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ABSTRACT OF DISSERTATION 

 
 
 

COMPUTATIONAL TOOLS FOR THE DYNAMIC CATEGORIZATION AND 
AUGMENTED UTILIZATION OF THE GENE ONTOLOGY  

 

 Ontologies provide an organization of language, in the form of a network or graph, 
which is amenable to computational analysis while remaining human-readable. Although 
they are used in a variety of disciplines, ontologies in the biomedical field, such as Gene 
Ontology, are of interest for their role in organizing terminology used to describe—among 
other concepts—the functions, locations, and processes of genes and gene-products. Due 
to the consistency and level of automation that ontologies provide for such annotations, 
methods for finding enriched biological terminology from a set of differentially identified 
genes in a tissue or cell sample have been developed to aid in the elucidation of disease 
pathology and unknown biochemical pathways. However, despite their immense utility, 
biomedical ontologies have significant limitations and caveats. One major issue is that gene 
annotation enrichment analyses often result in many redundant, individually enriched 
ontological terms that are highly specific and weakly justified by statistical significance. 
These large sets of weakly enriched terms are difficult to interpret without manually sorting 
into appropriate functional or descriptive categories. Also, relationships that organize the 
terminology within these ontologies do not contain descriptions of semantic scoping or 
scaling among terms. Therefore, there exists some ambiguity, which complicates the 
automation of categorizing terms to improve interpretability. 

 We emphasize that existing methods enable the danger of producing incorrect 
mappings to categories as a result of these ambiguities, unless simplified and incomplete 
versions of these ontologies are used which omit problematic relations. Such ambiguities 
could have a significant impact on term categorization, as we have calculated upper 
boundary estimates of potential false categorizations as high as 121,579 for the 
misinterpretation of a single scoping relation, has_part, which accounts for approximately 
18% of the total possible mappings between terms in the Gene Ontology. However, the 
omission of problematic relationships results in a significant loss of retrievable 
information. In the Gene Ontology, this accounts for a 6% reduction for the omission of a 
single relation. However, this percentage should increase drastically when considering all 
relations in an ontology. To address these issues, we have developed methods which 
categorize individual ontology terms into broad, biologically-related concepts to improve 
the interpretability and statistical significance of gene-annotation enrichment studies, 
meanwhile addressing the lack of semantic scoping and scaling descriptions among 
ontological relationships so that annotation enrichment analyses can be performed across 
a more complete representation of the ontological graph.  

 We show that, when compared to similar term categorization methods, our method 
produces categorizations that match hand-curated ones with similar or better accuracy, 
while not requiring the user to compile lists of individual ontology term IDs. Furthermore, 



     
 

our handling of problematic relations produces a more complete representation of 
ontological information from a scoping perspective, and we demonstrate instances where 
medically-relevant terms--and by extension putative gene targets--are identified in our 
annotation enrichment results that would be otherwise missed when using traditional 
methods. Additionally, we observed a marginal, yet consistent improvement of statistical 
power in enrichment results when our methods were used, compared to traditional 
enrichment analyses that utilize ontological ancestors. Finally, using scalable and 
reproducible data workflow pipelines, we have applied our methods to several genomic, 
transcriptomic, and proteomic collaborative projects. 
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CHAPTER 1. INTRODUCTION 

1.1 Ontologies and Their Role in Modern Scientific Research 

 The word ‘ontology’ is most often associated with its definition from the field of 

metaphysics: the study of the fundamental nature of being. However, in the field of data 

science, its second definition provides an arguably more practical—but perhaps less 

profound—concept: a set of terms within a subject area or domain that defines their 

properties and the relationships between them. It is this second definition that is referred to 

in this work, which should hopefully clear up any possible confusion as to why we 

sometimes refer to multiple ‘ontologies.’ 

 Ontologies may vary greatly on their content, usage, and structure, depending on 

which field they are designed to serve. However, whether an ontology is designed for 

describing the structure and procedures of a corporation or the molecular processes within 

a cell, a few core components are required in some form. These include 1) classes - a basic 

definition for a collection of objects or individual entities that may be defined extensionally 

or intensionally; 2) attributes - descriptions, supplementary definitions, or other qualifying 

information that describe aid in the further description of the class; and 3) relations - 

descriptions of how one class is related to another within the scope of the ontology. A 

fourth component, individuals, may also be present, which refer directly to a tangible, real-

world instance of a class. For example, the hypothetical class “Chevrolet Malibu 

automobile” would not be an individual, but an entry specifically referring to Eugene 

Hinderer’s Chevrolet Malibu by some vehicle identification number attribute would 

qualify as an individual. 
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 Due to the nature of these components, the most convenient and useful 

representation of ontological data is a network or graph where classes are represented as 

nodes, connected by relations that are represented as edges. Depending on the ontology 

and application, individuals may also be present as nodes, linked to other nodes, or to 

classes by different relations. Most commonly, classes are related to one another in either 

a subsumptive relation describing categorical membership, e.g. Chevrolet Malibu is_a 

automobile, or by a compositional (mereological) relation describing a part of a whole, e.g. 

wheel part_of automobile. We describe these two types of relationships as “categorization 

relevant” because they are both useful for grouping classes into collections at ever 

increasing scope. However, depending on the needs and uses for the ontology in question, 

additional relations unrelated to subsumptive or mereological membership may also be 

present describing more complex concepts such as the timing of events, or actions that one 

class may perform on another class. The complexity of some ontologies necessitates cross 

referencing to other ontologies that for example, describe how relations relate to one 

another (1).  

 Ontologies in the biomedical field include the Systematized Nomenclature of 

Medicine, Clinical Terms (2)—an ontology standardizing clinical terminology for the 

storage and retrieval of electronic health data; Chemical Entities of Biological Interest—

an ontology describing small chemical compounds relevant to biologist; and the Gene 

Ontology (GO)—an ontology for describing the cellular locations, molecular functions, 

and  biological processes of genes and gene products (3). These ontologies are 

indispensable tools for systematically annotating genes, gene products, and other 

biochemical entities using a consistent set of annotation terms. They are used to document 
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new knowledge gleaned from nearly every facet of biological and biomedical research 

today, from classic biochemical experiments elucidating specific molecular players in 

disease processes to omics-level experiments, providing systemic information on tissue-

specific gene regulation. They are created, maintained, and extended by experts with the 

goal of providing a unified annotation scheme that is readable by humans and machines 

(4).  

 GO and other controlled vocabulary databases like the Unified Medical Language 

System (5,6) saw an explosion in development in the mid-1990s and early 2000s, 

coinciding with the increase in high-throughput experimentation and “big data” projects 

like the Human Genome Project. Their intended purpose is to standardize the functional 

descriptions of biological entities so that these functions can be referenced via annotations 

across large databases unambiguously, consistently, and with increased automation. 

However, ontology annotations are also utilized alongside automated pipelines for 

analyzing protein-protein interaction networks, especially to form predictions of unknown 

protein function based on these networks (7,8); for gene annotation enrichment analyses 

that identify conceptual differences between gene sets; and for the creation of predictive 

disease models in the scope of systems biochemistry (9).  

 With the advent of transcriptomics technologies, high-throughput investigation of 

the functional impact of gene expression in biological and disease processes in the form of 

gene set enrichment analyses represents one important use of GO (10). Many different tools 

such as Categorizer (11), GOATOOLS (12), and Map2Slim (13) exist to utilize GO 

annotations in enrichment analyses. These tools solve an essential task of “mapping” 

specific GO terms to more general GO terms by traversing appropriate edges in the GO 
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graph structure. However, all current methods fail to utilize all the semantic information 

available in this ontology, due to inconvenient features in the anatomy of GO.  

1.2 The Gene Ontology (GO) 

1.2.1 Overview 

 The Gene Ontology (GO) (3) is the most common biological ontology used to 

represent information and knowledge distilled from most biological and biomedical 

research data generated today, from classic “wet” bench experiments to high-throughput 

analytical platforms, especially omics technologies. Classes within GO are referred to as 

terms, and each term has several attributes, including a definition, which aids in the 

intensional definition of the term. Each term in GO is also assigned a unique alphanumeric 

code, which is used to annotate genes and gene products in many other databases, including 

UniProt (14) and Ensembl (15). Term definitions help researchers determine which term is 

most necessary for annotating genes in these kinds of databases. Conversely, researchers 

discovering novel functions or processes performed by a gene or gene product may submit 

a new term and definition to the GO consortium, which can aid in the expansion and 

placement of the new term within the ontology.  

 GO is divided into three sub-ontologies: Cellular Component (CC), Molecular 

Function (MF), and Biological Process (BP). A graph embodies each sub-ontology, where 

individual GO terms are nodes connected by directional edges (i.e. relation). For example, 

the term “connective tissue development” (GO:0061448) is connected by a directional is_a 

relation edge to the term “tissue development” (GO:0009888). In this graph context, the 

is_a relation defines the term “tissue development” as a parent of the term “connective 
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tissue development”. Likewise, “tissue development” (GO:0009888) is_a “anatomical 

structure development” (GO:0048856), which in turn is_a “developmental process” 

(GO:0032502). From a GO term mapping perspective, “connective tissue development” 

(GO:0061448) is_a “developmental process” (GO:0032502). Similar pedigree-like or 

genealogical terminology is used to describe the relations between terms; here, we would 

refer to “connective tissue development” as the child of “tissue development,” and we 

could also speak of “ancestors” or “descendants” of these terms by following directional 

relations up or down the hierarchy of the graph. There are eleven types of relations used in 

the core version of GO; however, is_a is the most ubiquitous. The three GO sub-ontologies 

are “is_a disjoint” meaning that there are no is_a relation edges connecting any node 

among the three sub-ontologies. However, other relations, such as “regulates,” connect 

nodes of separate sub-ontologies. Relations of interest to this study are part_of and 

has_part. These are like is_a in that they describe scope, i.e. relative generality or 

encompassment, but are separate in that is_a represents true sub-classing of terminology 

while part_of and has_part describe mereological correspondence. Therefore, we consider 

scoping relations to be comprised of is_a, part_of, and has_part, and mereological relations 

to be comprised of part_of and has_part. 

1.2.2 Data structure 

 The data structure of GO follows the guidelines set forth by the OBO Foundry (4), 

meaning that it is available in the OBO format or in the Web Ontology Language (OWL) 

format (GO is available in both) and that it adheres to OBO’s principals, which are: 1) the 

ontology is open-access, 2) it is expressed in a common formal language, 3) it possesses a 
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unique identifier space within OBO (hence why GO terms begin with the identifier “GO:”), 

4) versions of each ontology are clearly specified, 5) the content of each ontology is cleanly 

delineated, 6) contextual definitions are provided for all terms, 7) relations are 

unambiguous, 8) the ontology is well-documented, 9) there is a plurality of independent 

users, and 10) the ontology’s development is collaborative (16). As many of these points 

are subjective, developers within the OBO Foundry review candidate ontologies for 

inclusion as members.  

There are three versions of the GO database: go-basic which is filtered to only 

include is_a and part_of relations; go or go-core which contains additional relations that 

may span sub-ontologies and which point both toward and away from the top of the 

ontology; and go-plus contains yet more relations in addition to cross-references to entries 

in external databases like the Chemical Entities of Biological Interest ontology (17). The 

first and second versions are available in the Open Biomedical Ontology (OBO) flat text 

file formatting, while the third is available only in the Web Ontology Language (OWL) 

RDF/XML format. In this project, we utilized the OBO flat file format. This format is 

comprised of a header, which contains information about the version of the ontology, as 

well as other metadata, and stanzas which define terms and relations. Each term stanza 

contains the GO identifier code and various attributes such as the term name, definition, 

and references to direct parent terms. Below is an example of a term stanza taken directly 

from the GO OBO file: 

[Term] 
id: GO:0000001 
name: mitochondrion inheritance 
namespace: biological_process 
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def: "The distribution of mitochondria, including the 
mitochondrial genome, into daughter cells after mitosis or 
meiosis, mediated by interactions between mitochondria and 
the cytoskeleton." [GOC:mcc, PMID:10873824, PMID:11389764] 
synonym: "mitochondrial inheritance" EXACT [] 
is_a: GO:0048308 ! organelle inheritance 
is_a: GO:0048311 ! mitochondrion distribution 

Here we can see the relational link between “mitochondrion inheritance” and its two parent 

terms, “organelle inheritance” and “mitochondrion distribution,” each associated by an 

is_a relation. 

 Stanzas defining relations are labeled as Typedef and contain cross references to 

entries in a higher level Basic Formal Ontology (BFO) (18) to aid in potential 

disambiguation of relationship meanings. The following is an example of a Typedef stanza 

in GO: 

[Typedef] 
id: has_part 
name: has part 
namespace: external 
xref: BFO:0000051 
is_transitive: true 

Here we can see that the has_part relation is defined externally in the BFO and is transitive. 

 While the OBO flat file format is complete enough for parsing, representative of 

the graph structure of GO, and generally human-readable, the OWL format version is more 

structured and amenable for use with common ontology editors like Protégé (19). 
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1.2.3 Gene Ontology Annotations 

 Terms defined within ontologies such as GO are referred to as annotations when 

they are associated with an entity in another database. At this level, the ontological 

terms/classes themselves can be thought of as an attribute of the entity in the other database. 

Since GO terms are constantly being updated to match the most current scientific findings 

and definitions, GO annotations are intended to represent the current snapshot of biological 

knowledge (20).  

 GO annotations are assigned by database curators based on one of several evidence 

codes, which fall into six categories: 1) experimentally based, which include assays, 

expression patterns, and physical interactions determined by direct experiments described 

in literature; 2) phylogenetically-inferred, in which gene functions are inferred based on 

gain and loss of functions of phylogenetically-related genes; 3) computational analysis, 

which includes functional inferences based on sequence or structural similarity determined 

by in silico techniques; 4) author statements, which include direct statements that the 

authors made regarding gene functions in the literature; 5) curator statements, which 

involves functional assignments based on the judgment of the database curator assigning 

the annotation; and 6) electronic annotation evidence, which are not, or not yet, manually 

reviewed (21). This sixth category has annotations assigned based on three automated 

processes. The first is an assignment of annotations based on associations that each GO 

term has with a sequence signatures for groups of homologous proteins. Interpro2GO (22) 

and PANTHER (23) are common tools used for this purpose. A second method involves 

the conversion of terms within the UniProt controlled vocabulary (14,24) into associated 
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GO terms. Finally, a third method involves inferring annotations from orthologous genes 

available through the Ensembl database (15). 

 GO annotations are provided in a standardized file format called a gene annotation 

file (GAF). The current version of this format, GAF 2.1, is provided as a tab-delimited 

table with a number of required or optional columns, i.e. fields. Critical required fields 

include: database, indicating which database the gene or gene product originates from (e.g. 

UniProt); database object id, which is the unique database identifier code for the gene or 

gene product; database object symbol, which is the gene symbol associated with the entry 

(e.g. PHO3); GO ID, which is the GO term annotation associated with the entry (a 1:1 

mapping of each GO term to each gene or gene product is maintained in the dataset, so 

entries are repeated for every GO annotation in the file); and evidence code, indicating 

which of the previously-described evidence categories is responsible for the gene 

annotation. GAFs are created and maintained per species and are provided by the Gene 

Ontology Consortium. The human GOA is available through the European Molecular 

Biology Laboratories-European Bioinformatics Institute (EMBL-EBI) FTP server (25). 

