ1 VBZ2 PREP3 ||| X0 X2 sich X1 X3

Figure 4.1: Reordering translation rule. The target syntactic sub-tree and the alignment

of the non-terminals to the source-side spans is depicted at the top. The corresponding

synchronous context free grammar rule is depicted at the bottom.

The figure shows a target sub-tree with the alignment between the target non-

terminals and the corresponding source spans. The non-terminals are either part-of-

speech labels or dependency relations and the mapping from source to target non-

terminals is indicated in the synchronous CFG rule by the subscript numbers. This

synchronous CFG rule reorders the verb and its arguments according to the target side

word order. However, it does not contain the lexical heads of the verbal predicate, the

subject or the prepositional modifier. Therefore, the entire predicate argument struc-
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ture is translated by subsequent independent rules. The language model context will

capture at most the verb and one main argument. Due to the lack of a larger source

or target context the resulting predicate-argument structures are often not semantically

coherent.

From a syntactic perspective, a correct predicate-argument structure will have the

sub-categorization frame of the predicate filled in. Weller et al. [2013] use sub–

categorization information to improve case-prediction for noun phrases when trans-

lating into German. Case prediction for noun phrases is important in the German

language as it indicates the grammatical function. Their approach however did not

produce strong improvements over the baseline. From a large corpus annotated with

dependency relations, they extract verb-noun tuples and their associated syntactic func-

tions: direct object, indirect object, subject. They also extract triples of verb-preposition-

noun in order to predict the case of noun-phrases within prepositional-phrases. The

probabilities of such tuples and triples are computed using relative frequencies and

then used as a feature for a CRF classifier that predicts the case of noun-phrases. Weller

et al. [2013] apply the CRF classifier to the output of a word-to-stem phrased-based

translation system as a post-processing step. In contrast, our model is used directly

as a feature in the decoder. While Weller et al. [2013] identify the arguments of the

verb and their grammatical function by projecting the information from the source sen-

tence we use the dependency relations produced by the string-to-tree decoder. We also

consider prepositional modifiers of nouns.

Weller et al. [2014] propose using noun class information to model selectional

preferences of prepositions in a string-to-tree translation system. They use the noun

class information to annotate PP translation rules in order to restrict their applicability

to specific semantic classes. In our work we don’t impose hard constraints on the

translation rules, but rather soft constraints using our model as a feature in the decoder.

While we use word embeddings to cluster arguments, Weller et al. [2014] experiment

with a lexical semantic taxonomy and clustering words based on co-occurrences within

a window or syntactic features extracted from dependency-parsed data.

Modeling reordering and deletion of semantic roles [Wu and Fung, 2009a, Liu and

Gildea, 2010, Li et al., 2013] has been another line of research on improving transla-

tion of predicate-argument structures. For tree-to-string SMT, Liu and Gildea [2010]

propose modeling reordering of the source-side semantic frame and for hierarchical

SMT, Li et al. [2013] propose finer grained features that distinguish between predicate-

argument reordering and argument-argument reordering. Gao and Vogel [2011] and
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Bazrafshan and Gildea [2013] annotate target non-terminals with the semantic roles

they cover in order to extract synchronous grammar rules, for hierarchical SMT and

string-to-tree SMT respectively, that cover the entire predicate argument structure. In

contrast, our work models lexical semantic affinities, and not reordering, between tar-

get predicates and their arguments in string-to-tree SMT.

Following our work, Tang et al. [2016] compare different selectional preference

models for hierarchical2 SMT. They propose modeling selectional preferences of verbs

for their direct objects and subjects using conditional probabilities over the head words.

In our work we also consider nominal predicates and prepositional modifiers. Different

from their work, we use a baseline translation system which encodes local target-side

syntactic dependencies in the translation rules. The models proposed by Tang et al.

[2016] are a subclass of the Relational Dependency Language Model [Sennrich, 2015]

which we use in our contrastive experiments.

We propose using selectional preference over predicate and arguments in the target

as this is a simple way of leveraging external knowledge in the string-to-tree frame-

work.

4.3 Target–side Dependency Relations

In this section we compare two target-side syntactic representations for the string-to-

tree system: PTB–style phrase-structures and dependency relations. We determine to

what extent the dependency representation impacts the quality of a baseline string-to-

tree system, as we will use dependencies to represent the predicate-argument structure

and model target-side semantic affinities. As dependency representation we use the

collapsed form of Stanford typed dependencies [de Marneffe and Manning, 2008],

which we described in Section 2.5. We present a contrastive evaluation between a

string-to-tree system with PTB–style phrase-structures, described in detail in Chap-

ter 3, and a string-to-tree system with Stanford typed-dependencies as target syntax.

These experiments were also previously reported in Williams et al. [2016].

We train the baseline string-to-tree systems with phrase-structures as target syntax,

to which we apply right binarization, for German→English and Romanian→English.

For the dependency-based string-to-tree systems, the English side of the parallel cor-

pora is annotated with the Stanford Neural Network dependency parser [Chen and

Manning, 2014b]. The resulting dependency trees are then converted to constituency

2Phrase-based bracketing transduction grammar (BTG).
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trees as described in Section 2.5, followed by head-binarization [Sennrich and Haddow,

2015]. This conversion allows us to extract a new grammar for the dependency-based

string-to-tree system using the GHKM algorithm and the target-side dependency rela-

tions. For Romanian→English we allow glue rules, described in Section 2.2.1.1, and

normalize the corpora by removing all diacritics from the Romanian side. The size of

the training, tuning and test sets are reported in Table 4.2.

Language pair Train Tune Test

DE-EN 4,494,661 2,000 2,999

RO-EN 608, 315 999 1,999

Table 4.2: Corpus statistics for parallel data. The number of sentences is reported for

the WMT16 datasets.

We report the cased BLEU scores for the different setups of the string-to-tree sys-

tem in Table 4.3. We also measure the effect of extraction parameters, which control

the size of the extracted SCFG rules and of the resulting grammar, on string-to-tree

systems with target dependencies. The dependency-based system performs worse than

the baseline for lower values of the Nodes parameter. However, when setting this

parameter as for the baseline the performance is comparable. We conclude that a com-

petitive string-to-tree system can be trained using dependencies as target-side syntax

and head-binarization.

Parameters Binarization RO→EN DE→EN

Syntax (Nodes, Depth, Size) dev test dev test

Phrase-structure (100, 7, 7) Right 34.2 33.0 28.8 33.8

Dependency (40, 7, 7) Head 33.7 32.3 28.1 33.0

Dependency (100, 7, 7) Head 34.3 33.2 - -

Table 4.3: Comparison of string-to-tree systems with phrase-structures and depen-

dency relations as target-syntax. Cased BLEU score reported on dev (half of news-

dev2016) and test (newstest2016).

4.4 Selectional Preference Feature

In this section we introduce the concept of Selectional Preferences and a data-driven

information theoretic measure for these. We then describe how we adapt this measure
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to implement it as a feature in the string-to-tree decoder and how our proposed feature

compares to the relational dependency language model [Sennrich, 2015].

4.4.1 Learning Selectional Preferences

Selectional preferences describe the semantic affinities between predicates and their ar-

gument fillers. For example, the verb “drinks” has a strong preference for arguments

in the conceptual class of “liquids”. Therefore the word “wine” can be disambiguated

when it appears in relation to the verb “drinks”. A corpus driven approach to modeling

selectional preferences usually involves extracting triples of (syntactic relation, pred-

icate, argument) and computing co-occurrence statistics. The predicate and argument

are represented by their head words and the triples are extracted from automatically

parsed data. Another typical step is generalizing over seen arguments. Approaches to

generalization include using an ontology such as WordNet [Resnik, 1996], using dis-

tributional semantics similarity [Erk et al., 2010, Séaghdha, 2010, Ritter et al., 2010],

clustering [Sun and Korhonen, 2009], multi-modal datasets [Shutova et al., 2015], and

neural networks [Cruys, 2014].

We base our feature on the selectional association measure proposed by Resnik

[1996], which in turn is defined based on the selectional preference measure. The

information theoretic selectional preference measure quantifies the difference between

the posterior distribution of an argument class given the verb and the prior distribution

of the class. For instance, “person” has a higher prior probability than “insect” to

appear in the subject relation, but, knowing the verb is “fly”, the posterior probability

becomes higher for “insect”. In our work we use clusters, instead of word classes, to

generalized over unseen arguments.

Resnik’s formal definition of the selectional preference of a predicate is:

SelPre f (p,r) = KL(P(c|p,r) ‖ P(c|r))

= ∑
c

P(c|p,r)log
P(c|p,r)
P(c|r)

(4.1)

where KL is the Kullback - Leibler divergence, r is the relation type, p is the

predicate and c is the conceptual class of the argument. Resnik uses WordNet to obtain

the conceptual classes of arguments, therefore generalizing over seen arguments.

The selectional association or semantic affinity between a predicate and an argu-

ment class is quantified as the relative contribution of the class towards the overall

selectional preference of the predicate:



Chapter 4. A Selectional Preferences Model 62

Verb Relation SelPref Argument SelAssoc

see dobj 0.56 PRN 0.123

movie 0.022

episode 0.001

is–hereditary nsubj 1.69 disease 0.267

monarchy 0.148

title 0.082

drink dobj 3.90 water 0.144

wine 0.061

glass 0.027

Table 4.4: Example of selectional preference (SelPref) and selectional association

(SelAssoc) scores for different verbs. PRN is the class of pronouns. This table was

adapted from Nădejde et al. [2016a].

SelAssoc(p,r,c) =
P(c|p,r)logP(c|p,r)

P(c|r)
SelPre f (p,r)

(4.2)

We give examples of the selectional preference and selectional association scores

for different verbs and their arguments in Table 4.4. The verb “see” takes on many

arguments as direct objects and therefore has a lower selectional preference strength for

this syntactic relation. In contrast, the predicate “hereditary” takes on fewer arguments

for which it has a stronger selectional preference.

Several selectional preference models have been used as features in discrimina-

tive syntactic parsing systems. Cohen et al. [2012] observe that when parsing out-of-

domain data many attachment errors occur for the following syntactic configurations:

head (V or N) – prep – obj and head (N) – adj. The authors proposed a class-based

measure of selectional preferences for these syntactic configurations and learn the ar-

gument classes using Latent Dirichlet Allocation (LDA). Kiperwasser and Goldberg

[2015] compare different measures of lexical association between head word and mod-

ifier word for improving dependency parsing. Their results show that the association

measure based on pointwise mutual information (PMI) has similar generalization capa-

bilities as a measure of distributional similarity between word embeddings. van Noord

[2007] has shown that bilexical association scores computed using PMI for all types of

dependency relations are a useful feature for improving dependency parsing in Dutch.
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Following our work, Tang et al. [2016] show improvements by modeling selec-

tional preferences of verbs for their direct objects and subjects, in hierarchical SMT,

using conditional probabilities over the words. Their models capture a subset of the re-

lations we consider and are a subclass of the Relational Dependency Language Model

which we denote with RDLM–Pw in section 4.6.3. The authors also propose a cross-

lingual variant of their model which conditions the argument on the corresponding

source verb.

4.4.2 Adaptation of Selectional Preference Models for Syntax-Based

Machine Translation.

We are interested in modeling selectional preferences of verbs for their core and prepo-

sitional arguments as well as selectional preferences of nouns for their prepositional

arguments. We identify the relation between a predicate and its argument from the de-

pendency tree produced by a string-to-tree machine translation system. Since we are

interested in using the feature during decoding, we need the model to be fast to query

and have broad coverage.

Our selectional preference feature is a variant of the information theoretic measure

of Resnik [1996] defined in Eq 4.2. While Resnik uses the WordNet classes of the

arguments, this is not appropriate for a machine translation task where the vocabulary

has millions of words and English is not the only targeted language. Therefore, we

adapt Resnik’s selectional association measure in two ways:

• In the first model SelAssoc L we compute the co-occurrence statistics defined in

Eq 4.1 and Eq 4.2 over lemmas of the predicate and argument head words.

• In the second model SelAssoc C we replace the WordNet classes in Eq 4.1 and

Eq 4.2 with word clusters3. We obtain the 500 word clusters by applying the

k-means algorithm to the glovec word embeddings [Pennington et al., 2014].

Prepositional phrase attachment remains a frequent and challenging error for syn-

tactic parsers [Kummerfeld et al., 2012b] and translation of prepositions is a challenge

for SMT [Weller et al., 2014]. Therefore we decide to train two separate models, each

with its own weight in the log-linear model: one for main arguments (nsubj, nsubjpass,

dobj, iobj) and one for prepositional arguments.

3We have not done experiments with WordNet classes.
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4.4.3 Comparison with a Neural Relational Dependency Language

Model.

Sennrich [2015] introduced a relational dependency language model (RDLM) for string-

to-tree machine translation, trained with a feedforward neural network. For a sentence

S with symbols w1,w2, ...wn and dependency labels l1, l2, ...ln with li the label of the

incoming arc at position i, RDLM is defined as:

P(S,D)≈
n

∏
i=1

Pl(i)×Pw(i)

Pl(i) = P(li | hs(i)
q
1, ls(i)

q
1,ha(i)r

1, la(i)
r
1)

Pw(i) = P(wi | hs(i)
q
1, ls(i)

q
1,ha(i)r

1, la(i)
r
1, li)

(4.3)

where for each of q siblings and r ancestors of wi, hs and ha are their head words and

ls and la their dependency labels. The Pw(i) distribution models similar information as

our proposed feature SelAssoc. However, we use only ha(i)1, li as context and consider

only a subset of dependency labels: nsubj, nsubjpass, dobj, iobj, prep. The reduced

context alleviates problems of data sparsity and is more reliably extracted at decoding

time. The subset of dependency relations identify arguments for which predicates

might exhibit selectional preferences. Our feature is different from RDLM−Pw as it

quantifies the difference between the posterior distribution of an argument class given

the verb and the prior distribution of the argument class. We hypothesize that such

information is useful when translating arguments that appear less frequently in the

training data but are also prototypical for certain predicates. For example the triples

(bus, drive, dobj) and (van, drive, dobj) have the following log posterior probabilities

and SelAssoc scores: log P(bus | drive, dobj) = -5.44, log P(van | drive, dobj)= -5.58

and SelAssoc(bus, drive, dobj) = 0.0079, SelAssoc(van, drive, dobj) = 0.0103. The

verb drive co-occurs less frequently with the direct object van than with bus, although

both are prototypical arguments. However, van occurs more often with the verb drive

than with other verbs and this is quantified by the selectional association measure. The

selectional association score is higher for van than it is for bus, which occurs frequently

with other verbs such as ride, catch.
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Figure 4.2: Example of a translation and its dependency tree in constituency repre-

sentation produced by the string-to-tree statistical MT system. Triples extracted during

decoding are shown on the right.

