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A Comprehensive Survey on Resource Allocation
for CRAN in 5G and Beyond Networks
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Abstract—The diverse service requirements coming with the
advent of sophisticated applications as well as a large number
of connected devices demand for revolutionary changes in the
traditional distributed radio access network (RAN). To this end,
Cloud-RAN (CRAN) is considered as an important paradigm
to enhance the performance of the upcoming fifth generation
(5G) and beyond wireless networks in terms of capacity, latency,
and connectivity to a large number of devices. Out of several
potential enablers, efficient resource allocation can mitigate var-
ious challenges related to user assignment, power allocation, and
spectrum management in a CRAN, and is the focus of this paper.
Herein, we provide a comprehensive review of resource allocation
schemes in a CRAN along with a detailed optimization taxonomy
on various aspects of resource allocation. More importantly,
we identity and discuss the key elements for efficient resource
allocation and management in CRAN, namely: user assignment,
remote radio heads (RRH) selection, throughput maximization,
spectrum management, network utility, and power allocation.
Furthermore, we present emerging use-cases including heteroge-
neous CRAN, millimeter-wave CRAN, virtualized CRAN, Non-
Orthogonal Multiple Access (NoMA)-based CRAN and full-
duplex enabled CRAN to illustrate how their performance can
be enhanced by adopting CRAN technology. We then classify
and discuss objectives and constraints involved in CRAN-based
5G and beyond networks. Moreover, a detailed taxonomy of
optimization methods and solution approaches with different
objectives is presented and discussed. Finally, we conclude the
paper with several open research issues and future directions.

Index Terms—Cloud RAN, optimization, resource allocation,
5G and beyond networks.

I. INTRODUCTION

The tremendous growth in data transmission has a revolu-
tionary impact on wireless networks. It is projected that the
number of wireless devices continues to grow at a prodigious
rate [1]. Therefore, mobile network operators (MNOs) are
expected to face challenging conditions in order to increase
network capacity. In addition, modern applications have a
diverse range of service requirements including latency and
energy consumption. In the last few years, researchers in
the field have been predominantly concerned with devising
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state-of-the-art, innovative, as well as disruptive concepts
and technologies, pursuing leaps and strides beyond those of
today’s cellular systems and their known limitations [2], [3].

Several alternatives have been proposed to increase net-
work/system capacity in an energy-efficient way. First, the
spectrum efficiency can be improved by using advanced tech-
niques such as massive multiple-input and multiple-output
(MIMO) which uses a very high number of antennas to
transmit messages of multiple devices utilizing the same time-
frequency resource [4]–[7]. Second, a small cell heterogeneous
network (HetNet) can be deployed in which traditional macro
cells provide basic coverage for the devices while small cells
yield high throughput and offloading [8], [9]. However, small
cell HetNets produce more interference and increase the total
cost of ownership (TCO) which consists of capital expenditure
(CAPEX) and operating expenses (OPEX). Third, opportunis-
tic spectrum access can be a solution to improve spectrum
efficiency in which secondary users can exploit spectrum holes
to transmit their data [10], [11]. However, reliability is a
major concern in most of the critical scenarios. To meet user
requirements, mobile operators are compelled to increase the
TCO. In return, the average revenue per user (ARPU) cannot
meet with the increasing expenses. These challenges have
forced wireless network experts to design novel architectures
to optimize CAPEX, OPEX, ARPU, and energy consumption.

In the current radio access network (RAN) architectures,
the processing capacity of a base station (BS) can only be
used by its own users. Network densification is one way to
increase capacity in current RAN architecture at the cost of
increased CAPEX and OPEX [12]. Furthermore, sophisticated
technologies including coordinated multipoint (CoMP) can
increase capacity and reduce interference. However, it puts
tight delay constraint on timely coordination among the BSs
[13]. Therefore, current RAN architectures are not scalable
to efficiently support the ever-increasing number of wireless
devices/users.

In the above context, Cloud-RAN (CRAN) is considered
as a potential solution to address the challenges posed by the
existing RAN architecture by using a central wireless cloud
network for managing the involved resources. The idea of
CRAN was initialized by IBM in 2010 [14] and later by
China Mobile described it in detail [15]. Many other network
operators and vendors including Alcatel-Lucent, Huawei, ZTE,
Nokia Siemens Networks, Intel, and Texas Instruments are
also investigating the potential of CRAN in mobile networks
[16]. The key characteristics of CRAN include centralized pro-
cessing, sharing of resources, real-time cloud computing, and
energy-efficient infrastructure [17], [18]. The major advantages
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Fig. 1. CRAN architecture for 5G and beyond networks.

of shifting from the distributed RAN to CRAN are: i) saving
OPEX cost because of centralized maintenance, reduced power
requirements, and efficient energy consumption, ii) improved
performance of network due to advanced coordinated signal
processing techniques, iii) flexible software upgrade, iv) in-
crease in ARPU, etc. Furthermore, CRAN is envisioned as
an integral part of fifth generation (5G) and beyond wireless
networks [19], [20].

Figure 1 depicts an overview of CRAN architecture, which
mainly consists of base-band units (BBUs), optical fiber
transmission, and remote radio heads (RRHs). The BBU pool
is a centralized processing unit and is shared among all the
cell sites. The BBU is responsible for performing functions
such as base-band processing and packet processing while
the RRHs collect RF signals from users and transmit them
to the cloud over the optical fiber transmission link. Also,
RRHs can transmit data to users after receiving from the cloud.
The fronthaul of a CRAN architecture consists of RRHs to
the BBU pool whereas the backhaul connects the BBU pool
to the cloud/ core network. It is relatively easy to add new
BBU in this architecture which makes CRAN architecture
scalable and easy to maintain. In a nutshell, CRAN performs
complex computational processing in a centralized way and
simple functions such as frequency conversion, amplification,
analog to digital (A/D) and digital to analog (D/A) conversion
are left for RRHs.

The CRAN architecture offers several benefits for 5G and
beyond networks. First, the centralized BBU pool can ef-
ficiently utilize resources and thus reduce the CAPEX and
OPEX. Approximately 15% CAPEX and 50% OPEX reduc-
tion are expected with CRAN in comparison with traditional
cellular networks [15]. Second, it can efficiently incorporate
advanced features of long-term evolution (LTE)-advanced such
as CoMP and interference mitigation [19]. Third, it can
minimize power consumption by switching off some BBUs in
the pool without affecting the overall network coverage. ZTE

forecasted that CRAN can save 67-80% power when compared
with traditional cellular networks depending on the number
of cells a BBU can cover [21], [22]. Fourth, it is scalable
and adaptable to non-uniform traffic [23]. Additional RRHs
can be added in the existing BBU pool to enhance coverage.
Similarly, existing cells can be divided or new RRHs can be
installed in order to increase network capacity which in turn
provides network flexibility. Last but not least, CRAN provides
relatively easy network maintenance and upgrades mainly
because of nearby BBUs. The transition from the traditional
cellular architecture to the CRAN has to face many challenges.
Particularly, many challenges that have been already addressed
in the traditional cellular networks need to be revisited in
a CRAN. Resource allocation is one such problem which
includes user assignment, RRH selection, throughput maxi-
mization, spectrum assignment, network utility maximization
and power allocation. Recent research works in CRAN show
that efficient resource allocation schemes can significantly
enhance the performance in terms of throughput and energy-
efficiency [24]–[28].

A. Review of Survey and Comparison Articles on CRAN

Resource allocation in a CRAN has quite a wide scope
and it requires expertise from multiple disciplines, mainly
engineering and computer science. There are many resource
allocation schemes recently proposed for a CRAN; however,
the existing research in this area is scattered with the focus
on a finite set of issues. There exist survey and comparison
articles related to CRAN. For example, authors in [29] pre-
sented a survey on recent research in CRAN for 5G cellular
systems. The authors focused on existing papers on through-
put enhancement, interference management, energy efficiency,
latency, security, cost reduction. On the other hand, a compre-
hensive tutorial on technologies, requirements, architectures,
challenges, requirements, and solutions for the efficient CRAN
fronthaul in 5G and beyond networks is presented in [30].
Fronthaul technologies such as mm-wave and wireless fidelity
are considered and the main focus of this work is optical
technologies. Another survey on comparison of RAN archi-
tectures (including CRAN, heterogeneous CRAN, and fog-
RAN) is presented in [31]. The architectures are compared
in terms of energy consumption, operations expenditures,
resource allocation, spectrum efficiency, system architecture,
and network performance.

In summary, existing CRAN works do not provide a com-
prehensive survey of resource allocation for CRAN. Unlike
these works, we provide a comprehensive survey of resource
allocation for CRAN in 5G and beyond networks from the
optimization viewpoint.

B. Contributions of this paper

There exist a few survey papers in the area of CRAN in
the literature [16], [32], [33]. A survey on recent advances
in a CRAN has been presented in [32]. This includes system
architecture, key technologies (the fronthaul compression, re-
source allocation and optimization and cooperative process-
ing). However, only a section has been dedicated to resource
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allocation, which does not sufficiently discuss the related
works in the literature. Furthermore, authors in [16] presented
a comprehensive survey on a CRAN and its implementation.
More specifically, the paper encompasses the technological
aspect of a CRAN and classifies its benefits in terms of energy
efficiency and cost perspective. Once again the focus has not
been given to resource allocation in a CRAN. Moreover, the
authors in [33] presented the resource allocation mechanisms
for heterogeneous entities in a CRAN. Various resource alloca-
tion mechanisms have been scratched to enhance spectral and
energy efficiency, however, only advances and challenges have
been highlighted without providing a comprehensive review of
the state-of-the-art. Unlike the existing survey articles, this pa-
per focuses on providing a broad range of resource allocation
techniques and emerging use-cases for the CRAN along with
a detailed classification of the involved objectives, constraints,
optimization methods and solution types/algorithms.

In this paper, we provide a generalized framework to be
utilized for research in resource allocation for CRAN systems.
The objective is to provide a comprehensive survey of resource
allocation schemes which can provide a holistic view of
objectives, constraints, problem types, and solution strategies
in a CRAN. We present several emerging use-cases for CRAN
along with application-specific objectives. We also provide
a discussion on challenges and open issues in a CRAN in
the context of 5G and beyond networks. To the best of
our knowledge, this paper is the most comprehensive survey
targeting resource allocation in a CRAN for 5G and beyond
networks. In the following, we highlight the main contributions
of this paper.

1) We identify the key elements of resource allocation in a
CRAN and then propose a generalized framework along
with the involved objectives, constraints, optimization
type, solutions/algorithms, which can be utilized for
resource allocation and management for CRAN in 5G
and beyond networks.

2) We discuss various emerging use-cases of CRAN includ-
ing heterogeneous CRAN, millimeterwave (mmWave)
CRAN, distributed antenna systems, Non-Orthogonal
Multiple Access (NOMA) based CRAN, energy
harvesting-based CRAN, virtualized CRAN, full-duplex
enabled CRAN and cell-free massive MIMO.

3) We present a detailed classification of objective func-
tions utilized in the CRAN optimization problems by
categorizing them into four broad categories, namely,
resource, throughput, energy and miscellaneous, and
provide a detailed review of existing works dealing with
these objective functions.

4) Also, we propose a detailed classification of the involved
constraints in CRAN optimization problems by classi-
fying them into five broad categories, namely, quality,
power, throughput, resource, and miscellaneous along
with a detailed review of the existing literature under
each category.

5) Furthermore, a detailed taxonomy of optimization meth-
ods is presented based on the techniques utilized in
the existing CRAN literature, and related works are

reviewed in detail.
6) Moreover, solution types/algorithms utilized in CRAN

optimization are classified and reviewed in detail.
7) Finally, some open research issues and future recom-

mendations are presented to stimulate future research
activities in the related domains.

The rest of the paper is organized as follows. Section II
presents a brief overview of resource allocation elements in
CRAN and discusses various other parameters of resource
allocation problems in CRAN. The emerging use-cases of
CRAN are discussed in Section III. Section IV covers the
classification of objectives and constraints for resource alloca-
tion problems in CRAN. Section V provides the taxonomy of
resource allocation problem types and their solutions. Open
research topics and future recommendations/directions are
presented in Section VI. Finally, the conclusions are drawn
in Section VII. To improve the flow of the paper, we present
the definition of acronyms used in this paper in Table I.

II. RESOURCE ALLOCATION IN CRAN
Figure 2 shows a generalized framework for resource alloca-

tion in a CRAN. Typically in a CRAN, the resource allocation
tasks are performed at the centralized entity BBU and the
RRHs are only used for transmission and reception of the
signal. Since the BBU pool has complete information about the
connected RRHs in the network, the resource allocation task
can easily be executed there. However, managing the resource
allocation task with various conflicting objectives (resource,
throughput and energy) and constraints (power, throughput,
resource, quality, CPU, cloud, and memory) is a challenging
task and it must be done while maintaining the quality of ser-
vice (QoS) parameters of various network entities. There are
several different optimization solutions/algorithms proposed in
the literature for resource allocation in a CRAN (See Section
IV) for several emerging applications (See Section III).

A. Resource Allocation Elements
Here, we will briefly discuss the basic elements for resource

allocation in a CRAN.
1) User Assignment: Like in any wireless network, efficient

user assignment is of vital importance in a CRAN [34]. User
scheduling refers to the selection of a group of users in a
particular time slot with the objective of enhancing the network
throughput. Concerning the limited resources and interference
constraints, intelligent scheduling of users is the key for
enhance the throughput of the network, and for subsequently
minimizing the impact of interference. On the other hand,
evaluating the group of users for a particular time slot in a
CRAN is a computationally intense task and is one of the
active research areas nowadays.