1.3 Annotation Enrichment and the Importance of Ontological Inference 

 Annotation enrichment analysis is one of the most common uses for gene 

annotations, based on associated biomedical ontology terms. In the most basic sense, 

annotation enrichment is an analysis of which biological concepts are statistically over-

represented in a gene set from an experimental condition versus a gene set from a control 

condition. Commonly, this enrichment is performed on gene expression results generated 

from high-throughput transcriptomic analyses that demonstrate quantifiable changes in 

gene expression between experimental and control systems. However, technically any 
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method that can distinguish a foreground subset of genes from the universe (the whole set 

of genes in the experiment) in a control condition and at least one experimental condition 

is amenable to enrichment. Examples include results from a DeSEQ2 (26) analysis of 

transcript expression levels, where foreground gene sets may be selected based on 

significantly increased or decreased transcript expression levels in an experimental 

condition, such as a disease model versus control, and results from a MutSig (27) analysis 

of mutational profiles in cancer patients’ DNA sequencing results, where foreground genes 

are selected based on which genes are mutated more often than what would be expected by 

random chance. 

 Annotation enrichment calculates the likelihood that at least x number of genes out 

of n number of total genes in the foreground gene set share the same annotation (GO term) 

by random chance, considering the distribution of that annotation among the genes in the 

universe. This likelihood is given by a p-value determined by a variety of statistical 

methods (28). Here, it is pertinent to emphasize that annotation enrichment is a discovery-

based analysis that is designed to infer information that is inherent to the data in question 

and is not hypothesis-driven by any ground truth. In other words, the null-hypothesis used 

to derive p-values from the statistical tests is based on how the test statistic fits an expected 

mathematical distribution; it does not take any biochemically-relevant parameters into 

account, other than the method used to produce the foreground gene set. 

 While it is possible to perform annotation enrichment while only considering the 

direct GO terms annotated to each gene, the graph nature of GO allows for inferences to 

be made such that ancestor terms can be included as annotations for genes as well. As 

mentioned, some relations that form the edges of this graph are not relevant for semantic 
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categorization. Therefore, which paths are safe to follow in these inference paths is a 

serious point of consideration. Still, the inclusion of ontological ancestors in annotation 

enrichment analyses helps improve the interpretation of the results by providing more 

generalized information to help summarize the enrichment and to help account for the fact 

that genes are often annotated at varying levels of granularity, depending on the methods 

used in determining their annotation. 

 Relevant to this work, CategoryCompare (29) is an analytical tool, developed by 

Dr. Robert Flight, which can calculate annotation enrichment of annotations as well as their 

ontological ancestor terms, from a provided gene set and their annotations. This tool uses 

a hypergeometric test to determine the significance of each enriched annotation and 

provides an adjusted p-value using a Benjamini-Hochberg correction for multiple 

hypothesis testing (30). 

1.4 Difficulty in Representing Biological Concepts Derived from Omics-Level 

Research 

 Differential abundance analyses for a range of omics-level technologies, especially 

transcriptomics technologies can yield large lists of differential genes, gene-products, or 

gene variants. From annotation enrichment analysis, many different enriched GO 

annotation terms may be associated with these differential gene(-product) lists, making it 

difficult to interpret without manually sorting into appropriate descriptive categories (11). 

It is similarly non-trivial to give a broad overview of a gene set or make queries for genes 

with annotations of a biological concept. For example, a recent effort to create a protein-

protein interaction network analysis database resorted to manually building a hierarchical 

localization tree from GO cellular compartment terms due to the “incongruity in the 
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resolution of localization data” in various source databases and the fact that no published 

method existed at that time for the automated organization of such terms (7). If subgraphs 

of GO could be programmatically extracted to represent such concepts, a category-defining 

general term could be easily associated with all its ontological child terms.  

 Meanwhile, high-throughput transcriptomic and proteomic characterization efforts 

like those carried out by the Human Protein Atlas (HPA) now provide sophisticated 

pipelines for resolving expression profiles at organ, tissue, cellular and subcellular levels 

by integrating quantitative transcriptomics with microarray-based immunohistochemistry 

(31). Such efforts create a huge amount of omics-level experimental data that is cross-

validated and distilled into systems-level annotations linking genes, proteins, biochemical 

pathways, and disease phenotypes across our knowledgebases. However, annotations 

provided by such efforts may vary in terms of granularity, annotation sets used, or 

ontologies used. Therefore, (semi-)automated and unbiased methods for categorizing 

semantically-similar and biologically-related annotations are needed for integrating 

information from heterogeneous sources—even if the annotation terms themselves are 

standardized—to facilitate effective downstream systems-level analyses and integrated 

network-based modeling. 

1.5 Term Categorization Approaches 

 Issues of term organization and term filtering have led to the development of GO 

slims—manually trimmed versions of the gene ontology containing only generalized terms 

(32), which represent concepts within GO. Other software, like Categorizer (11), can 

organize the rest of GO into representative categories using semantic similarity 

measurements between GO terms. GO slims may be used in conjunction with mapping 
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tools, such as OWLTools’ Map2Slim (M2S) (13) or GOATools (12), to map fine-grained 

annotations within Gene Annotation Files (GAFs) to the appropriate generalized term(s) 

within the GO slim or within a list of GO terms of interest. While web-based tools such as 

QuickGO exist to help compile lists of GO terms (33), using M2S either relies completely 

on the structure of existing GO slims or requires input or selection of individual GO 

identifiers for added customization, and necessitates the use of other tools for mapping. 

UniProt has also developed a manually-created mapping of GO to a hierarchy of 

biologically-relevant concepts (24). However, it is smaller and less maintained than GO 

slims, and is intended for use only within UniProt’s native data structure. 

1.6 Semantic Similarity in the Context of Broad Term Categorization 

 In addition to utilizing the inherent hierarchical organization of GO to categorize 

terms, other metrics may be used for categorization. For instance, semantic similarity can 

be combined along with the GO structure to calculate a statistical value indicating whether 

a term should belong to a predefined group or category (11,34–37). One rationale for this 

type of approach is that the topological distance between two terms in the ontology graph 

is not necessarily proportional to the semantic closeness in meaning between those terms, 

and semantic similarity reconciles potential inconsistencies between semantic closeness 

and graph distance. Additionally, some nodes have multiple parents, where one parent is 

more closely related to the child than the others (11). Semantic similarity can help 

determine which parent is semantically more closely related to the term in question. While 

these issues are valid, we maintain that in the context of aggregating fine-grained terms 

into general categories, these considerations are not necessary. First, fluctuations in 

semantic distances between individual terms are not an issue once terms are binned into 
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categories: all binned terms will be reduced to a single step away from the category-

defining node. Second, the problem of choosing the most appropriate parent term for a GO 

term only causes problems when selecting a representative node for a category; however, 

since most paths eventually converge onto a common ancestor, any significantly diverging 

paths would have its meaning captured by rooting multiple categories to a single term, 

cleanly sidestepping the issue. 

1.7 Maintenance of Ontologies 

 Despite maintenance and standard policies for adding terms, ontological 

organization is still subject to human error and disagreement, necessitating quality 

assurance and revision, especially as ontologies evolve or merge. A recent review of 

current methods for biomedical ontology mapping highlights the importance in developing 

semi-automatic methods (38,39) to aid in ontology evolution efforts and reiterates the 

aforementioned concept of semantic correspondence in terms of scoping between terms 

(40). Methods incorporating such correspondences have been published elsewhere, but 

these deal with issues of ontology evolution and merging, and not with categorizing terms 

into user-defined subsets (41,42). Ontology merging also continues to be an active area of 

development for integrating functional, locational, and phenotypic information. To aid in 

this, another review points out the importance of integrating phenotypic information across 

various levels of organismal complexity, from the cellular level to the organ system level 

(9). Thus, organizing location-relevant ontology terms into discrete categories is an 

important step toward this end.  
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1.8 Path Traversal Issues in GO 

 Ontological graphs are typically designed as directed graphs, meaning that every 

edge has directionality, or directed acyclic graphs (DAGs), meaning that no path exists that 

leads back to a node already visited if one were to traverse the graph stepwise. This allows 

the graph to form a complex semantic model of biology containing both general concepts 

and more-specific (fine-grained) concepts. The “parent-child” relation hierarchy allows 

biological entities to be annotated at any level of specificity (granularity) with a single term 

code, as fine-grained terms intrinsically capture the meaning of every one of its parent and 

ancestor terms through the linking of relation-defining is_a edges in the graph. However, 

it is deceptively non-trivial to reverse the logic and organize similar fine-grained terms into 

general categories—such as those describing whole organelles or concepts like “DNA 

repair” and “kinase activity”—without significant manual intervention. This is due, in part, 

to the lack of explicit scoping, scaling, and other semantic correspondence classifiers in 

relations. Therefore, it is not readily clear how to classify terms connected by non-is_a 

relation edges. Although edges are directional, the semantic correspondence between terms 

connected by a scoping relation is computationally ambiguous, e.g. assessing whether term 

1 is more/less general or equal in semantic scope with respect to term 2 is currently not 

possible without explicitly defining rules for such situations.  

 Ambiguity in assessing which term is more general in a pair of terms connected by 

a relation edge is confounded by the fact that edges describing mereological relations, such 

as part_of and has_part, are not strictly and universally inverse of one another. For 

instance, while every “nucleus” is part_of “cell,” not every “cell” has_part “nucleus.” 

Similarly, while every “nucleus” has_part “chromosome”, not every “chromosome” is 
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part_of “nucleus” under all biological situations. Therefore, mereological edges are not 

necessarily reciprocal. Ontological logic rules, called axioms, ensure that this logic is 

maintained in the graph representation by allowing edges of the appropriate type to connect 

terms only if the inferred relation is universal (43). GO maintains its own set of axioms 

regarding the relations it contains (44). This axiomatic representation is crucial to avoid 

making incorrect logical inferences regarding universality but does nothing to facilitate 

categorization of terms into parent concepts, especially since some mereological edges 

point away from the root of the ontology toward a narrower scope. If these edges are 

followed, terms of more broad scope may be grouped into terms of more narrow scope, or 

worse, cycles may emerge which would abolish term hierarchy and make both 

categorization and semantic inference impossible. To circumvent this problem, some 

ontologies release versions that do not contain these types of edges. For GO, this is 

accomplished by go-basic. However, information is lost when these edges are removed 

from the graph. When attempting to organize fine-grained terms into common concepts 

using the hierarchical structure, this information loss can be significant because many 

specific-to-generic term mappings can utilize the same edge in many paths. 

1.9 Axiomatic Versus Semantic Scoping Interpretation of Mereological Relations in 

GO 

 Ensuring mereological universality in relation associations using current axioms is 

important within the purview of ontology development. However, for those interested in 

organizing datasets of gene annotations into relevant concepts for better interpretation, 

such is the case in annotation enrichment, it is important to utilize the full extent of the 

information within an ontology. Current axiomatic representation of mereological relations 
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requires the use of ontology versions which lack certain relations (32), resulting in a loss 

of retrievable information. If has_part edges, which point toward terms of narrower scope, 

were inverted to resemble part_of edges, ensuring that all edges point toward terms of a 

broader scope, terms could be effectively categorized with respect to semantic scope using 

the native graph hierarchy without losing any information in the process. However, this 

isn’t logically possible because of issues dealing with universality. 

 Issues regarding ambiguity and other shortcomings of ontological relations, 

especially in GO, have been reported as far back as 2005 (45), which contributed to the 

development of the Relations Ontology (1). Such studies point to possible solutions to the 

correct interpretation of the problematic has_part relation. One such case is to include a 

relation called integral_part_of to provide a reversible part_of relation for cases where A 

part_of B and B has_part A maintains a universal sense. However, this case still does not 

address how non-universal instances should be dealt with. Furthermore, despite the effort 

in building a full ontology for relations, the OBO Foundry still does not require nor even 

officially recommend that the Relations Ontology be integrated with the other ontologies 

in the OBO due to the fact that other OWL ontologies use instance-level relations, while 

OBO ontologies use type-level relations (46). Therefore, there is still no standard 

conventional method for dealing with relations like has_part other than ignoring them 

altogether.  

 We acknowledge the importance of existing axioms, which prohibit reversing 

mereological edges in ontologies under the context of drawing direct semantic inferences. 

However, we maintain that in the context of detecting enriched broad concepts based on 

“summarizing” annotated fine-grained terms contained within differential annotation 
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datasets, it is appropriate to evaluate mereological relations from a scoping perspective, 

which requires that all mereological edges point to their whole. This conundrum preventing 

the comprehensive categorization of GO terms can be dealt with by adding a single new 

relation to the ontology: part_of_some. Semantically, this relation deals with both the issue 

of universality and with the issue of the direction of granularity. 

 



 
 

CHAPTER 2. MATERIALS AND METHODS 

2.1 The Gene Ontology Categorization Suite (GOcats) 

2.1.1 Methodological Overview and Design Rationale for GOcats 

 We designed the Gene Ontology Categorization Suite (GOcats) with a biologist 

user in mind, who may not be aware of the dangers associated with using different versions 

of GO for organizing terms with tools like M2S or how to circumvent potential pitfalls. 

For instance, although the M2S documentation (47) states, "We recommend the go-basic 

version of the ontology be used, which contains: subClassOf (is a), part of, regulates (+ 

positively and negatively regulates)" and, "You can also use the full version of GO and 

filter those relationships you do not want to consider," a non-bioinformatician may not be 

aware of how to filter out relationships from GO in a way that is safe to use. More 

pertinently, the user may wish to use a fuller extent of the information contained in the 

ontology when organizing their terms but be unable to do so safely on their own. Currently, 

GOcats version 1.1.4 can handle go-core’s is_a, part_of, and has_part relations, with the 

has_part reinterpreted to retain proper scoping semantics, as detailed below and elsewhere 

(48). As the development of GOcats progresses, we plan on handling the organization of 

terms connected by additional relations such as negatively_regulates or 

positively_regulates. 

 GOcats uses the go-core version of the GO database, which contains relations that 

connect the separate ontologies and may point away from the root of the ontology. GOcats 

can either exclude non-scoping relations or invert has_part directionality into a 
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part_of_some interpretation, maintaining the acyclicity of the graph. Therefore, it can 

represent go-core as a DAG. 

 GOcats is a Python package written in major version 3 of the Python program 

language (49) and available on GitHub and the Python Package Index (50,51). It uses a 

Visitor design pattern implementation (52) to parse the go-core Ontology database file (5). 

Searching with user-specified sets of keywords for each category, GOcats extracts 

subgraphs of the GO DAG and identifies a representative node for each category in 

question and whose child nodes are detailed features of the components. Details are 

provided in Chapter 2.1.3. 