4.5 Experimental setup

We train a baseline dependency-based string-to-tree system for German→English on

all available data provided at WMT15 4 [Bojar et al., 2015]. The number of sentences

in the training, tuning and test sets are shown in Table 4.5.

Train Tune Test

4,472,694 2,000 8,172

Table 4.5: Number of sentences for WMT15 dataset. The test set consists of the

newstest2013, 2014 and 2015 corpora.

The English side of the parallel corpus is annotated with dependency relations us-

ing the Stanford dependency parser [Chen and Manning, 2014a]. To identify more ac-

curately the (dependency relation, predicate, argument ) triples at decoding time, we

do not restructure target trees with head-binarization. The basic constituency represen-

tation allows to easily extract the head words of the predicate and argument, as each

node has exactly one pre-terminal child which corresponds to the head word of that

span. We use the following rule extraction parameters: Rule Depth = 5, Node Count =

20, Rule Size = 5, we give a high penalty to glue rules and allow non-terminals to span

a maximum of 50 words.
4We use a slightly different setup then in the Section 4.3, as the experiments in this section were

conducted/published before.
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For training the selectional preference features we extract triples of (dependency

relation, predicate, argument ) from parsed data, where the predicate and argument

are identified by their head word. We use the English side of the parallel data and the

Gigaword v.5 corpus parsed with Stanford typed dependencies [Napoles et al., 2012].

We use Stanford dependencies in the collapsed version, described in Section 2.5, which

resolves coordination5 and collapses the prepositions. Figure 4.2 shows an example of

a translated sentence, its dependency tree produced by the string-to-tree system and the

triples extracted at decoding time. We consider the following main arguments: nsubj,

nsubjpass, dobj, iobj and prep arguments attached to both verbs and nouns. Table 4.6

shows the number of extracted triples.

Type of relation Number of triples

main 540,109,283

prep 810,118,653

nsubj 315,852,775

nsubjpass 32,111,962

dobj 188,412,178

iobj 3,732,368

Table 4.6: Number of relation triples extracted from parsed data. The data consists

of the English side of the parallel data and Gigaword. main arguments include: nsubj,

nsubjpass, dobj, iobj.

We integrate the feature in a bottom-up chart decoder. The feature has several

scores:

• A counter for the dependency triples covered by the current hypothesis.

• A selectional association score aggregated over all main arguments: nsubj, nsub-

jpass, dobj, iobj.

• A selectional association score aggregated over all prepositional arguments with

no distinction between noun and verb modifiers.

For both tuning and evaluation of all machine translation systems we use a combi-

nation of the cased BLEU score and head-word chain metric (HWCM ) [Liu and Gildea,
5Coordination is not resolved at decoding time.
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2005]. The HWCM metric implemented in the Moses toolkit computes the harmonic

mean of precision and recall over head-word chains of length 1 to 4. The head-word

chains are extracted directly from the dependency tree produced by the string-to-tree

decoder and from the parsed reference. Tuning is performed using batch MIRA [Cherry

and Foster, 2012] on 1000-best lists. We report evaluation scores averaged over the

newstest2013, newstest2014 and newstest2015 data sets provided by WMT15.

4.6 Evaluation

4.6.1 Error analysis

First, we analyse how often the verb and its arguments are mistranslated by the baseline

dependency-based string-to-tree system. For this purpose we manually annotated er-

rors in sentences with more than 5 words and at most 15 words. With this criterion we

avoid translations with scrambled predicate-argument structures. Almost all sentences

have one main verb.

To have a more reliable error annotation we first post-edited 100 translations from

the baseline system. We then compared the translations with their post-editions and

annotated error categories using the BLAST tool [Stymne, 2011]. We considered a

sense error category when there was a wrong lexical choice for the head of a main

argument, a prepositional modifier or the main verb. We also annotated mistranslated

prepositions.

Error Category Error Count Total

Preposition 18 143

Sense 53 388

Main argument 18 145

Prep modifier 9 143

Main verb 26 100

Table 4.7: Number of mistranslated words in 100 sentences manually annotated with

error categories. The “Sense” error category refers to mistranslated content words and

is further broken down by part of sentence containing the issue. This table was adapted

from Nădejde et al. [2016a].

In Table 4.7 we can see that 26 percent of the verbs are mistranslated and about
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10 percent of the arguments. Mistranslated verbs are problematic since the feature

produces the selectional association scores for the wrong verb. Although the semantic

affinity is mutual, the formulation of the score conditions on the verb. In the cases

when both the verb and the argument are mistranslated the association score might be

high although the translation is not faithful to the source.

4.6.2 Evaluation of the Selectional Preference Feature

Next, we determine the effectiveness of our selectional association features. We com-

pare the two different selectional association features described in Section 4.4.2: Se-

lAssoc L and SelAssoc C . We report the results of automatic evaluation in Table 4.8.

Neither of the features improved the automatic evaluation scores. The SelAssoc L

suffers more from data sparsity than the SelAssoc C, which in turn is overgeneralizing

due to noisy clustering. Adding both features compensates for these issues, however

we only see a slight improvement in BLEU scores for shorter sentences6: 25.59 com-

pared to 25.40 for the baseline system. We further investigate whether sparse features

are more informative.

We changed the format of the features in order to experiment with sparse features.

By using sparse features we let the tuning algorithm discriminate between low and

high values of the SelAssoc score. For each of the SelAssoc features we normalized

the scores to have zero mean and standard deviation one and mapped them to their

corresponding percentile. A sparse feature was created for each percentile, below and

above the mean 7 resulting in a total of 20 sparse features (10 for SelAssoc C and

10 for SelAssoc L). However this formulation of the feature also did not improve the

evaluation scores as shown in the fifth row of Table 4.8. We also tried a binned version

of the SigmaPMI8 measure of selectional preferences proposed by Kiperwasser and

Goldberg [2015] for improving syntactic parsing. This measure also did not improve

translation according to the BLEU score reported on the last row of Table 4.8.

The lack of variance in automatic evaluation scores can be explained by: a) the

feature touches only a few words in the translation and b) the relation between a predi-

cate and its argument is identified at later stages of the bottom-up chart-based decoding

when many lexical choices have already been pruned out. The SelAssoc scores, similar

62,701 sentences with more than 5 words and at most 15 words
7Up to two standard deviations below the mean and three standard deviations above the mean.
8The sigmoid function applied to the point-wise mutual information (PMI) between the head words

of the predicate and argument.
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System BLEU -c HWCM

Baseline 26.45 24.47

+ SelAssoc L 26.41−.04 24.52+.05

+ SelAssoc C 26.48+.03 24.54+.07

+ SelAssoc L

+ SelAssoc C 26.48+.03 24.47+.00

+ Bin (SelAssoc L

+ SelAssoc C) 26.37−.08 24.53+.06

+ RDLM–Pw (1, 0, 0) 26.35−.10 24.75+.28

+ RDLM–Pw (2, 1, 1) 26.38−.07 24.83+.36

+ Bin(SigmaPMI) 26.41−.04 –

Table 4.8: BLEU and head-word chain metric (HWCM) results for string-to-tree systems

with the selectional preference (SelAssoc) and the relational dependency language

model (RDLM–Pw) features. SelAssoc L uses lemmas as word class representations,

SelAssoc C uses 500 word clusters. The triples in parentheses indicate the context

size for ancestors, left siblings and right siblings respectively. The RDLM–Pw configu-

ration (1, 0, 0) captures similar syntactic context as the selectional preference features.

Bin(·) stands for the binned version of a feature representation. This table was adapted

from Nădejde et al. [2016a].

to mutual information scores, are sensitive to outlier events with low frequencies in the

training data. In the next section we investigate whether a more robust model would

mitigate some of these issues and experiment with a neural relational dependency lan-

guage model (RDLM) [Sennrich, 2015].

4.6.3 Comparison with a Relational Dependency LM

The RDLM [Sennrich, 2015] is a feed-forward neural network which learns two prob-

ability distributions conditioned on a large syntactic context described in Eq 4.3: Pw

predicts the head word of the dependent and Pl the dependency relation. We compare

our feature with RDLM–Pw.

For training the RDLM–Pw we use the parameters for the feed-forward neural net-

work described in Sennrich [2015]: 150 dimensions for input layer, 750 dimensions

for the hidden layer, a vocabulary of 500,000 words and 100 noise samples. We train
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SelAssoc L SelAssoc C

System main prep main prep

Baseline 0.067 0.039 0.164 0.147

+ SelAssoc L

+ SelAssoc C 0.074 0.041 0.175 0.305

Reference 0.077 0.043 0.186 0.163

Table 4.9: Average selectional association scores for the test set. Scores are ag-

gregated over the main and prep argument types. main arguments include: nsubj,

nsubjpass, dobj, iobj. This table was adapted from Nădejde et al. [2016a].

the RDLM–Pw on the target side of the parallel data. Although we use less data than

for training the SelAssoc features, the neural network is inherently good at learning

generalizations and selecting the appropriate conditioning context.

We experiment with different configurations for RDLM–Pw by varying the number

of ancestors as well as left and right siblings:

• ancestors = 1, left = 0, right = 0

• ancestors = 2, left = 1, right = 1

The first configuration captures similar syntactic context as the SelAssoc features.

The only exception is the prep relation for which the head of pobj, the actual prepo-

sition, is the first ancestor of the argument. Considering the example in Figure 4.2,

the first ancestor for the noun Prime is the noun Minister, the second ancestor is the

verb met, the sibling to the left is the determiner the and the sibling to the right is the

preposition of. The results are shown in the last two lines of Table 4.8 and the configu-

ration is marked between parentheses for the ancestors, left siblings and right siblings

respectively.

The RDLM–Pw models achieve higher HWCM scores than the selectional prefer-

ence feature, which is to be expected since the RDLM–Pw considers all dependency

relations. However, there is not a significant contribution from having a larger syntactic

context.
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Figure 4.3: Frequency of triples (Y axis right) and translation precision of baseline as

well as SelAssoc model (Y axis left) with respect to the distance between the predicate

and its arguments, in tokens (X axis). This figure was adapted from Nădejde et al.

[2016a].

4.6.4 Analysis

We now investigate possible reasons for the low impact of our selectional preference

features. We look at how frequently our features are triggered, and how precision is

influenced by the distance between predicates and their arguments.

Firstly, we are interested in how often the feature triggers and how it influences

the overall selectional association score of the test set. On average, 4.85 triples can be

extracted per sentence, from the syntactic tree produced by our system. Out of these,

4.35 triples get scored by the SelAssoc C feature and 3.56 by the SelAssoc L feature.

The selectional association scores are higher on average for our system than for the

baseline as shown in Table 4.9. To extract the triples for the baseline system, we parse

the translated sentences with the Stanford parser. The SelAssoc C feature seems to

overgeneralize for the prep relations as the scores are on average higher than for the

reference triples. We therefore conclude that our feature is having an impact on the

translation system.

Secondly, we want to understand the interaction between the SelAssoc features and

the language model. For this purpose we compute the frequency and translation pre-

cision of triples with respect to the distance between the predicate and its arguments.
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Figure 4.3 shows the frequency of triples extracted from the reference sentence as well

as the translation precision of triples extracted from the output of the translation sys-

tems. For more reliable precision scores, we lemmatized all predicates and arguments.

93% of the arguments are within a 5 word window from the predicate and therefore

fall within the language model context. For these triples we see only a slight increase

in precision for our system. This result indicates that for predicates and arguments that

are close to each other, the feature is not adding much information. As the distance

increases the precision decreases drastically for both systems: already at a distance of

5 words, the precision is down to 13%.

4.6.5 Discussion

One reason for the small impact of both the SelAssoc and the RDLM–Pw features is

the poor quality of the syntactic trees produced by the decoder for longer sentences.

In Section 3.4 we reported the results of the manual evaluation of the syntactic trees

generated by a string-to-tree system, showing many attachment errors. As we argued

in that section, we cannot automatically evaluate the quality of the syntactic trees gen-

erated by the string-to-tree system. However, the baseline precision scores reported

in Figure 4.3 for longer distances are also an indicator of the quality of the syntactic

trees. A larger distance between the predicate and argument also implies a more com-

plex syntactic structure, for which the system will make more attachment mistakes. In

such cases, when the wrong triples are extracted and precision scores are low, both Se-

lAssoc and RDLM–Pw features will give confusing signals to the system. To confirm

this, we propose in future work to re-evaluate the features on a subset of translated

sentences exhibiting several attachment errors, which can be manually identifed.

In more complex sentences the features may score modifiers that are not important

for disambiguating the verb. The example in Figure 4.4 has several prepositional mod-

ifiers but only “on tour” could help disambiguate the verb “brachen auf (went)”. In

such cases identifying the semantic roles of the modifiers in the source and projecting

them on the target might be useful for better estimation of semantic affinities.

The error analysis on short sentences showed that the mis-translation of verbs is a

problem for the baseline system. This is confirmed by the low precision scores9 for

verb translation shown in Table 4.10. Although there is a slight improvement in pre-

cision, generally mistranslated verbs impact our features as the selectional association

9The precision scores were computed over verb lemmas extracted automatically from the test sets.
In total 21,633 source verbs were evaluated.
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Source Das 16-jährige Mädchen und der 19-jährige Mann brachen kurz nach Sonntagmittag in Govetts Leap in Blackheath zu ihrer Tour auf.
Reference The 16-year old girl and the 19-year old man went on their tour shortly after Sunday lunch at Govetts Leap in Blackheath.

Baseline The 16-year old girl and the 19-year old man broke shortly after Sunday lunch in Govetts Leap in Blackheath on their tour.

Figure 4.4: Examples of a complex sentence with multiple prepositional modifiers. In-

formation about semantic roles is needed to identify the relevant prepositional modifier.

The incorrectly translated phrase is in bold.

System Precision

baseline 46.10

+ SelAssoc L + SelAssoc C 46.26+.16

+ RDLM–Pw (2, 1, 1) 46.31+.21

Table 4.10: Evaluation results of verb translation on the test set. Precision scores are

computed over verb lemmas against the reference translations. This table was adapted

from Nădejde et al. [2016a].

score is computed for the wrong verb. In future work, we propose to conduct oracle

experiments in which we force the system with the selectional association feature to

choose the correct verb. Then, we can measure to which extend the feature scores and

translation quality improved for the verbs that the baseline system mistranslated.

4.7 Conclusions

This chapter explores whether knowledge about semantic affinities between the target

predicates and their argument fillers is useful for translating ambiguous predicates and

arguments. We introduce three variants of a selectional preference feature for string-

to-tree statistical machine translation based on the selectional association measure of

Resnik [1996]. We compare our features with a variant of the neural relational depen-

dency language model (RDLM) [Sennrich, 2015] and find that neither of the features

improves automatic evaluation metrics. The impact analysis of the selectional prefer-

ence feature indicates that for predicates and arguments that are close to each other,

the feature is not adding much information. As the distance between predicates and

arguments increases, we observe that the system performance degrades. We propose as

future work, to measure to what extent does the quality of the syntactic trees generated

by the system impact the selectional preference feature. Furthermore, it is not possible
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to accurately model semantic affinities between verbal predicates and their arguments

if the verbs are often mistranslated. In the next chapter we analyse in more depth the

problem of mistranslated verbs and propose a Neural Verb Lexicon Model conditioned

on a wide source-side syntactic context.



