2,560 research outputs found

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    COMPUTATIONAL TOOLS FOR THE DYNAMIC CATEGORIZATION AND AUGMENTED UTILIZATION OF THE GENE ONTOLOGY

    Get PDF
    Ontologies provide an organization of language, in the form of a network or graph, which is amenable to computational analysis while remaining human-readable. Although they are used in a variety of disciplines, ontologies in the biomedical field, such as Gene Ontology, are of interest for their role in organizing terminology used to describe—among other concepts—the functions, locations, and processes of genes and gene-products. Due to the consistency and level of automation that ontologies provide for such annotations, methods for finding enriched biological terminology from a set of differentially identified genes in a tissue or cell sample have been developed to aid in the elucidation of disease pathology and unknown biochemical pathways. However, despite their immense utility, biomedical ontologies have significant limitations and caveats. One major issue is that gene annotation enrichment analyses often result in many redundant, individually enriched ontological terms that are highly specific and weakly justified by statistical significance. These large sets of weakly enriched terms are difficult to interpret without manually sorting into appropriate functional or descriptive categories. Also, relationships that organize the terminology within these ontologies do not contain descriptions of semantic scoping or scaling among terms. Therefore, there exists some ambiguity, which complicates the automation of categorizing terms to improve interpretability. We emphasize that existing methods enable the danger of producing incorrect mappings to categories as a result of these ambiguities, unless simplified and incomplete versions of these ontologies are used which omit problematic relations. Such ambiguities could have a significant impact on term categorization, as we have calculated upper boundary estimates of potential false categorizations as high as 121,579 for the misinterpretation of a single scoping relation, has_part, which accounts for approximately 18% of the total possible mappings between terms in the Gene Ontology. However, the omission of problematic relationships results in a significant loss of retrievable information. In the Gene Ontology, this accounts for a 6% reduction for the omission of a single relation. However, this percentage should increase drastically when considering all relations in an ontology. To address these issues, we have developed methods which categorize individual ontology terms into broad, biologically-related concepts to improve the interpretability and statistical significance of gene-annotation enrichment studies, meanwhile addressing the lack of semantic scoping and scaling descriptions among ontological relationships so that annotation enrichment analyses can be performed across a more complete representation of the ontological graph. We show that, when compared to similar term categorization methods, our method produces categorizations that match hand-curated ones with similar or better accuracy, while not requiring the user to compile lists of individual ontology term IDs. Furthermore, our handling of problematic relations produces a more complete representation of ontological information from a scoping perspective, and we demonstrate instances where medically-relevant terms--and by extension putative gene targets--are identified in our annotation enrichment results that would be otherwise missed when using traditional methods. Additionally, we observed a marginal, yet consistent improvement of statistical power in enrichment results when our methods were used, compared to traditional enrichment analyses that utilize ontological ancestors. Finally, using scalable and reproducible data workflow pipelines, we have applied our methods to several genomic, transcriptomic, and proteomic collaborative projects

    GOcats: A Tool for Categorizing Gene Ontology into Subgraphs of User-Defined Concepts

    Get PDF
    Gene Ontology is used extensively in scientific knowledgebases and repositories to organize a wealth of biological information. However, interpreting annotations derived from differential gene lists is often difficult without manually sorting into higher-order categories. To address these issues, we present GOcats, a novel tool that organizes the Gene Ontology (GO) into subgraphs representing user-defined concepts, while ensuring that all appropriate relations are congruent with respect to scoping semantics. We tested GOcats performance using subcellular location categories to mine annotations from GO-utilizing knowledgebases and evaluated their accuracy against immunohistochemistry datasets in the Human Protein Atlas (HPA). In comparison to term categorizations generated from UniProt’s controlled vocabulary and from GO slims via OWLTools’ Map2Slim, GOcats outperformed these methods in its ability to mimic human-categorized GO term sets. Unlike the other methods, GOcats relies only on an input of basic keywords from the user (e.g. biologist), not a manually compiled or static set of top-level GO terms. Additionally, by identifying and properly defining relations with respect to semantic scope, GOcats can utilize the traditionally problematic relation, has_part, without encountering erroneous term mapping. We applied GOcats in the comparison of HPA-sourced knowledgebase annotations to experimentally-derived annotations provided by HPA directly. During the comparison, GOcats improved correspondence between the annotation sources by adjusting semantic granularity. GOcats enables the creation of custom, GO slim-like filters to map fine-grained gene annotations from gene annotation files to general subcellular compartments without needing to hand-select a set of GO terms for categorization. Moreover, GOcats can customize the level of semantic specificity for annotation categories. Furthermore, GOcats enables a safe and more comprehensive semantic scoping utilization of go-core, allowing for a more complete utilization of information available in GO. Together, these improvements can impact a variety of GO knowledgebase data mining use-cases as well as knowledgebase curation and quality control

    Semantic technologies: from niche to the mainstream of Web 3? A comprehensive framework for web Information modelling and semantic annotation

    Get PDF
    Context: Web information technologies developed and applied in the last decade have considerably changed the way web applications operate and have revolutionised information management and knowledge discovery. Social technologies, user-generated classification schemes and formal semantics have a far-reaching sphere of influence. They promote collective intelligence, support interoperability, enhance sustainability and instigate innovation. Contribution: The research carried out and consequent publications follow the various paradigms of semantic technologies, assess each approach, evaluate its efficiency, identify the challenges involved and propose a comprehensive framework for web information modelling and semantic annotation, which is the thesis’ original contribution to knowledge. The proposed framework assists web information modelling, facilitates semantic annotation and information retrieval, enables system interoperability and enhances information quality. Implications: Semantic technologies coupled with social media and end-user involvement can instigate innovative influence with wide organisational implications that can benefit a considerable range of industries. The scalable and sustainable business models of social computing and the collective intelligence of organisational social media can be resourcefully paired with internal research and knowledge from interoperable information repositories, back-end databases and legacy systems. Semantified information assets can free human resources so that they can be used to better serve business development, support innovation and increase productivity

    09251 Abstracts Collection -- Scientific Visualization

    Get PDF
    From 06-14-2009 to 06-19-2009, the Dagstuhl Seminar 09251 ``Scientific Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, over 50 international participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    A Tailored Ontology Supporting Sensor Implementation for the Maintenance of Industrial Machines

    Get PDF
    International audienceThe longtime productivity of an industrial machine is improved by condition-based maintenance strategies. To do this, the integration of sensors and other cyber-physical devices is necessary in order to capture and analyze a machine's condition through its lifespan. Thus, choosing the best sensor is a critical step to ensure the efficiency of the maintenance process. Indeed, considering the variety of sensors, and their features and performance, a formal classification of a sensor's domain knowledge is crucial. This classification facilitates the search for and reuse of solutions during the design of a new maintenance service. Following a Knowledge Management methodology, the paper proposes and develops a new sensor ontology that structures the domain knowledge, covering both theoretical and experimental sensor attributes. An industrial case study is conducted to validate the proposed ontology and to demonstrate its utility as a guideline to ease the search of suitable sensors. Based on the ontology, the final solution will be implemented in a shared repository connected to legacy CAD (computer-aided design) systems. The selection of the best sensor is, firstly, obtained by the matching of application requirements and sensor specifications (that are proposed by this sensor repository). Then, it is refined from the experimentation results. The achieved solution is recorded in the sensor repository for future reuse. As a result, the time and cost of the design process of new condition-based maintenance services is reduced
    • …
    corecore