 To address issues regarding scoping ambiguity among mereological relations, we 

assigned properties indicating which term was broader in scope and which term was 

narrower in scope to each edge object created from each of the scope-relevant relations in 

GO. For example, in the node pair connected by a part_of or is_a edge, node 1 is narrower 

in scope than node 2. Conversely, node 1 is broader in scope than node 2 when connected 

by a has_part edge. This edge is therefore reinterpreted by GOcats as part_of_some. This 

reinterpretation is not meant to imply exclusivity in composition between the meronym 

and the holonym. It simply stands as a distinction between “part of all” which is what the 

current part_of relationship implies, and “part of some,” or to be more verbose “instance a 

is part of instance b in at least one known biological example.” We have described 

additional explanations and rationale for this re-interpretation elsewhere and demonstrate 

improvement in annotation enrichment analyses across GO Cellular Component, 

Molecular Function and Biological Process sub-ontologies, when this re-interpretation is 

used (see Chapter 4).  
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 While the default scoping relations in GOcats are is_a, part_of, and has_part, the 

user has the option to define the scoping relation set. For instance, one can create go-basic-

like subgraphs from a go-core version ontology by limiting to only those relations 

contained in go-basic. For convenience, we have added a command line option, “go-basic-

scoping,” which allows only nodes with is_a and part_of relations to be extracted from the 

graph. Detailed API documentation and user-friendly tutorials are available online (53). 

 For term mapping purposes, Python dictionaries are created, which map GO terms 

to their corresponding category or categories. For inter-subgraph analysis, another Python 

dictionary is created, which maps each category to a list of all its graph members. By 

default, fine-grained terms map to the closest category root node, when multiple category 

root node mappings are possible. In other words, a fine-grain term will not map to a 

category root-node that define a subgraph that is a superset of a category with a root-node 

nearer to the term. For example, a member of the “nucleolus” subgraph would map only to 

“nucleolus,” and not to both “nucleolus” and “nucleus”. However, the user also has the 

option to override this functionality if desired with a simple “--map-supersets” command 

line option. Furthermore, we’ve included the option for users to directly input GO terms as 

category representatives, should they not wish to use keywords to define subgraph 

categories. Also, the user can use a combination of categories defined by either keyword 

and/or representative GO term. This is helpful for users who have already compiled lists 

of GO terms by hand for use with other tools. 
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2.1.2 GOcats Implementation Overview 

 As illustrated in the UML diagram in Figure 2.1A, the GOcats package is 

implemented using several modules that have clear dependencies starting from a command 

line interface (CLI) in gocats.py, which depend on most of the other modules including 

ontologyparser.py, godag.py, subdag.py and tools.py. GOcats uses 10 classes implemented 

across ontologyparser.py, godag.py, subdag.py, and dag.py modules to extract and 

internally represent the GO database. GoParser, which inherits from the base OboParser 

class (Figure 2.1B), utilizes a Visitor design pattern and regular expressions to parse the 

flat GO database obo file and instantiate the objects necessary to represent the GO DAG 

structure. These instantiated objects include (Figure 2.1C): 1) the GoGraph container object 

for the parts of the graph, whose class inherits from a more generic OboGraph class, 

containing functions for adding, removing, and modifying nodes and edges; 2) 

GoGraphNode objects for representing each term parsed from the ontology, whose class 

inherits from AbstractNode class; 3) AbstractEdge objects for representing each instance 

of a relation parsed from the ontology; and 4) DirectionalRelationship objects, whose class 

inherit from the more generic AbstractRelationship class for representing each type of 

directional relation encountered in the ontology (for GO, all relations are directional, and 

this distinction is made only in anticipation for future extensions to handle other ontologies 

with non-directional relationships). 

 AbstractEdge and AbstractNode objects contain references to one another, which 

simplifies the process of iterating through ancestor and descendant nodes and allows for 

functions such as AbstractEdge.connect_nodes, which requires that the edge object update 
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the node object’s child_node_set and parent_node_set. In this context, AbstractNode is a 

true abstract base class, while AbstractEdge started out as an abstract base class but 

eventually became a concrete class during development. However, we see the possibility 

of AbstractEdge becoming a base class in the future. 

 Ancestors and descendants of a node are implemented as sets, which are lazily 

created using a Python property decorator (i.e. Python’s preferred “getter” syntax). At the 

first access of these sets through the ancestor or descendent property, the set is calculated 

with a recursive algorithm, stored for future use, and returned for immediate access. 

Subsequent accesses simply return the stored set. If the set of edges within a node change, 

the ancestor and descendent node sets will be recalculated on their next access. This 

implementation prevents pre-calculation of these sets when they are not used, while 

enabling their reuse within efficient graph analysis methods.  

AbstractEdge also contains a reference to a DirectionalRelationship object, which is critical 

for graph traversal. This is because the DirectionalRelationship object contains the true 

directionality of the mereological correspondence between the categorization relevant 

relations (is_a, part_of, and has_part). In other words, it is within this object that we define 

in which direction the edge should be traversed when categorizing terms. Currently, these 

rules are hard-coded within GoParser’s relationship_mapping dictionary.  

 The gocats.py module (Figure 2.1A) implements the command line interface and is 

responsible for handling the command line arguments, using the provided keywords and 

specified arguments like namespace filters (e.g. Cellular Component, Molecular Function, 

and Biological Process) to instantiate a GoParser object, a GoGraph object, and a SubGraph 

object for each set of provided keywords or representative GO terms. After creation of the 
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GoGraph internal representation, each category subgraph is created by first instantiating 

the SubGraph object and calling the from_filtered_graph function, which filters to those 

nodes from the GoGraph containing the keywords in their names and definition. Note that 

the SubGraph object and GoGraph object both inherit from OboGraph, and that the 

SubGraph object contains a reference to GoGraph object (supergraph data member) of 

which it is a subgraph. This design was implemented to avoid accidental alterations of the 

GoGraph object when altering the contents of the subgraph, and to allow for specialization 

of functions within SubGraph without needing to use unique names such as 

add_subgraph_node() when add_node() would suffice. GoGraphNode objects within the 

subgraph are wrapped by SubGraphNode objects, which are directly used by the SubGraph 

object, but retain all original properties such as name, definition, and sets of edge object 

references, otherwise insidious changes could occur to the GoGraph object when updating 

the SubGraph object. The SubGraph object also contains a CategoryNode object, which 

wraps the category representative GoGraphNode object(s) for the subgraph category. 

2.1.3 GOcats Specific Implementation Details 

 User-provided keyword sets are used by GOcats to query GO terms’ name and 

definition fields to create an initial seeding of the subgraph with terms that contain at least 

one keyword. This seeding is a list of nodes from the whole go-core graph (supergraph) 

that pass the query. Node synonyms were not used, due to there being four types of 

synonyms in GO: exact, narrow, broad, and related. Also, many nodes within GO do not 

have synonyms, which may create an unequal utilization of nodes if synonyms were 

queried. However, in the future, synonym utilization for seeding purposes may be revisited. 
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FOR node in supergraph.nodes 

    IF keyword from keyword_list in node.name / 

or node.definition 

        APPEND node to subgraph.seeding_list 

Using the graph structure of GO, edges between these seed nodes are faithfully recreated 

except where edges link to a node that does not exist in the set of newly seeded GO terms. 

During this process, edges of appropriate scoping relations are used to create children and 

parent node sets for each node.  

FOR edge in supergraph.edges 

    IF edge.parent_node in subgraph.nodes AND / 

        edge.child_node in subgraph.nodes AND / 

        edge.relation is TYPE: SCOPING 

       APPEND edge to subgraph.edges 

    ELSE 

       PASS 

FOR subnode in subgraph.nodes 

    subnode.child_node_set = {child_node for child_node in / 

     supergraph.id_index[subnode.id].child_node_set if / 

     child_node.id in subgraph.id_index} 

 

subnode.parent_node_set = {parent_node for parent_node / 

in supergraph.id_index[subnode.id].parent_node_set if / 

     parent_node.id in subgraph.id_index} 

GOcats then selects a category representative node to represent the subgraph. To do this, a 

list of candidate representative nodes is compiled from non-leaf nodes, i.e. root-nodes in 

the subgraph which have at least one keyword in the term name. A single category 
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representative root-node is selected by recursively counting the number of children each 

candidate term has and choosing the term with the most children.  

FOR subnode in subgraph 

    IF subnode.child_node_set != None AND ANY keyword in / 

         subnode.name 

       candidate_list.append(subnode) 

    ELSE 

       PASS 

representative_node = MAX(LEN(node.descendants) FOR node /  

     in candidates) 

Because it may be possible that highly-specific or uncommon features included in the GO 

term may not contain a keyword in its name or definition but still may be part of the 

subgraph in question by the GO graph structure, GOcats re-traces the supergraph to find 

various node paths that reach the representative node. We have implemented two methods 

for this subgraph extension: i) comprehensive extension, whereby all supergraph 

descendants of the representative node are added to the subgraph and ii) conservative 

extension, whereby the supergraph is checked for intermediate nodes between subgraph 

leaf nodes and the subgraph representative node that may not have seeded in the initial 

step.  

Comprehensive extension: 

FOR node in supergraph 

    IF ANY (ancestor_node in node.ancestors) in subgraph 

        subgraph_nodes.append(ancestor_node) 

UPDATE subgraph  

Conservative extension: 
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FOR leaf_node in subgraph.leaf_nodes # nodes with no children 

    start_node = leaf_node 

    end_node = representative_node 

    FOR node in super_graph.start_node.ancestors ∩ /    

      supergraph.end_node.descendents 

        subgraph_nodes.append(node) 

UPDATE subgraph  

The subgraph is finally constrained to the descendants of the representative node in the 

subgraph. This excludes unrelated terms that were seeded by the keyword search due to 

serendipitous keyword matching. 

2.1.4 Defining and Traversing Categorization-relevant Edges in GO 

 As mentioned in Chapter 2.1, we equipped GOcats with the ability to deal with the 

problematic has_part relation by re-evaluating it with the logic of part_of_some. While the 

semantic logic explained in that chapter is accurate with regard our intention of that 

interpretation in the scope of annotation enrichment, it is important to stress here that this 

reinterpretation is not accomplished by natural language processing (NLP), although we 

plan on implementing these types of interpretations in the future (see Chapter 6.1.2).  

 In our current version of GOcats 1.1.4c, handling of directional edge traversal is 

agnostic of relation semantics. Instead, “direction” is a data member of the 

DirectionalEdge class and determines whether the “forward_node” or “reverse_node” 

object reference is accessed during a traversal event. The “forward” and “reverse” nodes 

are assigned based on the order in which the edge reference is encountered, while parsing 

the GO database file and is always referenced in the same way regardless of the intended 
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edge directionality with respect to the GO hierarchy. Let’s use the following stanza as an 

example. 

[Term] 
id: GO:0000243 
name: commitment complex 
namespace: cellular_component 
def: "A spliceosomal complex that is formed by association of the U1 
snRNP with the 5' splice site of an unspliced intron in an RNA 
transcript." [GOC:krc, ISBN:0879695897, PMID:9150140] 
synonym: "mammalian spliceosomal complex E" NARROW [GOC:krc, GOC:mah, 
ISBN:0879695897, ISBN:0879697393] 
synonym: "mammalian spliceosomal E complex" NARROW [GOC:mah] 
synonym: "yeast spliceosomal complex CC" NARROW [GOC:krc, GOC:mah, 
ISBN:0879695897, ISBN:0879697393] 
is_a: GO:0005684 ! U2-type spliceosomal complex 
relationship: has_part GO:0005685 ! U1 snRNP 
 
The “commitment complex” term would be the reverse node of both the is_a relation edge 

and the has_part relation edge even though these edges point in opposite directions in the 

GO hierarchy. Within GOcats, there is currently a hard-coded mapping indicating 

conventional hierarchal directionality (0 for reverse_node  forward_node), and inversed 

directionality (1 for forward_node  reverse_node). During traversal, this Boolean is 

checked within each edge type to determine which node to follow along the path. We 

constructed this simple hard-coded edge directionality mapping in such a way as to make 

it straightforward to integrate more sophisticated NLP-enabled evaluation of relations in 

the future, as the results of such evaluations would need only to update a single mapping 

dictionary value for each relation to function within the remaining code base. 

2.2 Pipelines Incorporating GOcats’ Ancestor Paths and Categorizations into 

Annotation Enrichment Analyses 

 While GOcats creates augmented ontological graph representations for the purpose 

of improving annotation enrichment analyses and data visualization, it does not contain 

built-in annotation enrichment algorithms or methods for accessing visualizations of some 
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common applications such as protein-protein interaction networks as of version 1.1.4c. 

Therefore, we have created scalable and reproducible data workflow pipelines using the 

Snakemake workflow management system (54) to integrate GOcats with 

CategoryCompare2 (29), an annotation enrichment software tool, as well as with the REST 

API of STRING (55) for visualizing protein-protein interaction networks for genes 

associated with enriched annotations. 

 For annotation enrichment, our goal was to perform enrichment not only on direct 

gene annotations, but also across all ontological ancestor terms, i.e. those terms that are 

more general and above the direct terms in the ontological hierarchy. To accomplish this, 

we implemented a function in GOcats called build_graph_interpreter (56), which builds 

complete lists of ancestor ontology terms for all genes listed in the gene annotation file 

(GAF) of the organism in question. This function is part of the GOcats API and was 

designed to quickly build an ontology graph object representation within a Python 

interpreter. Mappings of gene symbols to their comprehensive list of annotations and 

ancestor annotations were output into a JSON file format that would later be input into 

CategoryCompare2 for enrichment within Snakemake workflows. In this way, we were 

able to utilize GOcats’ reinterpretation of relations as described in Chapter 2.1.4 for 

annotation enrichment applications. This workflow step was coded into a Snakemake rule 

called build_ancestor_list.smk and was run as a first step in each workflow that utilized 

GOcats’ ancestor paths. For testing purposes, we also ran enrichments which mimicked 

traditional path tracing by intentionally omitting the has_part relation during this step. To 

do this, we utilized a command line option in GOcats: “--allowed_relationships=[is_a, 
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part_of]”, which overrides GOcats’ default path tracing algorithms and creates the GO 

graph representation using only the relations specified in the provided list (ref 57, SD4)  

 Each Snakemake workflow is executed by a top-level script, conventionally named 

Snakefile, which is responsible for loading in user-supplied parameters from a 

configuration file, as well as the Snakemake rule scripts and workflow scripts that execute 

lower-level tasks and subroutines. Within each script, syntax for defining the required input 

and output files dictate the order of operation in which the scripts are run, and this 

functionality is native to Snakemake (54). The difference between rule and workflow 

scripts are subtle and non-explicit in terms of base syntax, but in practice, workflow scripts 

operate at a higher level, and often include rule scripts as subroutines. 

 We implemented the base-level annotation enrichment tasks within a rule script 

called enrichment_rules.smk. Rules within this script include: 1) create_annotations, 

which is responsible for taking the annotation JSON file produced by GOcats within the 

build_ancestor_list.smk script and converting it into a format that CategoryCompare2 can 

use for annotation enrichment; 2) generate_gene_sets, which parses the user-supplied 

dataset of genes or gene products and organizes the dataset into distinct feature sets, usually 

significant genes of interest and universe, but depends on the application; 3) 

generate_feature_files, which converts the previously identified features into a format that 

CategoryCompare2 can use for annotation enrichment; 4) run_enrichment, which is 

responsible for executing CategoryCompare2’s annotation enrichment algorithms; and 5) 

generate_enrichment_results, which performs additional formatting of results, like the 

addition of GO term descriptions and the addition of associated genes for each enriched 

term in the results. Excepting some minor formatting steps, like retrieving GO term 
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descriptions for addition to the resulting enrichment table, this collection of rules contains 

all the steps necessary for performing a single annotation enrichment analysis. 