2) RRH Selection: In a CRAN, the functionality of RRH is
simply the transmission and reception of the signal. However,
the RRH selection is a critical task and it has a direct
impact on the spectral and energy efficiency of the network
[35]. In addition, RRHs can cooperate with each other and
perform the centralized beamforming task which can also have
direct impact on the throughput enhancement of the wireless
channels.
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TABLE I
DESCRIPTION OF THE ACRONYMS USED IN THIS PAPER.

Acronyms Description

5G Fifth generation
A/D Analog to Digital
AP Access point
ARPU Average revenue per user
BBU Base-band units
BCD Block coordinate descent
BSs Base stations
CAPEX Capital expenditure
CoMP Coordinated multipoint transmission
CPU Central processing unit
CRAN Cloud radio access network
CSI Channel state information
D/A Digital to Analog
D2D Device-to-device
DC Difference-of-convex
FD Full-duplex
H-CRAN Heterogeneous CRAN
HetNet Heterogeneous networks
IDLP Infrastructure deployment and layout

planning
ILP Integer linear programming
INLP Integer non-linear programming
JDD Joint decompression and decoding
KKT Karush-Kuhn-Tucker
LARAC Lagrangian relaxation based aggregated

cost
LTE Long-term evolution
MCC Mobile cloud computing
MIMO Multiple-input and multiple-output
MINLP Mixed integer non-linear programming
MM Majorization minimization
mmWave Millimeterwave
MNO Mobile network operators
MSE Mean-square-error
NFV Network function virtualization
NOMA Non-orthogonal multiple access
OPEX Operating expenses
OFDMA Orthogonal frequency division multiple

access
PZs Power zones
QoE Quality of experience
QoS Quality of service
RAN Radio access network
RBs Resource blocks
RPF Regularized particle filter
RRHs Remote radio heads
SI Self-interference
SINR Signal-to-interference-plus-noise ratio
SCA Successive convex approximation
TCO Total cost of ownership
UAV Unmanned aerial vehicles

Resource Allocation in Cloud RAN

Objectives

Resource Throughput Energy Miscellaneous

Constraints

Power Throughput Resource Quality

Optimization type Solution type/ Algorithm

Applications

CPU Cloud Memory

Fig. 2. Generalized framework for resource allocation in CRAN.

3) Throughput: To meet the ever-increasing throughput
demand in 5G and beyond wireless networks, the CRAN
framework can greatly complement the enhancement in the
throughput. More specifically, many techniques can be adopted
to enhance the throughput and meet the ever-growing demand
including network coding, beamforming, and power manage-
ment [36], [37].

4) Spectrum: Spectrum management is key for getting the
real benefits of CRAN technology. Integration of licensed and
unlicensed bands at the RRH is one of the active research
areas nowadays. To achieve this, an optimized framework for
the integration should be designed in such a way that the
performance of legacy WiFi users should not be compromised
[38]. On the other hand, mmWave band is also proposed as
an important ingredient for 5G and beyond wireless networks
[39], [40]. It is also suggested that mmWave is more appropri-
ate for the backhaul link part. For the successful deployment
of the mmWave band, spectrum management is a key research
area for getting the real benefits from it.

5) Network Utility: Network utility is a general term and
it encompasses various QoS parameters including throughput,
delay, outage and blocking probabilities. The main concern in
designing the network utility is to guarantee minimum QoS
requirements of network entities [41].

6) Power allocation: Efficient power allocation is of vital
importance in any wireless network. In a CRAN, it is more
challenging because the RRHs are close apart in the 5G and
beyond networks and this creates significant interference prob-
lems. In addition, efficient power allocation is also important
because it has a direct impact on the energy and spectral
efficiency [42].
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B. Resource Allocation Parameters

Towards designing suitable transmission strategies, parame-
ters, and resource allocation methods in a CRAN, acquisition
of Channel State Information (CSI) is an important and chal-
lenging research problem. In a CRAN, it is crucial to optimally
utilize the resources at the cloud and to efficiently allocate the
capacity of the fronthaul links which connect distributed RRHs
with the BBUs.

Table II shows the typically involved resource allocation
parameters in a CRAN. Virtualization enables efficient uti-
lization of computing resources in a CRAN. In contrast to
the traditional RANs, each cell in a CRAN is served by
a virtualized BBU where the resources of the central BBU
pool are dynamically shared among all the cells. Several
works in the literature have addressed virtualization in a
CRAN including [43], [47]–[49], [52], [53], [68], [75]–[77],
[80], [87], [90]. The uplink design in a CRAN is relatively
challenging as all the base-band processing is shifted to the
BBU pool. Also, RRHs relay information to the cloud decoder
for further processing which gives rise to the issues related
to distributed compression and decoding specifically in multi-
antenna systems. Problems related to the CRAN uplink have
been vastly investigated in literature including [44]–[46], [52],
[56]–[58], [61], [65], [68], [69], [71]–[73], [75], [84], [89],
[90]. The downlink design in a CRAN is also important as
the RRHs transmit the received signals from the BBUs to
users. There are several challenging issues in the downlink for
a CRAN such as scheduling coordination, energy minimiza-
tion through user association, capacity enhancement through
fractional frequency reuse and downlink-to-uplink interference
cancellation. Plenty of research has been done to investigate
downlink issues in a CRAN [43], [47], [49]–[52], [54], [55],
[59], [60], [62]–[64], [66], [67], [69], [70], [74], [76]–[83],
[85], [86], [88], [90]–[92].

Like any other optimization problems, optimization prob-
lems in a CRAN can be single objective addressing issues such
as energy minimization, capacity maximization, etc. Many
single objective optimization problems have been considered
in literature [44]–[52], [54], [55], [57], [67]–[75], [77]–[79],
[81]–[86], [88], [89]. Similarly, optimization problems can be
multi-objective which can address multiple conflicting or non-
conflicting objectives simultaneously. These multi-objective
problems can be joint base station selection and distributed
compression or joint optimization of radio and computational
resources [43], [53], [56], [58]–[66], [80], [87], [90]–[92]. The
use of heterogeneous macro base stations in a CRAN can make
heterogeneous CRAN to improve energy efficiency, coverage,
and spectrum efficiency. There has been a significant amount
of research works done in the context of both the homogeneous
[43], [45], [46], [48], [49], [54], [55], [59]–[61], [63], [64],
[66], [67], [69], [73], [75], [76], [78], [79] and heterogeneous
CRAN [44], [47], [50]–[53], [56], [62], [65], [68], [70]–
[72], [74], [77], [82]–[85], [88]–[92]. Both fronthaul (connects
RRHs to the BBU pool) [44], [61], [70], [77]–[80], [82]–[93]
and backhaul (connects BBU pool to the cloud/core network)
[45]–[47], [51], [53], [55]–[60], [62], [63], [65], [66], [69],
[71]–[75], [81], [94] have been investigated in literature for

different objectives including capacity maximization, energy
consumption reduction, resource allocation and user associa-
tion.

III. EMERGING USE-CASES WITH THE CRAN
ARCHITECTURE

In this section, we discuss several emerging use-cases and
Radio Access Technologies (RATs) in 5G and beyond wireless
networks, which can be supported by the CRAN architecture
presented in Fig. 2. Also, in Fig. 3, we highlight these
emerging use-cases and RATs, where the CRAN architecture
could be utilized 1.

A. Heterogeneous CRAN (H-CRAN)

Beyond 5G wireless networks are envisioned to be highly
heterogeneous in terms of access technologies and device
capabilities, and highly dense due to the deployment of
small/femto/pico cells to enhance the cellular capacity and
coverage, leading to huge prevalence of HetNet. The ever-
increasing cellular densification will enable the paradigm shift
of the existing networks with the features of offloading,
coverage expansion, capacity enhancement, and user quality
of experience (QoE) improvement. On the other hand, CRAN
can be a promising platform to manage the ultra-dense HetNets
including macro and small/pico/femto BSs, thus resulting in
the concept of H-CRAN [95]. In the H-CRANs, macro BSs
are usually connected to the BBU pool over the backhaul
via X2/S1 interfaces and the BBU pool is connected to
RRHs/small BSs over the wireless/wired fronthaul. In contrast
to the conventional CRAN (with a centralized processing
unit and a large number of geographically separated small
cells), H-CRAN also involves macro cells and allow the
option of decoupling user-plane and control plane. With this
functionality splitting approach, small cells may deal with the
user traffic while macro cells may handle the signaling traffic,
i.e., control signaling to maintain connectivity within a large
area [96]. Such a splitting helps in reducing signaling traffic
over the fronthaul and also to enhance the resource-usage
efficiency, energy efficiency, and overall QoE.

Furthermore, the combination of H-CRAN with CoMP
transmission is considered a promising paradigm to address
the issues of limited fronthaul capacity and excessive interfer-
ence in ultra-dense heterogeneous cellular networks. However,
several works in literature have assumed the lossless fronthaul
links with infinite capacity, which is unrealistic for the practi-
cal capacity limited fronthaul links. One potential approach
to enable the transmission over capacity limited fronthaul
links is to employ distributed compression techniques such
as distributed Wyner-Ziv compression [97] in which each
coordinating small BS can compress its own received signal
and the processing center exploits the correlation among the
receptions from all the coordinating small BSs in order to
reconstruct their observations and subsequently the decoding
of the user message. To this end, authors in [96] compared the

1Herein, our objective is to present different use-cases and RATs supported
with the CRAN rather than the classification of the CRAN architecture.
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TABLE II
RESOURCE ALLOCATION PARAMETERS IN CRAN.

Virtualization Uplink/
Downlink

Single/
Multi-

objective

Hom/Hetnet Backhaul
/Fronthaul

Ref. Y/N U/D S/M Hm/Ht B/F

[43] Y D M Hm
[44] U S Ht
[45] U S Hm B
[46] U S Hm B
[47] Y D S Ht B
[48] Y S Hm
[49] Y D S Hm F
[50] D S Ht
[51] D S Ht B
[52] Y D and U S Ht
[53] Y M Ht B
[54] D S Hm
[55] D S Hm B
[56] U M Ht B
[57] U S B
[58] U M B
[59] D M Hm B
[60] D M Hm B
[61] U M Hm F
[62] D M Ht B
[63] D M Hm B
[64] D M Hm
[65] U M Ht B
[66] D M Hm B
[67] D S Hm
[68] Y U S Ht B
[69] D and U S Hm B
[70] D S Ht F
[71] U S Ht B
[72] U S Ht B
[73] U S Hm B
[74] D S Ht B
[75] Y U S Hm B
[76] Y D S Hm
[77] Y D S Het F
[78] D S Hm F
[79] D S Hm F
[80] Y D M F
[81] D S B
[82] D S Het F
[83] D S Het F
[84] U S Het F
[85] D S Het F
[86] D S F
[87] Y M F
[88] D S Het F
[89] U S Het F
[90] Y U &D M Het F
[91] D M Het F
[92] D M Het F
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Emerging Use-Cases of CRAN
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Fig. 3. Emerging use-cases and RATs in 5G and Beyond Networks supported by the CRAN architecture.

performance of distributed compression with the conventional
quantization-only scheme via numerical results and showed
that distributed compression can significantly reduce the re-
quired fronthaul rate for a given target user rate, and joint
decompression and decoding (JDD) can further improve the
performance.

Optimization of power consumption in the deployment
of an H-CRAN architecture is one of the crucial issues.
Although there are several BSs switching policies proposed
in the literature to minimize the cellular power consumption,
ping-pong issue, i.e., the oscillations of small BSs between
active and sleep modes, becomes a critical challenge towards
minimizing the overall power consumption and to maintain
the network stability. To this end, authors in [98] proposed
a handover margin-based genetic algorithm to minimize the
power consumption as well as to reduce the frequent switching
mode of small BSs. It is shown that a significant reduction in
power consumption and improvement in the network stability
are obtained with the optimum switching decision level and
the handover margin obtained from the proposed algorithms.
In addition, one of the major bottlenecks in H-CRANs is the
limited fronthaul capacity due to the ever-increasing demand
for high data-rate services and the number of users. Although
the wireless medium is an economic choice over optical fiber,
spectrum scarcity is a major issue. To this end, sharing of the
spectrum resources between the fronthauls and RANs could be
promising [99]. Also, another potential approach is to employ
compress and forward strategies to reduce the communication
load between the RRHs and BBU pool [100]. Authors in
[101] considered both of these techniques (spectrum sharing
and compress-and-forward approach) and studied the joint
optimization of bandwidth allocation and compression noise
with the objective of maximizing the achievable ergodic sum-
rate. Moreover, other issues in H-CRANs include power
allocation, user association, and admission control. To this
end, the article [102] formulated a joint problem incorporating
all these aspects including user association, power allocation,
and admission control with the objective of maximizing the
overall network throughput. This joint problem falls under the
category of mixed-integer nonlinear problems (MINLP) which
are usually non-deterministic polynomial-time hard (NP-hard).
To solve this, a linear programming-based outer approximation
method is employed and the effectiveness of the proposed
method was verified via numerical results.

B. Millimeter wave (mmWave) CRAN

Cellular network densification and mmWave communica-
tions are considered promising enablers to meet the data
rate requirements of future beyond 5G networks by utilizing
highly dense BSs/access points (APs) and huge bandwidth
available in the higher frequency bands, respectively. Also,
CRAN can enable the network densification in a cost-efficient
manner for enhancing the spectral efficiency and energy effi-
ciency of the next-generation wireless networks. By integrating
CRAN architecture with the mmWave communications, both
the objectives of huge bandwidth and network densification
can be achieved, thus leading to the concept of mmWave
CRAN [40]. Furthermore, in contrast to the communications
in low-frequency bands, mmWave communications is more
susceptible to blockages including shadowing and building
walls and is also affected by atmospheric conditions.