Chapter 5

A Neural Verb Lexicon Model

5.1 Introduction

In the previous chapter, we explored modeling semantic affinities between the tar-

get predicates and their argument fillers. Our analysis showed that as the distance

between a predicate and its argument grows, and as the target syntactic structure be-

comes more complex, the translation quality of the pair drops. Furthermore, verbs

are often mistranslated which negatively impacts the proposed Selectional Preferences

model. These analyses motivate our work on improving lexical choice for verbs using

source-side sentence-level context, presented in this chapter.

String-to-tree MT systems may translate verbs without lexical or syntactic context

on the source side and with limited target-side context. As we show in this chapter,

the lack of context is one reason why verb translation recall is as low as 45.5%1. We

propose a Neural Verb Lexicon Model (NVLM) which addresses specifically the prob-

lem of verb translation in string-to-tree systems by looking at the source-side syntactic

context. We train a verb-specific lexicon model since verbs have the most outgoing

dependency relations, are central to semantic structures and therefore would benefit

most from the source-side syntactic context.

Several Discriminative Word Lexicon (DWL) models with source-side features

have addressed the problem of word sense disambiguation in phrase-based MT [Mauser

et al., 2009, Niehues and Waibel, 2013, Herrmann et al., 2015]. Our proposed verb lex-

icon model is trained with a feed-forward neural network (FFNN) which, unlike DWL

models, allows parameter sharing across target words and avoids exploding feature

spaces. Previous lexicon models trained with FFNN [Ha et al., 2014] and using con-

1Recall is computed against the reference translations.

75
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text extracted from the source sentence were inefficient to train and did not scale to

large vocabularies. We avoid scaling problems by choosing the context which is most

relevant for verb prediction in a pre-processing step, from the source-side dependency

tree.

This chapter is structured as follows. In Section 5.2 we exemplify why verb trans-

lation is problematic for string-to-tree systems and contrast our proposed model with

prior work on discriminative word lexicon and rule selection models. In Section 5.3

we present a thorough analysis of verb translation conducted on a German→English

string-to-tree system, and we determine to what extent this is a problem for the state-

of-the-art system. Section 5.4 describes our proposed neural verb lexicon model and

presents ablation experiments evaluated in terms of verb prediction accuracy. Finally,

in Section 5.5, we investigate whether the verb lexicon model is able to improve trans-

lation quality by integrating the model as an additional feature for re-ranking the output

of the string-to-tree system.

5.2 Background

String-to-tree MT systems handle long distance reordering with synchronous transla-

tion rules. In Figure 5.1, we repeat the example from Figure 1.2 of a German-English

synchronous CFG rule translating a verb phrase, which contains the lexical items cor-

responding to the verbs “haben eingebracht” and two non-terminals corresponding to

the main verb’s arguments.

VP

SNPtabledhave

Sum,eingebrachtNPhaben

VP→ have tabled NP0 S1 ||| haben X0 eingebracht um X1

Figure 5.1: Reordering translation rule. The target syntactic sub-tree and the alignment

of the non-terminals to the source-side spans are depicted at the top. The correspond-

ing synchronous context-free grammar rule is depicted at the bottom.

This synchronous CFG rule reorders the verb and its arguments according to the

target side word order. To allow the reordering of the NP (noun phrase) and S (sen-

tence) constituents, they will be translated by independent rules and therefore the verb
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will be translated without lexical context. In the next section, we show that 20% of the

main verbs are translated by a lexical rule which is the equivalent of a one word phrase-

pair. The language model context is also limited, and will capture at most the verb and

one main argument. Due to the lack of a larger source or target context the verb is often

mistranslated. In Figure 5.1, the verb “eingebracht” is translated as “tabled”, which

in American English means “to postpone consideration of”, while in British English

it means “to propose”, which is also the meaning conveyed by the reference transla-

tion. This rule is shown in context in Figure 5.4, Section 5.5, where we describe the

example in detail. We comment on how our proposed model chooses a translation that

is accurate given the context and not ambiguous in either British or American English.

In this chapter we propose to improve lexical choices for verbs by learning a verb-

specific lexicon model conditioned on context extracted from the syntactic structure

of the source sentence. We train a Neural Verb Lexicon Model with a feed-forward

neural network (FFNN) and select the relevant context of the source verb following its

dependency relations.

Several approaches have been proposed to improve word sense disambiguation

(WSD) for machine translation by integrating a wider source context than is available

in typical translation units. For phrase-based MT, one such approach is to learn a dis-

criminative lexicon model as a maximum-entropy classifier which predicts the target

word or phrase conditioned on a highly dimensional set of sparse source-side features.

Carpuat and Wu [2007] train a classifier for each source phrase and use features en-

gineered for Chinese WSD to choose among available phrase translations. Tamchyna

et al. [2016] propose a similar model that uses target-side features and that shares

parameters across all source phrases. Mauser et al. [2009] introduced the Discrim-

inative Word Lexicon (DWL) which models target word selection independently of

which phrases are used by the MT model. The DWL is a binary classifier that pre-

dicts whether a target word should be included or not in the translation, conditioned

on the set of source words. Niehues and Waibel [2013] extend the DWL with target-

side context and bag-of-n-gram features aimed at capturing the structure of the source

sentence. Herrmann et al. [2015] extend the work of Niehues and Waibel [2013] with

other source-side structural features such as dependency relations.

For syntax-based MT, discriminative models have been used to improve rule selec-

tion [Braune et al., 2015, 2016, Liu et al., 2008]. Rule selection involves choosing the

correct target side of a synchronous rule given a source side and other features such as

the shape of the rule and the syntactic structure of the source span covered by the rule.
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Braune et al. [2016] proposes a global discriminative rule selection model for hierar-

chical MT which allows feature sharing across all rules and which incorporates a wider

source context such as words surrounding the source span. However, the model only

disambiguates between rules with the same source side. Considering that hierarchical

rule tables are much larger than phrase tables, the discriminative rule selection models

are much more computationally demanding than the discriminative lexicon models.

The aforementioned DWL models train a separate classifier for each target word or

phrase. The classifier parameters are not shared across target words and the feature

combinations are not learned but generated through cross-products of feature tem-

plates. Joint translation models trained with feed forward neural networks (FFNN)

[Devlin et al., 2014] address these problems, however, these are efficiently trained

only on local context. Ha et al. [2014] proposes a joint model with sentence-level

context similar to the DWL but trained with FFNN. However, the resulting network

is very large and inefficient to train and therefore the model does not scale to large

vocabularies.

Our work is similar to Herrmann et al. [2015] as we select relevant source context

following the dependency relations between the verb and its arguments. However, we

take advantage of parameter sharing and avoid the problem of exploding feature space

by training our model with a FFNN. Different from Ha et al. [2014], we are able to

incorporate sentence-level context by taking advantage of the syntactic structure of the

source sentence. We train a verb specific lexicon model with the knowledge that verbs

have the most outgoing dependency relations, are central to semantic structures and

therefore would benefit most from a source-side syntactic context. We train a lexicon

model and not a rule selection model as we are trying to address the problem of lexical

translation of verbs in string-to-tree systems. Moreover, by predicting only the target

verb we can simplify the prediction task and train a smaller model.

5.3 Verb Translation Analysis

In this section, we present an analysis of verb translation in syntax-based models for

the German to English language pair. We estimate the impact of a verb lexicon model

through the percentage of verbs that would benefit from source-side context and deter-

mine the extent to which we could reduce the number of verbs lost in translation by

re-ranking the n-best list.

The string-to-tree system used for this analysis is trained on all available data from
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WMT15 [Bojar et al., 2015] and is described in more detail in Section 5.5. The evalu-

ation test set consists of newstest2013, newstest2014 and newstest2015 totaling 8,172

sentences. To identify corresponding source and target verbs for this analysis, the

source side of the parallel data is parsed with dependency relations using ParZU [Sen-

nrich et al., 2013] and the target side is tagged with part-of-speech labels using Tree-

Tagger [Schmid, 1994].

Firstly, we present in Table 5.1 a breakdown of counts at token level for verbs

identified in the source sentences. Verbs were first identified by their part-of-speech

label and then the dependency relations were used to distinguish between auxiliary

verbs (except modals) and main verbs. Main verbs represent 73.2% of all verbs while

only 20.0% are auxiliary verbs. The other 6.8% of words labeled as verbs are either

modals or can not be identified as either auxiliaries or main verbs.

count percentage

source verbs 23,492 100.0

| auxiliary verbs 4,689 20.0

| misaligned verbs 934 3.9

| main verbs 17,210 73.2

| particle verbs 1,589 6.7

| target verbs 11,161 47.5
| misaligned verbs 2,850 12.1

| modals + other 1,593 6.8

| lexical rules 4,905 20.8

Table 5.1: Breakdown of source verb categories in newstest2013-2015. Token level

counts. Our analysis focuses on main verbs that can be aligned with target verbs,

highlighted in bold. This table was adapted from Nădejde et al. [2016b].

The first problem for verb translation is that in the automatic word alignment stage,

prior to GHKM rule extraction, some verbs are aligned with at least one comma or

not aligned at all, which breaks the constraints of rule extraction. Because of such

misalignments, the grammar will contain rules that translate the verb with a comma

or drop the verb on the target side. We measured the degree of misalignment found

in the GIZA++ automatic word alignment of the test set sentences. A total of 16% of

verbs are misaligned, out of which 3.9% are auxiliaries2 and 12.1% are main verbs.
2Not all German auxiliaries need to be translated into English, since different forms of past tense can
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Source: Ich gehe heute abend aus.

Target: I’m going out tonight.

Source: Letztes Jahr ging ich fort.
Target: Last year I left.

Figure 5.2: Example of German verbs with separable particles (verb and particle in

bold).

In this work we will focus on translation of main verbs as they carry the semantic

information. To evaluate a verb lexicon model more accurately, we focus only on

source verbs that align with target verbs, thus avoiding the misalignment problem. We

identify the corresponding source and target verb pairs from newstest2013-2015 using

the word alignment and the part-of-speech labels, and obtain a total of 11,161 verb

occurrences which we use for evaluation.

A second problem for verb translation is that synchronous rules may translate the

verb independently of its arguments. Table 5.1 shows that 20.8% of the verbs are

translated with lexical rules, i.e rules such as V BD→ tabled ||| eingebracht. Lexical

rules are the equivalent of one-word phrase-pairs in phrase-based SMT and as such,

they do not provide any syntactic context. When translating verbs with lexical rules

the system relies only on language model context to disambiguate the verb. However,

the language model context might become available only in later stages of bottom-

up chart-based decoding, when larger synchronous rules are applied to connect and

reorder the verb and its arguments. To address this problem we propose a verb lexicon

model that uses a wide source-side context to predict the target verb.

An interesting class of German verbs are those with separable particles which are

moved at the end of the sentences for present tense or imperative. For example the

verbs ausgehen (to go out) and fortgehen (to leave) have the root gehen (to walk).

However, the particles aus and fort separate from the root and change its meaning,

which leads to a specific type of translation error. We give example sentences below.

We continue to evaluate the tree-to-string system in terms of verb translation re-

call. The translation recall shown in Table 5.2 is computed over the 11,161 instances

of main source verbs which were aligned with a reference verb using GIZA++ word

alignment. To compute recall, we count how many of these 11,161 reference verbs

were correctly translated by the system. We report separate recall numbers for the

be used. For example, habe gegessen translates as ate.
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correct verb translations found either in the 1-best hypothesis, among all the n-best

hypotheses or among all entries in the rule table that can translate the source verb.

source token lemma

1-best 45.54 53.14

1000-best 72.87 79.24

rule table 91.85 -

Table 5.2: Verb translation recall for 1-best translation, 1000-best lists and rule ta-

ble computed over verbs from newstest2013-2015. Measured separately at token and

lemma level. This table was adapted from Nădejde et al. [2016b].

Verb translation recall is only 45.54% at token level for the 1-best output of the

syntax-based system. However verb recall in the 1000-best list is much higher, at

72.87%. This result indicates that better translation options are available and re-scoring

these options could result in improved 1-best verb translation recall. Furthermore, by

looking at the target side of all the verb translations in the rule table we can see that

the reference translation is available in almost 92% of the cases.

Finally, we compare the reference translations and the system translations of the

verbs in terms of their rank among all translation candidates. For this purpose we

order the translation options for each of the source verbs according to the direct trans-

lation probability p(target|source). For each source verb, we compute the rank of the

corresponding verb translation found in the reference and the rank of the verb transla-

tion produced by the syntax-based system. We can see in Table 5.3 that the reference

translations have rank 1 only 50.71% of the cases compared to 65.48% for the system

translations. Since the reference translation of the verb is often less probable than the

selected one, we are dealing with modeling errors. Re-scoring only the top 10 trans-

lation options could improve the translation model accuracy from 50.7% to 68.2%.
3

5.4 Verb Lexicon Model

In the previous section we have shown that string-to-tree MT systems translate verbs

with low recall and accuracy. Better translation candidates can be found in the 1000-
3The accuracy of the translation model and the percentage of reference verbs that are ranked 1st may

be underestimated because we have only one reference translation available.
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source rank = 1st rank < 5th rank < 10th

reference 50.71 56.30 68.25

system 65.48 73.90 84.87

Table 5.3: Percentage of verb translations that are ranked first or higher than 5th or

10th rank in the rule table. We report results for the translations of the source verbs

from newstest2013-2015 found in the reference or 1-best system output. This table

was adapted from Nădejde et al. [2016b].

best lists. However, at least 20% of verbs are scored without contextual information

by the translation model.

In this section we propose a verb lexicon model that uses source side context to

predict the target verb. Both the source word sequences and the source syntactic struc-

ture are readily available at early stages of decoding. In contrast, target side context

for verbs, such as their arguments, becomes available at later stages of decoding when

larger synchronous rules are applied. Moreover, the target syntactic structure gener-

ated during decoding is not sufficiently accurate for extracting arguments of the target

verb. While similar lexicon models have been proposed in the literature [Mauser et al.,

2009, Niehues and Waibel, 2013, Herrmann et al., 2015], this work explores whether

a source syntactic context is more informative for predicting target verbs than a win-

dow context centered on the source verb. We propose a verb specific model since

verbs have more arguments and longer syntactic dependencies than other words and

therefore would benefit from a wider source-side context. Our verb lexicon model is a

feed-forward neural network trained with the NPLM toolkit [Vaswani et al., 2013].