 For complex enrichment analyses, such as the time-series enrichment described in 

Chapters 4.5.5 and 5.1.1.1, we designed a higher-level enrichment workflow for handling 

a series of consecutive enrichment analyses. First, all required enrichment analyses are 

enumerated based on the number of input datasets supplied. This can be customized within 

the top-level Snakefile script but is set to enumerate based on the number and names of the 

sheets in the DEseq2 data Excel spreadsheets supplied by our collaborators for our time-

series enrichments. For each pairwise, or whole time series enrichment analysis (see 

Chapter 5.1.1.1), a subdirectory is created, and the “enrichment” section of the top-level 

configuration file is copied into a new configuration file and placed within each 

subdirectory. The higher-level script, called enrichment_subworkflow.smk, contains a rule 

called single_enrichment_workflow which navigates into each subdirectory and executes 

the base-level single enrichment script described previously. Because each subdirectory 

contains a copy of the necessary configuration details, we are able to seamlessly reuse the 

base-level enrichment rules; the scripts are executed as if they are being run on a single 

annotation enrichment analysis. 

 We also utilized Snakemake for comparing the performance of GOcats’ path 

tracing and traditional ontology path tracing as they relate to enrichment results. 

Specifically, we compared the resulting adjusted p-values from the time series equine 

cartilage tissue transcript annotation enrichments when using GOcats ontological ancestor 

paths to the traditional ancestor path tracing method using a binomial test (see Chapter 

4.2.2). As mentioned previously, we used GOcats’ “--allowed_relationships” command 
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line option to override the default path tracing algorithms and mimic traditional path tracing 

methods by including only those relations that traditional path tracing methods use: is_a 

and part_of. When performing performance comparisons, we added an extra 

“ancestor_traversal” parameter in the configuration file and forced the workflow to 

produce enrichments across all pairwise and whole time-series gene sets for each traversal 

method. This required that the aforementioned build_ancestor_list.smk script be run twice, 

and all previously described enrichment methods to be run for each path traversal type. 

 For comparing results, we implemented a binomial test within a script named 

binomial_test_rules.smk. This script was executed at the end of the top-level Snakefile 

script and was responsible for reading and comparing all enrichment tables produced using 

GOcats path traversal and traditional path traversal. Every enriched GO term from each 

enrichment table was mapped to their respective adjusted p-value for each path traversal 

method. For those terms with an adjusted p-value less than 0.01, the script tested whether 

the value was lower (more significant) in the GOcats path traversal method. Identical 

values were ignored, and not added to the total number of comparisons. We performed a 

binomial test using the SciPy stats (58) Python module, comparing the number of times 

GOcats’ derived enrichments had a lower adjusted p-value than the traditional path 

traversal algorithm to the number of time the traditional path traversal method’s enrichment 

p-values were lower, assuming a null hypothesis of 0.5 and using a one-sided test.  

2.3 Visualizing Protein-Protein Interaction Network Visualizations based on 

Enrichment Results 

 To leverage annotation enrichment results within the context of protein-protein 

interaction networks, we first performed annotation enrichment on datasets taken from 
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gene mutational frequency analysis of whole-genome sequences among cancer patients 

with adenocarcinoma of the lung (see Chapter 5.2). Briefly, cancer patients from the 

Kentucky Lung Cancer Genomes (KLCG) cohort from the Appalachia region of Kentucky 

had the mutational frequencies of genes compared to patients from The Cancer Genome 

Atlas (59) cohort using the MutSigCV (27) protocol (see Chapter 5.2.1). 

 The MutSig dataset is a CSV file with one gene per row. Columns displaying the 

mutational frequency determined by MutSigCV for each cohort, KLCG and TCGA were 

also present, along with the p-value determined by comparing the mutational frequencies 

between the cohorts using a Fisher’s exact test for each gene. We compiled foreground 

genes for the KLCG cohort by selecting genes that had a higher mutational frequency in 

the KLCG dataset than the TCGA dataset and that also had a p-value from the Fisher’s 

exact test lower than 0.01.  

 Foreground genes were enriched against the universe, which was comprised of the 

whole set of genes in the dataset. This was performed using the enrichment methods 

described in Chapter2.2. The only alteration needed for the enrichment workflows in this 

instance was changes to the configuration file: indicating the file paths to the data sets, and 

which p-value cutoffs to use, and a small, top-level script in the snakefile, dictating how 

foreground genes would be selected from the data set.  

 After enrichment was complete, additional rules were created for this analysis to 

accomplish the goals of grouping annotations by gene sets, creating tables to display these 

gene set-grouped annotations, and retrieving protein-protein interaction information from 

the STRING (55) database using STRING’s REST application programming interface 

(API). 
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 The first and second goals are accomplished by the rule, 

group_annotations_by_gene_set, which accepts the previously produced enrichment table 

as an input. Ignoring annotations with an odds ratio of “Inf” (meaning that only a single 

gene was annotated to the enriched term), a list of tuples is created, matching each enriched 

term to its set of associated genes. Meanwhile, all of the information from each row is 

saved in a dictionary, mapped to the enriched GO term ID. Next the list of tuples is sorted 

in order of the length of the associated gene set, largest first. Next, for each potential 

superset of genes in the list of tuples, the remaining gene sets are evaluated as to whether 

or not they are a subset of the set in the current iteration. If so, they are indicated as such 

and updated within the tuple list. The sorting of gene set length ensures that this process is 

as efficient as possible.  

 Once the gene supersets have been determined, a new output table is written by 

sorting the gene supersets by length again, and adding the appropriate rows from the saved 

dictionary, according to the annotations associated with the gene superset. These 

annotations are ordered in increasing value within each block of gene sets (see Table 5.2). 

 The third goal was accomplished by a rule called retrieve_interactions. This rule is 

a simple script which makes URL requests to the STRING database via its REST interface 

to retrieve tabular information about known and predicted interactions for queried genes 

from the gene sets. For each gene superset identified by the previous step, a special URL 

string is formatted to request and download a TSV file showing the predicted and known 

interactions among the proteins queried, as well as additional nearest-neighbor proteins in 

the STRING database. To simplify this script’s placement in the overarching workflow, 

we enabled multiple tabular files to be output into a single document using the Pandas (60) 
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ExcelWriter Python module, where a new excel sheet would represent each interaction 

table, and an indexing sheet served to map the sheet numbers to the gene set query. 

 Images of the protein-protein interaction networks were produced by manually 

entering the query gene sets and selecting the species Homo sapiens. A single iteration of 

added nodes was performed by selecting “more” on the graphical user interface. We 

slightly modified of the nodes’ position within the network view to more clearly show edge 

coloration and to better proportion the image for print. 
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Figure 2.1 UML Diagrams Describing the GOcats Implementation 
 

A) UML module dependency diagram. B) UML class diagram of GO database parsing 

classes. C) UML class diagram of the GO graph representation. 
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CHAPTER 3. GOCATS: A TOOL FOR CATEGORIZING GENE ONTOLOGY INTO SUBGRAPHS 

OF USER-DEFINED CONCEPTS 

3.1 Background 

 The Gene Ontology (GO) (3) is the most common biological controlled vocabulary 

(CV) used to represent information and knowledge distilled from most biological and 

biomedical research data generated today, from classic wet-bench experiments to high-

throughput analytical platforms, especially omics technologies. The database structure of 

GO allows for computational retrieval of information by arranging biological terminology 

in a graph where nodes, representing terms, are connected by directional edges, 

representing relations that describe how terms are semantically related (see Chapter 1.2.2). 

These directional edges allow for semantic inferences to be made among the terms. 

 Differential abundance analyses for a range of omics-level technologies, especially 

transcriptomics technologies can yield large lists of differential genes, gene-products, or 

gene variants. In order to make sense of these large gene sets, researchers often rely on 

automated computational methods, such as annotation enrichment (see Chapter1.3), to 

make sense of the data. However, such methods often fail to concisely summarize the 

biological concepts within the results, necessitating manual curation. This manual curation 

becomes more arduous as the size of data sets increase. 

 Previous efforts toward the organization of GO terms include GO Slims (32)—

manually cut-down versions of GO to include only the more generalized terms, and 

Map2Slim (M2S) (13)—a tool which maps specific go terms to GO Slim terms using the 

graph structure of GO. The main limitations of M2S include are two-fold: categorization 
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is limited to the terms contained in the pre-compiled GO Slim, unless the user performs the 

time-consuming task of manually compiling lists of individual GO terms (essentially a 

custom GO Slim), and M2S requires the use of the GO-basic version of GO, which lacks 

many relations present in the GO-core version. By extension, we argue, the GO-core 

database is less informationally-rich. Additional information related to term categorization 

approaches is provided in Chapters 1.5 and 1.6. 

 In addition to organizing datasets and enrichment results, GO term categorization 

will likely serve a great benefit to ontology curators in maintaining and developing 

ontologies. As the field of information science grows, there is a greater need for the 

development and merging of ontologies to aid in the description of “big data” projects. 

Further information and examples are provided in Chapter 1.7 

 For the reasons indicated above, we have developed a tool called the GO 

Categorization Suite (GOcats), which serves to streamline the process of slicing the 

ontology into custom, biologically-meaningful subgraphs representing concepts derivable 

from GO. Unlike previously developed tools, GOcats uses a list of user-defined keywords 

and/or GO terms that describe a broad category-representative term from GO, along with 

the structure of GO and augmented relation properties to generate a subgraph of child terms 

and a mapping of these child terms to their respective category-defining term that is 

automatically identified based on the user’s keyword list, or to the GO term that is explicitly 

specified. Furthermore, these tools allow the user to choose between the strict axiomatic 

interpretation or a looser semantic scoping interpretation of part-whole (mereological) 

relation edges within GO. Specifically, we consider scoping relations to be comprised of 
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is_a, part_of, and has_part, and mereological relations to be comprised of part_of and 

has_part. 

3.2 Results 

3.2.1 GOcats Compactly Organizes GO Subcellular Localization Terms into User-

Specified Categories 

 As an initial proof-of-concept, we evaluated the automatic extraction and 

categorization of 25 subcellular locations, using GOcats’ “comprehensive” method of 

subgraph extension (see Chapter 2.1.1-2.1.3) and the GO-core graph (data-version: 

releases/2016-01-12). Starting with common biological subcellular concepts like 

“nucleus”, “cytoplasm”, and “mitochondrion”, we recursively used terms not being 

categorized to identify additional subcellular concepts and associated keywords 

represented within the GO Cellular Component sub-ontology. Due to the eventual 

application to the HPA datasets, three unusual categories, “bacterial”, “viral”, and “other 

organism”, were included to prevent categorization of terms that would complicate a 

eukaryotic interpretation of the other 22 subcellular locations. For these resulting 25 

categories, 22 contained a designated GO term root-node that exactly matched the concept 

intended at the creation of the keyword list (Table 3.1). 

 These subgraphs account for approximately 89% of GO’s Cellular Component sub-

ontology. While keyword querying of GO provided an initial seeding of the growing 

subgraph, Table 3.1 highlights the necessity of re-analyzing the GO graph, both to remove 

terms erroneously added by the keyword search and to add appropriate subgraph terms not 

captured by the keyword search. For example, the “cytoplasm” subgraph grew from its 
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initial seeding of 296 nodes to 1197 nodes after extension. Conversely, 136 nodes were 

seeded by keyword for the “bacterial” subgraph, but only 16 were rooted to the 

representative node.  

 To assess the relative size and structure of subgraphs within GO, we visualized the 

category subgraphs as a network using Cytoscape 3.0 (61). GOcats outputs a dictionary of 

individual GO term keys with a list of category-defining root-node values as part of its 

normal functionality. 

 Of note, 2102 of the 3877 terms in Cellular Component could be rooted to a single 

concept: “macromolecular complex.” Despite cytosol being defined as “the part of the 

cytoplasm that does not contain organelles, but which does contain other particulate matter, 

such as protein complexes”, less than half of the terms rooted to macromolecular complex 

also rooted to cytosol or cytoplasm. Surprisingly, approximately 25% of the terms rooted 

to macromolecular complex are rooted to this category alone (Figure 3.1). In this 

visualization, intracellular organelles tend to be clustered about cytoplasm, except for 

nucleus which the GO consortium does not consider as part of the cytoplasm. The 

visualization of the subgraph contents confirmed the uniqueness of the macromolecular 

complex category and showed the relative sizes of groups of GO terms shared between two 

or more categories. But the macromolecular complex category somewhat complicates the 

visualization of category organization within GO, due to this category’s size and 

interconnectedness within the ontology. To better reflect what might be a biologist’s 

expectation for a cell’s overall organization, we produced another visualization with the 

macromolecular complex category omitted (Figure 3.2). Despite the idiosyncrasies with 

the macromolecular complex subgraph, compartments that typically contain a large range 
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of protein complexes, such as the nucleus, plasma membrane, and cytoplasm appear to be 

appropriately populated. Furthermore, concepts such as endomembrane trafficking can be 

gleaned from the network connectedness of representative nodes, such as lysosome, Golgi 

apparatus, vesicle, secretory granule, and cytoplasm. Overall, the patterns of connectedness 

in this network make more sense biologically, within the constraints of GO’s internal 

organization. 

3.2.2 GOcats-derived Category Subgraphs Compare Well with Similar Subgraphs 

Derived by Other Methods 

 We compared GOcats’ category subgraphs taken from the go-core database, data-

version: releases/2016-01-12 to subgraphs of the manually-curated UniProt subcellular 

localization controlled vocabulary (CV) (24) (see Figure 3.2 and Chapter 3.4.1) and to 

subgraphs created by M2S (see Figure 3.3 and Chapter 3.4.2). Differences in the sets of 

GO terms contained within these subgraphs can be attributed to differences in the number 

of edges between nodes—as is the case between GOcats and M2S since M2S does not 

traverse across has_part edges—and the number of overall nodes being evaluated—as is 

the case when comparing M2S and GOcats term sets to the UniProt CV terms sets since 

the UniProt CV contains considerably fewer GO terms. For the most part, GOcats category 

subgraphs are large supersets of UniProt CV subgraphs, as demonstrated by the high 

inclusion indices and low Jaccard indices in Table 3.2. In the comparison of GOcats and 

M2S subgraphs, the mappings for most categories are in very close agreement, as 

evidenced by both high inclusion and Jaccard indices in Table 3.3 and further highlighted 

in Figures 3.4A, 3.4B and Supplemental Figures 3.1 A-V (62). Overall, GOcats robustly 
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categorizes GO terms into category subgraphs with high similarity to existing GO-utilizing 

categorization methods while including information gleaned from has_part edges. 