On one hand, it has been suggested that mmWave propa-
gation is more suitable for dense deployments scenarios [103]
and on the other hand, CRAN can enable the deployment
of denser cellular networks, leading to the mmWave CRAN
[104]. Nevertheless, the main issue in mmWave CRAN is the
saturation of digital fronthaul links caused by a huge amount
of quantized/compressed baseband signals. To address this, it
is important to investigate cost-effective techniques which can
reduce the transmission rate at the fronthaul link of mmWave
CRANs. Also, due to cost and complexity issues, conventional
compression and channel estimation techniques investigated in
the context of CRANs with narrow bandwidth considerations
may not be suitable for mmWave CRANs. To this end,
authors in [40] proposed a new mmWave based architecture
for CRANs with the RRHs equipped with advanced lens
antenna arrays, which transforms the angular domain sparsity
of mmWave channels into the spatial domain. The utilization
of lens array antennas can significantly reduce the fronthaul
rate requirements as well as the interference among the users
to perform joint decoding of uplink transmissions at the
centralized unit. In addition, authors in [104] carried out the
performance analysis of mmWave CRANs by using stochastic
geometry in terms of average latency, outage probability,
and throughput while considering various factors of mmWave
CRAN systems such as the density of RRHs, blockages, and
path loss. The closed-form expressions for outage probability
in the noise-limited scenario and its lower and upper bounds in
the interference-limited scenario are derived while considering
different mobile users association strategies.
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C. Distributed Antenna Systems

Compared to the existing cellular networks, the entire
baseband processing is transferred to the BBUs in the cloud in
full-phase CRAN implementation. Only the radio transmission
part is carried out at the RRHs. The transition to such full-
phase CRAN with fully virtualized BBUs at the cloud may add
significant overhead to the MNOs in terms of infrastructure
replacement and cost. To address this issue, authors in [105]
proposed a transition architecture in which baseband process-
ing is still carried out at the macro BSs, however, macro BSs
are connected to the RRHs over a reconfigurable fronthaul
links and the RRHs are dynamically connected to the BBUs
based on the user demand. Such dynamic distributed antenna
system can enable the macro BSs to form a basic coverage
layer over the control plane at the lower carrier frequencies
and densely distributed RRHs to provide on-demand capacity
at the mmWave frequencies over the user plane.

D. NOMA-based CRAN

NOMA has been considered as a promising multiple access
technology for future wireless networks and it has been already
included in the 3GPP LTE-A standard for improving the
spectral efficiency and energy efficiency [106]. The combi-
nation of NOMA with CRAN can be a potential solution
for the IoT-enabled resource-constrained wireless networks.
In this regard, authors in [86] investigated a NOMA-based
CRAN systems by considering mmWave and sub-6GHz bands
for access and fronthaul links, respectively. An optimization
problem to maximize the energy efficiency was formulated
under the constraints of transmit powers at the central unit
and RRHs as well as devices’ QoS. The objective func-
tion is transformed to the parameter-based objective function
by employing fractional programming and then a two-loop
iterative algorithm is employed to overcome the issue of
nonconvexity. With the help of numerical results, performance
of the proposed NOMA-based CRAN is shown to be better
than the conventional NOMA scheme in terms of energy
efficiency and throughput.

Furthermore, authors in [107] studied a NOMA-enabled
CRAN framework by considering the NOMA based schedul-
ing of two users in the same resources in combination with
coordinated beamforming to enhance the performance of cell-
edge users. The analytical expressions for outage probability
have been derived for both the nearby and cell-edge users.
It has been shown that the proposed NOMA-enabled RAN
framework can enhance the performance of cell-edge users. In
the context of NOMA-enabled H-CRANs, the authors in [108]
discussed various aspects of energy efficiency and highlighted
the main technologies and issues for employing NOMA in H-
CRANs. The key technologies identified for NOMA-enabled
H-CRANs include massive MIMO, cognitive radio, mmWave
communications, wireless charging, cooperative transmission,
and device-to-device (D2D) communications.

E. Energy harvesting-based CRAN

One of the crucial issues of an H-CRAN system is how
to reduce the total system power consumption. One of the

potential techniques to address this issue is to employ energy
harvesting techniques by which energy can be harvested from
either RF energy or ambient energy sources including solar and
wind [109]. To this end, authors in [83] analyzed the energy
efficiency of H-CRAN with several green RRHs equipped
with the energy harvesting modules. A joint optimization
problem is formulated by considering various aspects such
as power allocation, user association, admission control, and
energy harvesting with the objective of maximizing energy
efficiency. Thus formulated fractional mixed integer nonlinear
programming problem is solved by utilizing a mesh adaptive
direct search algorithm.

F. Virtualized CRAN

Another emerging CRAN architecture is a virtualized
CRAN which can be enabled with the virtualization and soft-
ware defined networking paradigms. The network function vir-
tualization (NFV) enables sharing of various resources such as
licensed spectrum, backhaul, core and access network, power
and network infrastructure among MNOs for better resource
utilization efficiency and energy efficiency. Furthermore, the
combination of CRAN and virtualization paradigm helps to
mitigate the issues of existing LTE-based networks including
dynamic traffic management and information exchange among
cells in dense cellular networks. To this end, authors in [110]
investigated the requirements and potential gains from the
integration of CRAN and network virtualization, and also
proposed network virtualization techniques for CRAN with
the objectives of maximizing total system throughput and
minimizing the delay. A resource allocation problem has been
formulated for the considered joint CRAN network virtualiza-
tion architecture and both the optimal and low-compelxity sub-
optimal solutions have been obtained. Via numerical results,
it has been shown that joint CRAN and network virtualization
architecture can be highly effective in handling unbalanced
loads among the MNOs and can significantly enhance the
network performance. Similarly, the article [111] proposed a
virtualized CRAN for the 5G network by utilizing the concept
of virtualized BSs which can be formed either on per-user
basis or per-cell basis by assigning on-demand virtualized
resources. For the effective resource allocation in a virtualized
CRAN, it is essential to utilize a cross-layer optimization
framework, which can optimally manage various resources
including digital unit processing resources, fronthaul capac-
ity and radio resources for end users while considering the
underlying system constraints.

To achieve the efficient splitting of functionalities between
BBU and RRHs in CRANs, the baseband processing chain can
be considered as a combination of virtual network functions
and BBU processing can be carried out at different points
instead of offloading all the BBU processing to the cloud.
Such a partially centralized framework can relax the latency
and bandwidth requirements and also reduce the fronthaul cost.
Nevertheless, MNOs need to deal with the multi-dimensional
trade-off among various conflicting objectives. For example,
bandwidth requirements can be decreased by performing some
level of processing at the BSs, however, this will reduce the
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opportunity of having coordinated signal processing and mul-
tiplexing gain. In this regard, authors in [112] proposed a user-
centric CRAN architecture to optimize the placement of BBU
processing functions while taking into account the capabilities
of cloud infrastructure and the throughput requirements.

G. Full-Duplex enabled CRAN

With the recent advances in self-interference (SI) mitigation
techniques including analog cancellation, digital cancellation
and antenna cancellation, full-duplex (FD) technology has
emerged as a promising technique to enhance the spectral
efficiency in 5G and beyond wireless networks [113]. How-
ever, the main challenge for implementing FD-enabled cellular
system is the mutual interference between uplink and downlink
transmissions. One of the solutions to mitigate this issue
could be to utilize cooperative communications enabled by
the CRAN architecture. The CRAN architecture has been
shown to be significantly beneficial to support FD-enabled
BSs assuming that the sufficient fronthaul capacity is avail-
able and suitable user scheduling or interference cancellation
method at the mobile stations is employed [114]. To design
an FD-enabled CRAN with RRHs operating in FD mode for
concurrent transmission and reception of data streams, inter-
RRH interference and CSI need to be taken into account. Also,
downlink mobile users get interfered by the transmissions
from uplink mobile users. Although various multi-user detec-
tion/decoding techniques have been suggested for interference
mitigation in FD-enabled CRAN [114], their implementation
is complex from a practical perspective.

To overcome the aforementioned issue, authors in [115]
studied a joint problem of multi-cell beamforming and power
control with a single-user detection at the BBU and downlink
mobile stations. An optimization problem to optimize the
beamformers of FD-enabled RRHs and power control of
uplink mobile stations is formulated with the objective of
the sum power of CRAN with the QoS constraints at both
the uplink and downlink mobile stations. Thus formulated
non-convex problem is solved by utilizing second-order cone-
programming based alternating optimization. In addition, au-
thors in [116] carried out the stochastic analysis of FD-enabled
CRAN while considering user-centric cooperative clusters,
non-isotropic channel fading conditions and fronthaul capacity
limitations. The analytical expressions for the uplink and
downlink spectral efficiencies of an FD-enabled CRAN are
derived and significant performance gain of FD CRAN is
shown over the half-duplex CRAN through numerical results.

H. Cell-free massive MIMO

The massive antenna array utilized in massive MIMO-
enabled BSs can be deployed either in collocated or distributed
set-ups. As compared to the collocated massive MIMO which
has the benefits of low backhaul bandwidth requirements,
the distributed massive MIMO systems can provide much
higher probability coverage at the cost of increased backhaul
bandwidth by exploiting the diversity against shadow fading
[117]. In the distributed multi-antenna setting, the recently
emerging concept of cell-free massive MIMO comprises of a

huge number of distributed BSs/APs which concurrently serve
a much smaller number of users distributed over a wide area
[118]. In such a distributed system set-up, all the BSs/APs
connected to a centralized unit cooperate phase-coherently
over a backhaul to serve all users with the same frequency-
time resources and there are no boundaries or cells, thus
referred as “cell-free massive MIMO” [119]. Similar to the
benefits highlighted earlier for the case of mmWave-based
CRAN, mmWave technology can be utilized in combination
with cell-free massive MIMO systems to exploit the high
bandwidth at the mmWave frequencies. Due to high-power
consumption levels and production costs at the mmWave
frequencies, fully digital implementation of massive MIMO
systems is challenging and to address this, hybrid transceiver
architectures with both the analog and digital processing and
hybrid beamforming/precoding techniques seem promising
[120]. To this end, authors in [119] analyzed the performance
of both the downlink and uplink of cell-free mmWave massive
MIMO systems with hybrid beamforming with the main focus
on per-user rate by considering various practical constraints
including imperfect channel estimation, fronthaul capacity
limitations, and the non-orthogonality of pilot sequences.

Although the same transceiver processing becomes appli-
cable to the conventional cellular massive MIMO and cell-
free massive MIMO, the resource allocation problem becomes
significantly different in cell-free massive MIMO system.
Also, several tasks including random access, power control,
user scheduling and the broadcasting of information should
be implemented in a distributed manner without dividing these
tasks into per-cell tasks [121]. Also, the favorable propagation
and channel hardening principles applied for the cellular
massive MIMO may not be applicable in the same way. To
this end, authors in [121] have studied the system information
broadcast problem in a cell-free massive MIMO system by
quantifying the coverage area in terms of coverage probability
and outage rate without considering the knowledge of CSI at
both the APs and users.

IV. CLASSIFICATION OF CRAN OBJECTIVES AND
CONSTRAINTS

Resource allocation in CRAN can be done with various dif-
ferent objectives and constraints. In this section, we focus on
different objectives and constraints considered in the literature
for resource allocation in CRAN.

A. Objectives

We classify objectives in CRAN into four broad categories
as shown in Fig. 4. These include resources, throughput,
energy, and miscellaneous.

1) Resources: The research focused on resources as an
objective consists of user assignment, maximization of the
number of users in the network, and scheduling of RRH
selection. A coordinated user assignment scheduling scheme
across available resource blocks (RBs) and connected RRHs
has been proposed in [122] to address the high capacity
requirement for backhaul links in a CRAN. The scheduling
problem is solved using graph theory and maximum weight
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clique, where the association of users, RBs and RRHs rep-
resent the vertices of the graph and benefit of association of
each vertex is represented by its assigned weight. The problem
of maximizing the number of scheduled users in H-CRAN
has been addressed in [123] by using outer approximation
algorithm. The number of users sharing a channel has been
maximized to improve the spectral efficiency of cloud-based
cognitive RAN in [124]. Also, a resource balancing algorithm
has been used to solve the channel and power assignment
problem. In [125], joint pilot allocation and beamforming
design is considered to maximize number of admitted users for
ultra-dense TDD C-RAN. A novel pilot allocation algorithm
is proposed by considering the multi-user pilot interference.

Although RRHs consume less power compared to the con-
ventional BSs, the deployment of a large number of RRHs
in CRAN results in a significant increase in overall power
consumption. The scheduling of RRHs can play a key role
while exploiting the sparsity of users in the network. The
inactive RRHs can be switched off to minimize the network
power consumption. A greedy selection algorithm has been
used in [53] to select a set of RRHs to switch off. Similarly,
authors in [35] jointly optimized sub-channel assignment,
power allocation, and RRH assignment. A three-step algo-
rithm has been proposed to solve the problem iteratively.
Authors in [126] proposed a joint RRH activation and outage
constrained coordinated beamforming algorithm for CRAN.
A low complexity algorithm has been proposed to solve
the joint optimization problem using the group-sparse beam-
forming strategy. BS selection and distributed compression
have been jointly optimized in [71] as well to compensate

for the performance loss in the uplink CRAN due to the
imperfect statistics regarding the received signal across BSs.
The problem has been formulated using deterministic worst-
case approach and Karush-Kuhn-Tucker (KKT) conditions are
used to determine optimality. Most of the existing works on
CRAN consider a single cloud environment. A more practical
network deployment scenario could be the one with multiple
clouds and inter-cloud interference. In [54], the user to cloud
assignment problem has been addressed for a multi-CRAN
scenario and a distributed auction based iterative algorithm
has been proposed for cloud association which maximizes the
network-wide utility.