We first show that verbs are harder to predict cross-lingually than other words for

the German-English language pair. For this purpose we train a generic lexicon model

that takes as input a 5-word window centered on the source word of interest and out-

puts the corresponding target word. The generic model is trained on all words from

WMT15 parallel data and evaluated on either all words from newstest2013 - 2015 test

sets or on the subset of 11,161 main verbs selected as described in the previous sec-

tion. Table 5.4 shows that the generic lexicon model performs worse at predicting

target verbs: perplexity is higher, 26.20 for verbs compared to 23.62 for all words, and

accuracy is lower, 43.67 for verbs compared to 50.62 for all words. This reinforces our

argument that we need a verb specific lexicon model.
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perplexity acc@1 acc@5 acc@15

all words 23.62 50.62 70.51 78.47

verbs only 26.20 43.67 67.88 78.69

Table 5.4: Perplexity and accuracy (acc; at ranks 1, 5 and 15) of the generic lexicon

model reported over all words and over verbs only, on newstest2013-2015. This table

was adapted from Nădejde et al. [2016b].

5.4.1 Syntactic Context

In order to predict target verbs more accurately, as well as to train the models more

efficiently, we learn a specialized verb lexicon model in the form of a feed-forward

neural network. The network receives a fixed number of input tokens extracted from

the source sentence and predicts a target verb.

Next, we explore whether a source-side syntactic context is more informative for

predicting the target verb than a window context. Since the syntactic context is ex-

tracted from the source sentence we can include most of the verb’s dependents, in

particular the core arguments that carry most semantic information relevant to verb

disambiguation. We also provide the verb lexicon model with a feature encoding the

subcategorization frame, as this information was useful for inducing verb classes in a

monolingual setting [Sun and Korhonen, 2009, Schulte im Walde, 2006].

From the dependency parse of the source sentences we extract the following syn-

tactic context: the parent of the main verb, the first prepositional modifier4 and its

preposition, up to three other dependents and the verb particle, if any. If an auxiliary

verb is present, we attach all its dependents5 to the main verb and leave the auxiliary

as the parent of the main verb only. We then create a subcategorization token by con-

catenating the dependency relations of all verb dependents. In order to reduce sparsity

of the data we add the lemma of each word in the syntactic context. If all types of

syntactic context are considered, including the lemma factors, the network will receive

16 input tokens. We show an example of source syntactic context for a verb in Fig-

4Preliminary experiments did not show improvements when considering more prepositional modi-
fiers. Furthermore, when the verb does not have a second prepositional modifier, two < null > tokens
are required as input to the network instead. When we considered a larger syntactic context (more de-
pendents or prepositional modifiers) and the number of < null > tokens in the input increased, we faced
problems training the neural networks.

5Dependents are identified by following outgoing edges.
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In den letzten Jahren haben mehrere Wissenschaftler den Zusammenhang zwischen ... und Krebs untersucht

pp

det
attr

pn
ROOT

det

subj

det

obja

pn

aux

Reference: In recent years , a number of scientists have studied the links [between ... and cancer]

Window context und Krebs untersucht < /s > < /s >

Syntactic context source verb parent dependents pp modifier subcat particle

word: untersucht haben Wissenschaftler Zusammenhang <null> in Jahren pp subj obja <null>

lemma: untersuchen haben Wissenschaftler Zusammenhang <null> in Jahr - -

Figure 5.3: Example of a source-side dependency graph, as well as the window and

syntactic context that were extracted from it for the source verb untersucht (studied;

in bold). With both word and lemma factors, and counting the < null > tokens, the

network receives as input a total of 16 tokens for the syntactic context.

ure 5.3. In this example there are 9 pieces of context6, out of which 7 have both a

word and lemma factor, resulting in a total of 16 inputs for the neural network. The

subcategorization feature (subcat) for the verb “untersucht” is pp subj obja, and does

not contain the label aux since the auxiliary is the parent of the main verb and not a

dependent. In German, nouns and their articles are inflected differently depending on

the case and therefore the label obja marks that the object is in the accusative case.

5.4.2 Experimental Setup and Evaluation

We train the models with the NPLM toolkit [Vaswani et al., 2013] implementing a

feed-forward neural network and choose model hyper-parameters following Sennrich

[2015]. We use 200 dimensions both for the input embeddings and for the single

hidden layer. Both the input and output vocabularies consist of the 500,000 most fre-

quent words (including named entities, foreign words and numbers which may appear

frequently in a noisy parallel corpus). The input vocabulary is shared for words and

lemmas. When adding the subcategorization feature (subcat) we increase the input vo-

cabulary by 80,000. We use the “rectifier” activation function, a batch size of 256, and

train for at most 25 iterations.
6We count the < null > tokens because the neural verb lexicon model is trained with a feed-forward

neural network which requires a fixed number of inputs.
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We train the models on all the parallel training data available at WMT15 and we

use a development set of 2,000 sentences for early stopping of training. The mod-

els are evaluated in terms of perplexity and accuracy over the verbs extracted from

newstest2013, newstest2014, newstest2015.7 The data is described in Table 5.5. The

source side of the parallel data is parsed with dependency relations using ParZU [Sen-

nrich et al., 2013] and the target side is tagged with part-of-speech labels using Tree-

Tagger [Schmid, 1994].

Train Tune Test

sentences 4,472,694 2,000 8,172

verb tokens 5,945,637 2,419 11,211

Table 5.5: Number of sentences as well as verb tokens in the training, tuning and

test sets used for the Neural Verb Lexicon Model experiments.additional blah. should

mention somewhere how verbs were counted. e.g. which POS tags count as verbs

Table 5.6 shows the performance of different models. The accuracy of the verb lex-

icon model trained with a 5-word window context is 50.57%, compared to 43.67% the

accuracy of the generic lexicon model reported on the last row and in Table 5.4. This

result shows that training a verb-specific model is beneficial. In Table 5.3 we showed

that the direct translation probability predicts the correct translation for 50.71% of the

verbs that have a translation in the rule table. The prediction of the verb lexicon model

with window context matches the reference translation in 50.57% of the cases, how-

ever its top 5 accuracy is 76.27% compared to only 56.30% for the direct translation

probability.

Increasing the window context size to 7 words does not improve performance of

the verb lexicon model. In contrast, providing a syntactic context of similar size as in-

put to the network results in a lower perplexity and higher accuracy. Adding the lemma

factor helps for both types of context in terms of perplexity, however the accuracy is

higher only for the syntactic context. The subcategorization feature did not improve

accuracy, which we attribute to the fact that the other syntactic context already provides

a strong signal about the presence of the main arguments and the prepositional modi-

fier. Furthermore, SCFG rules translating verbs partially encode information about the

7In Section 5.3 we compared reference and system translations of 11,161 source verbs. The remain-
ing verbs up to 11,211 were discarded since there was no corresponding system translation in the 1-best
output.
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context factors size perplexity acc@1 acc@5 acc@15

window word 5 27.81 50.57 76.27 85.04

window word 7 27.98 50.57 75.55 85.03

window word, lemma 10 27.20 50.54 75.90 85.42

syntactic word 7 26.49 51.21 76.26 85.36

syntactic word, lemma 14 24.99 51.46 77.12 85.83

syntactic word, lemma, subcat 15 25.16 51.54 76.83 85.82

syntactic word, lemma, subcat, particles 16 24.84 51.99 77.54 85.96

baseline word 5 26.20 43.67 67.88 78.69

Table 5.6: Evaluation of different configurations of the verb lexicon model according

to perplexity and accuracy (acc) at ranks 1, 5 and 15. The size column indicates the

number of inputs to the neural network. The token level verb prediction accuracy is

reported over newstest2013-2015. The baseline is the generic lexicon model. The

configurations with the lowest perplexity and highest acc@1 scores respectively are in

bold. This table was adapted from Nădejde et al. [2016b].

subcategorization frame (except when the verb is translated with a lexical rule). For

example, the SCFG rule in Figure 5.1 encodes that the verb expects at least one NP

argument. Finally, adding the particle as separate input increases the accuracy leading

to a total improvement of 1.5% over the baseline window context.

In the next section we investigate whether the verb lexicon model is able to improve

translation quality by integrating the model as an additional feature for re-ranking ma-

chine translation output. As we showed in the verb translation analysis, re-ranking the

1000-best list could potentially improve verb recall from 45% to 72%.

5.5 Machine Translation Evaluation

Our baseline system for translating German into English is the Moses string-to-tree

toolkit implementing GHKM rule extraction [Galley et al., 2004b, 2006b, Williams

and Koehn, 2012]. The rule extraction parameters and the setup of the system were

previously described in Section 3.3.2 and in Nădejde et al. [2013], Williams et al.

[2014]. We train the system on all available data provided at WMT158 [Bojar et al.,

2015]. We report the number of sentences in the training and tuning sets in Table 5.5.

8http://www.statmt.org/wmt15/translation-task.html
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BLEU METEOR HWCM

context factors dev test test test

Baseline - 26.18±0.0 26.10±0.0 29.95±0.0 25.27±0.0

+ window word −0.13±0.08 −0.39±0.26 −0.13±0.14 −0.20±0.20

+ dependency word, lemma, subcat −0.06±0.05 −0.22±0.12 −0.07±0.08 −0.10±0.09

+ dependency word, lemma, subcat, particles −0.13±0.06 −0.37±0.19 −0.14±0.06 −0.19±0.18

Table 5.7: Results of re-ranking the 1000-best list of a baseline string-to-tree system

with different configurations of the verb lexicon model as an additional feature. BLEU

, METEOR and HWCM scores are reported over newstest2015 (2,169 sentences and

3,002 reference verbs) with standard deviation shown from 3 runs of minimum error

rate training (MERT). This table was adapted from Nădejde et al. [2016b].

At decoding time we give a high penalty to glue rules and allow non-terminals to span

a maximum of 50 words. We report evaluation scores over the newstest2015 data set

(2169 sentences, 3002 verbs).

We integrate the verb lexicon model in re-ranking by adding two new features

scores in addition to the baseline features:

• A counter for the source verbs translated by the n-best hypothesis.

• Verb lexicon model scores aggregated over all main verbs.9

The weights for the new feature scores and for the baseline features are re-tuned

using MERT on the tuning set. We run MERT three times and for each set of weights

we re-ranked the machine translation output.

Table 5.7 shows average cased BLEU [Papineni et al., 2002], METEOR [Lavie and

Denkowski, 2009] and HWCM scores, as well as the standard deviation for the three

different tuning runs. When adding the verb lexicon model there is a small decrease in

evaluation metrics’ scores: less than 0.4% for BLEU and less than 0.2% for METEOR

and HWCM .

Table 5.8 shows average precision, recall and F1 scores for verb translation, as

well as the standard deviation for the three different tuning runs. To compute recall

we divide the number of reference verbs correctly translated by the 1-best system hy-

pothesis by the total number of verbs present in the reference translation. To compute

9By main verbs, we refer to the main source verbs that were translated to verbs, as identified with
the word alignment reported by the SMT system.
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Precision Recall F1

context factors token lemma token lemma token lemma

Baseline - 56.91±0.0 65.18±0.0 47.86±0.0 54.83±0.0 51.99±0.0 59.56±0.0

+ window word +1.95±0.66 +2.04±0.31 +7.45±0.42 +8.34±0.72 +5.04±0.32 +5.57±0.28

+ dependency word, lemma, subcat +2.44±0.80 +2.39±0.68 +7.14±0.76 +7.8±1.08 +5.09±0.09 +5.42±0.28

+ dependency word, lemma, subcat, particles +2.70±0.89 +2.5±0.72 +7.36±0.40 +7.76±0.06 +5.34±0.56 +5.53±0.32

Table 5.8: Results of re-ranking the 1000-best list of a baseline string-to-tree sys-

tem with different configurations of the verb lexicon model as an additional feature.

Precision, recall and F1 scores for verb translation are reported over newstest2015

(2,169 sentences and 3,002 reference verbs) with standard deviation shown from 3

runs of minimum error rate training (MERT). This table was adapted from Nădejde et al.

[2016b].

precision, we divide the number of verbs present in both the reference and the 1-best

system hypothesis by the total number of verbs present in this hypothesis.

On average the verb lexicon model improves precision up to 2.7%, recall up to

7.4% and F1 scores up to 5.3% at token level. The models with syntactic context im-

prove precision more so than the models with window context, but not recall. This

result motivates future work on analyzing how verb recall is affected by tuning feature

weights towards BLEU , a precision based metric. We consider a 7% gain in verb trans-

lation recall to be more important than the small decrease in the evaluation metrics’

scores since verbs are key pieces in semantic structures. Perhaps an even stronger verb

lexicon model is needed in order to out-weight choices that only improve fluency. As

future work, we propose to explore improving model coverage by making predictions

for predicative nouns and improving model accuracy by conditioning on target context.

Based on our analysis in Section 5.3, choosing from the n-best list allows for signifi-

cant verb recall improvements, however this improvement may come at a cost to BLEU

.

In Figure 5.4 we give examples of correct verb translations produced by re-ranking

the 1000-best list with the verb lexicon model.

In example a), the verb eingebracht is translated as tabled by the baseline system.

This translation is ambiguous because it carries almost opposite meaning in American

(“to postpone consideration of”) and British English (“to propose”). On the last row of

the example we show the synchronous translation rule used by the baseline system to

translate the verb eingebracht. The rule correctly re-orders the noun-phrase a bill and

the verb, as English objects should come after the verb. However the lexical choice
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a) Source Die Kongress Abgeordneten haben einen Gesetzesvorschlag eingebracht ,

um die Organisation von Gewerkschaften als Bürgerrecht zu etablieren .

Reference Congressmen have proposed legislation to protect union organizing as a civil right .

Baseline Congressmen have tabled a bill to establish the organization of trade unions as a civil right .

Verb Lexicon Congressmen have introduced a bill to establish the organization of trade unions as a civil right .

Syntactic context source verb parent dependents pp modifier subcat particle

word: eingebracht haben Kongress Gesetzesvorschlag etablieren <null> <null> subj obja neb <null>

Translation rule V P→ 〈haben NP eingebracht um S , have tabled NP S〉

b) Source die Ankläger legten am Freitag dem Büro des Staatsanwaltes von Mallorca Beweise

für Erpressungen durch Polizisten und Angestellte der Stadt Calvia vor .

Reference the claimants presented proof of extortion by policemen and Calvia Town Hall civil servants

at Mallorca’s public prosecutor’s office on Friday .

Baseline the prosecutor went to the office of the prosecutor of Mallorca Calvia evidence of extortion

by police officers and employees of the city on Friday .

Verb Lexicon the prosecutor presented evidence of extortion by police officers and employees of the city

on Friday the office of the prosecutor of Mallorca Calvia before .