 However, in some categories, M2S and GOcats disagree as illustrated in Figure 

3.4C and Supplemental Figure 3.1E. The most striking example of this is in the plasma 

membrane category, where M2S’s subgraph contained over 300 terms that were not 

mapped by GOcats. We manually examined theses discrepancies in the plasma membrane 

category and noted that many of the terms uniquely mapped by M2S did not appear to be 

properly rooted to “plasma membrane” (Supplemental Table 3.2). M2S mapped terms such 

as “nuclear envelope,” “endomembrane system,” “cell projection cytoplasm”, and 

“synaptic vesicle, resting pool” to the plasma membrane category, while such questionable 

associations were not made using GOcats. Even though most terms included by M2S but 

excluded by GOcats exist beyond the scope of or are largely unrelated to the concept of 

“plasma membrane,” a few terms in the set did seem appropriate, such as “intrinsic 

component of external side of cell outer membrane.” However, of these examples, no 

logical semantic path could be traced between the term and “plasma membrane” in GO, 

indicating that these associations are not present in the ontology itself. These differences 

in mapping are due to our reevaluation of the has_part edges with respect to scope. As 

shown in Table 3.3 the categories with the greatest agreement between the two methods 

were those with no instances of has_part relations, which is the only relation in Cellular 

Component that is natively incongruent with respect to scope. However, there is no 

apparent correlation between the frequency of this relation and the extent of disagreement. 
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3.2.3 Custom-tailoring of GO Slim-like Categories with GOcats Allows for Robust 

Knowledgebase Gene Annotation Mining 

 The ability to query knowledgebases for genes and gene products related to a set of 

general concepts-of-interest is an important method for biologists and bioinformaticians 

alike. We hypothesized that grouping annotations into categories using GOcats and 

relevant keywords would more closely match the annotations categorized manually by the 

HPA consortium than either M2S or UniProt’s CV. Using the set of GO terms annotated 

in the HPA’s immunohistochemistry localization raw data as “concepts” (Table 3.4), we 

derived mappings to annotation categories generated from GOcats, M2S, and UniProt’s 

CV based on UniProt- and Ensembl-sourced annotations from the European Molecular 

Biology Laboratories-European Bioinformatics Institute (EMBL-EBI) QuickGO 

knowledgebase resource (33) (See Chapter 3.4.5). 

 Next, we evaluated how these derived annotation categories matched raw HPA data 

GO annotations (See Chapter 3.4.5). GOcats slightly outperformed M2S and significantly 

outperformed UniProt’s CV in the ability to query and extract genes and gene products 

from the knowledgebase that exactly matched the annotations provided by the HPA (Figure 

3.5A). Similar relative results are seen for partially matched knowledgebase annotations. 

Genes in the “partial agreement,” “partial agreement is superset,” or “no agreement” 

groups may have annotations from other sources that place the gene in a location not tested 

by the HPA immunohistochemistry experiments or may be due to non-HPA annotations 

being at a higher semantic scoping than what the HPA provided. Also, novel localization 
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provided by the HPA could explain genes in the “partial agreement” and “no agreement” 

groups. 

 Furthermore, GOcats performed the categorization of HPA’s subcellular locations 

dataset in an average of 10.574 seconds after 50 test runs (standard deviation of 0.074 

seconds), while M2S performed its mapping on the same data in an average of 14.837 

seconds after 50 test runs (standard deviation of 0.300 seconds) (see Chapter 3.4.6 for 

hardware configuration details). These results are rather surprising since GOcats is 

implemented in Python (49), an interpreted language, versus M2S which is implemented 

in Java and compiled to Java byte code. However, the utilization of stored ancestor and 

descendent node sets facilitated the implementation of efficient subgraph-centric 

algorithms within GOcats. Based on these results, GOcats should offer appreciable 

computational improvement on significantly larger datasets. 

 One key feature of GOcats is the ability to easily customize category subgraphs of 

interest. To improve agreement and rectify potential differences in term granularity, we 

used GOcats to organize HPA’s raw data annotation along with the knowledgebase data 

into slightly more generic categories (Table 3.5). In doing so, GOcats can query over twice 

as many knowledgebase-derived gene annotations with complete agreement with the more-

generic HPA annotations, while also increasing the number of genes in the categories of 

“partial” and “partial agreement is superset” agreement types and decreasing the number 

of genes in the “no agreement” category (Figure 3.5B).  

 We then compared the methods’ mapping of knowledgebase gene annotations 

derived from HPA to the HPA experimental dataset to demonstrate how researchers could 

use the GOcats suite to evaluate how well their own experimental data is represented in 
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public knowledgebases. Because the set of gene annotations used in the HPA experimental 

dataset and in the HPA-derived knowledgebase annotations are identical, no term mapping 

occurred during the agreement evaluation and so the assignment agreement was identical 

between GOcats and M2S. As expected, the complete agreement category was high, 

although there was a surprising number of partial agreement and even some genes that had 

no annotations in agreement (Figure 3.5A). We next broke down which locations were 

involved in each agreement type and noted that the “nucleus,” “nucleolus,” and 

“nucleoplasm” had the highest disagreement relative to their sizes, but these disagreements 

were present across nearly all categories (Table 3.5).  

 Both M2S and GOcats avoid superset category term mapping; neither map a 

category-representative GO term to another category-representative GO term if one 

supersedes another (although GOcats has the option to enable this functionality). 

Therefore, discrepancies in annotation should not arise by term mapping methods. 

Nevertheless, we hypothesized that some granularity-level discrepancies exist between the 

HPA experimental raw data and the HPA-assigned gene annotations in the knowledgebase. 

We performed the same custom category generic mapping as we did for the previous test 

and discovered that some disagreements were indeed accounted for by granularity-level 

discrepancies, as seen in the decrease in “partial” and “no agreement” categories and 

increase in “complete” agreement category following generic mapping (Figure 3.6, blue 

bars). For example, 26S proteasome non-ATPase regulatory subunit 3 (PSMD3) was 

annotated to the nucleus (GO:0005634) and cytoplasm (GO:0005737) in the experimental 

data but was annotated to the nucleoplasm (GO:0005654) and cytoplasm in the 

knowledgebase. By matching the common ancestor mapping term “nucleus”, GOcats can 
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group the two annotations in the same category. In total, 132 terms were a result of semantic 

scoping discrepancies. Worth noting is the fact that categories could be grouped to common 

categories to further improve agreement, for example “nucleolus” within “nucleus.”  

 Interestingly, among the remaining disagreeing assignments were some with 

fundamentally different annotations. Many of these are cases in which either the 

experimental data, or knowledgebase data have one or more additional locations distinct 

from the other. For example, NADH dehydrogenase [ubiquinone] 1 beta subcomplex 

subunit 6 (NDUB6) was localized only to the mitochondria (GO:0005739) in the 

experimental data yet has annotations to the mitochondria and the nucleoplasm 

(GO:0005654) in the knowledgebase. Why such discrepancies exist between experimental 

data and the knowledgebase is not clear.  

 We were also surprised by the high number of genes with “supportive” annotations 

in the HPA raw data that were not found in the EMBL-EBI knowledgebase when filtered 

to those annotated by HPA. As Figure 3.6 shows, roughly one-third of the annotations from 

the raw data were missing altogether from the knowledgebase; the gene was not present in 

the knowledgebase whatsoever. This was surprising because “supportive” was the highest 

confidence score for subcellular localization annotation. 

3.3 Discussion and Conclusions 

 Discrepancies in the semantic granularity of gene annotations in knowledgebases 

represent a significant hurdle to overcome for researchers interested in mining genes based 

on a set of annotations used in experimental data. To demonstrate the potential GOcats has 

in resolving these discrepancies, we categorized annotations from HPA-sourced gene 

annotations using GOcats, M2S, and the UniProt subcellular localization CV. The HPA 
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source was chosen because primary data from high-throughput immunofluorescence-based 

gene product localization experiments exist in publicly-accessible repositories and have 

been inspected by experts and given a confidence score (31). As we show, utilizing only 

the set of specific annotations used in the HPA’s experimental data, M2S’s mapping 

matches only 366 identical sets of gene annotations from the knowledgebase with GOcats 

matching slightly more (Figure 3.5A). GOcats alleviates this problem by allowing 

researchers to define categories at a custom level of granularity so that categories may be 

specific enough to retain biological significance, but generic enough to encapsulate a larger 

set of knowledgebase-derived annotations. When we reevaluated the agreement between 

the raw data and knowledgebase annotations using custom GOcats categories for 

“cytoskeleton” and “nucleus”, the number of identical gene annotations increased to 776 

(Figure 3.5B). 

 Because GOcats relies on user-input keywords to define categories, we understand 

that there is a risk of adding user bias when applying this method to organizing results of 

various analyses. While we have taken care to avoid bias in the comparisons made in this 

report, for example citing the exact category defining GO term for each category compared 

between methods (Figure 3.4, Table 3.2, Table 3.3) and reporting the exact common-sense 

categorizations applied when grouping location categories from HPA (Table 3.5), we 

strongly caution users to exercise similar care in their use as well. For instance, when 

categorizing results from annotation enrichment analyses it may be tempting to filter results 

to those categories defined by the user, which might conveniently eliminate unexpected 

(unwanted) highly-enriched terms. We do not condone the use of GOcats in this way. But 

because GOcats will always produce the same subgraph categorizations for the same set of 
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keywords used with the same version of GO, we argue that our categorization is more 

reproducible and less prone to bias than manually grouping GO terms into categories or 

otherwise manually identifying major concepts represented from omics-level analyses. 

 As GO continues to grow, automated methods to evaluate the structural 

organization of data will become necessary for curation and quality control. Because 

GOcats allows versatile interpretation of the GO directed acyclic graph (DAG) structure, 

it has many potential curation and quality control uses, especially for evaluating the high-

level ontological organization of GO terms. For example, GOcats can facilitate the integrity 

checking of annotations that are added to public repositories by streamlining the process 

of extracting categories of annotations from knowledgebases and comparing them to the 

original annotations in the raw data. Interestingly, about one-third of the genes annotated 

with high-confidence in the HPA raw data were missing altogether from the EMBL-EBI 

knowledgebase when filtered to the HPA-sourced annotations. While this surprised us, the 

reason appears to be due to HPA’s use of two separate criteria for “supportive” annotation 

reliability scores and for knowledge-based annotations. For “supportive” reliability, one of 

several conditions must be met: i) two independent antibodies yielding similar or partly 

similar staining patterns, ii) two independent antibodies yielding dissimilar staining 

patterns, both supported by experimental gene/protein characterization data, iii) one 

antibody yielding a staining pattern supported by experimental gene/protein 

characterization data, iv) one antibody yielding a staining pattern with no available 

experimental gene/protein characterization data, but supported by other assay within the 

HPA, and v) one or more independent antibodies yielding staining patterns not consistent 

with experimental gene/protein characterization data, but supported by siRNA assay (31) 
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Meanwhile knowledge-based annotations are dependent on the number of cell lines 

annotated; specifically, the documentation states, “Knowledge-based annotation of 

subcellular location aims to provide an interpretation of the subcellular localization of a 

specific protein in at least three human cell lines. The conflation of immunofluorescence 

data from two or more antibody sources directed towards the same protein and a review of 

available protein/gene characterization data, allows for a knowledge-based interpretation 

of the subcellular location” (31). Unfortunately, we were unable to explore these 

differences further, since the experimental data-based subcellular localization annotations 

appeared aggregated across multiple cell lines, without specifying which cell lines were 

positive for each location. Meanwhile, tissue- and cell-line specific data, which contained 

expression level information, did not also contain subcellular localizations. Therefore, we 

would suggest that HPA and other major experimental data repositories always provide a 

specific annotation reliability category in their distilled experimental datasets that matches 

the criteria used for deposition of derived annotations in the knowledgebases. Such 

information will be invaluable for performing knowledgebase-level evaluation of large 

curated sets of annotations. One step better would involve providing a complete 

experimental and support data audit trail for each derived annotation curated for a 

knowledgebase, but this may be prohibitively difficult and time-consuming to do. 

 Looking towards the future, the work demonstrated here is a critical first step 

towards a goal of automatically enumerating all representable concepts within GO. Such 

an enumeration would provide scientists with the usable set of GO-representable concept 

subgraphs for a large variety of analyses unbiased by human selection. GOcats can derive 

subgraphs representing a specific concept by utilizing keywords and key terms, which 
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would be a major component for an overall method to enumerate all representable 

concepts. We expect two other major components will be required, first is a way to derive 

possible keywords and key terms and the last is a way to evaluate the quality of the concept 

subgraphs that are generated. We expect the latter evaluation to involve the development 

of various graph-based metrics for this purpose. Details for these future developments are 

provided in chapter 6. 

 In this study, we: i) demonstrated an improvement in retrievable ontological 

information content by the reevaluation of GO’s has_part relation ii) applied our new 

method GOcats toward the categorization and utilization of the GO Cellular Component 

sub-ontology, and iii) evaluated the ability of GOcats and other mapping tools to relate 

HPA experimental to HPA knowledgebase GO Cellular Component annotation sources. 

GOcats outperforms the UniProt CV with respect to accurately deriving gene-product 

subcellular location from the UniProt and Ensembl database with the HPA raw dataset of 

gene localization annotations treated as the gold standard. Moreover, GOcats comparison 

to M2S demonstrates similar mapping performance between the two methods, but with 

GOcats providing important improvements in mapping, computational speed, ease of use, 

and flexibility of use. 

 In conclusion, GOcats enables the user to create custom, GO slim-like filters to map 

fine-grained gene annotations from GAFs to general subcellular compartments without 

needing to hand-select a set GO terms for categorization. Moreover, users can use GOcats 

to quickly customize the level of semantic specificity for annotation categories. 

Furthermore, GOcats was designed for scientists who are less familiar with GO. GOcats 

enables a safe and more comprehensive semantic scoping utilization of go-core, preventing 
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mistakes that can easily arise from using go-core instead of go-basic. Together, these 

improvements will impact a variety of GO knowledgebase data mining use-cases as well 

as knowledgebase curation and quality control. Looking towards the future, GOcats 

provides a critical categorization method for a future automatic enumeration of all 

representable concepts within GO. 

3.4 Methods 

3.4.1 Creating Category Mappings from UniProt’s Subcellular Location Controlled 

Vocabulary 

 We created mappings from fine-grained to general locations in UniProt’s 

subcellular location CV (14) for comparison to GOcats. To accomplish this, we parsed and 

recreated the graph structure of UniProt’s subcellular locations CV file (24) in a manner 

similar to the parsing of GO. Briefly, the flat-file representation of the CV file is parsed 

line-by-line and each term is stored in a dictionary along with information about its graph 

neighbors as well as its cross-referenced GO identifier. We assumed that terms without 

parent nodes in this graph are category-defining root-nodes and created a dictionary where 

a root-node key links to a list of all recursive children of that node in the graph. Only those 

terms with cross-referenced GO identifiers were included in the final mapping. The 

category subgraphs created from UniProt were compared to those with corresponding 

category root-nodes made by GOcats. An inclusion index, I , was calculated by considering 

the two subgraphs’ members as sets and applying the following equation: 

 𝐼𝐼 = �𝑆𝑆𝑛𝑛∩𝑆𝑆𝑔𝑔�
|𝑆𝑆𝑛𝑛|       (1) 
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where Sn and Sg are the set of members within the non-GOcats-derived category and 

GOcats-derived category, respectively. It is worth noting here that the size of the UniProt 

set was always smaller than the GOcats set. This is due to the inherent size differences 

between UniProt’s CV and the Cellular Component sub-ontology. 

3.4.2 Creating Category Mappings from Map2Slim 

 The Java implementation of OWLTools’ M2S does not include the ability to output 

a mapping file between fine-grained GO terms and their GO slim mapping target from the 

GAF that is mapped. To compare subgraph contents of GOcats categories to a comparable 

M2S “category,” we created a special custom GAF where the gene ID column and GO 

term annotation column of each line were each replaced by a different GO term for each 

GO term in Cellular Component, data-version: releases/2016-01-12. We then allowed M2S 

to map this GAF with a provided GO slim. The resulting mapped GAF was parsed to create 

a standalone mapping between the terms from the GO slim and a set of the terms in their 

subgraphs.  