2) Throughput: Sum-rate is an important network perfor-
mance metric as it considers non-symmetric source rates. The
sum-rate is maximized under the practical network constraints
in coordinated scheduling problem in CRAN by using ex-
haustive search. To this end, an RRH clustering solution has
been proposed in [127] to maximize the sum throughput of
CRAN while minimizing the inter-cell cooperation processing
cost in terms of energy consumption using Pascoletti and Ser-
afini scalarization method [128]. Ergodic sum-rate for uplink
in H-CRAN has been maximized by optimizing bandwidth
allocation and fronthaul compression at radio access links in
[89]. A distributed compression scheme has been proposed to
maximize the achievable rate of the CRAN system in [129].
It employs distributed Wyner-Ziv compression and optimizes
the compression rate at each BS. Furthermore, ergodic sum-
rate has been maximized by selecting the optimal transmission
strategy in [130]. Beamforming and data transfer methods have
been jointly selected to optimize wireless sum-rate for a given
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link capacity and user environment. Sum-rate problem has also
been addressed in [131], where the optimal IQ-data transfer
method and beamforming technique have been selected for
cloud massive MIMO operation in order to improve the
CRAN system capacity. The sum-rate has been maximized
by selecting the best relay and optimization of physical
layer network coding in [44]. Similarly, sum-rate of compute
and forward cloud network has been maximized under the
minimum rate constraint using the Pareto frontier. Sum-rate
maximization in CRAN is also studied in [56] while jointly
optimizing BS selection and distributed compression for the
multi-antenna uplink system using iterative block-coordinate
ascent algorithm. In addition, sum-rate maximization under
backhaul capacity constraint for CRAN with multihop back-
haul topology has been investigated in [65], where a backhaul
compression scheme based on linear in network processing
has been proposed for the uplink. In [132], non-coherent
transmission design is studied to maximize sum-rate, where
each RRH can transmit different symbols and the strict phase
synchronization is not required..

Spectral efficiency maximization is one of the most impor-
tant objectives for the success of CRAN. In this regard, a
probability-weighted based resource allocation algorithm has
been proposed with an objective to maximize the spectral
efficiency of CRAN in [133]. The algorithm optimizes QoS for
both macro and small cell users by minimizing the cardinality
of the set of interfering nodes in the network. In [134], a
MIMO system design under the mixed power constraint has
been investigated for CRAN to enhance the network capacity.
It derives optimal solution for RRH transceiver design using
iterative logic and a non-iterative matrix version water-filling
scheme. Furthermore, resource allocation in a multi-CRAN
has been investigated with an objective to maximize network
utility by formulating and solving the conflict graph in [55]. It
maximizes the network utility by formulating and solving the
conflict graphs. In [135], overall network utilization of multi-
cloud CRAN has been maximized by solving the constraint
resource allocation problem using the heuristic algorithm. Ad-
ditionally, resource allocation for delay sensitive applications
in energy harvesting CRAN has been addressed in [78], where
the presented solution maximizes the utility of user equipment
using a Lyapunov optimization technique.

In a CRAN, instantaneous backhaul capacity affects the
overall network performance since the computing resources
for baseband processing are located at the central unit. In [57],
the uplink sum-rate has been maximized for CRAN under the
time-averaged backhaul constraint. The proposed distributed
stochastic algorithm optimizes the uplink compression rate of
each RRH by using a quantize and forward scheme. Further-
more, in [90], a multi-objective resource allocation scheme has
been proposed for software-defined CRAN which guarantees
minimum sum-rate for all users. Topology configuration and
rate allocation problem for CRAN have been studied in [45],
[46]. Similarly, a decision-theoretic approach to improve the
sum throughput of the mobile cloud computing (MCC) user
has been employed in [45]. In addition, a decision-theoretic
approach has been employed to address the imperfect and
delayed CSI concern in a CRAN in [46] to maximize the sum

end-to-end throughput of the MCC users.
Moreover, antenna selection in a large distributed MIMO

CRAN has been investigated in [59] to maximize the av-
erage weighted sum-rate for each antenna. The selection of
antennas to serve a particular set of users is done based on
the regularized zero-forcing precoding. To avoid excessive
CSI acquisition and processing overhead, another downlink
antenna selection scheme for large MIMO networks has been
proposed in [60] to maximize the average weighted sum-rate
by optimizing the antenna selection and power allocation per
antenna. Also, a weighted sum-rate maximization problem
for given backhaul and power constraints has been studied
in [62] by joint precoding and compression strategy for the
CRAN. The maximization of weighted sum-rate on the uplink
of CRAN under the overall backhaul capacity constraint has
been studied in [68]. It has been established that the optimal
results for the weighted sum-rate maximization problem can
be achieved by setting the quantization noise levels propor-
tional to the noise in high signal to quantization noise ratio
regime. The network-wide weighted sum-rate maximization
problem has been studied in [136] by joint user scheduling and
beamforming at the RRH, and a graph theoretical approach
has been proposed to solve the joint optimization problem. In
addition, the downlink weighted sum-rate of H-CRAN system
is maximized in [91] by optimizing the bandwidth and power
allocation in each RRH cluster that minimizes the inter-tier
interference.

Regarding spectrum sharing, dynamic spectrum access for
the CRAN has been investigated in [47], where the overall
network resource efficiency (in terms of transmitted bits per
unit resource cost) has been maximized for the available spec-
trum and antenna resources in a massive distributed MIMO
system. Furthermore, in [61], overall network throughput
has been maximized by optimizing the power and fronthaul
rate allocation in orthogonal frequency division multiple ac-
cess (OFDMA)-based CRAN system. In [77], overall system
throughput has been maximized for the CRAN with wireless
network virtualization by using the heuristic technique. Total
network throughput has been maximized for the H-CRAN
while considering the user QoS requirements and fronthaul
capacity constraints by using the game-based algorithm in
[85]. The overall network throughput has been maximized for
the H-CRAN by using branch and bound outer approximation
approach in [123]. Joint scheduling of users to maximize
the total throughput of CRAN has been considered in [137].
Similarly, in [138], CRAN throughput has been maximized
subject to channel state by using a branch and bound method.
In [139], a harvest-and-forward scheme has been proposed to
maximize the achievable rate of the relay channel by jointly
optimizing the antenna selection and power splitting ratio in
the network.

3) Energy: In addition, energy consumption is one of the
key objectives for CRAN. To this end, authors in [67] studied
the overall transmit power minimization for the CRAN by
using a stochastic coordinated beamforming framework. The
optimal transmission strategy has been achieved under the CSI
uncertainty while guaranteeing the QoS requirements of users.
Furthemore, power consumption of the BBU pool has been
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minimized through a proposed BBU virtualization scheme in
[43]. All cells dynamically share the computing resources of
BBUs based on a heuristic simulated annealing algorithm. In
[73], the overall transmission power has been minimized under
the backhaul capacity constraint. Also, a layered transmission
and compression strategy has been proposed by using the
competitive optimality criterion which guarantees that a given
fraction of the maximum transmission rate can be achieved
even with the imperfect CSI. In [140], imperfect CSI is
considered, where the large-scale fading (such as path-loss and
shadowing) is assumed to be known for the unavailable CSI
associated with distant RRHs. The objective is to minimize
energy and user selection for multi-channel C-RAN. The lower
bound of UEs’ rate expression is derived, based on which
low-complexity algorithms are proposed. Moreover, in [141],
transmit power consumption has been minimized by finding
optimal precoding matrix that satisfies the computational and
latency constraints. Joint optimization of communication and
computation resources in the CRAN has been explored under
the strict latency and power constraints. In [142], the authors
jointly optimize the precoding matrices and the set of active
RRHs to minimize the network power consumption for a
user-centric C-RAN, where both the RRHs and users have
multiple antennas. A low-complexity user selection algorithm
is proposed along with a low-complexity network power
minimization algorithm.

Moreover, authors in [48] studied the energy consumption
minimization problem for the mobile device while satisfying
the time constraint by offloading tasks to the cloud. The
collaborative task execution at the cloud has been modeled as
a constrained stochastic shortest path problem and an energy
efficient scheduling policy based on Lagrangian relaxation
based aggregated cost (LARAC) algorithm has been proposed.
Also, in [143], the overall system power consumption in
both the BBUs and RRHs has been minimized under the
QoS constraints and a bisection search algorithm has been
proposed for the selection of active RRHs in the CRAN cluster.
Similarly, in [52], authors studied the weighted sum-power
minimization problem for the CRAN, where interference has
been coordinated by joint user association and beamforming
solution. Authors proposed algorithms based on group-sparse
optimization and relaxed-integer programming techniques for
the joint downlink and uplink optimization of user association
and beamforming design, respectively.

Regarding the energy conservation of resource-constrained
mobile devices, authors in [144] proposed an energy-efficient
application execution policy for CRAN for mobile users under
stochastic channel conditions. The scheduling problem has
been modeled as a constrained optimization problem and a
closed form solution has been obtained that minimizes the
total power consumption by dynamically adapting the clock
rate of the mobile device and by optimally adjusting the data
transmission rate to the cloud. In [145], the overall power
consumption has been minimized subject to the latency con-
straint by adapting precoding matrices of the mobile devices
and cloud computational resources allocated to the users. Also,
the overall power consumption has been minimized by joint
optimization of radio and computational resources of multicell

MIMO CRAN. Similarly, the overall power consumption at the
mobile device has been minimized under the power budget and
latency constraints through computational offloading in [58].
The local optimal solution was obtained for multi-cell multi-
user scenario using the proposed centralized and distributed
iterative algorithms.

In addition, a framework for minimization of both system
power and bandwidth consumption of hybrid CRAN subject to
end-to-end delay constraint from central cloud to the end user
has been presented in [87], [146]. The interplay of energy and
bandwidth consumption has been analyzed when the baseband
function is centralized at edge cloud compared to the central
cloud. In [80], the effect of variation in delay requirements of
users on the energy consumption of hybrid CRAN has been
investigated. This delay model has been incorporated in the
proposed framework for minimizing the energy consumption
of hybrid CRAN. Furthermore, energy harvesting H-CRAN
has been considered in [147] and a solution has been presented
to maximize the use of green power harvested at the RRHs
thus reducing the grid energy consumption.

Additionally, the energy efficiency of the distributed large-
scale MIMO CRAN has been studied in [148]. Authors applied
large random matrix theory to propose an energy efficient
power allocation scheme based on the regularized zero-forcing
precoding. The proposed scheme allocates power for each user
according to its QoS requirement in the presence of imperfect
CSI and interference. The effect of RRH user association on
the energy efficiency of H-CRAN has been investigated in
[149], where a resource allocation scheme has been proposed
based on the Lagrange dual decomposition method to jointly
optimize the allocation of RB and transmit power subject to
the inter-tier interference and user association. The effect of
control data separation architecture on the energy efficiency
of H-CRAN has been studied in [82], in which a closed-
form optimal solution has been presented for resource and
power allocation under fronthaul capacity constraint by using
the Lagrange dual decomposition method. Also, the energy
efficiency of H-CRAN has been investigated in [83], where an
energy harvesting solution has been presented that minimizes
the grid power consumption. In [84], the energy efficiency of
H-CRAN has been improved by switching off underutilized
BBUs and offloading traffic to low power femtocell APs. Joint
access and fronthaul resource allocation in H-CRAN with dual
connectivity in millimeter wave and microwave bands has been
investigated to maximize the energy efficiency of the system
in [88]. The energy efficiency of NOMA-based CRAN has
been explored in [86], where the transmit power at the RRH
and a central processor at the cloud were optimized subject to
the QoS constraint of devices.

Moreover, authors in [150] studied fronthaul capacity and
power consumption for the downlink CRAN design. Particu-
larly, two closely related optimization problems were studied,
namely pricing-based total power and fronthaul capacity trade-
off and fronthaul-constrained power minimization. A solution
based on concave approximation and gradient search methods
has been presented for power and fronthaul capacity tradeoff
problem which gives the optimal set of active RRHs and pre-
coding matrices such that the total transmission power is mini-
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mized for a given fronthaul capacity. For fronthaul-constrained
power minimization problem, an iterative algorithm has been
proposed that uses a gradient method to determine optimum
total transmission power for the constrained fronthaul capacity.

Authors in [49] studied the total transmission power min-
imization problem subject to the user QoS constraint. The
exhaustive search method has been employed to determine the
optimal solution for minimizing the total transmission power
of CRAN under the power budget, fronthaul capacity, and
user QoS constraints. Two low complexity algorithms, namely
Pareto optimum and fast matching Hungarian algorithms were
also presented to determine the optimum user association. In
[50], a stochastic beamforming framework has been presented
based on the chance-constrained programming to minimize
the total transmit power of CRAN. The proposed solution
utilizes mixed CSI and ensures QoS requirement in terms
of system outage probability. Furthermore, a green CRAN
framework has been presented in [151] to minimize the
overall network power consumption, where authors formulated
a joint RRH selection and power minimization beamforming
problem, and solution has been proposed based on the branch
and bound method. In [152], the total transmission power of a
fronthaul constrained CRAN has been minimized by selecting
an optimal set of active RRHs and their respective beamform-
ing vectors, and an iterative fast greedy algorithm has been
proposed for the admission control based on single stage semi-
definite program. In addition, in [81], total transmit power of
multi-cloud CRAN has been minimized subject to backhaul
capacity and QoS constraints. The proposed solution considers
the downlink of multi-cloud CRAN and attempts to limit the
inter-cloud and intra-cloud interference with imperfect CSI.
Similarly, the total transmit power of ultra-dense CRAN has
been minimized by optimizing the beamforming vector subject
to user rate requirement and fronthaul capacity constraint in
[153].

