72,182 research outputs found

    Two-phased knowledge formalisation for hydrometallurgical gold ore process recommendation and validation

    Get PDF
    This paper describes an approach to externalising and formalising expert knowledge involved in the design and evaluation of hydrometallurgical process chains for gold ore treatment. The objective was to create a case-based reasoning application for recommending and validating a treatment process of gold ores. We describe a twofold approach. Formalising human expert knowledge about gold mining situations enables the retrieval of similar mining contexts and respective process chains, based on prospection data gathered from a potential gold mining site. Secondly, empirical knowledge on hydrometallurgical treatments is formalised. This enabled us to evaluate and, where needed, redesign the process chain that was recommended by the first aspect of our approach. The main problems with formalisation of knowledge in the domain of gold ore refinement are the diversity and the amount of parameters used in literature and by experts to describe a mining context. We demonstrate how similarity knowledge was used to formalise literature knowledge. The evaluation of data gathered from experiments with an initial prototype workflow recommender, Auric Adviser, provides promising results

    Structured Knowledge Representation for Image Retrieval

    Full text link
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    Knowledge modelling with the open source tool myCBR

    Get PDF
    Building knowledge intensive Case-Based Reasoning applications requires tools that support this on-going process between domain experts and knowledge engineers. In this paper we will introduce how the open source tool myCBR 3 allows for flexible knowledge elicitation and formalisation form CBR and non CBR experts. We detail on myCBR 3 's versatile approach to similarity modelling and will give an overview of the Knowledge Engineering workbench, providing the tools for the modelling process. We underline our presentation with three case studies of knowledge modelling for technical diagnosis and recommendation systems using myCBR 3

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    MBT: A Memory-Based Part of Speech Tagger-Generator

    Full text link
    We introduce a memory-based approach to part of speech tagging. Memory-based learning is a form of supervised learning based on similarity-based reasoning. The part of speech tag of a word in a particular context is extrapolated from the most similar cases held in memory. Supervised learning approaches are useful when a tagged corpus is available as an example of the desired output of the tagger. Based on such a corpus, the tagger-generator automatically builds a tagger which is able to tag new text the same way, diminishing development time for the construction of a tagger considerably. Memory-based tagging shares this advantage with other statistical or machine learning approaches. Additional advantages specific to a memory-based approach include (i) the relatively small tagged corpus size sufficient for training, (ii) incremental learning, (iii) explanation capabilities, (iv) flexible integration of information in case representations, (v) its non-parametric nature, (vi) reasonably good results on unknown words without morphological analysis, and (vii) fast learning and tagging. In this paper we show that a large-scale application of the memory-based approach is feasible: we obtain a tagging accuracy that is on a par with that of known statistical approaches, and with attractive space and time complexity properties when using {\em IGTree}, a tree-based formalism for indexing and searching huge case bases.} The use of IGTree has as additional advantage that optimal context size for disambiguation is dynamically computed.Comment: 14 pages, 2 Postscript figure

    Approaches to the use of sensor data to improve classroom experience

    Get PDF
    quipping classrooms with inexpensive sensors can enable students and teachers with the opportunity to interact with the classroom in a smart way. In this paper an approach to acquiring contextual data from a classroom environment, using inexpensive sensors, is presented. We present our approach to formalising the usage data. Further we demonstrate how the data was used to model specific room usage situation as cases in a Case-based reasoning (CBR) system. The room usage data was than integrated in a room recommendations system, reasoning on the formalised usage data. We also detail on our on-going work to integrating the systems presented in this paper into our Smart University vision
    corecore