3.4.3 Mapping Gene Annotations to User-defined Categories 

 To allow users to easily map gene annotations from fine-grained annotations to 

specified categories, we added functionality for accepting GAFs as input, mapping 

annotations within the GAF and outputting a mapped GAF into a user-specified results 

directory. The input-output scheme used by GOcats and M2S are similar, with the 

exception that GOcats accepts the mapping dictionary created from category keywords, as 

described previously, instead of a GO slim. GAFs are parsed as a tab-separated-value file. 
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When a row contains a GO annotation in the mapping dictionary, the row is rewritten to 

replace the original fine-grained GO term with the corresponding category-defining GO 

term. If the gene annotation is not in the mapping dictionary, the row is not copied to the 

mapped GAF, and is added to a separate file containing a list of unmapped genes for 

review. The mapped GAF and list of unmapped genes are then saved to the user-specified 

results directory. 

3.4.4 Visualizing and Characterizing Intersections of Category Subgraphs 

 To compare the contents of category subgraphs made by GOcats, UniProt CV, and 

M2S, we took the set of subgraph terms for each category in each method, converted them 

into a Pandas DataFrame (60) representation, and plotted the intersections using the 

UpSetR R package (62). Inclusion indices were also computed for M2S categories using 

Equation 1. Jaccard indices were computed for every subgraph pair to evaluate the 

similarity between subgraphs of the same concept, created by different methods. 

3.4.5 Assigning Generalized Subcellular Locations to Genes from the Knowledgebase 

and Comparing Assignments to Experimentally-Determined Locations 

 We first mapped two GAFs downloaded from the EMBL-EBI QuickGO resource 

(33) using GOcats, the UniProt CV, and M2S. We filtered the gene annotations by dataset 

source and evidence type, resulting in separate GAFs containing annotations from the 

following sources: UniProt-Ensembl, and HPA. Both GAFs had the evidence type, Inferred 

from Electronic Annotation (IEA), filtered out because it is generally considered to be the 

least reliable evidence type for gene annotation and in the interest of minimizing memory 
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usage. We used this data to assess the performance of the mapping methods in their ability 

to assign genes to subcellular locations based on annotations from knowledgebases by 

comparing these assignments to those made experimentally in HPA’s localization dataset 

(Figure 3.5A). Comparison results for each gene were aggregated into 4 types: i) “complete 

agreement” for genes where all subcellular locations derived from the knowledgebase and 

the HPA dataset matched, ii) “partial agreement” for genes with at least one matching 

subcellular location, iii) “partial superset” for genes where knowledgebase subcellular 

locations are a superset of the HPA dataset, iv) "no agreement" for genes with no 

subcellular locations in common, and v) “no annotations” for genes in the experimental 

dataset that were not found in the knowledgebase.  

 Only gene product localizations from the HPA dataset with a “supportive” 

confidence score were used for this analysis (n=4795). We created a GO slim by looking 

up the corresponding GO term for each location in this dataset with the aid of QuickGO 

term basket and filtering tools. The resulting GO slim served as input for the creation of 

mapped GAFs using M2S. To create mapped GAFs using GOcats, we entered keywords 

related to each location in the HPA dataset (Table 3.4). We matched the identifier in the 

“gene name” column of the experimental data with the identifier in the “database object 

symbol” column in the GAF to compare gene annotations. Our assessment of comparing 

the HPA raw data to mapped gene annotations from the knowledgebase represents the 

ability to accurately query and mine genes and their annotations from the knowledgebase 

into categories of biological significance. Our assessment of comparing the methods’ 

mapping output to the HPA raw dataset represents the ability of these methods to evaluate 

the representation of HPA’s latest experimental data as it exists in public repositories. 
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3.4.6 Running Time Tests between GOcats and Map2Slim Categorizations 

 For comparing the runtimes of GOcats and M2S for categorizing HPA’s subcellular 

location dataset, each method was run separately on the same machine with the following 

configuration: Intel ® Core ™ i7-4930K CPU with 6 hyperthreaded cores clocked at 

3.40GHzn and 64 GB of RAM clocked at 1866 MHz. We used the Linux “time” command 

with no additional options and reported the real time from its output. The datasets and 

scripts used for this evaluation have been uploaded to a FigShare repository (63). We used 

the dataset contained in our ref 63: KBData/11-02-2016/hpa-no_IEA.goa for these 

comparisons. For M2S we executed a custom script that can be found within ref 63: 

runscripts: 

$ sh owlmultitest.sh  

which ran the following command, found in the same subdirectory, 50 times: 

$ time sh owltoolsspeedtest.sh 

For GOcats, we executed a custom script that can be found within ref 63, runscripts: 

$ sh gcmultitest.sh  

which ran the following command, found in the same subdirectory, 50 times: 

$ time sh GOcatsspeedtest.sh 

Both tests were executed using the same version of the go-core, which is data version: 

releases/2016-01-12 (63). 

 



 
 

Table 3.1 Summary of 25 Example Subcellular Locations Extracted by GOcats 

Subgraph name User-input 
keywords 

Predicted 
representative 

term 
(ID) 

Nodes seeded from 
keyword search 

Nodes added 
during graph 

extension 

Seeded nodes 
not in subgraph Total nodes 

Aggresome 

aggresome, 
aggresomal, 
aggresomes 

aggresome 
(GO:0016235) 1 0 0 1 

Bacterial 

bacterial, 
bacteria, 

bacterial-type 

bacterial-type 
flagellum 

(GO:0009288) 136 1 121 16 

Cell Junction junction 
Cell junction 

(GO:0030054) 68 16 34 50 

Chromosome 

chromosome, 
chromosomal, 
chromosomes 

chromosome 
(GO:0005694) 120 122 31 211 

Cytoplasm 
cytoplasm, 
cytoplasmic 

Cytoplasm 
(GO:0005737) 296 1061 160 1197 

Cytoplasmic 
Granule granule, granules 

secretory granule 
(GO:0030141) 81 16 50 47 

Cytoskeleton 
cytoskeleton, 
cytoskeletal 

cytoskeleton 
(GO:0005856) 78 194 47 225 

Cytosol cytosol, cytosolic 
cytosol 

(GO:0005829) 56 51 28 79 

Endoplasmic 
Reticulum 

endoplasmic, 
sarcoplasmic, 

reticulum 

endoplasmic 
reticulum 

(GO:0005783) 113 39 51 101 
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Endosome 

endosome, 
endosomes, 
endosomal 

endosome 
(GO:0005768) 67 15 24 58 

Extracellular 
extracellular, 

secreted 

extracellular 
region 

(GO:0005576) 142 123 85 180 
Golgi 

Apparatus golgi 
golgi apparatus 
(GO:0005794) 67 12 25 54 

Lysosome 

lysosome, 
lysosomal, 
lysosomes 

lysosome 
(GO:0005764) 42 7 16 33 

Macromolecular 
Complex 

protein, 
macromolecular 

macromolecular 
complex 

(GO:0032991) 1317 969 184 2102 

Microbody 
microbody, 
microbodies 

microbody 
(GO:0042579) 4 20 0 24 

Mitochondrion 

mitochondria, 
mitochondrial, 
mitochondrion 

mitochondrion 
(GO:0005739) 134 2 44 92 

Neuron Part 
neuron, neuronal, 
neurons, synapse 

neuron part 
(GO:0097458) 90 94 35 149 

Nucleolus 
nucleolus, 
nucleolar 

nucleolus 
(GO:0005730) 25 11 12 24 

Nucleus 
nucleus, nuclei, 

nuclear 
nucleus 

(GO:0005634) 288 340 118 510 

Other Organism 
other, host, 

organism 
other organism 
(GO:0044215) 369 12 259 122 
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Plasma 
Membrane plasma 

plasma membrane 
(GO:0005886) 308 302 164 446 

Plastid 
plastid, 

chloroplast 
plastid 

(GO:0009536) 95 48 8 135 

Thylakoid 
thylakoid, 
thylakoids 

thylakoid 
(GO:0009579) 52 22 11 63 

Vesicle vesicle, vesicles 
vesicle 

(GO:0031982) 198 90 85 203 

Viral virion, virus, viral 

viral occlusion 
body 

(GO:0039679) 93 1 26 68 

  
Expected 
representative      

  
Unexpected 
representative       

 



 
 

Table 3.2 Agreement Summary between Corresponding GOcats and UniProt CV 
Subgraphs 

 

Location Category Term ID 
Inclusion 

Index Jaccard Index 
GOcats 

subgraph size 
UniProt CV 

subgraph size 
Bacterial-type 
Flagellum GO:0009288 1 0.0625 16 1 
Cell Junction GO:0030054 0.47619 0.163934 50 21 
Chromosome GO:0005694 1 0.0189573 211 4 
Cytoplasm GO:0005737 0.809524 0.0141549 1197 21 
Endoplasmic 
Reticulum GO:0005783 0.818182 0.0873786 101 11 
Endosome GO:0005783 1 0.241379 58 14 
Extracellular Region GO:0005576 0.5625 0.0481283 180 16 
Golgi Apparatus GO:0005794 0.8 0.142857 54 10 
Lysosome GO:0005764 1 0.0909091 33 3 
Mitochondrion GO:0005739 1 0.0978261 92 9 
Nucleus GO:0005634 1 0.0294118 510 15 
Plastid GO:0009536 0.846154 0.307692 135 52 



 
 

Table 3.3 Agreement Summary between Corresponding GOcats and Map2Slim Subgraphs 

Location Category Term ID Inclusion Index‡ Jaccard Index 
GOcats 

subgraph size 
Map2Slim 

subgraph size 
"Has_part" 

relationships 
Aggresome GO:0016235 1 1 1 1 0 
Bacterial-type Flagellum GO:0009288 1 1 16 16 8 
Cell Junction GO:0030054 0.980392 0.980392 50 51 4 
Chromosome GO:0005694 0.984375 0.883178 211 192 40 
Cytoplasm GO:0005737 0.927273 0.452055 1197 605 38 
Cytoskeleton GO:0005856 0.812274 0.812274 225 277 10 
Cytosol GO:0005829 0.963415 0.963415 79 82 8 
Endoplasmic Reticulum GO:0005783 1 0.990099 101 100 4 
Endosome GO:0005768 1 1 58 58 0 
Extracellular Region GO:0005576 1 0.927778 180 167 2 
Golgi Apparatus GO:0005794 1 1 54 54 0 
Lysosome GO:0005764 1 1 33 33 0 
Macromolecular Complex GO:0032991 0.947274 0.947274 2102 2219 232 
Microbody GO:0042579 1 1 2 24 0 
Mitochondrion GO:0005739 0.978723 0.978723 92 94 8 
Neuron Part GO:0097458 1 0.993289 149 148 22 
Nucleolus GO:0005730 0.857143 0.857143 24 28 0 
Nucleus GO:0005634 0.991684 0.928016 510 481 168 
Other Organism GO:0044215 1 1 122 122 8 
Plasma Membrane GO:0005886 0.563081 0.547097 446 753 20 
Plastid GO:0009536 0.992647 0.992647 135 136 0 
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Secretory Granule GO:0030141 1 1 47 47 0 
Thylakoid GO:0009579 1 1 63 63 0 
Vesicle GO:0031982 0.981132 0.757282 203 159 12 
Viral Occlusion Body GO:0039679 1 0.0147059 68 1 4 
‡ Inclusion index quantifies the extent to which the smaller subgraph is included in the larger subgraph  



 
 

Table 3.4 Summary of 20 Subcellular Locations Used in the HPA Raw Experimental Data Extracted by GOcats 

Subgraph name User-input keywords 

Predicted 
representative 

term 
(ID) 

Nodes 
seeded 

from 
keyword 

search 

Nodes 
added 
during 
graph 

extension 

Seeded 
nodes 
not in 

subgraph 

Total 
nodes 

Actin cytoskeleton actin cytoskeleton actin cytoskeleton 
(GO:0015629) 117 22 77 62 

Aggresome aggresome, aggresomal, aggresomes 
aggresome 
(GO:0016235) 1 0 0 1 

Cell Junction junction 
cell junction 
(GO:0030054) 68 16 34 50 

Centrosome centrosome 
centrosome 
(GO:0005813) 10 2 5 7 

Cytoplasm cytoplasm, cytoplasmic 
cytoplasm 
(GO:0005737) 296 1061 160 1197 

Endoplasmic 
Reticulum endoplasmic, sarcoplasmic, reticulum 

endoplasmic reticulum 
(GO:0005783) 113 39 51 101 

Focal adhesion focal adhesion 
focal adhesion 
(GO:0005925) 29 0 28 1 

Golgi 
Apparatus golgi 

golgi apparatus 
(GO:0005794) 67 12 25 54 

Intercellular bridge intercellular bridge 
intercellular bridge 
(GO:0045171) 24 2 19 7 

Intermediate 
filament 
cytoskeleton intermediate filament cytoskeleton 

intermediate filament 
cytoskeleton 
(GO:0045111) 126 0 118 8 
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Intracellular 
membrane-bounded 
organelle (vesicle‡) intracellular membrane-bounded organelle 

Intracellular membrane-
bounded organelle 
(GO:0043231) 229 1116 118 1227 

Microtubule 
cytoskeleton microtubule cytoskeleton 

microtubule 
cytoskeleton  
(GO:0015630) 112 55 68 109 

Microtubule end microtubule end 
microtubule end 
(GO:1990752) 138 0 133 5 

Microtubule 
organizing center microtubule organizing center 

microtubule organizing 
center 
(GO:0005815) 110 34 95 49 

Mitochondrion mitochondria, mitochondrial, mitochondrion 
mitochondrion 
(GO:0005739) 134 2 44 92 

Nuclear membrane nuclear membrane 
nuclear membrane 
(GO:0031965) 1151 0 1139 12 

Nucleolus nucleolus, nucleolar 
nucleolus 
(GO:0005730) 25 11 12 24 

Nucleoplasm nucleoplasm 
nucleoplasm 
(GO:0005654) 10 125 4 131 

Nucleus nucleus, nuclei, nuclear 
nucleus 
(GO:0005634) 288 340 118 510 

Plasma 
Membrane plasma 

plasma membrane 
(GO:0005886) 308 302 164 446 

‡ HPA conservatively annotates "vesicles" as intracellular membrane-bounded organelle      
  Expected representative      
  Unexpected representative       

 
  



 
 

Table 3.5 Generic Location Categories Used to Resolve Potential Scoping Inconsistencies 
in HPA Raw Data 

HPA annotation 
category 

GOcats-customized 
general HPA category 

Actin cytoskeleton 

Cytoskeleton 

Centrosome 
Intermediate filament cytoskeleton 
Microtubule cytoskeleton 
Microtubule end 
Microtubule organizing center 
Aggresome Aggresome 
Cell junction Cell junction 
Cytoplasm Cytoplasm 
Endoplasmic reticulum Endoplasmic reticulum 
Focal adhesion Focal adhesion 
Golgi apparatus Golgi apparatus 
Intercellular bridge intercellular bridge 
intracellular membrane-bounded organelle intracellular membrane-bounded organelle 
Mitochondrion Mitochondrion 
Nucleus 

Nucleus Nucleoplasm 
Nuclear membrane 
Nucleolus Nucleolus 
Plasma membrane Plasma membrane 
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Table 3.6 Summary of Gene Location Category Agreement between Manually-curated 
HPA Raw Data and GOCats/Map2Slim Categorized HPA-derived Annotations  

  

Agreement 

Location Complete Partial Superset‡ None 
Not in  

Knowledgebase 
Actin cytoskeleton 51 0 7 0 37 
Aggresome 2 0 0 3 4 
Cell Junction 36 0 17 0 51 
Centrosome 58 3 17 0 49 
Cytoplasm 1037 55 162 5 643 
Endoplasmic 
Reticulum 66 1 7 0 39 
Focal adhesion 27 5 9 0 17 
Golgi Apparatus 159 5 43 0 137 
Intercellular bridge 14 0 4 0 19 
Intermediate 
filament 
cytoskeleton 18 1 4 0 23 
Intracellular  
membrane-
bounded organelle 283 6 50 1 212 
Microtubule 
cytoskeleton 35 2 9 0 27 
Microtubule end 2 0 0 0 0 
Microtubule 
organizing center 32 0 5 0 14 
Mitochondrion 263 4 55 0 154 
Nuclear membrane 47 6 17 0 39 
Nucleolus 266 10 69 6 163 
Nucleoplasm 989 26 230 23 534 
Nucleus 437 14 217 23 373 
Plasma Membrane 265 12 55 0 225 

‡Knowledgebase genes mapped to a set of categories that is a superset of those 
manually assigned by the HPA in raw data  
* Numbers reflect how many times a location was involved in a particular  
agreement type; sums of all locations for an agreement category do not indicate the 
total number of genes for an agreement type.  