4) Miscellaneous: Authors in [79] studied a problem of
guaranteeing the QoE for mobile users in CRAN through the
use of cache-enabled unmanned aerial vehicles (UAVs) while
minimizing the overall power consumption of UAVs. In [66],
a multivariate joint compression scheme has been proposed
for downlink CRAN to minimize the additive quantization
noise at the user. An iterative algorithm has been employed
to maximize the weighted sum-rate of BSs under the power
and backhaul capacity constraints. Long term profitability of
CRAN service provider has been studied in [154], where a
solution has been proposed based on the joint optimization
of scheduling and pricing decisions. The proposed dynamic
scheduling and pricing algorithm is based on Lyapunov op-
timization technique and provides close to optimal results in
terms of long term profit and queuing delay even in the random
environment. In [155], robust beamforming for H-CRAN is
investigated to minimize mean square error of all channel es-
timates. Also, spectral efficiency of the network is maximized
by optimizing beam vector. An optimal resource allocation
problem in H-CRAN has been studied in [92], where traffic
offloading between operators has been proposed to maximize
the overall profit of the network operator and system energy
efficiency subject to network uncertainties. Similarly, in [70],

a hybrid CoMP scheme has been proposed to minimize delay
under the average power and fronthaul consumption constraint
for delay sensitive traffic in the downlink CRAN. It has been
concluded that the performance gain of the hybrid CoMP
solution largely depends on the cooperation level under the
limited fronthaul capacity.

The relay nodes can be deployed to increase the coverage
of CRAN. In this direction, authors in [63] investigated
the linear minimum mean-square-error (MSE) beamforming
design where the beamforming matrices at the RRHs and relay
nodes have been jointly optimized. The proposed distributed
beamforming algorithm minimizes MSE under per-antenna
power constraint. A precoding design based on linear MSE
for distributed antenna systems in CRAN has also been pro-
posed in [64], where optimal condition decomposition method
has been used to decompose the average MSE minimization
problem and to solve the subproblems in parallel under per-
antenna power constraint at the RRHs. In [156], a robust
transceiver design for distributed antenna systems in CRAN
has been studied and a low complexity algorithm has been
proposed based on alternating direction method of multipliers.
The proposed minimum MSE precoding algorithm takes into
account the channel estimation errors and minimizes average
MSE under the RRH per-antenna-power constraint. In [51],
CRAN with delay aware cooperative beamforming has been
studied for delay sensitive traffic under the limited backhaul
consumption. A threshold based user centric clustering scheme
has been proposed using an infinite horizon average cost
Markov decision process approach. Infrastructure deployment
and layout planning (IDLP) problem for CRAN has been
addressed in [63] by modeling as generic integer linear pro-
gramming (ILP) problem. The proposed solution minimizes
the overall network deployment cost by jointly optimizing
the RRH placement, user association, and network resource
utilization while satisfying the coverage requirement.

B. Constraints

Figure 5 categorizes the constraints related to the CRAN in
the literature into five broad categories, namely, quality, power,
throughput, resource, and miscellaneous.

1) Quality: Densely deployed RRHs in a CRAN can induce
large interference to each other due to the close proximity that
can degrade the overall network performance and QoS. The
service offered to the user is usually guaranteed by including
the constraint on signal-to-interference-plus-noise ratio (SINR)
performance of the user while designing cooperative transmis-
sion for CRAN in [49]. In [52], the energy efficiency of CRAN
has been improved through access control and beamforming
under the downlink SINR constraint. In the similar setting,
authors in [53] considered the constraint on the target SINR
while minimizing the network power consumption. Similarly,
in [152], user SINR constraint has been considered to mini-
mize the total transmission power of CRAN while optimizing
the set of serving multi-antenna RRHs and the beamforming
vectors. The IDLP problem of CRAN is addressed in [93] for
the threshold SNR requirement of the user. In [133], the H-
CRAN is investigated, where the number of small cells sharing
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the spectrum with the macro cell has been maximized such that
the SINR requirements of the macro and small cell users can
be satisfied.

For the H-CRAN scenario considered in [149], exclusive
RBs have been assigned to the UE considering its rate-
constraint QoS requirement, and joint optimization of resource
and power allocations in H-CRAN subject to a constraint on
the inter-tier interference is presented. In [150], an energy
efficient design for the downlink CRAN has been presented
subject to the QoS constraint of the user represented by the
target SINR. In [50], a stochastic beamforming framework for
CRAN has been proposed to minimize the overall transmit
power while ensuring the system QoS requirement of tolerable
outage probability. The overall power consumption of CRAN
has been minimized while ensuring the cross-layer QoS in
terms of the system expected delay [143]. Similarly, user
demand rate constraint has been investigated in [151] for the
design of green CRAN where the network power consumption
has been minimized. The probabilistic QoS requirement of the
user in terms of system outage has been considered in [67]
for the design of coordinated beamforming that minimizes
the total transmit power of CRAN. The QoS constraint in
terms of achievable data rate is investigated in [81] for total
transmit power minimization of multi-cloud CRAN by limiting
interference in the system. The QoS in terms of user rate
requirement is studied in [85] while maximizing the total net-
work throughput of H-CRAN. Similarly, the user scheduling
problem in H-CRAN has been addressed in [123] subject to
QoS constraint that guarantees a minimum rate to the users. In
[92], traffic offloading between network operators in H-CRAN
has been studied under the QoS constraint of the users that

defines their minimum rate requirement. In addition, user QoS
in terms of throughput and fairness is studied as constraints
for user throughput maximization in H-CRAN [138].

Delay in the cloud services due to the processing and
transmission between the CRAN entities is a critical issue.
To this end, the constraint on per-user response latency has
been investigated in [45] while maximizing the throughput
over CRAN. The response latency experienced by each MCC
user has been studied as a constraint in [46] to address
topology configuration and rate allocation problem in the
CRAN. Latency in accessing the cloud through a wide area
network has been considered as a constraint in [141] for
the joint optimization of the computation and communication
resources to address the computation offloading problem.
Similarly, latency constraint has been investigated in [144]
to minimize the overall energy consumption of the user in
a MCC framework. Energy efficient optimal cloud computing
framework has been presented in [144] subject to the delay
constraint on application completion deadline. The optimiza-
tion of user energy consumption has been investigated for
multi-cell mobile edge computing while meeting the latency
constraint on accessing the cloud through wide area network
in [58]. Resource allocation for delay sensitive applications in
energy harvesting CRAN has been studied in [78] subject to
maximum allowed delay bounds. The constraint on end-to-end
delay has been considered in [146] for the joint optimization of
system power and bandwidth consumption of hybrid CRAN.
In [80], the energy consumption of a hybrid CRAN has been
studied subject to the delay requirements of users.

2) Power: The power budget constraint has been investi-
gated in [141] for the optimal allocation of computation and
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communication resources. In [59], sum power constraint has
been studied for the sum-rate maximization whereby on the
downlink an optimal antenna selection is made for the large
distributed MIMO based CRAN. Average power constraint has
been included in resource allocation aiming to minimize trans-
mission delay in CRAN with limited fronthaul capacity [70].
Similarly, in [134], transceiver design has been investigated
under the mixed power constraint for MIMO based CRAN
system.

Since each antenna has its own amplifier, it is important
to consider the per-antenna power constraint. To this end, the
per-antenna power constraint has been considered in [128] for
mitigating the interference among RRHs by using a dynamic
clustering algorithm. On the other hand, in [59], [60], the
average weighted sum-rate has been maximized under the per-
antenna power constraint based on large scale fading. Relay-
assisted CRAN has been investigated in [63] under the per-
antenna power constraints at both RRHs and relay nodes.
The per-antenna power constraint has been included to design
a robust precoding solution for CRAN in [64]. A robust
transceiver design has been presented while considering the
per-antenna power constraint for multi-cell distributed antenna
systems in [156]. In [91], per-RRH power constraint has been
considered to maximize the downlink weighted sum-rate of
massive MIMO CRAN by coordinating interference within the
system.

Although the majority of research in the literature considers
sum power constraint, it is more practical to consider the
per BS transmit power constraint. In this regard, authors in
[157] investigated the optimization of backhaul quantization
under the transmit power constraint for cloud radio multistatic
radar. Joint user association and beamforming design has
been investigated under the transmit power constraint for both
the uplink and downlink in CRAN [52]. The problem of
coordinated transmission has been addressed by considering
the transmission power constraint for downlink in the CRAN
[150]. The constraint on the maximum transmit power of
each RRH has been considered to investigate the resource
management problem in a distributed MIMO based CRAN
[148]. The energy efficiency of CRAN has been investigated
under the total transmit power constraint of RRHs in [149].
In [124], a cloud-based cognitive RAN has been investigated
under the transmit power constraint to minimize interference.
Coordinated beamforming and admission control design have
been examined under the maximum RRH transmission power
constraint for CRAN with limited fronthaul capacity in [152].
Throughput maximization of OFDMA-based CRAN has been
investigated under the transmit power constraint in [61].
Antenna selection in energy harvesting relay channels has
been explored under the total transmit power constraint in
[139]. Per-BS transmit power constraint has been included
in the design of joint precoding and compression scheme for
the downlink of CRAN in [62]. In [66], the per-BS power
constraint has been considered for the design of multivariate
backhaul compression on the downlink of CRAN. The per-BS
power constraint has also been considered to study the multi-
terminal backhaul compression for CRAN in [69]. Sparse
beamforming and clustering solution has been proposed in

[74] under the weighted per-BS power constraint to maximize
the weighted sum-rate in downlink CRAN system. Maximum
transmit power constraint has been considered for UAV-based
CRAN to improve QoE of mobile users in [79].

Similarly, the maximum power constraint on MBS and
RRHs has been evaluated for the energy efficiency of energy
harvested H-CRAN in [83]. The limitations of overall transmit
power of energy harvested RRHs has been examined to
maximize green energy in an energy harvested CRAN in [147].
An energy efficient solution for NOMA-based CRAN has been
proposed in [86] under the transmit power constraint on RRHs
and the central processor. In [88], power limitation on each BS
has been considered to optimize the energy efficiency of H-
CRAN with dual connectivity in the access and fronthaul. Joint
user scheduling and beamforming at RRH has been studied
in [136] subject to the maximum power constraint per RRH.
The uplink and downlink power constraint of users and RRHs
were considered for the maximization of network throughput
of H-CRAN in [123]. In [81], BS power constraint has been
evaluated to minimize the total transmit power of a multi-cloud
CRAN.

The frames transmitted by the BS comprise of multiple
time-frequency blocks called power zones (PZs) that have a
fixed transmit power. Since a user can be served by more
than one PZ within a frame, it is important to study its
effect on the fixed power transmission. To this end, in [122],
coordinating scheduling problem of assigning users to the
PZs has been studied under the fixed transmission power
constraint such that the overall network utility is maximized.
On the other hand, in [53], joint selection of active RRHs and
coordinated beamforming has been investigated to improve the
energy efficiency of CRAN under the constraint on the overall
network power consumption. Similarly, the task scheduling
problem has been investigated as a constrained shortest path
problem under the constraint on the total energy consumption
of the mobile device in [48].

3) Throughput: The minimum rate constraint has been
considered while maximizing the overall throughput of the
cloud network in a relay cooperated CRAN in [44]. In [157],
the total transmission rate constraint has been studied for com-
munication between multiple receiving antennas for backhaul
in CRAN. Energy efficiency maximization problem under the
per-user data rate requirement constraint has been examined
in [148]. Minimum data rate requirement per user has been
considered in [82] while optimizing the energy efficiency of
H-CRAN. In [83], minimum data rate to the users has been
ensured for user association to maximize energy efficiency in
energy harvested CRAN. Similarly, in [147], minimum data
rate requirement of each user has been satisfied to maximize
utilization of green energy harvested by RRHs in H-CRAN.
Minimum rate requirement per user has been considered for
the joint access and fronthaul resource allocation in [88] for an
H-CRAN with the dual connectivity. Furthermore, the user rate
requirement has been ensured to minimize the total transmit
power for optimal beamforming vector for ultra-dense CRAN
[153]. The QoS requirement of users in an H-CRAN has been
ensured in [84] in terms of minimum reserved rate while
studying an energy efficient resource allocation problem.
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Fronthaul capacity and cloud processing constraints are
considered important to study the cooperative transmission in
CRAN such that the total transmission power of the network
can be minimized [49]. Authors in [150] considered the
fronthaul capacity constraint for the energy efficient design of
coordinated downlink transmission in a CRAN. Besides, joint
BS selection and distributed compression has been studied for
capacity-constrained backhaul links for the uplink of CRAN in
[56]. An iterative algorithm has been proposed based on block
coordinate ascent for the selection of the optimal set of BSs. In
[152], joint coordinated beamforming and admission control
design for CRAN has been presented that takes into account
the limited fronthaul link capacity. The JDD on the uplink of
CRAN has been studied for the capacity-constrained backhaul
link in [158]. In [61], an optimal power control policy has been
proposed under fronthaul capacity constraint that maximizes
the overall throughput of CRAN. Backhaul capacity constraint
has been studied in [62] for weighted sum-rate maximization
of CRAN. Backhaul capacity constraint has been studied for
sum-rate maximization [65], where a compression scheme has
been proposed for the uplink of CRAN. In [66], backhaul
capacity constraint has been included in the design of sum-
rate maximization and compression strategy. Sum backhaul
capacity constraint has been considered for the sum-rate maxi-
mization [68]. Multiterminal backhaul compression techniques
have been investigated for CRAN under the backhaul capacity
constraint in [69]. In [70], fronthaul consumption constraint
has been considered to study the performance of delay-
sensitive traffic in stochastic CRAN. The capacity constrained
backhaul links have also been considered to study distributed
compression on the uplink of CRAN having multi-antenna BSs
in [71] and [72]. In [73], backhaul capacity restrictions have
been considered while minimizing the overall transmission
power of CRAN with imperfect CSI.