Syntactic context source verb parent dependents pp modifier subcat particle

word: legten <null> Ankläger Büro Staatsanwaltes am Freitag subj pp objd obja pp pp avz vor

Translation rule V P→ 〈legten ˆV P , went ˆV P〉
PP→ 〈NP vor , to NP〉

Figure 5.4: Examples of correct verb translation produced by re-ranking the 1000-best

list with the verb lexicon model. Main verb is marked in bold.

for the verb is made without knowledge of the lexical head of the object. The re-

ranked translation introduced is both accurate and non-ambiguous in the context. The

verb lexicon model prefers this translation because the words Kongress and etablieren

appear in the syntactic context.

In example b), the verb vorlegten (presented) is translated incorrectly by the base-

line system as went. This happens because the verb has a separable particle vor which

is moved at the end of the sentence. The string-to-tree system is not able to find a

rule that would make such a long distance reordering. Instead it translates the verb

with two rules that are disconnected. The first rule translates the verb without any

other context. The second rule incorrectly attaches the verb particle as a preposition

to a noun-phrase. The verb lexicon model is able to produce the correct translation

presented as the particle vor appears in the syntactic context.

In Figure 5.5 we give examples where the translations produced by re-ranking the

1000-best list with the verb lexicon model are worse than the 1-best translations.

In example a) the verb geht weiter is correctly translated by the baseline system

as goes on but incorrectly translated by the verb lexicon model as is. The parser is

not able to identify weiter as dependent of the source verb, therefore the verb lexicon

model has limited context and gives a lower score to goes and a higher score to is. The
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a)

Source Und so geht das Leben , anders als das vieler anderer , für uns weiter .

Reference So life goes on for us unlike for so many .

Baseline And , unlike many others , life goes on for us .

Verb Lexicon And so is the life , unlike many others , for us .

Syntactic context source verb parent dependents pp modifier subcat particle

word: geht <null> und so Leben <null> <null> koord adv subj <null>

Translation rule V BZ→ 〈geht , goes 〉

ˆV P→ 〈PP weiter , on PP〉

b)

Source Webster wird darüber hinaus vorgeworfen , am 4. Mai 2014 eine zweite Frau im Golf View Hotel

in Naim im schottischen Hochland angegriffen zu haben .

Reference Webster is then charged with attacking a second woman at the Golf View Hotel in Nairn in the Highlands on May 4 , 2014 .

Baseline Webster is also alleged to have attacked a second woman in Naim’s Golf View Hotel in the Scottish Highlands on 4 May 2014 .

Verb Lexicon Webster is also accused of being a second wife in the Golf View Hotel on 4 May 2014 in Naim attacked in the Scottish Highlands .

Syntactic context source verb parent dependents pp modifier subcat particle

word: vorgeworfen wird Webster haben <null> darüber hinaus objd pp subjc <null>

Translation rule V BN→ 〈vorgewor f en , alleged 〉

V P→ 〈V BN , V P zu haben , V BN to have V P〉

Figure 5.5: Examples of translations produced by re-ranking the 1000-best list with the

verb lexicon model that are worse than the 1-best translations. Main verb in bold.

wrong choice for the verb causes the resulting translation to have worse word order.

In example b) the verb vorgeworfen is incorrectly translated by the baseline system

as alleged. The verb lexicon model is able to produce a better translation accused,

however this affects the choice of other translation rules. As a result the second verb

angegriffen (attacked) and its prepositional modifiers are incorrectly reordered in the

translation. Future work should investigate whether the string-to-tree system can learn

not to generate such fluency errors if the NVLM is integrated as a feature in the de-

coder. In this case the results should show improvements in both verb recall and BLEU

scores.

5.6 Conclusions

In this chapter, we propose a verb lexicon model to improve the lexical choice for verbs

in string-to-tree MT systems. We train the model with a feed-forward neural network

that predicts the target verb conditioned on a wide source-side context. In Section 5.4

we show that a syntactic context extracted from the dependency structure of the source

sentence improves model accuracy by 1.5% over the baseline window context.

In Section 5.5, we evaluate the verb lexicon model as an extra feature for re-ranking
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the output of a baseline string-to-tree MT system. The model improves verb translation

precision by up to 2.7% and recall by up to 7.4% at the cost of a small (less than 0.5%)

decrease in BLEU score. The verb lexicon model trained on the syntactic context im-

proves verb translation precision more than the model trained on the window context,

however recall is improved to the same extent.

In future work, we will explore whether we can further improve recall by tuning

the feature weights using a metric that also rewards recall, such as METEOR and not

just precision, as is the case with the BLEU metric. We also propose to consider pred-

icative nouns as a means to improve model coverage and to provide the model with

additional target-side context to improve precision. Another direction for future work

could be to integrate the model as a feature in the string-to-tree decoder and investigate

if this prevents errors appearing in other parts of the sentence when verb translation is

improved.

Although in this work we improved some aspects of the translation, the strong

independence assumptions made by string-to-tree SMT systems are causing syntactic

and semantic translation errors which cannot be resolved by a linear combination of

weak independent models. For this reason, we turn our attention to neural machine

translation (NMT), an end-to-end machine learning framework, which considers the

entire source sentence and target history as context when predicting the next target

word. In the next chapter we show that, although NMT models are able to partially

learn syntactic information from sequential lexical information, explicit target syntax

can still improve translation quality.



Chapter 6

Syntax-aware Neural Machine

Translation Using CCG

6.1 Introduction

In the previous chapters we augmented string-to-tree SMT systems with global source

and target syntactic context to improve lexical consistency. While we improved this for

verbs, the proposed models only partially address the strong independence assumptions

made by SMT systems.

Over the last couple of years, neural machine translation (NMT) models showed

significant improvement over strong SMT systems on many language pairs, including

German→English. These models use the entire source context and target history when

generating a translation, which is desirable when trying to learn long-distance depen-

dencies and re-ordering. Even though NMT has strong learning capabilities, it has

been shown that incorporating explicit source-side linguistic features can still improve

translation quality [Luong et al., 2016, Sennrich and Haddow, 2016]. In this chapter,

we examine the benefit of incorporating sentence-level syntactic information on the

target-side, in the NMT decoder. We aim to answer two questions: 1) Is tight integra-

tion of target words and syntax better than multitask training? 2) Does target syntax

provide complementary information to source syntax for NMT?

We propose a method for tightly coupling words and syntax by interleaving the

target syntactic representation, in the form of CCG supertags, with the target word

sequence. We compare this to loosely coupling words and syntax using a multitask so-

lution [Luong et al., 2016], where the shared parts of the model are trained to produce

either a target sequence of words or supertags. Target syntax is especially beneficial

92
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for language pairs where no syntactic resources are available on the source-side, which

applies to many low-resource language pairs. For language pairs where syntactic re-

sources are available on both the source and target-side, we show that approaches to

incorporate source syntax and target syntax are complementary.

Our results on WMT data show that explicitly modeling target-syntax improves

machine translation quality for German→English, a high-resource pair, and for

Romanian→English, a low-resource pair. Furthermore, a tight coupling of words

and syntax improves translation quality more than multitask training. By combin-

ing target-syntax with adding source-side dependency labels in the embedding layer,

we obtain a total improvement of 0.9 BLEU for German→English and 1.2 BLEU for

Romanian→English.

This chapter is structured as follows. In Section 6.2 we discuss the limitations of

NMT and previous work on integrating source or target syntactic information. In Sec-

tion 6.3 we describe the syntactic representation and different strategies of coupling

it with the translated words in the decoder or in the encoder of the NMT system. In

Section 6.4 we describe the experimental setup and training parameters for the NMT

systems. In Section 6.5 we evaluate the effect of target syntax on overall translation

quality and make a finer grained analysis with respect to different linguistic construc-

tions and sentence lengths.

6.2 Background

Sequence-to-sequence neural machine translation (NMT) models [Sutskever et al.,

2014, Cho et al., 2014b, Bahdanau et al., 2015] are state-of-the-art on many language-

pairs [Sennrich et al., 2016a, Junczys-Dowmunt et al., 2016]. In a detailed analysis,

Bentivogli et al. [2016] show that NMT significantly improves over phrase-based SMT,

in particular with respect to morphology and word order, but that results can still be

improved for longer sentences and syntactic phenomena such as prepositional phrase

(PP) attachment. Another study by Shi et al. [2016] shows that the encoder layer of

NMT partially learns syntactic information about the source language, however syn-

tactic phenomena such as coordination or PP attachment are poorly modeled.

Syntax has helped in statistical machine translation (SMT) to capture dependen-

cies between distant words that impact morphological agreement, subcategorisation

and word order [Galley et al., 2004b, Menezes and Quirk, 2007, Williams and Koehn,

2012, Nădejde et al., 2013, Sennrich, 2015, Nădejde et al., 2016a,b, Chiang, 2007].
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There has been some work in NMT on modeling source-side syntax implicitly or ex-

plicitly. Kalchbrenner and Blunsom [2013], Cho et al. [2014a] capture the hierarchical

aspects of language implicitly by using convolutional neural networks, while Eriguchi

et al. [2016] use the parse tree of the source sentence to guide the recurrence and atten-

tion model in tree-to-sequence NMT. Luong et al. [2016] co-train a translation model

and a source-side syntactic parser which share the encoder. Our multitask models ex-

tend their work to attention-based NMT models and to predicting target-side syntax

as the secondary task. Sennrich and Haddow [2016] generalize the embedding layer

of NMT to include explicit linguistic features such as dependency relations and part-

of-speech tags and we use their framework to show source and target syntax provide

complementary information.

Applying more tightly coupled linguistic factors on the target for NMT has been

previously investigated. Niehues et al. [2016] introduces a factored RNN-based lan-

guage model for re-scoring an n-best list produced by a phrase-based MT system.

In recent work Martı́nez et al. [2016] propose a factored NMT model which generates

lemmas and morphological tags, and then uses these to generate the word form. Unfor-

tunately no real gain was reported for these experiments. In our work, we do not focus

on model architectures, and instead we explore the more general problem of including

target syntax in NMT: comparing tightly and loosely coupled syntactic information

and showing source and target syntax are complementary.

Concurrently with this work, Aharoni and Goldberg [2017] proposed serializing

the target constituency trees and Eriguchi et al. [2017] model target dependency rela-

tions by augmenting the NMT decoder with a RNN grammar [Dyer et al., 2016]. In our

work, we use CCG syntactic categories [Steedman, 2000], also known as supertags,

to represent syntax explicitly. Supertags provide sentence-level syntactic information

locally at the lexical level. They encode subcategorization information, capturing short

and long range dependencies and attachments, and also tense and morphological as-

pects of the word in a given context. Previous work on integrating CCG supertags in

factored phrase-based models [Birch et al., 2007] made strong independence assump-

tions between the target word sequence and the CCG categories. In this work we take

advantage of the expressive power of recurrent neural networks to learn representa-

tions that generate both words and CCG supertags, conditioned on the entire lexical

and syntactic target history.
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6.3 Modeling Syntax in NMT

CCG is a lexicalised formalism in which words are assigned syntactic categories,

called supertags, capturing sentence-level syntactic constraints locally. This word-

level syntactic representation is suitable for integration in a sequence-to-sequence NMT

systems, either in the encoder or decoder. Although NMT captures long range depen-

dencies using long-term memory, short-term memory is cheap and reliable. Supertags

can help by allowing the model to rely more on local information (short-term) and not

having to rely heavily on long-term memory. In Section 2.5 we introduced the CCG

formalism and gave examples of syntactic information encoded by CCG supertags that

may be useful in translation. In this section we propose a method of integrating target-

side syntax in the decoder, in the form of CCG supertags, and describe how to combine

these with source-side syntax in the encoder.

6.3.1 Baseline decoder

The baseline decoder architecture is a conditional GRU with attention (cGRUattn) as

implemented in the Nematus toolkit [Sennrich et al., 2017]. The decoder is a recur-

sive function computing a hidden state s j at each time step j ∈ [1,T ] of the target

recurrence. This function takes as input the previous hidden state s j−1, the embed-

ding of the previous target word y j−1 and the output of the attention model c j. The

attention model computes a weighted sum over the hidden states hi = [
−→
hi ;
←−
hi ] of the

bi-directional RNN encoder. The function g computes the intermediate representation

t j and passes this to a softmax layer which first applies a linear transformation (Wo)

and then computes the probability distribution over the target vocabulary. The training

objective for the entire architecture is minimizing the discrete cross-entropy, therefore

the loss l is the negative log-probability of the reference sentence.
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st-3 st-2 st-1 st

NP Obama ((S\NP)/PP)/NP receives

h1 h2 hTh3 ….

αt,1 αt,2
αt,3

αt,T

x1 x2 x3 x4

＋

s't-1 s't

NP ((S\NP)/PP)/NP

h1 h2 hTh3 ….
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st-1 st

Obama receives

αt,2 αt,3

αt,T
＋ βt,1

＋

βt,2
βt,3 βt,T

x4

a) interleaving b) multitasking

Figure 6.1: Model structure for different methods of integrating target syntax in the

neural machine translation (NMT) decoder: a) interleaving and b) multitasking. xi are

the source words, hi are the hidden states of the encoder and s j are the hidden states

of the decoder.

s′j = GRU1(y j−1,s j−1) (6.1)

c j = AT T ([h1; ...;h|x|],s
′
j) (6.2)

s j = cGRUattn(y j−1,s j−1,c j) (6.3)

t j = g(y j−1,s j,c j) (6.4)

py =
T

∏
j=1

p(y j|x,y1: j−1) =
T

∏
j=1

so f tmax(t jWo) (6.5)

l =−log(py) (6.6)

6.3.2 Target-side syntax

When modeling the target-side syntactic information we consider different strategies

of coupling the CCG supertags with the translated words in the decoder: interleav-

ing and multitasking with shared encoder. In Figure 6.1 we represent graphically the

differences between the two strategies and in the next paragraphs we formalize them.

Interleaving In this paper we propose a tight integration in the decoder of the syntac-

tic representation and the surface forms. Before each word of the target sequence we

include its supertag as an extra token. The new target sequence y′ will have the length

2T , where T is the number of target words. With this representation, a single decoder
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Source-side

BPE: Obama receives Net+ an+ yahu in the capital of USA

IOB: O O B I E O O O O O

CCG: NP ((S[dcl]\NP)/PP)/NP NP NP NP PP/NP NP/N N (NP\NP)/NP NP

Target-side

NP Obama ((S[dcl]\NP)/PP)/NP receives NP Net+ an+ yahu PP/NP in NP/N the N capital (NP\NP)/NP of NP USA

Figure 6.2: Source and target representation of syntactic information in syntax-aware

neural machine translation. For the source side, we show the byte pair encoding (BPE),

inside-outside-beginning (IOB) tags, as well as the combinatory categorial grammar

(CCG) representation. “Netanyahu” is split into BPE subword units since it does not

appear frequently in the training data.

learns to predict both the target supertags and the target words conditioned on previous

syntactic and lexical context. We do not make changes to the baseline NMT decoder

architecture, keeping equations (6.1) - (6.6) and the corresponding set of parameters

unchanged. Instead, we augment the target vocabulary to include both words and CCG

supertags. This results in a shared embedding space and the following probability of

the target sequence y′, where y′j can be either a word or a tag:

y′ = ytag
1 ,yword

1 , ....,ytag
T ,yword

T (6.7)

py′ =
2T

∏
j

p(y′j|x,y′1: j−1) (6.8)

At training time we pre-process the target sequence to add the syntactic annotation

and then split only the words into byte-pair-encoding (BPE) [Sennrich et al., 2016b]

sub-units. At testing time we delete the predicted CCG supertags to obtain the final

translation. Figure 6.2 gives an example of the target-side representation in the case of

interleaving. The supertag NP corresponding to the word Netanyahu is included only

once before the three BPE subunits Net+ an+ yahu.