 



 
 

 
Figure 3.1 Network of 25 Categories Whose Subgraphs Account for 89% of the GO 
Cellular Component Sub-ontology 
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Figure 3.2 Network of All Categories from Figure 3.1 Except for Macromolecular 
Complex  
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Figure 3.3 Network of 20 Categories Used in the Human Protein Atlas Subcellular 
Localization Immunohistochemistry Raw Data 
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Figure 3.4 (continued) Visualizing the degree of overlap between the category subgraphs 
created by GOcats, Map2Slim, and the UniProt CV.  
 

Plots were created using the R package: UpSetR (64), as a visual alternative to a Venn 
diagram. The amount of overlap between category-specific subgraphs are indicated by the 
vertical bar graph with the connect dots identifying which specific mapping method 
(UniProt, GOcats, and Map2Slim) is included in the overlap. 

A) Macromolecular Complex; B) Nucleus; C) Plasma Membrane. Plots for all categories 
can be found in Supplemental Figures 3.1A-Y. 
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Figure 3.5. Comparison of UniProt-Ensembl knowledgebase annotation data mining 
extraction performance by GOcats, Map2Slim, and UniProt CV 
 

“Complete agreement” refers to genes where all subcellular locations derived from the 
knowledgebase and the HPA dataset matched. “partial agreement” refers to genes with at 
least one matching subcellular location. “partial agreement is superset” refers to genes 
where knowledgebase subcellular locations are a superset of the HPA dataset (these are 
mutually exclusive to the “partial agreement” category). 



72 
 

Figure 3.5(continued) "no agreement" refers to genes with no subcellular locations in 
common. “no annotations” refers to genes in the experimental dataset that were not found 
in the knowledgebase. The more-generic categories used in panel B can be found in Table 
3.5. 

A) Number of genes of the given agreement type when comparing mapped gene product 
annotations assigned by UniProt and Ensembl in the EMBL-EBI knowledgebase to those 
taken from The Human Protein Atlas’ raw data. Knowledgebase annotations were mapped 
by GOcats, Map2Slim, and the UniProt CV to the set of GO annotations used by the HPA 
in their experimental data. B) Shift in agreement following GOcats’ mapping of the same 
knowledgebase gene annotations and the set of annotations used in the raw experimental 
data using a more-generic set of location terms meant to rectify potential discrepancies in 
annotation granularity. 

 



 
 

 
Figure 3.6 Comparison of HPA knowledgebase derived annotations to HPA experimental data 
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Figure 3.6 (continued) Number of genes in the given agreement type when comparing gene product annotations assigned by HPA in the 
EMBL-EBI knowledgebase to those in The Human Protein Atlas’ raw experimental data. “Complete agreement” refers to genes where 
all subcellular locations derived from the knowledgebase and the HPA dataset matched. “partial agreement” refers to genes with at least 
one matching subcellular location. “partial agreement is superset” refers to genes where knowledgebase subcellular locations are a 
superset of the HPA dataset (these are mutually exclusive to the “partial agreement” category). "no agreement" refers to genes with no 
subcellular locations in common. “no annotations” refers to genes in the experimental dataset that were not found in the knowledgebase. 
The more-generic categories used in panel B can be found in Table 3.5 

 



 
 

CHAPTER 4. ADVANCES IN GENE ONTOLOGY UTILIZATION IMPROVE STATISTICAL POWER 

OF ANNOTATION ENRICHMENT 

4.1 Background 

 Ontologies are used to document new knowledge gleaned from nearly every facet 

of biological and biomedical research today, and are created, maintained, and extended by 

experts with the goal of providing a unified annotation scheme that is readable by humans 

and machines (4). With the increased use of transcriptomics technologies, high-throughput 

investigation of the functional impact of gene expression in biological systems and disease 

processes via gene set enrichment analyses represents one important use of GO (10) (see 

Chapter 1.1). 

 While tools exist to incorporate GO annotations and the graphical structure of GO 

(i.e. ontological ancestor terms) in enrichment analyses, they fail to utilize the full extent 

of the semantic information available in GO due to limitations in how ontological relations 

are traversed. These limitations are due in part to the ambiguity in assessing which term, 

in a pair of terms connected by a relation is more general or more specific in the context 

of assigning the appropriate semantic scope while categorizing terminology. Details 

regarding this issue are provided in Chapter 1.8. 

 A separate, but related issue involves how some relations are defined and utilized 

in GO, leading to complications when drawing semantic inferences between terms. The 

relation in question here is has_part which, contrary to intuition, is not a direct inverse of 

part_of due to the concepts of universality. Details related to this are provided in Chapters 

1.8 and 1.9. To summarize, in the context of inferring relations in a purely ontological 
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(linguistic) sense, the current axioms preventing the inversion of has_part is important in 

preserving universal truths and thus avoiding illogical inferences such as “cell” has_part 

“nucleus” therefore “nucleus” part_of (implying every) “cell.” However, in the context of 

categorizing terminology for enrichment analyses, we argue that it is preferable to sacrifice 

perfect semantic accuracy in favor of increased information content by reinterpreting the 

inversed has_part relation as part_of_some. In other word this relation would mean, “part 

of some, but not necessarily all.” The alternative solution, which other tools require, is that 

the has_part relation is entirely dropped from the ontology. In our hypothetical example, 

this would mean that the connection between “cell” and “nucleus” would be lost altogether.  

 For the issues stated above, we have developed a new tool called the GO 

Categorization Suite (GOcats) (see Chapter 3). Fundamental to GOcats’ categorization 

algorithm is the re-evaluation of the has_part edge as part_of_some—correcting semantic 

correspondence inferences while ensuring ubiquitous use of all categorization-relevant 

relations in GO.  

 For this investigation, the go-core version of the GO database was chosen in favor 

of the go-basic version, because it contains the has_part edge relation which points away 

from the root of the ontology and because it contains other edges which connect the 

separate subontologies. Since one of our goals is to reinterpret mereological relations with 

respect to semantic scope, it is necessary that these relations be evaluated. Similarly, we 

excluded the go-plus version from this investigation, because we are not yet concerned 

with the reevaluation of the additional relations or database cross-references provided by 

go-plus.  
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 While go-basic is a true DAG, go-core is not strictly acyclic due to the additional 

has_part relations. However, when we inverse the traversal of has_part into the 

part_of_some interpretation, acyclicity is maintained. Therefore, we refer to our modified 

go-core graph as a DAG. GOcats is a Python package written in version 3.4.2 of the Python 

program language (49). GOcats parses go-core and represents it as a DAG hierarchal 

structure. GOcats extracts subgraphs of the GO DAG (sub-DAGs) and identifies a 

representative node for each category in question (Figure 4.1). Details on GOcats’ 

categorization algorithms can be found in sections 2.1.1 – 2.1.3. Full API documentation 

for GOcats is available online (53). 

 To overcome issues regarding scoping ambiguity among mereological relations, we 

hard-coded assigned properties indicating which term was broader in scope and which term 

was narrower in scope to each edge object created from each of the scope-relevant relations 

in GO. For example, in the node pair connected by a part_of or is_a edge, node 1 is 

narrower in scope than node 2. Conversely, node 1 is broader in scope than node 2 when 

connected by a has_part edge (Table 4.1, Figure 4.2). This edge is therefore reinterpreted 

by GOcats as part_of_some. While the default scoping relations in GOcats are is_a, 

part_of, and has_part, the user has the option to define the scoping relation set. For 

instance, one can create go-basic-like subgraphs from a go-core version ontology by 

limiting to only those relations contained in go-basic. For convenience, we have added a 

command line option, “go-basic-scoping,” which allows only nodes with is_a and part_of 

relations to be extracted from the graph. 

 In comparing GOcats’ inclusion of re-evaluated has_part relations to the traditional 

method of ignoring has_part relations altogether and to the erroneous method of 
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misinterpreting native has_part directionality, we illuminate the theoretical extent of 

information loss or potential for misinterpretation of has_part relations, respectively. 

Furthermore, in two independent enrichment analyses of real data—from a publicly 

available breast cancer dataset (65) and from samples investigating equine cartilage 

development (66), we demonstrate that GOcats’ reinterpretation of has_part can retain all 

information from GO while drawing appropriate categorical inferences in the context of 

annotation enrichment. Finally, we show that this reinterpretation has the added benefit of 

improving the statistical power of annotation enrichment analyses. 

4.2 Results 

4.2.1 GOcats’ Reinterpretation of the has_part Relation Increases the Information 

Retrieval from GO and Avoids Potential Misinterpretations of Ambiguous 

Relationship Inferences 

 GOcats reevaluates path tracing for the has_part edge to make it congruent with 

other relations that delineate scope. With path tracing unchanged, has_part edges lead to 

erroneous term mappings unless they are completely excluded from the ontology. To 

evaluate the extent of incorrect semantic interpretation conferred by has_part relations, we 

calculated all potential false mappings (pMF) between nodes for a given GO sub-ontology 

by counting the number of mappings from all children of a has_part edge to all parents of 

a has_part edge assuming the original GO has_part edge directionality. Next, we 

compared the pMF to the total number of true mappings (MT) for a given GO sub-ontology 

to evaluate the possible magnitude of their impact (Chapter subsections 4.5.1 and 4.5.2, 

Equations 1-5, (ref 63, SD1-2)). As shown in Table 4.2, there are 23,640 pMFs in Cellular 
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Component, 8,328 pMFs in Molecular Function, and 89,815 pMFs in Biological Process. 

Comparatively, the amount of pMFs is 42%, 13%, and 16% the size of the MT, in Cellular 

Component, Molecular Function, and Biological Process, respectively.  

 The conventional solution to avoid these errors is to use versions of ontologies that 

remove edges like has_part. (33). Considering the number of possible mappings between 

terms as a measure of information content, we quantified the loss of information acquired 

when has_part is omitted during mapping by subtracting the number of MT in graphs 

containing is_a, part_of, and has_part edges from those with only is_a and part_of edges. 

As shown in Table 4.2, Cellular Component lost 6,346 mappings, Molecular Function lost 

6,242 mappings, and Biological Process lost 27,674 mappings, which equates to 11%, 

10%, and 5% loss of information in these sub-ontologies, respectively. It is important to 

note that the mapping combinations were limited to those nodes containing is_a, part_of, 

and has_part relations only. Because paths in GO are heterogeneous with respect to 

relation edges, this loss of information is a lower-bound estimate since other relations exist 

that connect additional nodes, but in a manner unusable for semantic correspondence 

interpretation. This is especially true for Biological Process, which has many regulatory 

relations that were not evaluated here.  

 While the potential for false mappings are high considering the has_part relation 

alone, this statistic does not illuminate the scale of the issue facing users of current ontology 

mapping software. Importantly, it does not address a fundamental limitation and danger 

facing software like map2slim (M2S) (13), which non-discriminately evaluates relation 

edges. For example, terms linked by an active relation like regulates, or by the has_part 

edge are categorized as if they are related by a scoping relation like is_a. Therefore, we 
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calculated the total number of possible mappings produced by M2S and enumerated the 

intersection of these mappings against those made by GOcats which were constrained to 

paths that contained only scoping relations, is_a, part_of, and has_part (Chapter 4.5.2, 

Equations 6 and 7). Overall, M2S made 325,180 GO term mappings, i.e. categorizations, 

which did not intersect GOcats’ full set of corrected scoping relation mappings. We 

consider these false mapping pairs (Mpair,M2S), since they represent a problematic evaluation 

of scoping semantics. This contrasted with 710,961 correct mappings that intersected the 

GOcats mapping pairs (Mpair,GOcats) giving a percent error of 31.4%. Cellular Component, 

Molecular Function, and Biological Process contained 22,059, 29,955 and 273,166 

erroneous mappings, which accounted for respective percent errors of 30.7%, 34.8%, and 

31.1% (Table 3.3). 

4.2.2 GOcats’ Reinterpretation of the has_part Relations Provides Improved Annotation 

Enrichment Statistical Power 

 We incorporated GOcats-derived ontology ancestor paths (paths from fine-grained 

terms to more general, categorical terms) into the CategoryCompare version 1.99.158 (29) 

annotation enrichment analysis pipeline and performed annotation enrichment on an 

Affymetrix microarray dataset of ER+ breast cancer cells with and without estrogen 

exposure (65). We compared these enrichment results to those produced when unaltered 

ancestor paths from GO—excluding the has_part relation—were incorporated into the 

same CategoryCompare pipeline (See Chapter 4.5.4 and (57)).  

 We also performed enrichment analyses comparing the ancestor traversals of 

DEseq2 differential gene expression datasets across time points during the fetal 
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development of two cartilage tissue types in Equus caballus in collaboration with Dr. 

James MacLeod and Dr. Rashmi Dubey (See Chapter subsections 2.2, 4.5.5, and 4.5.6, and 

(57)). 

 Assessment of adjusted p-values from significantly enriched terms using GOcats’ 

paths versus the traditional method that omits has_part edges shows that GOcats reliably 

improves the statistical significance of term enrichment results through its re-interpretation 

of has_part relation semantics (Figure 4.3). In the breast cancer dataset, of the 217 

significantly enriched terms found using the traditional enrichment method at an alpha of 

0.01 for FDR-adjusted p-values, 182 had adjusted p-values that were improved when 

GOcats part_of_some paths were used. This number of improved p-values is statistically 

significant as indicated by a one-sided binomial test p-value of 1.86E-25 (i.e. 1.86 x 10-25). 

The full list of enriched terms and their adjusted p-values produced from GOcats’ ancestor 

path tracing and has_part-omitted ancestor path tracing for this analysis is provided in 

Supplemental Table 4.1.  