Network utility maximization problem has been addressed
in [74] while taking into account the per-BS backhaul capacity
constraint. The sum backhaul constraint is studied to maximize
overall sum-rate for uplink multi-cell processing in [75]. The
constraint on overall fronthaul capacity has been considered in
[82] to study the resource allocation problem in the H-CRAN
such that the energy efficiency is maximized. In [85], the
capacity constraint on fronthaul links has been ensured to max-
imize the network throughput to address user association in an
H-CRAN. The energy efficiency of NOMA based CRAN has
been studied in [86] subject to fronthaul capacity constraint.
System energy efficiency of H-CRAN has been optimized
in [88] such that the achievable rate per BS is limited by
the capacity of fronthaul links. Limited fronthaul capacity
has also been considered in [89] and bandwidth allocation
and compression problem on the uplink of H-CRAN has
been addressed to maximize the ergodic sum-rate. Similarly,
fronthaul capacity has been ensured to maximize the downlink
weighted sum-rate for massive MIMO CRAN in [91]. Limited
capacity on fronthaul links between RRH and BBU pool has
been considered to maximize the network operator profit for
H-CRAN in [92]. Fronthaul capacity constraint has also been
observed in [153] to study the power minimization problem
in ultra-dense CRAN and an optimal beamforming solution is

presented. In [154], online scheduling and pricing algorithm
has been studied under the link capacity constraint. Fronthaul
capacity constraint has been considered in [150] to study
the energy efficient coordinated transmission design for the
downlink in a CRAN.

4) Resource: Authors in [130] examined the constraint on
the number of served users while maximizing sum-rate for a
massive MIMO based CRAN. The constraint on the number of
concurrently served users has also been evaluated in [131] for
the design of optimal data transfer and beamforming solution
for a MIMO based CRAN. In [127], the constraint that a user
can at most connect to one BS, however, can occupy multiple
RBs has been considered for a coordinated scheduling problem
in a CRAN. The constraint on the set of UEs connected to the
RRH has been examined in [77] to maximize overall system
throughput in CRAN. In [84], the constraint that each user
can associate with only one AP and each subcarrier on an
AP can be assigned to only one user has been considered for
the energy-efficient resource allocation in a H-CRAN. Joint
user scheduling and beamforming at RRH has been studied in
[136] under the constraint that each user can be served at most
by one BS but possibly multiple RRHs. The user scheduling
problem in H-CRAN has been addressed in [123] subject to
the constraint that the set of users connected to macro BS and
RRH are mutually exclusive. The constraint that a user can
be serviced by multiple BSs within a cloud, however, it must
not occupy the same RB across different BSs is evaluated to
maximize overall network utilization of multicloud CRAN in
[135]. In [137], the constraint that each user must connect to
the maximum of one RRH has been examined to maximize
the total throughput of CRAN by considering the mixed flow
of multiple users in each RB.

The baseband processing procedures for each BS are divided
into tasks that can be processed by several BBUs. To this end,
in [43], the constraint on the task requirement of each BS
has been considered to optimize the power consumption of
CRAN through a BBU virtualization scheme. In a multi-cell
network, system capacity is affected by the pilot contamina-
tion. In [130], [131], the constraint on pilot contamination
on the ergodic sum-rate of cloud MIMO network has been
investigated. Sum-rate typically increases with the increase in
the number of active antennas in a MIMO system. However,
the number of active antennas in practice is constrained by
the degree of freedom in the spatial domain. In this regard,
wireless capacity maximization problem for MIMO based
CRAN has been addressed by considering the number of
active antennas used to transmit in [130], [131]. Resource
utilization cost of CRAN has been studied in [47] to select an
optimal set of antenna resources, and also network efficiency
has been evaluated under the constraint on the total number
of active transmit antennas. In [139], the constraint on the
number of antennas engaged in the information exchange has
been evaluated to maximize the achievable rate of multiple
antenna energy harvesting relay channels. The constraint on
the number of BSs a user can simultaneously connect has been
considered in [122]. Similarly, network utility maximization
problem has been addressed for the CRAN such that a UE
can only connect with one BS at most but multiple PZs of
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that BS.
Furthermore, in [54], resource connectivity constraint to en-

sure high multiplexing gain has been considered to maximize
the network-wide utility function for multi-CRAN. It restricts
that a user cannot be connected to more than one cloud at
a time and the number of users per cloud is limited to the
number of connected RRH antennas. To this end, for a multi-
CRAN scenario in [55], the resource connectivity constraint
has been examined to maximize the overall network utility
in a scheduling optimization problem. It constraints that each
user can only connect to one cloud at a time, however, each
user can associate with multiple BSs. In a CRAN, RRHs
can dynamically share computing resources of multiple BBUs
to improve the overall resource utilization. In this regard,
power consumption of BBUs has been optimized subject to
the constraint on the additional computing resources needed
by the BBUs for inter-BBU communication in [43].

5) Miscellaneous: The achievable rate of multiple relay
channel has been investigated for CoMP operation in a CRAN
that is constrained by the noise introduced by the Wyner-Ziv
compression at the node [129]. In [93], CRAN deployment
and infrastructure requirements have been investigated under
the mobile coverage ratio requirement such that the overall
cost of the network is minimized. Furthermore, in [51],
constrained beamforming vector that is adaptive to the queue
state information and the CSI has been considered to study
cooperative beamforming for delay sensitive traffic in CRAN
with the limited backhaul. Also, authors in [48] examined the
collaborative task execution in CRAN mobile device under the
probabilistic time deadline constraint such that the application
can be executed on the device itself or offloaded to the cloud
for processing. In [57], queue stability and backlog size have
been considered in the selection of compression rates for
uplink data transmission in CRAN. Also, a network model
has been proposed in which the compression rate can exceed
the instantaneous backhaul capacity as long as the queue is
stable.

V. TAXONOMY OF CRAN OPTIMIZATION AND SOLUTIONS

In this section, we will provide optimization taxonomy in
a CRAN and various solution types as well as algorithms
proposed in the literature for optimization in a CRAN.

A. Optimization Taxonomy

Figure 6 shows that the optimization taxonomy in a
CRAN can be broadly categorized into deterministic and non-
deterministic categories. In the following, we discuss sub-
categories of these categories along with various underlying
optimization types.

1) Deterministic Solutions: The deterministic CRAN opti-
mization solutions can be of continuous and discrete types,
which are discussed below with regard to the CRAN system
optimization. Depending on the convexity property of the
optimization problem, there exist three different types of con-
tinuous solutions, namely, non-convex, convex and difference-
of-convex (DC), which, in the context of CRAN system
optimization, are discussed below.

Non-convex: Out of the continuous solutions investigated
in the CRAN literature, the most commonly investigated
solutions are non-convex [51], [58], [60], [61], [63], [64],
[66], [73]–[75], [128], [148], [149], [156], which are briefly
discussed in the following.

One major issue in CRAN systems is the lack of CSI relative
to the received signals at the BSs of other cells for designing
transmission strategies at the mobile stations and compression
strategies at the BSs. To address this issue, authors in [73]
formulated a non-convex quadratically constrained quadratic
program to minimize the transmit power under the backhaul
capacity constraint. The layered transmission and compression
strategies are proposed to provide more beneficial channel
conditions to the neighboring BSs. Authors in [60] formulated
a joint optimization problem of antenna selection, power
allocation, and regularization factor to maximize the average
weighted sum-rate. The formulated problem is a mixed combi-
natorial and non-convex problem. Similarly, a multi-objective
non-convex optimization problem is formulated in [128] with
an objective to maximize the throughput contribution of RRH
and minimizing its total power consumption while guaran-
teeing its energy efficiency. The formulated multi-objective
problem is transformed into a single-objective optimization
problem by utilizing the Pascoletti and Serafini scalarization
method.

To solve the non-convex problem of delay-aware coopera-
tive beamforming control in CRAN, authors in [51] formu-
lated the problem as an infinite horizon average cost Markov
decision process and derived its conservative formulation.
Another article [74] proposed a joint dynamic clustering,
user scheduling and beamforming design strategy for the
downlink of CRAN with the objective of maximizing the
network utility. The formulated problem is non-convex and
obtaining its global optimal solution is challenging. Therefore,
the authors utilized heuristic algorithms to approach a local
optimal solution. Designing a robust transceiver in multi-cell
distributed antenna systems is another crucial issue in CRAN.
To this end, authors in [156] proposed a robust transceiver
design algorithm by utilizing the Bayesian philosophy with the
Gaussian distributed channel error while aiming to reduce the
negative impacts of channel estimation errors. A non-convex
optimization problem of minimizing average MSE under the
per-antenna power constraints at the RRHs is formulated while
taking into account channel estimation errors. Subsequently,
an alternating direction method of multipliers algorithm was
employed to decouple the complex relationship between the
optimization objective and per-antenna power constraint by
introducing an auxiliary variable. Furthermore, the authors in
[75] formulated the overall sum-rate maximization problem
under the sum backhaul capacity constraint, which is a non-
convex problem and finding an optimal solution becomes
challenging. To address this, the Lagrangian method was
applied by utilizing the KKT conditions necessary for the
optimality.

In addition, in [66], a non-convex optimization problem
has been formulated to maximize the weighted sum-rate
under the backhaul constraints to find the precoding matrix
and compressive co-variance matrix in a compression-enabled
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CRAN. In contrast to other works dealing with independent
compression of signals intended for different BSs, the work
proposed multivariate compression to better control the im-
pact of additive quantization noises at the mobile stations.
Similarly, the authors extended the work to [62], where
the joint precoding and multivariate backhaul compression
problem has been studied subject to power and backhaul
capacity constraints and an iterative algorithm was employed
to solve the underlying non-convex problem. Moreover, the
work in [64] investigated a distributed linear MMSE precoding
design problem in a CRAN, in which the non-convex precoder
design optimization problem has been decomposed into several
sub-problems by employing a low-complexity decomposition
algorithm. Subsequently, sub-problems have been solved by
using the Lagrange multiplier method and it was shown that
the operations of sub-problems can be performed in parallel
with only limited information exchange.

In the context of a distributed large-scale MIMO CRAN
consisting of a number of spatially distributed RRHs, authors
in [148] proposed a regularized zero-forcing precoding for
the resource management problem. A non-convex optimization
problem was formulated to maximize the network energy
efficiency (defined as the ratio of the average total data rate to
the total transmit energy consumption) via power allocation
under the constraints of the maximum transmit power of
each RRH and the UE’s data-rate requirement. The problem
was decomposed into outer and inner loop problems, which
were then transformed by employing fractional programming
and geometric programming, respectively. In addition, [149]
studied the energy efficiency maximization problem for RB
and power allocation with constraints on required QoS, inter-
tier interference and allowable maximum transmit power in
a H-CRAN. The formulated problem is non-convex in nature
and an equivalent convex feasibility problem was reformulated
and the corresponding closed-form expressions are derived by
employing the Lagrange dual decomposition method. Another
paper [58] studied the problem of optimizing both the radio
(transmit precoding matrices of the mobile users) and com-

putational (CPU cycles/second assigned by the cloud to each
mobile user) resources with the objective to minimize overall
users’ energy consummation under the latency constraints. The
formulated optimization problem has been found to be non-
convex in both the objective function and constraints and was
solved by using a successive convex approximation (SCA)
technique based iterative algorithm.

Additionally, authors in [61] considered a joint power
control and fronthaul quantization design in CRAN with the
objective of maximizing the overall system throughput subject
to the constraint on each RRH’s fronthaul link capacity. The
formulated problem is non-convex because of the non-convex
objective function over the evaluated variables, i.e., power and
rate. In [63], authors considered the problem of designing
linear minimum MSE beamforming in a relay-assisted CRAN
consisting of relay nodes to enhance the network coverage.
A leakage-based minimum MSE minimization problem was
formulated for the joint optimization of beamforming matrices
at both the RRHs and relay nodes subject to the per-antenna
power constraints. Thus formulated optimization problem was
shown to be non-convex and multiple-variable optimization
problem.

Convex: As compared to the non-convex problems, only a few
problems have been noted as convex in the context of CRAN
optimization in the existing literature. The CSI overhead is
considered as one of the major factors in consuming the
radio resources in CRAN systems. To this end, authors in
[50] considered the problem of CSI overhead reduction and
downlink coordinated beamforming in a unified framework.
Mainly, a stochastic beamforming framework has been pro-
posed with the objective to maximize the total transmit power
while satisfying the QoS requirements with the mixed CSI.
The optimization problem has been formulated as a second-
order conic programming problem, which is a convex problem
and can be efficiently solved by using interior-point methods.
Furthermore, the article [144] studied the energy consumption
optimization of an MCC system under the stochastic wireless
channel. The objective was to develop optimal scheduling
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policies to minimize the energy consumption by the device
either by offloading the mobile applications to the cloud or
by performing optimal execution of the applications in the
mobile devices. Both scheduling problems were formulated as
constrained convex optimization problems with the application
completion time constraint, and the corresponding closed-form
solutions were obtained, which can provide optimal scheduling
policies.