Multitasking – shared encoder A loose coupling of the syntactic representation and

the surface forms can be achieved by co-training a translation model with a secondary

prediction task, in our case CCG supertagging. In the multitask framework [Luong

et al., 2016] the encoder part is shared while the decoder is different for each of the
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prediction tasks: translation and tagging. In contrast to Luong et al., we train a sepa-

rate attention model for each task and perform multitask learning with target syntax.

The two decoders take as input the same source context, represented by the encoder’s

hidden states hi = [
−→
hi ;
←−
hi ]. However, each task has its own set of parameters associated

with the five components of the decoder: GRU1, AT T , cGRUatt , g, so f tmax. Further-

more, the two decoders may predict a different number of target symbols, resulting in

target sequences of different lengths T1 and T2. We measure how often this occurs in

Section 6.5.4. This results in two probability distributions over separate target vocab-

ularies for the words and the tags:

pword
y =

T1

∏
j

p(yword
j |x,yword

1: j−1) (6.9)

ptag
y =

T2

∏
k

p(ytag
k |x,y

tag
1:k−1) (6.10)

The final loss is the sum of the losses for the two decoders:

l =−(log(pword
y )+ log(ptag

y )) (6.11)

We use EasySRL to label the English side of the parallel corpus with CCG supertags1

instead of using a corpus with gold annotations as in Luong et al. [2016].

6.3.3 Source-side syntax

While our focus is on target-side syntax, we also experiment with including source-

side syntax to show that the two approaches are complementary.

Shared embedding Sennrich and Haddow propose a framework for including source-

side syntax as extra features in the NMT encoder. They extend the model of Bahdanau

et al. by learning a separate embedding for several source-side features such as the

word itself or its part-of-speech. All feature embeddings are concatenated into one

embedding vector which is used in all parts of the encoder model instead of the word

embedding. When modeling the source-side syntactic information, we include the

CCG supertags or dependency labels as extra features. The baseline features are the

subword units obtained using byte-pair-encoding (BPE, [Sennrich et al., 2016b]) to-

gether with the annotation of the subword structure using IOB format by marking if a

1We use the same data and annotations for the interleaving approach.
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train dev test

DE-EN 4,468,314 2,986 2,994

RO-EN 605,885 1,984 1,984

Table 6.1: Number of sentences in the training, development and test sets for German

(DE)→English (EN) and Romanian (RO)→English language pairs.

symbol in the text forms the beginning (B), inside (I), or end (E) of a word. A separate

tag (O) is used if a symbol corresponds to the full word. The word level supertag is

replicated for each BPE unit. Figure 6.2 gives an example of the source-side feature

representation.

6.4 Experimental Setup

We train the neural MT systems on all the parallel data available at WMT16 [Bojar

et al., 2016] for the German↔English and Romanian↔English language pairs. The

English side of the training data is annotated with CCG lexical tags2 using EasySRL

[Lewis et al., 2015]. Some longer sentences cannot be processed by the parser and

therefore we eliminate them from our training and test data. We report the sentence

counts for the filtered data sets in Table 6.1. Dependency labels are annotated with

ParZU [Sennrich et al., 2013] for German and SyntaxNet [Andor et al., 2016] for

Romanian.

All the neural MT systems are attentional encoder-decoder networks [Bahdanau

et al., 2015] as implemented in the Nematus toolkit [Sennrich et al., 2017].3 We use

similar hyper-parameters to those reported by Sennrich et al. [2016a], Sennrich and

Haddow [2016] with minor modifications: we used mini-batches of size 60 and Adam

optimizer [Kingma and Ba, 2014]. The full list of parameters is given in Appendix B.

We select the best single models according to BLEU on the development set and use

the four best single models for the ensembles.

To show that we report results over strong baselines, Table 6.2 compares the scores

obtained by our baseline system to the ones reported in Sennrich et al. [2016a]. We

normalize diacritics for the English→Romanian test set.4 We did not remove or nor-

2The CCG tags include features such as the verb tense (e.g. [ng] for continuous form) or the sentence
type (e.g. [pss] for passive).

3https://github.com/rsennrich/nematus
4There are different encodings for letters with cedilla (ş,ţ) used interchangeably throughout the cor-
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malize Romanian diacritics for the other experiments reported in this chapter. Our

baseline systems are generally stronger than Sennrich et al. [2016a] due to training

with a different optimizer for more iterations.

This work Sennrich et al. [2016a]

DE→EN 31.0 28.5

EN→DE 27.8 26.8

RO→EN 28.0 27.8

EN→RO1 25.6 23.9

Table 6.2: Comparison of baseline systems in this work and in Sennrich et al.

[2016a]. Case-sensitive BLEU scores reported over newstest2016 with mteval-13a.perl.
1Normalized diacritics. This table was adapted from Nădejde et al. [2017].

During training we validate our models with BLEU [Papineni et al., 2002] on de-

velopment sets: newstest2013 for German↔English and newsdev2016 for

Romanian↔English. We evaluate the systems on newstest2016 test sets for both lan-

guage pairs and use bootstrap resampling [Riezler and Maxwell, 2005] to test statistical

significance. We compute BLEU with multi-bleu.perl over tokenized sentences both on

the development sets, for early stopping, and on the test sets for evaluating our systems.

Words are segmented into sub-units that are learned jointly for source and target

using BPE [Sennrich et al., 2016b], resulting in a vocabulary size of 85,000. The

vocabulary size for CCG supertags was 500.

For the experiments with source-side features we use the BPE sub-units and the

IOB tags as baseline features. We keep the total word embedding size fixed to 500

dimensions. We allocate 10 dimensions for dependency labels when using these as

source-side features and when using source-side CCG supertags we allocate 135 di-

mensions. For the IOB tags we allocate 5 dimensions.

The interleaving approach to integrating target syntax increases the length of the

target sequence. Therefore, at training time, when adding the CCG supertags in the

target sequence we increase the maximum length of sentences from 50 to 100. On

average, the length of English sentences for newstest2013 in BPE representation is

22.7, while the average length when adding the CCG supertags is 44.5 Increasing

pus. https://en.wikipedia.org/wiki/Romanian_alphabet#ISO_8859
5The CCG supertag is output only once for every target word, and a word can be split in multiple

BPE sub-units. This is why the length of the target sequence including CCG supertags is slightly lower
than double the length of the BPE sequence
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German→English Romanian→English

Model Syntax Strategy Single Ensemble Single Ensemble

NMT - - 31.0 32.1 28.1 28.4

SNMT target – CCG interleaving 32.0 32.7* 29.2 29.3**

Multitasking target – CCG shared encoder 31.4 32.0 28.4 29.0*

SNMT source – dep shared embedding 31.4 32.2 28.2 28.9

+ target – CCG + interleaving 32.1 33.0** 29.1 29.6**

Table 6.3: Results of experiments with target-side syntax for German→English and

Romanian→English. BLEU scores reported for baseline NMT, SNMT and the multi-

tasking model. The SNMT system is additionally combined with source dependencies.

Statistical significance indicated by * p < 0.05 and ** p < 0.01. Highest scores in bold.

This table was adapted from Nădejde et al. [2017].

the length of the target recurrence results in larger memory consumption and slower

training.6. At test time, we obtain the final translation by post-processing the predicted

target sequence to remove the CCG supertags.

6.5 Evaluation

In this section, we first evaluate the syntax-aware NMT model (SNMT) with target-

side CCG supertags as compared to the baseline NMT model described in the previ-

ous section [Bahdanau et al., 2015, Sennrich et al., 2016a]. We show that our pro-

posed method for tightly coupling target syntax via interleaving, improves translation

for both German→English and Romanian→English while the multitasking framework

does not. Next, we show that SNMT with target-side CCG supertags can be comple-

mented with source-side dependencies, and that combining both types of syntax brings

the most improvement. Finally, our experiments with source-side CCG supertags con-

firm that syntax can improve translation either as extra information in the encoder or

in the decoder.

6.5.1 Target-side syntax

We first evaluate the impact of target-side CCG supertags on overall translation quality.

In Table 6.3 we report results for German→English, a high-resource language pair, and

6Roughly 10h30 per 100,000 sentences (20,000 batches) for SNMT compared to 6h for NMT.
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for Romanian→English, a low-resource language pair. We report BLEU scores for both

the best single models and ensemble models. However, we will only refer to the results

with ensemble models since these are generally better.

The SNMT system with target-side syntax improves BLEU scores by 0.9 for

Romanian→English and by 0.6 for German→English. Although the training data for

German→English is large, the CCG supertags still improve translation quality. These

results suggest that the baseline NMT decoder benefits from modeling the sentence-

level syntactic information locally via supertags.

Next, we evaluate whether there is a benefit to tight coupling between the target

word sequence and syntax, as opposed to loose coupling. We compare our method

of interleaving the CCG supertags with multitasking, which predicts target CCG su-

pertags as a secondary task. The results in Table 6.3 show that the multitask approach

does not improve BLEU scores for German→English, which exhibits long distance

word reordering. For Romanian→English, which exhibits more local word reordering,

multitasking improves BLEU by 0.6 relative to the baseline. In contrast, the interleav-

ing approach improves translation quality for both language pairs and to a larger extent.

Therefore, we conclude that a tight integration of the target syntax and word sequence

is important. Conditioning the prediction of words on their corresponding CCG su-

pertags is what sets SNMT apart from the multitasking approach. To understand better

what is improving when adding target syntax, in Section 6.5.3 we analyze the BLEU

score results by sentence length and linguistic constructs found in the sentence. In Sec-

tion 6.5.4, we evaluate the accuracy of the SNMT system at predicting the target-side

CCG supertag sequence.

Contrastive experiments We explore further whether conditioning the prediction

of words on their corresponding CCG supertags is essential for improving translation

quality. We first vary the way we integrate syntax in the target word sequence by

predicting first all CCG supertags and second all the target words. In this case, the

syntactic context is encoded in the decoder hidden state, however there is no direct

dependency between the target word and its corresponding CCG supertag.

Second, we consider an alternative to multitasking which softens the independence

assumptions between target words and CCG supertags: distinct softmax. In this ap-

proach only the softmax layer is distinct for each task while the encoder, attention

model and decoder are shared. The input to the two softmax layers is indentical (the

context vector, the previous hidden state and the previous predicted word) but the sec-
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ond softmax layer predicts CCG supertags. The cost of predicting the wrong supertag

is added to the cost of predicting the wrong target word.

The BLEU scores for the ensemble models are shown in Table 6.4.

Model Strategy German→English Romanian→English

NMT - 32.1 28.4

SNMT interleaving 32.7 29.3
SNMT syntax first 31.3 29.3

Multitasking distinct softmax 32.0 -

Table 6.4: BLEU score results of contrastive experiments with target–syntax which vary

the degree of independence between target words and CCG supertags. Highest scores

in bold.

The German→English system which predicts the CCG supertag sequence before

the target word sequence performs significantly worse than the baseline NMT system.

For Romanian→English, this system performs similarly to the system using the in-

terleaving approach. These results suggest that a direct dependency between words

and CCG supertags is important for German→English. For Romanian→English, it is

sufficient to have the syntactic context encoded in the decoder state.

Finally, the system with distinct softmax layers does not improve translation quality

for German→English as compared to the baseline NMT system. This confirms again

that a tight coupling of the target word and syntax is needed for this language pair.

6.5.2 Source-side and target-side syntax

We now show that our method for integrating target-side syntax can be combined with

the framework of Sennrich and Haddow [2016] for integrating source-side linguistic

information, leading to further improvement in translation quality. We evaluate the

syntax-aware NMT system, with CCG supertags as target-syntax and dependency la-

bels as source-syntax. While the dependency labels do not encode sentence-level syn-

tactic constraints, they disambiguate the grammatical function of words. Initially, we

had intended to use CCG supertags on the source-side as well for German→English,

however the German CCG tree-bank is still under development.

From the results in Table 6.3 we first observe that for German→English the source-

side dependency labels improve BLEU by only 0.1, while Romanian→English sees an

improvement of 0.5. Source-syntax may help more for Romanian→English because
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the training data is smaller and the word order is more similar between the source and

target languages than it is for German→English.

For both language pairs, target-syntax improves translation quality more than source-

syntax. However, target-syntax is complemented by source-syntax when used together,

leading to a final improvement of 0.9 BLEU points for German→English and 1.2 BLEU

points for Romanian→English.

Finally, we show that CCG supertags are also an effective representation of global-

syntax when used in the encoder. In Table 6.5 we present results for using CCG

supertags as source-syntax in the embedding layer. Because we have CCG annota-

tions only for English, we reverse the translation directions and report BLEU scores

for English→German and English→Romanian. The BLEU scores reported are for the

ensemble models over newstest2016.

model syntax EN→DE EN→RO

NMT - 28.3 25.6

SNMT source – CCG 29.0* 26.1*

Table 6.5: BLEU results for English (EN)→German (DE) and English→Romanian (RO)

with source-side syntax. The SNMT system uses the CCG supertags of the source

words in the embedding layer. *p < 0.05. Best results in bold. This table was adapted

from Nădejde et al. [2017].

For English→German BLEU increases by 0.7 points and for English→Romanian

by 0.5 points. In contrast, Sennrich and Haddow [2016] obtain an improvement of only

0.2 for English→German using dependency labels which encode only the grammatical

function of words. These results confirm that incorporating sentence-level syntactic

information in the encoder provides complementary information that the baseline NMT

model is not able to learn from the source word sequence alone.

6.5.3 Analyses by sentence type

In this section, we make a finer grained analysis of the impact of target-side syntax by

looking at a breakdown of BLEU scores with respect to different linguistic construc-

tions and sentence lengths.7

We classify English sentences into different linguistic constructions based on the

CCG supertags that appear in them. For example, the presence of category (NP\NP)/(S/NP)
7Document-level BLEU is computed over each subset of sentences.
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indicates a subordinate construction. If multiple linguistic constructs appear in the

same sentence, we count it for each of these constructs. However, if a sentence has

multiple constructs of the same type, we only count it once. Appendix C shows the

regular expression written in Python for grouping sentences by linguistic constructs.

