42 research outputs found

    Cloud Radio Access Network architecture. Towards 5G mobile networks

    Get PDF

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    A Comprehensive Survey on Resource Allocation for CRAN in 5G and Beyond Networks

    Get PDF
    The diverse service requirements coming with the advent of sophisticated applications as well as a large number of connected devices demand for revolutionary changes in the traditional distributed radio access network (RAN). To this end, Cloud-RAN (CRAN) is considered as an important paradigm to enhance the performance of the upcoming fifth generation (5G) and beyond wireless networks in terms of capacity, latency, and connectivity to a large number of devices. Out of several potential enablers, efficient resource allocation can mitigate various challenges related to user assignment, power allocation, and spectrum management in a CRAN, and is the focus of this paper. Herein, we provide a comprehensive review of resource allocation schemes in a CRAN along with a detailed optimization taxonomy on various aspects of resource allocation. More importantly, we identity and discuss the key elements for efficient resource allocation and management in CRAN, namely: user assignment, remote radio heads (RRH) selection, throughput maximization, spectrum management, network utility, and power allocation. Furthermore, we present emerging use-cases including heterogeneous CRAN, millimeter-wave CRAN, virtualized CRAN, Non- Orthogonal Multiple Access (NoMA)-based CRAN and fullduplex enabled CRAN to illustrate how their performance can be enhanced by adopting CRAN technology. We then classify and discuss objectives and constraints involved in CRAN-based 5G and beyond networks. Moreover, a detailed taxonomy of optimization methods and solution approaches with different objectives is presented and discussed. Finally, we conclude the paper with several open research issues and future directions

    Wireless access network optimization for 5G

    Get PDF

    4G/5G cellular networks metrology and management

    Get PDF
    La prolifération d'applications et de services sophistiqués s'accompagne de diverses exigences de performances, ainsi que d'une croissance exponentielle du trafic pour le lien montant (uplink) et descendant (downlink). Les réseaux cellulaires tels que 4G et 5G évoluent pour prendre en charge cette quantité diversifiée et énorme de données. Le travail de cette thèse vise le renforcement de techniques avancées de gestion et supervision des réseaux cellulaires prenant l'explosion du trafic et sa diversité comme deux des principaux défis dans ces réseaux. La première contribution aborde l'intégration de l'intelligence dans les réseaux cellulaires via l'estimation du débit instantané sur le lien montant pour de petites granularités temporelles. Un banc d'essai 4G temps réel est déployé dans ce but de fournir un benchmark exhaustif des métriques de l'eNB. Des estimations précises sont ainsi obtenues. La deuxième contribution renforce le découpage 5G en temps réel au niveau des ressources radio dans un système multicellulaire. Pour cela, deux modèles d'optimisation ont été proposés. Du fait de leurs temps d'exécution trop long, des heuristiques ont été développées et évaluées en comparaisons des modèles optimaux. Les résultats sont prometteurs, les deux heuristiques renforçant fortement le découpage du RAN en temps réel.The proliferation of sophisticated applications and services comes with diverse performance requirements as well as an exponential traffic growth for both upload and download. The cellular networks such as 4G and 5G are advocated to support this diverse and huge amount of data. This thesis work targets the enforcement of advanced cellular network supervision and management techniques taking the traffic explosion and diversity as two main challenges in these networks. The first contribution tackles the intelligence integration in cellular networks through the estimation of users uplink instantaneous throughput at small time granularities. A real time 4G testbed is deployed for such aim with an exhaustive metrics benchmark. Accurate estimations are achieved.The second contribution enforces the real time 5G slicing from radio resources perspective in a multi-cell system. For that, two exact optimization models are proposed. Due to their high convergence time, heuristics are developed and evaluated with the optimal models. Results are promising, as two heuristics are highly enforcing the real time RAN slicing

    Optimización de problemas de varios objetivos desde un enfoque de eficiencia energética aplicado a redes celulares heterogéneas 5G usando un marco de conmutación de celdas pequeñas