As the RRHs are connected to the BBU pool via the
optical transport links, it becomes crucial to minimize power
consumption in the transport network. In this regard, authors
in [53] formulated a problem of joint RRH selection and
power minimization beamforming towards designing green
CRAN. With the help of group-sparse beamforming, the orig-
inal combinatorial problem was relaxed to a convex problem
by utilizing the group-sparsity inducing norm. However, the
quantification of the performance gap due to convex relaxation
normally requires the knowledge of specific prior information.
Moreover, the article [68] employed a compress and forward
scheme in the BSs, which sends the quantized version of
the received signals to the cloud-computing based central
processor by utilizing either a single-user compression or the
distributed Wyner-Ziv coding. Under this framework, quanti-
zation noise level optimization problem for the weighted sum-
rate maximization was considered subject to a constraint on a
sum backhaul capacity. To solve this problem, an alternating
convex optimization method has been employed to find the
local optimum solution.
Difference-of-Convex (DC): In addition to convex and non-
convex problems, some DC problems have appeared in the
CRAN literature. For example, at the uplink of multi-antenna
CRAN, the article [157] studied the problem of maximizing
achievable sum-rate with the JDD which is shown to be an
instance of a class of DC problems. Furthermore, authors in
[65] addressed the problem of performance degradation of
a multiplex-and-forward scheme in CRAN having a dense
deployment of radio units. In this scenario, the formulated
sum-rate maximization problem under the backhaul capacity
constraint is a DC problem. To solve this problem, the algo-
rithm named DC programming (which is based on an iterative
procedure and is known to converge to a stationary point)
has been utilized. Moreover, in the context of multi-terminal
backhaul compression problem, authors in [69] considered the
design of power control parameters and the compression noise
powers. The formulated optimization problem has been shown
to belong to the class of DC problems. In addition, authors in
[158] considered the problem of maximizing the sum-rate of
a CRAN, consisting of a set of multi-antenna mobile stations
and a set of multi-antenna BSs, with the JDD. Thus formulated
optimization problem has been shown to be a DC, and a
majorization minimization (MM) method has been employed
to achieve guaranteed convergence to a stationary point.

As depicted in Fig. 6, another class of deterministic op-
timization involves discrete solutions. For example, [159]
investigated such a discrete solution for an optimization prob-
lem. Authors studied the problem of scheduling users to
the time/frequency blocks of a transmission frame and also
finding their power levels with the objective of maximizing

the weighted sum-rate in a CRAN. The formulated network-
wide optimization problem is mixed discrete and continuous
optimization problem which involves the search over all pos-
sible assignments of the users to frequency/time blocks and
determination of power-levels for every possible assignment.
Such a problem becomes infeasible for an arbitrary-sized net-
work. The optimization problem has been solved by utilizing
a graph theoretical method with a joint scheduling and power
control graph composed of several clusters, where each cluster
represents the possible association among the users, BSs, and
power levels for specific time/frequency block.

The discrete type of deterministic optimization problems
can be further divided into ILP, integer non-linear program-
ming (INLP) and MINLP as depicted in Fig. 6. Some of the
existing CRAN works related to these optimization solutions
are briefly discussed below.
Integer Linear Programming (ILP): Only limited research
work considers ILP optimization problems in the CRAN
context. For example, authors in [93] studied the problem of
IDLP in a CRAN architecture by formulating the problem
in terms of generic ILP model. The main objective of the
considered optimization problem was to minimize the overall
infrastructure deployment cost of a CRAN while optimally
finding the locations of RRHs and wavelength division mul-
tiplexers, exploring the association between the RRHs and
wavelength division multiplexers, and considering the cover-
age requirement of mobile users for accessing via the RRHs.
Mixed Integer Non-Linear Programming (MINLP): Au-
thors in [49] proposed a joint optimization of transmission
strategy and the allocation of the CRAN resources includ-
ing fronthaul capacity and processing power. A cooperative
transmission design scheme has been investigated in which
the precoding vectors and baseband signals are processed and
computed at the cloud. The joint optimization problem is a
MINLP quadratic program, which is an NP-hard problem.
Authors employed an optimal exhaustive search method and
also low-complexity algorithms to solve the problem. For the
precoding design problem, the original problem was relaxed
by removing the rank-one constraint, which was then con-
verted to a semi-definite program convex problem and solved
by standard tools such as CVX solver. For the allocation
of BBU resources, a standard binary integer programming
algorithm has been suggested. Furthermore, the research work
in [143] investigated a cross-layer based resource allocation
mechanism with the objective of minimizing the total system
power consumption in both the RRHs and the BBU pool.
The problem has been characterized as an MINLP problem,
which is NP-hard in nature. To solve this problem, the authors
relaxed the original MINLP problem to a quasi-weighted sum-
rate maximization problem, which has been then solved by
employing a branch and bound method.

2) Non-deterministic Solutions: Non-deterministic solu-
tions can be stochastic or chance-constrained as depicted in
Fig. 6. In the following, we briefly discuss the existing works
under these categories.
Stochastic: Towards optimizing the end-to-end performance
of MCC users, authors in [45] studied the problem of topology
configuration and rate allocation in CRAN. An optimization
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problem has been formulated to maximize the sum transport
control protocol with the constraint on the response latency,
which is a constrained stochastic optimization problem. To
solve this problem, a greedy policy has been employed to
maximize the expected objective function value to be obtained
in the current time-slot, which is found to be optimal while
considering multiple horizons. Furthermore, such a stochastic
optimization problem with the greedy policy can be converted
to a deterministic optimization problem, which becomes an
integer programming problem with discrete actions. Subse-
quently, to solve the integer programming problem, branch
and bound method can be employed for the medium-sized
problems and heuristics including Genetic algorithm can be
applied for the very large-sized problems. Furthermore, au-
thors extended the work in [45] to [160], where the dynamic
operation of CRAN to enhance the end-to-end performance of
MCC users was studied by holistically combining the CRAN
and MCC platforms in the presence of delayed CSI. The
main problem in this MCC combined CRAN system is the
timely acquisition of CSI since only sub-optimal operations
can be employed with deterministic optimization methods in
the presence of the delayed CSI. In this regard, a stochas-
tic optimization framework with the delayed CSI has been
employed for the topology configuration and rate-allocation
problem with the objective of maximizing the sum-throughput
of MCC services.
Chance Constrained: Authors in [67] formulated a generic
stochastic coordinated beamforming framework which can
provide optimal transmission strategies with a generic stochas-
tic model for modeling the CSI uncertainty. The stochas-
tic coordinated beamforming problem formulation has been
found to be a joint chance constrained program which is
very intractable. To solve this intractable problem, a novel
stochastic DC algorithm has been employed by formulating
the intractable probability constraint.

B. Solution Type/Algorithm

Figure 7 shows solution types/algorithms considered in the
literature for a diverse range of objectives and constraints for
the CRAN identified in Section IV.
Iterative: Iterative algorithms compute a sequence of points
for an optimal solution starting from an initial guess. In
[129], an iterative method was used to solve rate optimization
problem while reducing the distributed compression noise.
Fronthaul-constrained power minimization problem was ad-
dressed using an iterative algorithm in [150], where the
power and fronthaul capacity trade-off is solved by adaptively
adjusting pricing coefficients. Also, an iterative algorithm has
been proposed for joint compression and BS selection for the
uplink of CRAN [56]. In [158], an iterative algorithm based on
the MM approach was proposed to maximize achievable sum-
rate through joint decompression of BS signals and decoding
of user messages. Similarly, in [58], an iterative algorithm
has been proposed for computation offloading from mobile
users to the cloud server that minimizes the overall energy
consumption of users under the latency constraint. In [62],
[66], iterative algorithms were employed to maximize the

weighted sum-rate of the BSs under the power and backhaul
constraints.

Furthermore, algorithms based on the iterative solution have
been proposed for locally optimal transmission and compres-
sion in [73]. Precoding vector of transmit antenna has been
iteratively updated in the algorithm proposed for beamforming
[63], [156]. The objective was to minimize MSE under the per-
antenna power constraint. In [134], an iterative solution has
been proposed for MIMO systems in a CRAN under the mixed
power constraint. To optimize the quantization noise, a fixed
point iterative solution was proposed in [75] that maximizes
the overall sum-rate of BSs under the sum backhaul constraint.
In [86], an iterative scheme has been proposed to maximize
the energy efficiency of the NOMA based CRAN subject to
fronthaul capacity and power constraints. A two-loop iterative
algorithm has been proposed in [91] to maximize downlink
sum-rate in the H-CRAN subject to per RRH power and
fronthaul capacity constraints.
Heuristic: Heuristic techniques offer near-optimal solution
more quickly and with lower computational requirements
compared to the other optimization methods. In [43], an
algorithm based on heuristic approach has been developed
for BBU virtualization to improve power efficiency. Similarly,
in [54], a centralized heuristic solution has been proposed
for user assignment problem in a multi-cloud environment.
In [61], heuristic algorithms were proposed for power and
rate allocation in CRAN. BS clustering solutions based on
the heuristic scheme were proposed in [74] that maximize
network utility under per-BS backhaul constraint for downlink
CRAN. Besides, coordinated scheduling problem for downlink
CRAN has been addressed in [127] and a heuristic solution
has been proposed to maximize overall network utilization.
Resource allocation problem in a multi-cloud CRAN has been
investigated in [135] and a solution based on the heuristic
algorithm has been proposed that maximizes the network-
wide utilization. CRAN with network virtualization has been
studied in [77] and a heuristic scheme has been proposed
to address the resource allocation problem that maximizes
aggregate throughput and delay performance of the network.
Exhaustive Search: Exhaustive search methods determine the
optimal solution by computing values at equally spaced points
within the search space. The exhaustive search algorithm has
been used for optimal data transmission and beamforming
schemes for MIMO CRAN [130], [131]. Exhaustive search
methods were also used for the implementation of spectrum
sharing in a CRAN [47]. Also, the resource allocation problem
has been addressed for CRAN by using exhaustive search
algorithm [49]. In [59], bisection method combined with
exhaustive search has been used for antenna selection in a
large distributed MIMO network.
Block coordinate descent (BCD)-MM: BCD methods parti-
tion the variable space into blocks and optimize the objective
function against each block iteratively, reducing the overall
computational requirement. To this end, the issue of quantiza-
tion noise has been addressed for backhaul constrained CRAN
by using BCD algorithm combined with MM (BCD-MM) in
[157]. The proposed solution jointly optimizes the code vector
and quantization noise of the transmitting antennas.
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Fig. 7. Solutions types/algorithms for optimization in CRAN.

LARAC and Lagrange Dual Decomposition: A schedul-
ing solution has been proposed by using LARAC algorithm
presented in [48]. The proposed scheme minimizes power
consumption at the mobile device by employing collabora-
tive task execution under the time constraint. With Lagrange
relaxation technique, the problem has been decomposed into
simpler components that are solved independently and finally
combined to arrive at the global solution. A solution based
on Lagrange dual decomposition combined with the iterative
scheme has been proposed in [64] for the precoding design of a
distributed antenna system in a CRAN. The proposed solution
minimizes the MSE under per-antenna power constraint at
RRH. In [149], inter-tier interference in H-CRAN has been
addressed by using the Lagrange dual decomposition method
by jointly allocating RBs and transmit power to RRHs. The
Lagrange dual method has also been considered for resource
management problem in a distributed MIMO CRAN [144].
Fractional programming method combined with Lagrangian
dual decomposition has been used in [82] to optimize the
network energy efficiency of downlink H-CRAN. In [147], en-
ergy harvesting CRAN has been investigated and an algorithm
based on Lagrange dual decomposition has been proposed
to maximize the utilization of green energy harvested by the
RRHs. A resource allocation scheme based on Lagrange dual
decomposition algorithm for density-aware software defined
CRAN has been presented in [90].