Figure 6.3 shows the difference in BLEU points between the syntax-aware NMT system

and the baseline NMT system for the following linguistic constructions: coordination

(conj), control and raising (control), prepositional phrase attachment (pp), questions

and subordinate clauses (subordinate).

These constructs are challenging for machine translation as they involve complex

reordering or agreement. As we previously exemplified in Section 2.5, in German,

the verb appears at the end of the subordinate clause and its English translation has

to be reordered. Prepositional phrases can also be involved in reordering, because

the order of verb arguments is more flexible in German. Questions can also involve

movement of prepositions as in example a) from Figure 6.5. In this analysis we did

not distinguish between questions involving movement and those which do not, and

this could be addressed in future work. Finally, the constructs involving coordination

or control and raising can involve long-distance agreement.

In the figure we use the symbol “*” to indicate that syntactic information is used

on the target (eg. de-en*), or both on the source and target (eg. *de-en*). We report

the number of sentences for each category in Table 6.6.

sub. qu. pp contr. conj total

RO↔EN 742 90 1,572 415 845 1,984

DE↔EN 936 114 2,321 546 1,129 2,994

Table 6.6: Frequency of the English sentences with different linguistic constructs for

Romanian (RO)→English (EN) and German (DE)→English (EN) test sets. This table

was adapted from Nădejde et al. [2017].

With target-syntax, we see consistent improvements across all linguistic construc-

tions for Romanian→English and across all but control and raising for German→English.

In particular, the increase in BLEU scores for the prepositional phrase and subordinate

constructions suggests that the target word order is improved. In future work, we

propose manually evaluating the SNMT systems to confirm that word order is indeed

improved.

For German→English, there is a small decrease in BLEU for the control and raising
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Figure 6.3: Difference in BLEU points between SNMT and NMT (X axis) with regard to

different linguistic constructs, relative to baseline NMT scores (shown as labels to the

left of the bars). This figure was adapted from Nădejde et al. [2017].

constructions when using target-syntax alone. However, source-syntax adds comple-

mentary information to target-syntax, resulting in a small improvement for this cat-

egory as well. Moreover, combining source and target-syntax increases translation

quality across all linguistic constructions as compared to NMT and SNMT with target-

syntax alone. For Romanian→English, combining source and target-syntax brings an

additional improvement of 0.7 for subordinate constructs and 0.4 for prepositional

phrase attachment. For German→English, on the same categories, there is an ad-

ditional improvement of 0.4 and 0.3 respectively. Overall, BLEU scores improve by

more than 1 BLEU point for most linguistic constructs and for both language pairs.

Next, we compare the systems with respect to sentence length. Figure 6.4 shows

the difference in BLEU points between the syntax-aware NMT system and the baseline

NMT system with respect to the length of the source sentence measured in BPE sub-

units. We report the number of sentences for each category in Table 6.7.

With target-syntax, we see consistent improvements across all sentence lengths

for Romanian→English and across all but short sentences for German→English. For
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Figure 6.4: Difference in BLEU points (X axis) between SNMT and NMT with regard

to sentence length, relative to baseline NMT scores. The BLEU scores for the baseline

are shown as label to the left of the bars. This figure was adapted from Nădejde et al.

[2017].

German→English there is a decrease in BLEU for sentences up to 15 words. Since the

German→English training data is large, the baseline NMT system learns a good model

for short sentences with local dependencies and without subordinate or coordinate

clauses. Including extra CCG supertags increases the target sequence without adding

information about complex linguistic phenomena. However, when using both source

and target syntax, the effect on short sentences disappears. For Romanian→English

there is also a large improvement on short sentences when combining source and target

syntax: 2.9 BLEU points compared to the NMT baseline and 1.2 BLEU points compared

to SNMT with target-syntax alone.

With both source and target-syntax, translation quality increases across all sentence

lengths as compared to NMT and SNMT with target-syntax alone. For German→English

sentences that are more than 35 words, we see again the effect of increasing the target

sequence by adding CCG supertags. Target-syntax helps, however BLEU improves by

only 0.4, compared to 0.9 for sentences between 15 and 35 words. With both source
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<15 15-25 25-35 >35 total

RO↔EN 491 540 433 520 1,984

DE↔EN 918 934 582 560 2,994

Table 6.7: Frequency of the English sentences with different sentence lengths (in to-

kens), for Romanian (RO)→English (EN) and German (DE)→English (EN) test sets.

This table was adapted from Nădejde et al. [2017].

and target syntax, BLEU improves by 0.8 for sentences with more than 35 words. For

Romanian→English we see a similar result for sentences with more than 35 words:

target-syntax improves BLEU by 0.6, while combining source and target syntax im-

proves BLEU by 0.8. These results confirm as well that source-syntax adds complemen-

tary information to target-syntax and mitigates the problem of increasing the length of

the target sequence.

In Table 6.8 we report the breakdown of BLEU scores used for generating the fig-

ures.

German→English Romanian→English

NMT SNMT SNMT NMT SNMT SNMT

category tgt CCG tgt CCG + src Dep tgt CCG tgt CCG + src Dep

conj 33.7 34.3 34.8 28.9 29.9 30.2

control 33.0 32.7 33.3 28.3 28.8 29.1

pp 32.2 32.8 33.1 28.7 29.4 29.8

questions 28.8 30.2 30.1 23.0 25.3 25.8

subordinate 32.7 33.6 34.0 30.0 30.5 31.2

< 15 32.1 31.7 32.2 26.1 27.8 29.0

15-25 31.4 32.4 32.5 28.9 29.9 30.0

25-35 31.9 32.9 33.2 28.0 29.2 29.3

> 35 32.7 33.1 33.7 28.9 29.5 29.7

Table 6.8: Breakdown of BLEU scores with respect to different linguistic constructs and

sentence lengths. The scores are reported for the baseline NMT system, the SNMT

system with target (abbreviated as tgt) CCG supertags and the SNMT system with both

target CCG supertags and source (src) dependency (dep) labels.
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a) DE - EN Question

Source Oder wollen Sie herausfinden , über was andere reden ?

Ref. Or do you want to find out what others are talking about ?

NMT Or would you like to find out about what others are talking about ?

SNMT Or do you want to find out whatNP/(S[dcl]/NP) others are(S[dcl]\NP)/(S[ng]\NP) talking(S[ng]\NP)/PP aboutPP/NP ?

b) DE - EN Subordinate

Source ...dass die Polizei jetzt sagt , ..., und dass Lamb in seinem Notruf Prentiss zwar als seine Frau bezeichnete ...

Ref. ...that police are now saying ..., and that while Lamb referred to Prentiss as his wife in the 911 call ...

NMT ...police are now saying ..., and that in his emergency call Prentiss he called his wife ...

SNMT ...police are now saying ..., and that lamb , in his emergency call , described((S[dcl]\NP)/PP)/NP Prentiss as his wife ....

Figure 6.5: Comparison of baseline Neural Machine Translation (NMT) system and

syntax-aware NMT (SNMT) system with target syntax for German→English. Phrases

re-ordered correctly in SNMT vs NMT are in bold.

6.5.4 Discussion

Our experiments demonstrate that target-syntax improves translation for two language

pairs: German→English and Romanian→English.

In this section, we investigate the impact of CCG supertags on the alignment mod-

els and measure the accuracy of the predicted CCG sequences. First, we give two

examples of translations in Figure 6.5. In these examples, the syntax-aware NMT sys-

tem predicting target CCG supertags generates more grammatical translations than the

baseline NMT system. We then show the alignment matrices in Figures 6.6 and 6.7.

In the example DE-EN* Question the baseline NMT system translates the prepo-

sition “über” twice as “about”. The SNMT predicts the correct CCG supertag for

“what” which expects to be followed by a sentence and not a preposition:

NP/(S[dcl]/NP). Therefore the SNMT correctly re-orders the preposition “about” at

the end of the question.

In the example DE-EN* Subordinate the baseline NMT system fails to correctly

attach “Prentiss” as an object and “his wife” as a modifier to the verb “called (beze-

ichnete)” in the subordinate clause. In contrast, the SNMT system predicts the correct

sub-categorization frame of the verb “described” and correctly translates the entire

predicate-argument structure.

In Figures 6.6, 6.7 and 6.8 we plot the attention matrices, using heat maps, for the

baseline, SNMT with target syntax and multitasking systems. For each target position,

the attention weights over the source positions are represented by different shades of

blue, with darker shades corresponding to a higher weight. The attention matrices for
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the SNMT system show that the target word and its corresponding CCG supertag have

similar attention weights, focused on the source word of interest.

In Figure 6.6 a), for the baseline system, the attention weight of the second oc-

currence of the preposition “about” is concentrated on the end-of-sentence symbol8

“</s>” and little attention is distributed over the source preposition “über”. There-

fore, some other part of the decoder is responsible for generating this preposition a

second time, which breaks the sentence structure. Figure 6.6 b), shows that the SNMT

system predicts the preposition “about” only once with a strong attention weight over

the corresponding source word.

In Figure 6.7 a), the baseline system does not generate a translation of the sub-

ject “Lamb” and instead generates the pronoun “he” which has a diffused attention

over the source words, including the subject “Lamb” and the object “Prentiss”. In

contrast, Figure 6.7 b) shows the SNMT system generating a subject9 with a strong

attention over the corresponding source word. The SNMT system correctly translates

the verb “bezeichnete” as “described” and predicts the corresponding CCG supertag

((S[dcl]\NP)/PP)/NP which includes the subject to the left of the verb and direct

object and prepositional phrase to the right. In contrast, Figure 6.8 shows that the

multitasking system mistranslates the verb as “called” and predicts the CCG supertag

(S[dcl]\NP)/PP which includes only a subject to the left of the verb and a preposi-

tional phrase to the right. The multitasking system fails to generate a translation for

the object “Prentiss”.

Next, we compare how accurate the systems are at predicting the CCG supertag

sequence using the interleaving and multitasking approaches. If one of the systems

learns a more accurate model of target syntax, that can explain the difference in trans-

lation quality. Furthermore, if the predicted CCG sequence is correct it can be used in

downstream applications, such as multi-lingual question answering.

First, we measure whether the systems are able to predict the correct number of

supertags. For German→English, the system using interleaving learns to predict a

CCG supertag for every target word for all the sentences in the evaluation set. In

contrast, the system using multitasking predicts the correct number of CCG supertags

only for 69% of the sentences (2060 out of 2994). For this system, the average absolute

difference between the number of predicted words and CCG supertags is 2.5 tokens.

8The encoder state corresponding to the end-of-sentence symbol encodes the entire source sentence
(processed from left to right). For this reason, most target words will have some attention weight
distributed over this position.

9The system does not recognize the proper name “Lamm” and mistranslates it as “lamb”.
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Interleaving Multitasking

Category CCG Total count Accuracy (%) Total count Accuracy (%)

Prepositional phrase PP/NP 4,191 94.9 1,061 67.1

((S\NP)\(S\NP))/NP 1,143 82.0 302 55.0

(N\N)/NP 1,338 79.2 319 55.2

Intransitive verbs S\NP 1,443 90.5 431 65.2

Transitive verbs (S\NP)/NP 2,327 94.5 674 71.2

(S\NP)/PP 1,273 92.5 343 55.4

Ditransitive verbs ((S\NP)/PP)/NP 283 89.0 81 53.0

Relative (NP\NP)/(S\NP) 190 97.9 30 53.3

Subordinate S/S 592 98.1 166 69.3

All supertags - 95.7 - 73.2

Table 6.9: Accuracy for CCG supertags representing prepositional phrase attachment,

the subcategorization frame of verbs (intransitive, transitive, ditransitive), and subordi-

nate constructs. We only consider sentences for which the system produced the same

number of words and CCG supertags and report the total count for each category.

For Romanian→English, the system using interleaving predicts the wrong number of

supertags for 6% of the sentences (115 out of 1984), with an average difference of

1.5 tokens. In contrast, the system using multitasking predicts the wrong number of

supertags for 81% of the sentences (1613 out of 1984), with an average difference of 4

tokens.

Next, we evaluate the accuracy of the CCG sequences predicted by the two sys-

tems, at token level and only for the sentences which have the same number of pre-

dicted supertags and words. As “gold” annotations we use the CCG sequence ob-

tained by parsing the predicted word sequences with EasySRL. For the interleaving

approach, we obtain the following accuracies: 95.7 for German→English and 96.0 for

Romanian→English. For the multitasking approach, the accuracies are considerably

lower: 73.2 for German→English and 73.7 for Romanian→English.

In Table 6.9, we report the breakdown of CCG accuracy for German→English over

supertags representing prepositional phrase attachment, the subcategorization frame

of verbs, and subordinate and relative clauses10. We observe that the system using

interleaving has an accuracy higher than 90% for most categories and lower accuracies

of 79% for (N\N)/NP11 (prepositional phrase attaching to noun phrase) and of 89%

10When we count the CCG supertags we ignore features such as dcl, pss.
11We aggregate the numbers for (N\N)/NP and (NP\NP)/NP.
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for ((S\NP)/PP)/NP (ditransitive verb). For the multitasking approach, the variance

across categories is much higher and half of the categories have accuracies below 60%.

However, this evaluation potentially penalizes the multi-tasking system since the two

decoders are not synchronized. It is possible that the 1-best CCG supertag sequence

predicted by the first decoder is correct, but it corresponds to a translation other than

the 1-best word sequence predicted by the second decoder12.

The analyses presented here show that the SNMT system using interleaving is

able to predict with high accuracy the CCG supertags disambiguating prepositional

phrase attachment, the subcategorization frames of verbs and identifying subordinate

sentences. These aspects of syntax contribute to generating better target word order

and well-formed predicate-argument structures and this could be confirmed by manual

analysis in future work. Future work could also focus on improving translation for cat-

egories for which the CCG supertagging accuracy is lower, such as ditransitive verbs

and prepositional phrases attaching to nouns.

6.6 Conclusions

In this chapter, we introduced a method to incorporate explicit target-syntax in a neu-

ral machine translation system, by interleaving target words with their corresponding

CCG supertags. Earlier work on syntax-aware NMT mainly modeled syntax in the

encoder, while our experiments suggest modeling syntax in the decoder is also useful.

The results we presented in Section 6.5 show that a tight integration of syntax in the de-

coder improves translation quality for both German→English and Romanian→English

language pairs, more so than a loose coupling of target words and syntax as in mul-

titask learning. Finally, by combining our method for integrating target-syntax with

the framework of Sennrich and Haddow [2016] for source-syntax we obtain the most

improvement over the baseline NMT system: 0.9 BLEU for German→English and 1.2

BLEU for Romanian→English. In particular, the results in Section 6.5.3 show large

improvements for longer sentences involving syntactic phenomena such as subordi-

nate and coordinate clauses. By representing target syntax with CCG supertags, which

encode subcategorization information, capturing long distance dependencies and at-

tachments, we also improve translation of prepositional phrases, the most frequent

type of predicate arguments.