    Get PDF
    This Ph.D. dissertation addresses the Many-Objective Optimization Problem (MaOP) study to reduce the inter-cell interference and the power consumption for realistic Centralized, Collaborative, Cloud, and Clean Radio Access Networks (C-RANs). It uses the Cell Switch-Off (CSO) scheme to switch-off/on Remote Radio Units (RRUs) and the Coordinated Scheduling (CS) technique to allocate resource blocks smartly. The EF1-NSGA-III (It is a variation of the NSGA-III algorithm that uses the front 1 to find extreme points at the normalization procedure extended in this thesis) algorithm is employed to solve a proposed Many-Objective Optimization Problem (MaOP). It is composed of four objective functions, four constraints, and two decision variables. However, the above problem is redefined to have three objective functions to see the performance comparison between the NSGA-II and EF1-NSGA-III algorithms. The OpenAirInterface (OAI) platform is used to evaluate and validate the performance of an indoor coverage system because most of the user-end equipment of next-generation cellular networks will be in an indoor environment. It constitutes the fastest growing 5G open-source platform that implements 3GPP technology on general-purpose computers, fast Ethernet transport ports, and Commercial-Off-The-Shelf (COTS) software-defined radio hardware. This document is composed of five contributions. The first one is a survey about testbed, emulators, and simulators for 4G/5G cellular networks. The second one is the extension of the KanGAL's NSGA-II code to implement the EF1-NSGA-III, adaptive EF1-NSGA-III (A-EF1-NSGA-III), and efficient adaptive EF1-NSGA-III (A2^2-EF1-NSGA-III). They support up to 10 objective functions, manage real, integer, and binary decision variables, and many constraints. The above algorithms outperform other works in terms of the Inverted Generational Distance (IGD) metric. The third contribution is the implementation of real-time emulation methodologies for C-RANs using a frequency domain representation in OAI. It improves the average computation time 10-fold compared to the time domain without using Radio Frequency hardware and avoids their uncertainties. The fourth one is the implementation of the Coordination Scheduling (CS) technique as a proof-of-concept to validate the advantages of frequency domain methodologies and to allocate resource blocks dynamically among RRUs. Finally, a many-objective optimization problem is defined and solved with evolutionary algorithms where diversity is managed based on crowded-distance and reference points to reduce the power consumption for C-RANs. The solutions obtained are considered to control the scheduling task at the Radio Cloud Center (RCC) and to switch RRUs.Este disertación aborda el estudio del problema de optimización de varios objetivos (MaOP) para reducir la interferencia entre células y el consumo de energía para redes de acceso de radio en tiempo real, colaborativas, en la nube y limpias (C-RAN). Utiliza el esquema de conmutacion de celdas (CSO) para apagar / encender unidades de radio remotas (RRU) y la técnica de programación coordinada (CS) para asignar bloques de recursos de manera inteligente. El algoritmo EF1-NSGA-III (es una variación del algoritmo NSGA-III que usa el primer frente de pareto para encontrar puntos extremos en el procedimiento de normalización extendido en esta tesis) se utiliza para resolver un problema de optimización de varios objetivos (MaOP) propuesto. Se compone de cuatro funciones objetivos, cuatro restricciones y dos variables de decisión. Sin embargo, el problema anterior se redefine para tener tres funciones objetivas para ver la comparación de rendimiento entre los algoritmos NSGA-II y EF1-NSGA-III. La plataforma OpenAirInterface (OAI) se utiliza para evaluar y validar el rendimiento de un sistema de cobertura en interiores porque la mayoría del equipos móviles de las redes celulares de próxima generación estarán en un entorno interior. Ella constituye la plataforma de código abierto 5G de más rápido crecimiento que implementa la tecnología 3GPP en computadoras de uso general, puertos de transporte Ethernet rápidos y hardware de radio definido por software comercial (COTS). Este documento se compone de cinco contribuciones. La primera es una estudio sobre banco de pruebas, emuladores y simuladores para redes celulares 4G / 5G. El segundo es la extensión del código NSGA-II de KanGAL para implementar EF1-NSGA-III, EF1-NSGA-III adaptativo (A-EF1-NSGA-III) y EF1-NSGA-III adaptativo eficiente (A 2 ^ 2 -EF1-NSGA-III). Admiten hasta 10 funciones objetivas, gestionan variables de decisión reales, enteras y binarias, y muchas restricciones. Los algoritmos anteriores superan a otros trabajos en términos de la métrica de distancia generacional invertida (IGD). La tercera contribución es la implementación de metodologías de emulación en tiempo real para C-RAN utilizando una representación de dominio de frecuencia en OAI. Mejora el tiempo de cálculo promedio 10 veces en comparación con el dominio del tiempo sin usar hardware de radiofrecuencia y evita sus incertidumbres. El cuarto es la implementación de la técnica de Programación de Coordinación (CS) como prueba de concepto para validar las ventajas de las metodologías de dominio de frecuencia y asignar bloques de recursos dinámicamente entre las RRU. Finalmente, un problema de optimización de muchos objetivos se define y resuelve con algoritmos evolutivos en los que la diversidad se gestiona en función de la distancia de crouding y los puntos de referencia para reducir el consumo de energía de las C-RAN. Las soluciones obtenidas controlan la tarea de programación en Radio Cloud Center (RCC) y conmutan las RRU.Proyecto personal: Redes celulares de próxima generaciónDoctorad
    corecore