Auction based Algorithm: Auction algorithms are often
used to solve assignment problems where the competitors
bid for assignment. A multi-cloud association problem has

been addressed by using an auction based algorithm in [54].
The proposed distributed solution maximized network utility
under the user assignment constraint that a user cannot be
simultaneously connected to more than one cloud.
Greedy: Greedy algorithms obtain a globally optimum solu-
tion by selecting a locally optimal solution at each step. In
[128], a greedy algorithm has been used to solve the multi-
objective optimization problem for clustering in a CRAN.
The proposed solution maximizes system throughput while
minimizing total power consumption. A greedy algorithm has
been used to jointly study the rate allocation and topology
configuration problem in a CRAN such that the network
throughput is maximized under response latency constraint
in [45], [46]. In [53], the energy efficiency of CRAN has
been addressed by using a greedy algorithm that selects a
set of active RRHs along with coordinated beamforming. A
greedy antenna selection and power splitting scheme has been
presented to maximize the achievable rate in relay channels
in [139]. In [71], [72], distributed compression schemes based
on a greedy algorithm were presented for uplink CRAN that
maximize the sum-rate.
Successive Convex Approximation (SCA): In SCA, a locally
tight approximate of the original problem has been solved at
each iteration subject to the tight constraints set. Computation
offloading has been investigated by using the SCA technique
in [145] such that the overall energy consumption of the user
is improved under the latency constraint. Also, in [68], SCA
technique has been used to maximize uplink CRAN sum-
rate by optimizing the quantization noise under the backhaul
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capacity constraint. Traffic offloading from CRAN to low
power femtocells has been investigated in [84] and a two-
step iterative algorithm based on SCA has been proposed to
improve the energy efficiency of the network. In [88], an
SCA based iterative scheme has been employed for solving
the joint access and fronthaul resource allocation problem in
H-CRAN. In addition, the optimization of beamforming vector
in ultra-dense CRAN has been addressed in [153] by using an
iterative SCA approach and a solution has been proposed that
minimizes the total transmit power.
Semidefinite Programming: In semidefinite programming,
the objective function is optimized subject to a semidefinite
constraint on variables. For example, in [152], coordinated
beamforming and admission control problem for multi-antenna
RRHs in downlink CRAN has been formulated as a single
stage semidefinite program. The proposed algorithm optimizes
the total transmission power under the QoS and fronthaul
capacity constraints.
Others: Several other optimization methods have also been
considered in the literature. For example, in [44], Pareto
frontier was used to find an optimal solution that maximizes
the sum-rate of the users. A graph theoretical approach was
used for the CRAN user scheduling problem in [122], [136],
[137]. Furthermore, a bisection search algorithm was used for
the RRH selection problem that improves the overall energy
efficiency in [143]. In [60], a bisection search method was
employed for joint antenna and power selection on downlink
CRAN that maximizes the weighted average sum-rate. In [50],
a tractable approximation method for stochastic beamforming
was employed to minimize the total transmit power. Group-
sparse optimization and relaxed-integer programming based
algorithms were proposed for interference coordination in a
CRAN in [52]. In [154], a dynamic pricing and scheduling
solution was proposed based on the look-ahead algorithm
that maximizes the operator’s profit. In [151], a branch and
bound method was employed to optimize network power
consumption.

Moreover, a graph theoretical approach has been used for
user scheduling in a multi-cloud environment to maximize
the network utility in [55], [122]. Drift plus-penalty policy
has been considered to maximize the average sum-rate in
[57]. In [65], [69], iterative MM algorithms were employed to
study the efficient routing and compression scheme for uplink
CRAN. A stochastic programming algorithm was proposed
in [67] for coordinated beamforming under CSI uncertainty.
In [133], a probability-weighted algorithm was considered for
resource allocation and interference management in a CRAN.
An online stochastic gradient algorithm was proposed for rate
and power allocation in a CRAN for delay sensitive traffic in
[70]. Similarly, a scalable online algorithm was proposed in
[78] by using the Lyapunov stochastic network optimization
technique for resource allocation in energy harvesting CRAN.
Grid energy consumption in energy harvesting CRAN was
minimized in [83] by using a mesh adaptive direct search
algorithm. An algorithm based on machine learning framework
was proposed in [79] to improve QoE of devices in CRAN. A
game based user association algorithm was presented in [85]
for capacity constrained frounthaul in H-CRAN. Ergodic sum-

rate is maximized in [89] for H-CRAN by jointly optimizing
the bandwidth allocation and compression using Dinkelbach’s
algorithm. In addition, outer approximation approach was used
in [123] to maximize the overall throughput in the H-CRAN.
The stochastic programming model was considered in [92] for
resource allocation optimization in the H-CRAN by consider-
ing network uncertainties. In [138], a regularized particle filter
(RPF) scheme was considered for optimal resource allocation
in the H-CRAN.

VI. OPEN RESEARCH TOPICS AND FUTURE
RECOMMENDATIONS

Despite extensive research in resource allocation for CRAN,
there are still areas that need more investigation. Here, we
briefly discuss some open issues that pertain to the success of
CRAN.

A. Joint Resource Allocation over Constrained
Fronthaul/Backhaul

Advanced and sophisticated resource allocation schemes
are required in the CRAN, mainly because of need of ad-
ditional computing resources. One of the key challenges is
to design efficient compression algorithms for fronthaul links
in a CRAN that connect radio units to the control units
[161]. To this end, it is important to investigate the effect
of latency of the fronthaul on the performance of the upper
layers. In addition, optimal resource allocation with over-
constrained fronthaul needs further investigation. The effect of
imperfect fronthaul link with packet loss could also be another
interesting topic. Also, the fronthaul network is expected to be
highly heterogeneous with different link capacities and latency,
thus requiring the need of re-configurable fronthaul which can
be adapted based on the network topology and the traffic load
[162].

In a CRAN, sum-rate performance gain can be improved by
using adaptive after/before-precoding methods. In this regard,
it is important to investigate the problem of precoding that uses
the minimum backhaul [130]. Also, the accurate profiling of
users is an essential milestone to determine appropriate strate-
gies for the design of re-configurable backhaul in a CRAN
[163]. In addition, efficient algorithms should be designed to
maximize the system performance based on user profiles and
traffic load to determine the optimal backhaul. Furthermore,
investigating the performance of BS cooperation with clus-
tering (particularly with large size clusters) while considering
the reconfigurable backhaul in the ultra-dense deployment of
BSs could be a promising future research direction. Moreover,
future research in this direction should focus on investigating
efficient resource optimization techniques while considering
the constraints of both the fronthaul and backhaul links as
well as the demands from the user-side.

B. Latency Minimization

The amount of transmission delay may increase with the
increase in number of BSs. It is important to investigate the
impact of transmission and scheduling delays as these can
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significantly contribute for real-time processing capability of
proposed schemes. In this direction, the theoretical analysis
of delay-sensitive traffic for hybrid CoMP in a CRAN needs
detailed investigation [70]. It is also important to study the
trade-off between performance and delay caused by coding
over multiple-fading blocks [73]. One promising solution
to minimize the network latency in a CRAN system is to
offload the tasks and contents to the edge of the network
by employing suitable edge computing [164] and proactive
caching [165] solutions, respectively. Moreover, collaborative
edge-cloud processing [166] can benefit from the advantages
of both the cloud-processing and edge-processing, and can
enable the real-time operation of delay-sensitive applications
while also handling the massive amount of data at the cloud-
server.

C. Energy Efficiency

Energy consumption of mobile applications in a CRAN
can be reduced by using collaborative task execution methods
[48]. Towards this direction, it is important to investigate the
trade-off between energy consumption and performance of the
application while introducing power saving mode and power
allocation on mobile devices. Joint MIMO and discontinuous
transmission have been investigated to improve energy effi-
ciency in [167]. However, a coordinated BS scheme is required
in which BSs share MIMO transmissions and discontinuous
transmission cycles to further enhance energy efficiency and
reduce inter-cell interference. Although joint RRH selection
and power minimization beamforming have been shown to be
beneficial in improving the energy efficiency of a CRAN [53],
analyzing the efficiency of beamforming algorithms for very
large-scale CRANs needs further attention. Also, on-demand
scheduling of baseband computing resources for multiple radio
access technilogies using NFV can reduce energy consumption
[162].

The application of energy harvesting from the renewable
energy sources should be further investigated to enhance
the performance of ultra-dense CRANs in terms of energy
efficiency. During the low traffic time, a large number of
RRHs may be under-utilized by serving low traffic while
consuming substantial energy [84]. To this end, it is important
to investigate effective RRH switching-off schemes to reduce
energy consumption under low traffic situations.

D. Learning-assisted Optimization

Optimizing the operation of cellular networks including
CRANs has been challenging over the generations due to
the rapidly increasing number of configurable parameters
[168]. Also, the application of the conventional optimization
techniques in emerging ultra-dense networks becomes com-
putationally complex and it is usually difficult to come across
optimal solutions with low complexity in many scenarios. To
this end, emerging Machine Learning (ML) techniques can be
promising to speed up the optimization process as well as to
find heuristic solutions in an iterative manner in the scenarios
where it becomes complex to come across an optimal solution.
To this end, investigating the applications of ML techniques

for the effective operation and management of CRAN-based
Beyond 5G systems is a promising future research direction.
Besides the conventional supervised, unsupervised and rein-
forcement learning techniques, some of the emerging ML
techniques applicable in this direction include collaborative
learning, distributed learning, active learning, hybrid learning
(data-driven and model-based), federated learning [169] and
Quantum ML [170].

E. Network Scalability

The CSI is often required to improve the performance of
a CRAN [50]. Although stochastic beamforming approach is
used in the literature to reduce the overhead of CSI acquisition,
there arises the need of more efficient algorithms for large-
scale practical networks. Also, it would be interesting to
investigate uplink CRAN for a scenario where the number of
radio units is greater than the number of mobile devices [57].
Furthermore, the compression strategies for the uplink in a
CRAN can be optimized to maximize the sum-rate capacity
[158]. However, the complexity of algorithms is an important
concern for the large-scale deployment of CRANs. Also,
heuristic algorithms should be investigated for the efficient
IDLP of large-scale CRANs [93]. In addition, time-efficient
heuristic algorithms need further attention to address the issues
of network scalability for reducing the complexity in large-
scale hybrid CRANs.

F. Mobility Management

Providing robust and continuous connectivity through mul-
tiple wireless communication technologies is a key for the
vehicles on the move. In this direction, it is important to inves-
tigate the design of optimized algorithms and utility functions
with less complexity based on the user-centric requirements
or requirements of network operators. Since the correlation
of mobile call patterns becomes high with the co-location
patterns in the coverage area of the same BS at the same time
[171], it is highly important to incorporate user mobility data
in the optimization of CRAN for enhancing its performance
in the presence of large-scale user mobility. Furthermore,
investigating suitable mobility models for different types of
traffics (human, machine) and designing mobility-aware adap-
tive techniques [172] for the effective optimization of CRAN
system parameters is an interesting future research direction.

G. Service Management

Blocking probability and call wait time can be improved
by employing efficient admission control schemes in a CRAN
while ensuring various QoS requirements [173]. To this end,
Fuzzy logic approach can be applied for admission control
in HetNets with different QoS requirements. In addition, ML
and artificial intelligence algorithms can be effective for the
efficient management of heterogeneous services/applications
in the CRAN systems including the design of effective admis-
sion control schemes. Also, ML techniques can be significantly
helpful to handle self-configuration, self-optimization and self-
healing operations in the CRANs [168]. Furthermore, it is
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important to measure the network parameters such as sparsity
in the network topology [174] and the traffic conditions so
that the signaling architecture can be adapted accordingly for
the performance enhancement of a CRAN system.

H. Network Virtualization

Wireless network virtualization should be investigated to op-
timize the end-to-end performance of a CRAN system [45]. A
virtual cell can be configured with a mobile user located in the
center surrounded by the serving RRHs in a circular area. A
single-user transmission in a virtual cell is not an optimal strat-
egy presented in [76]. This will cause interference when users
come nearby to each other. Therefore, taking into account the
benefits of multiuser cooperative transmission in reducing the
interference, it is important to investigate suitable virtualiza-
tion techniques to enable cooperative multiuser transmissions
in CRANs. Also, emerging network slicing techniques [175]
can be investigated on the top of the virtualized CRAN to
support heterogeneous 5G services including enhanced mobile
broadband, massive machine-type communications and ultra-
reliable and low-latency communications.

I. Field Trials

It is important to implement and make the field testing
of the proposed schemes in the literature to determine their
suitability in practical scenarios. For example, the network
selection scheme in [176] can be implemented by using a
database and mobile devices. Also, the actual performance
gain which a user can achieve by using CoMP transmission
based on CRAN [177] can be analyzed through the field
tests. Although the theoretical framework of energy-optimal
MCC for the stochastic wireless channel is presented in
the literature [144], its realistic performance in real-world
applications can be known after the field trials. Moreover,
aggregation approaches and ML techniques for online learning
based policies could be investigated for the realistic scenarios
where the network parameters are unknown and vary over the
time [94]. In addition, the queue-aware resource allocation
policy with hybrid CoMP [70] should be demonstrated through
real experiments to determine its performance in fronthaul-
constrained CRANs. Based on the above, it can be concluded
that most of the theoretical studies in the literature need to be
verified via field-trails, thus requiring the need of more future
research in developing experimental prototypes and real-world
measurement-based analysis.

VII. CONCLUSIONS

5G and beyond networks are expected to support diverse
service requirements of numerous emerging applications. The
scalability and cost efficiency of CRAN makes it a potential
candidate to manage the expanding network infrastructure and
resources for diverse service requirements. In this regard, this
paper presented a comprehensive survey of resource allocation
in a CRAN along with its objectives, constraints, optimization
taxonomy, solutions, and applications with the aim of provid-
ing readers with a holistic view of different aspects of resource

allocation in CRAN. The basic elements of resource allocation
in CRAN have been discussed including user assignment,
RRH selection, throughput, spectrum, network utility, and
power allocation. Also, we presented several emerging use-
cases in order to show the importance of CRAN in scenar-
ios where users have diverse service requirements. We then
classified the objectives in CRAN into broad categories: re-
sources, throughput, energy, and miscellaneous. Furthermore,
we categorized constraints related to the classified objectives
in the CRAN including power, throughput, resources, quality,
and miscellaneous. We also presented a taxonomy of CRAN
optimization where we broadly divided it into deterministic
and non-deterministic approaches. Several algorithms/solution
approaches including iterative, heuristic, meta-heuristic, SCA
and exhaustive search utilized for solving CRAN optimization
problems were discussed. Finally, several open issues were
identified and future research directions were suggested. In a
nutshell, efficient resource allocation schemes for the CRAN
can improve the performance of the upcoming 5G and beyond
wireless networks, which need to deal with diverse use-cases
and service requirements.
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