12In such cases, a different gold annotation of the CCG supertag sequence should be considered,
however it would be impossible to guess wich n-best translation to annotate.
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Incorporating global source or target syntax in SMT has been extensively explored,

as we have done in Chapters 4 and 5, but there is ongoing work on this topic for NMT.

In this chapter we have shown that combining sentence-level lexical and syntactic in-

formation from both the source-side and the target-side also improves NMT in particu-

lar when long distance dependencies are involved. In future work we propose to man-

ually evaluate sentence pairs which involve reordering, such as those with subordinate

clauses, to confirm that the syntactic information improves word order. Future work

could also test whether the words receive CCG supertags that are appropriate given the

context and can be combined into a well-formed S-rooted tree structure. This analysis

could also investigate if a grammatically well-formed CCG supertag sequence discour-

ages repetitions or omissions of words. Another research direction could be to evaluate

the impact of target-syntax when translating into a morphologically rich language, for

example by using the Hindi CCGBank [Ambati et al., 2016]. Our results with source

and target syntax could be improved by exploring other source-side linguistic features.

In the next chapter, we summarize the contributions of this thesis and present some

future research directions.
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a)

b)

Figure 6.6: Comparison of alignment matrices for a) the baseline NMT system and

b) the SNMT system with target syntax. The alignment matrices correspond to the

example a) in Figure 6.5. The source sentence (English) is on the Y axis, the target

(German) on the X axis.
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a)

b)

Figure 6.7: Comparison of alignment matrices for a) the baseline NMT system and b)

the SNMT system with target syntax. The alignment matrices are cropped and corre-

spond to the subordinate clause in the example b) in Figure 6.5.
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a)

b)

Figure 6.8: The alignment matrices are cropped and correspond to the subordinate

clause in the example b) in Figure 6.5.



Chapter 7

Conclusions and Future Work

7.1 Summary

In this thesis we explored how the syntactic structures of the source and target sen-

tences can be leveraged to improve translation of complex syntactic phenomena in-

volving long distance dependencies.

String-to-tree SMT systems use explicit target syntax to handle long-distance re-

ordering, but make strong independence assumptions which lead to inconsistent lexical

choices. To address this, we proposed modeling target-side selectional preferences of

predicates for their argument fillers, but this was not effective in string-to-tree systems.

However, incorporating the global source-side syntactic context in a neural network

lexicon model was essential to improving verb translation.

In contrast to SMT, neural machine translation does not make strong independence

assumptions thus generating more fluent translations and capturing some long-distance

dependencies. Despite the strong learning capabilities of NMT, incorporating addi-

tional linguistic information can still improve translation quality. We examined the

benefit of incorporating explicit syntactic information on the target-side, showing that

tightly coupling words and syntax is most effective at improving translation both in

high-resource and low-resource scenarios. Furthermore, we showed that combining

target-side and source-side syntactic information brings additive improvements which

are consistent across difficult linguistic constructs and sentence lengths.

117
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7.2 Conclusions

We began our work with improving robustness of string-to-tree SMT systems, which

were shown to be effective for language pairs exhibiting long-distance word reorder-

ing. One important contribution of this thesis was to show this system can achieve

state-of-the-art results for German→English on large scale evaluation campaigns

[Nădejde et al., 2013, Williams et al., 2014]. Still, our error analyses indicated prob-

lems with translating the semantic frames of verbs, which are caused by strong inde-

pendence assumptions.

We proposed leveraging the target syntactic context available in the decoder to

model the semantic affinities between target verbs and their argument fillers. We

used dependency relations to represent the predicate argument structure and the se-

lectional association measure proposed by Resnik [1996] to quantify the degree of

semantic affinity. Based on these, we introduced a Selectional Preferences feature in

a dependency-based string-to-tree system [Nădejde et al., 2016a]. We evaluated three

variants of our features, as well a variant of the neural relational dependency language

model (RDLM) [Sennrich, 2015] on German→English and did not find significant im-

provements in automatic metrics. These results prompted an analysis of the (predicate,

argument, dependency relation) triples, which are scored by our feature. We found that

our feature is not effective when the predicate and its arguments are close to each other.

In case of the predicates and arguments which are further apart, the translation qual-

ity decreases drastically. Furthermore, verbs are often mistranslated which means the

conditioning context of our feature is wrong most of the time.

We then performed an in depth analysis of verb translation for a German→English

string-to-tree SMT system, that showed grave deficiencies: verb translation recall is

as low as 45% and 20% of the main verbs are translated without lexical context. To

improve verb translation, we proposed a Neural Verb Lexicon Model trained with a

feed-forward neural network and incorporating syntactic context from the source sen-

tence [Nădejde et al., 2016b]. The syntactic context includes all the core arguments of

the source verb which carry most semantic information relevant to verb disambigua-

tion. This intuition is confirmed by the improvement in model accuracy of 1.5% over a

baseline incorporating only a window context centered on the source verb. When used

as an extra feature for re-ranking the output of a string-to-tree system, the NVLM im-

proves verb translation precision by up to 2.7% and recall by up to 7.4%. The syntactic

context helped improve precision as compared to the window context, but improved re-
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call to the same extent. Furthermore, these improvements came at the cost of a small

(less than 0.5%) decrease in BLEU score.

While the NVLM improves some aspects of translation, other syntactic and lexical

inconsistencies appear which are not being addressed with a linear combination of

independent models. In contrast, neural machine translation (NMT) does not make

such independence assumptions since it incorporates the entire source sentence and

target history as context when predicting the next target word. Even though NMT

models are able to partially learn source-side syntactic information from sequential

lexical information, explicit linguistic features can still improve translation quality.

While others proposed incorporating additional source-side linguistic information in

NMT, our work was the first to explore the benefit of incorporating target syntax.

We proposed a novel method to incorporate explicit target-syntax in a neural ma-

chine translation system, by interleaving target words with their corresponding CCG

supertags [Nădejde et al., 2017]. We chose this representation because CCG supertags

provide sentence-level syntactic information locally at the lexical level. We then showed

that a tight integration of target syntax in the NMT decoder improves translation quality

for both German→English and Romanian→English language pairs, more than a loose

coupling of target words and syntax as in multitask learning. When incorporating both

source and target syntax we obtained additive improvements for both language pairs

over a strong baseline NMT system: 0.9 BLEU for German→English and 1.2 BLEU for

Romanian→English. Finally, we presented a fine grained analyses showing consistent

improvements across difficult linguistic constructs and sentence lengths.

7.3 Contributions

The contributions of this thesis are:

• We explored different methods for improving robustness of string-to-tree sys-

tems and build a state-of-the art system for German→English.

• We proposed a Selectional Preferences Model which captures semantic affinities

between target predicates and their arguments. We showed that the performance

of the model as a feature in a string-to-tree systems for German→English suffers

because of overlap with the language model and because of mistranslated verbs.

• We presented an analysis of verb translation in string-to-tree systems for
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German→English highlighting that verb translation recall is as low as 45% and

that 20% of the main verbs are translated without lexical context.

• We proposed a Neural Verb Lexicon Model to address the problem of mistrans-

lated verbs in string-to-tree systems. The model uses a rich source-side syntactic

context, including the subcategorization frame, improving verb translation pre-

cision by up to 2.7% and recall by up to 7.4%.

• We proposed a novel method to incorporate explicit target-syntax in a neural

machine translation system, by interleaving target words with their correspond-

ing CCG supertags. We showed that target language syntax improves translation

quality in both high-resource and low-resource scenarios, and that a tight cou-

pling of target words and syntax (by interleaving) is better than a loose coupling

as in multitask learning.

• We showed that by combining our method for Syntax-aware NMT (SNMT) with

target CCG supertags with a framework for incorporating source-side linguistic

information, we obtain the most improvement in translation quality.

• We presented a fine grained analysis of SNMT and show consistent gains when

looking at different linguistic phenomena and sentence lengths.

7.4 Future Work

In Chapter 4.1 we argued that the effectiveness of the selectional preference feature

may be limited by: errors in the target syntactic trees generated by the system and

mistranslated verbs. We propose in future work to manually identify system trans-

lations exhibiting several attachment errors and to use these sentences to re-evaluate

the selectional preference feature. To measure the impact of mistranslated verbs, we

propose as future work an oracle experiment in which we force the system with the se-

lectional preference feature to generate the correct verb (if the correct translation can

be reached).

In Chapter 5.1 we observed that, in some cases, the verb translation is improved

by the NVLM but at the cost of other errors appearing in the translation. Future work

could address this issue by integrating the NVLM as a feature in the string-to-tree de-

coder. Another line of research could investigate whether the NVLM has more impact

on translation quality if it also predicts translations for predicative nouns. Precision
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could be improved further if additional target-side context is provided to the NVLM,

for example by integrating it with the selectional preference feature in the decoder.

Tuning feature weights towards a metric which combines recall and precision, such as

METEOR , or towards a metric that considers syntactic n-grams, such as HWCM , could

results in more gains in verb translation recall.

This thesis also paves the way for future work on incorporating target-side linguis-

tic information in NMT and we suggest next a few possible directions. A first step

should be to manually evaluate the SNMT systems with target-syntax on sentences in-

volving reordering, to confirm whether word order is indeed improved and for which

linguistic constructs (e.g. subordinate clauses).

A natural extension to the current set of experiments would be evaluating the im-

pact of target syntax for translation into morphologically rich languages. We suggested

at the end of Chapter 6 to experiment with English→Hindi, using the Hindi CCG-

Bank [Ambati et al., 2016]. Still, a more large scale survey of target syntax in NMT

could be performed using dependency labels instead of CCG supertags, as dependency

parsers are available for several languages [Andor et al., 2016]. Although dependency

labels do not encode sentence-level syntactic information at the lexical level, they do

disambiguate the syntactic function of words. Other aspects of translation could also

be evaluated, for example agreement between subject and verb in the presence of mul-

tiple attractors similar to the monolingual analysis performed for LSTMs by Linzen

et al. [2016].

One limitation of the current work is that interleaving the syntactic representation

with the target words results in doubling the length of the target recurrence. A more

efficient decoder architecture could deal with this shortcoming, for example by having

two distinct softmax layers with a dependency between the different linguistic factors.

Martı́nez et al. [2016] explored a few architectures for a factored decoder but only

evaluated these in the context of predicting two factors, the lemma and a morphological

tag, to reduce the size of the target vocabulary. While they did not report any significant

improvements, there is hope that including CCG factors and BPE sub-units would

achieve similar improvements as reported in this thesis, but with a lower computational

cost.

A factored architecture would also allow adding other linguistic information such

as the part-of-speech or dependency labels which were successfully used as source-

side factors [Sennrich and Haddow, 2016]. This would be especially beneficial for

language pairs where no syntactic resources are available on the source-side, which
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applies to many low-resource language pairs. The difficulty with this approach would

be to design a strategy for synchronizing the word level linguistic annotation with the

BPE sub-units. When using linguistic annotation in the embedding layer, Sennrich

and Haddow [2016] duplicate the factors for each BPE sub-unit. However, this might

not be the best approach in the decoder if the BPE factor is conditioned on the other

linguistic factors at each time step, since this would require a cross-product between

all the factors.



Appendix A

Training Data Statistics

Below we report the number of sentences in the parallel training data and test sets for

the WMT 2013-2016 shared tasks [Federmann et al., 2013, Bojar et al., 2014, 2015,

2016].
Year Europarl News Commentary Common Crawl Test set

2013 1,920,209 178,221 2,399,123 3,000

2014 1,920,209 201,288 2,399,123 3,003

2015 1,920,209 216,190 2,399,123 2,169

2016 1,920,209 242,770 2,399,123 2,999
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Nematus Parameters

Below we list the parameters used for training the NMT systems with the Nematus

toolkit.

• Baseline NMT system

Parameter name DE→EN RO→EN

dim word 500 500

factors 1 1

dim per factor [500] [500]

dim 1024 1024

n words 85000 85000

n words src 85000 85000

decay c 0. 0.1

clip c 1. 1.

lrate 0.0001 0.0001

optimizer ’adam’ ’adam’

maxlen 50 50

batch size 50 60

valid batch size 50 60

use dropout False True

dropout embedding - 0.2

dropout hidden - 0.2

dropout source - 0.1

dropout target - 0.1
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• For the NMT systems with target CCG supertags the only parameter change is:

maxlen = 100

• For NMT systems with source side factors, [word, IOB tag, dependency label]

the following parameters change:

f actors = 3

dim per f actor = [485,5,10]

• For NMT systems with source side factors, [word, IOB tag, CCG supertag] the

following parameters change:

f actors = 3

dim per f actor = [360,5,135]



Appendix C

Selecting sentences by type

Python code for grouping English sentences according to linguistic constructs identi-

fied with the CCG supertags:

for i, line in enumerate(sys.stdin):

if line.find("PP") != -1 or line.find("((S\NP)/(S\NP))/NP") != -1 \

or line.find("(NP\NP)/NP") != -1:

pp.append(i)

if line.find("S[q]") != -1 or line.find("S[wq]") != -1 \

or line.find("S[qem]") != -1:

questions.append(i)

if line.find("conj") != -1:

conj.append(i)

if re.search(\

"\(N[P]?[\\\/]N[P]?\)[\\\/]\(S(\[[ˆ\(\)\\\/]+\])?[\\\/]N[P]?\)", line) \

or re.search("\|S(\[[ˆ\(\)\\\/]+\])?[\\\/]S(\[[ˆ\(\)\\\/]+\])? ", line):

relatives_and_subordinates.append(i)

if re.search(\

"\(S(\[[ˆ\(\)\\\/]+\])?[\\\/]N[P]?\)\/\(S(\[to\])[\\\/]N[P]?\)", line):

control.append(i)
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Katrin Erk, Sebastian Padó, and Ulrike Padó. A flexible, corpus-driven model of reg-

ular and inverse selectional preferences. Comput. Linguist., 36(4):723–763, 2010.
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Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland Memisevic, and Yoshua Ben-

gio. Montreal neural machine translation systems for wmt?15. In Proceedings

of the Tenth Workshop on Statistical Machine Translation, pages 134–140, Lis-

bon, Portugal, September 2015. Association for Computational Linguistics. URL

http://aclweb.org/anthology/W15-3014.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu Hoang. Is Neural Machine

Translation Ready for Deployment? A Case Study on 30 Translation Directions. In

Proceedings of the IWSLT 2016, December 2016.



Bibliography 135

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In

Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing, pages 1700–1709, Seattle, Washington, USA, October 2013. Associa-

tion for Computational Linguistics. URL http://www.aclweb.org/anthology/

D13-1176.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

Eliyahu Kiperwasser and Yoav Goldberg. Semi-supervised dependency parsing using

bilexical contextual features from auto-parsed data. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pages 1348–

1353, September 2015.

Kevin Knight. Decoding complexity in word-replacement translation models. Com-

putational Linguistics, 25:607–615, 1999. ISSN 08912017.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-

erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,
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