 Additionally, GOcats was able to identify 15 unique significantly-enriched terms 

at an alpha of 0.01 for adjusted p-values that would otherwise be omitted due to the loss of 

has_part edges (Table 4.4). Four of these terms involve purinergic nucleotide receptor 

activity, which has been implicated elsewhere in other investigations related to breast 

cancer in both ER+ and ER- breast cancer cell lines.(67).  

 GOcats’ path tracing showed similar improvements when comparing p-values from 

GO annotation enrichment derived from the differential gene expression analyses between 

equine cartilage development time points (Table 4.5). In this analysis (see Chapter 4.5.5), 

neighboring time point analyses (early and late) were compared to extreme time point 
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analyses (extreme) (Table 4.6). The traditional enrichment method yielded between 82 to 

233 total enriched terms, with 67% to 92% of these terms’ adjusted p-values being 

improved when GOcats ancestor path tracing was used. Quantifying the improvements in 

the p-values via a binomial test generates p-values ranging from 1.32E-03 to 2.58E-44 (i.e 

1.32 x 10-3 to 2.58 x 10-44). Even with a Bonferroni multiple test correction, the adjusted 

p-value of the six binomial tests performed range from 7.92E-03 and 1.55E-43. 

 Also, all but one of the binomial test p-values was below 6.22E-21; however, the 

comparison of the fetal interzone tissue at 45 days of gestation to neonatal epiphyseal 

cartilage had drastically fewer total enriched terms. Furthermore, GOcats was able to 

identify additional significantly-enriched terms from the first and second neighboring time 

point analyses as compared to the traditional method applied to the extreme analysis. 

GOcats extracts a notable number of uniquely enriched terms from the individual time 

point comparisons (Table 4.6, UniqueEnrichedTermsGOcats). A few of these enriched terms 

(Table 4.6, SupportedEnrichedTerms) are directly supported by the traditional method 

enrichment of the extreme time point comparisons. In other words, the traditional method’s 

enrichment of the extreme time point comparisons provides some ground truth for 

validating uniquely enriched terms detected by the GOcats enrichment analysis of the 

nearest-neighbor time point comparisons.  

4.3 Discussion 

4.3.1 Issues with Semantic Correspondence 

 As early as the late 1980s, explicit definitions of semantic correspondence for a 

relation between ontological terms have been stressed in the context of relational database 



83 
 

design (68). This includes concepts of part-whole (mereology), general-specific 

(hyponymy), feature-event, time-space (i.e spaciotemporal relations), and others. OBO’s 

and GO’s ontological edges are directional insofar as their relations accurately describe 

how the first node relates to the second node empirically, providing axioms for deriving 

direct semantic inferences. However, the directionality of these edges is ambiguous in that 

they do not explicitly describe how the terms relate to one another semantically in terms of 

scope, and this is due largely to the lack of explicit semantic correspondence qualifiers.  

 A simple way to avoid mapping problems associated with non-scoping relation 

direction is to omit those relations from the analysis. This strategy avoids incorrect scoping 

interpretation at the expense of losing information. As an example, EMBL-EBI’s QuickGO 

term mapping service omits has_part type under its “filter annotations” by GO identifier 

options (33). Furthermore, Bioconductor’s GO.db (69) also avoids mapping issues by 

indirectly omitting this relation; it uses a legacy MySQL dump version of GO which does 

not contain relation tables for has_part. We argue that while avoiding problematic relations 

altogether does prevent scope-specific mapping errors, it also limits the amount of 

information that can be gleaned from the ontology. By eliminating has_part from graphs 

created by GOcats, we see a ~11% decrease in information content (as indicated by a 

decrease in the number possible mappings) in Cellular Component. Likewise, there is a 

10% and 5% decrease of information content in Molecular Function and Biological 

Process, respectively (Table 4.2). Thus, omitting these relations from analyses removes a 

non-trivial amount of information that could be available for better interpretation of 

functional enrichment. However, the total impact is not completely appreciated here, 

because not all relations were evaluated in this study; only the scoping relations of is_a, 
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part_of, and has_part. The potential for additional information loss is very high in 

Biological Process, for example, when considering the large number of unaccounted 

relations regulates, positively_regulates, and negatively_regulates (Table 4.1). These 

relations add critical additional regulatory information to ontological graph paths, which 

would also be lost when ignoring the has_part relation, if they occurred along a path that 

also contained has_part. The same is also true for Molecular Function, although the 

frequency of additional, non-scoping relations are lower. 

 Furthermore, automated summarization of annotations enriched in gene sets 

requires a more sophisticated evaluation of the scoping semantics contained in ontologies, 

which prior tools are not fully equipped to provide. M2S is one widely-utilized GO term 

categorization method that is available as part of the OWLTools Java application. The Perl 

version of M2S has been integrated into the Blast2GO suite since 2008 (70) and this gene 

function annotation tool has been cited in over 1500 peer-reviewed research articles 

(Google Scholar as of Nov. 28, 2017). We verified that the Perl and Java versions of M2S 

produced identical GO term mappings for a given dataset and GO slim, and therefore have 

the same mapping errors (ref 63, SD2). Although the number of pMFs reported in the results 

represent the upper limit of the possible erroneous mappings, the fact that at least 120,000 

of these exist in GO for the has_part relation alone or that the removal of this edge type 

results in up to an 11% reduction of information content provide bounds on the scope of 

the issue. To be clear, tools like M2S can be safe and not produce flawed mappings if they 

are used alongside ontologies that contain only those relations that are appropriate for 

evaluation, such as go-basic. However, we intentionally utilized go-core to illustrate the 
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danger in using tools that do not provide explicit semantic control on how ontologies are 

utilized.  

 GOcats represents a step toward a more thorough evaluation of the semantics 

contained within ontologies by handling relations differently according to the type of 

correspondence that they represent. In the case of relations such as has_part, this involves 

altering the correspondence directionality for the task at hand, which is to organize terms 

into categories. As a proof-of-concept, we classified the is_a, has_part, and part_of 

relations into a common “scoping” correspondence type and hard-coded assigned graph 

path tracing heuristics to ensure that they are all followed from the narrower-scope term to 

the broader-scope term. One caveat of this approach is that because of previously 

mentioned issues in universality logic, the inverse of has_part is not strictly part_of, but 

rather part_of_some. We argue that the highly unlikely misinterpretation of universality in 

this strategy is preferable to the loss of information experienced when using trimmed 

versions of ontologies for term categorization. To elaborate, most current situations calling 

for term categorization involve gene enrichment analyses. Spurious incorrect mappings 

through part_of_some edges would not enrich to statistical significance, unless a 

systematic error or bias is present in the annotations. Even if a hypothetical term 

categorization resulted in enrichment of a general concept that was not relevant to the 

system in question (i.e. “nucleus” enriched in a prokaryotic system), it would be relatively 

straight-forward to reject such an assignment by manual curation and find the next most 

relevant term. Conversely, it is not reasonable to manually curate all possible missed term 

mappings resulting from the absence of an edge type in the ontology.  
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 Another potential complication in semantic correspondence of relations is that 

some relations are inherently ambiguous. The clearest example of this again can be found 

in the well-utilized part_of relation. This relation is used to describe relations between 

physical entities and concepts (e.g. “nuclear envelope” part_of “endomembrane system”) 

and between two concepts (e.g. “exit from mitosis” part_of “mitotic nuclear division”) with 

no explicit distinction. To address the former issue, future work will augment our use of 

hard-coded categorization of semantic correspondences through the development of 

heuristic methods that identify and categorize these among the hundreds of relations in the 

Relations Ontology (1) (71). As a good starting point, we suggest using five general 

categories of relational correspondence for reducing ambiguity (Table 4.1): scope 

(hyponym-hypernym), mereological, a subclass of scope (meronym-holonym), 

spatiotemporal (process-process, process-entity, entity-entity), active (actor-subject), and 

other. 

4.3.2 Using GOcats for Annotation Enrichment 

 While we reported the loss of information available for annotation enrichment with 

has_part excluded from GO and quantified the effect of incorrect inferences that can be 

made if has_part is included in GO during enrichment, these results only represent 

hypothetical effects that might be overcome when GOcats reinterprets this relation. One of 

GOcats’ original intended purposes was to improve the interpretation of results from 

annotation enrichment analyses. However, in the process of designing heuristics to 

appropriately categorize GO terminology, we also sought to overcome the limitations that 

come with following the traditional methods of path tracing along relations in GO. Here 
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we focused on overcoming the loss of information encountered when ignoring has_part 

relations. Our solution was to re-evaluate these relations under the logic of part_of_some 

and invert the direction of has_part. While this re-interpretation is limited in usage, we 

believe that, in the scope of annotation enrichment, it is valid for reasons previously 

explained.  

 Our first evaluation of enrichment results compared GOcats’ ancestor paths to 

traditional GO ancestor paths in the enrichment analysis of an older, publicly-available 

microarray breast cancer dataset, generated from an Affymetric HG-U95Av2 array which 

only covered 9000 genes. With this comparison, we demonstrate a highly statistically 

significant improvement (p-value=1.86E-25) in the statistical power of annotation 

enrichment analysis. Specifically, 182 out of 217 significantly enriched GO terms from the 

traditional analysis had improved p-values in the GOcats-enhance enrichment analysis. 

Importantly, we also detect significantly enriched GO terms in the GOcats’ results that 

were not detected using the traditional analysis. The inclusion of the re-interpretation of 

has_part edges allowed for the significant enrichment (adjusted-p-value < 0.002 with FDR 

set to 0.01) of four terms related to purinergic nucleotide receptor signaling which has been 

associated with ER+ MCF-7 breast cancer cell proliferation (72,73). Furthermore, 

purinergic nucleotide receptor signaling has been implicated in predicting breast cancer 

metastasis in other studies; however, these studies involved ER- metastatic breast cancer 

cell lines (74). We again confirmed this effect in our evaluation of GO annotation 

enrichment results of recently collected RNAseq equine cartilage development datasets. 

Here we saw an improvement in 67% to 92% of enriched terms across the six time point 

enrichment analyses. Fundamentally, the addition of part_of_some interpretation of 
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has_part relations improves the statistical power of the annotation enrichment analysis, 

allowing the detection of additional enriched annotations with statistical significance from 

the same dataset. In addition, the GOcats annotation enrichment analysis extracts a notable 

number of uniquely enriched annotations from the neighboring, individual time point 

differential gene expression analyses. Some of these uniquely enriched terms are directly 

supported by the traditional annotation enrichment analysis of the extreme time point 

differential gene expression analyses (Table 4.6). These results on multiple datasets 

involving two separate experimental designs using both older and more recent 

transcriptomics technologies demonstrate the robustness of utilizing GOcats-augmented 

ontology paths to derive additional information from annotation enrichment analyses. 

While these results demonstrate an improvement in statistical power of annotation 

enrichment analysis, no data analysis method can address unknown bias in a dataset. Bias 

that leads to confounding factors is best addressed at the point of experimental design, but 

sometimes the effects from identified confounding factors can be mitigated after the 

experiment during data analysis (75). 

4.4 Conclusions 

 To conclude, GOcats enables the simultaneous extraction and categorization of 

gene and gene product annotations from GO-utilizing knowledgebases in a manner that 

respects the semantic scope of relations between GO terms. It also allows the end-user to 

organize ontologies into user-defined biologically-meaningful concepts—a feature that we 

have explained elsewhere (76). This categorization lowers the bar for extracting useful 

information from exponentially growing scientific knowledgebases and repositories in a 

semantically safer manner. In summary, GOcats is a versatile software tool applicable to 
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data mining, annotation enrichment analyses, ontology quality control, and 

knowledgebase-level evaluation and curation. 

4.5 Methods 

4.5.1 Evaluating Hypothetical False Mapping and True Mapping Pairs in GO Involving 

the has_part Relation 

 To determine how significant mapping issues are because of semantic scope 

inconsistencies with has_part relations, we built the GO graph, data-version: 

releases/2016-01-12 using only the scoping relations is_a, part_of, and has_part edges, 

while omitting other relation edges in the graph, such as regulates, happens_during, and 

ends_during. Next, we counted the number of potential false mappings (pMF) that could 

result if has_part was left in its unaltered directionality; i.e. the edge directionality that 

currently exists in GO. To accomplish this, we define sets of potentially problematic 

ancestors (PAe) for every has_part edge (e) as 

𝑃𝑃𝑃𝑃𝑒𝑒 = {𝑃𝑃𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖} −  �𝑃𝑃𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝�    (1) 

where Aechild and Aepar are sets of nodes that are ancestors of the edge’s child and parent 

nodes, respectively, and echild and epar are the edge’s parent and child nodes. Similarly, we 

define the potentially problematic descendants (PDe) for every has_part edge (e) as 

𝑃𝑃𝑃𝑃𝑒𝑒 = �𝑃𝑃𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝� −  {𝑃𝑃𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖}    (2) 

where Depar and Dechild are sets of nodes that are descendants of the edge’s parent and child 

nodes, respectively. We then calculate the potential mappings that can occur across each 

edge, e by the following: 
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𝑝𝑝𝑝𝑝𝐹𝐹,𝑒𝑒 = {(𝑑𝑑, 𝑎𝑎) | 𝑑𝑑 ∈ 𝑃𝑃𝑃𝑃 𝑒𝑒;𝑎𝑎 ∈ 𝑃𝑃𝑃𝑃𝑒𝑒}    (3) 

The total number of potential false mappings that can result from an edge type, in this case 

the has_part relation, is given by 

𝑝𝑝𝑝𝑝𝐹𝐹 = �⋃ 𝑝𝑝𝑝𝑝𝐹𝐹,𝑒𝑒
𝑛𝑛
𝑒𝑒=1 �    (4) 

Finally, we calculate the number of total possible true mappings (MT) between any two 

arbitrary nodes (n1, n2) in a given sub-ontology graph (G) in GO: 

𝑝𝑝𝑇𝑇 = |{𝑛𝑛1𝑎𝑎𝑛𝑛𝑎𝑎 ∩ 𝑛𝑛2𝑑𝑑𝐴𝐴𝑑𝑑𝑎𝑎 | 𝑛𝑛1 ∈ 𝐺𝐺;  𝑛𝑛2 ∈ 𝐺𝐺}|    (5) 

In Equation 6, we used GOcats to calculate the possible number of true mappings while 

considering is_a, part_of, and re-evaluated has_part (part_of_some) relations in GO. 

4.5.2 Evaluating Hypothetical False Mappings Encountered When the Unaltered 

has_part Relation is Parsed with Map2Slim 

 The Java implementation of OWLTools’ Map2Slim (M2S) does not include the 

ability to output a mapping file between fine-grained GO terms and their GO slim mapping 

target from the GAF that is mapped. To identify target ancestor terms of individual GO 

terms, we created a special custom GAF where the gene ID column and GO term annotation 

column of each line were each replaced by a different GO term for each GO term in Cellular 

Component, data-version: releases/2016-01-12. We then allowed M2S to map this GAF 

with a provided GO slim. The resulting mapped GAF was parsed to create a standalone 

mapping between the terms from the GO slim and a set of the terms in their subgraphs. 

Because M2S’s custom term list option removes terms subsumed by other mappings, we 

were forced to also perform separate mappings for each GO term; e.g. the entire GO was 
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mapped to one GO term at a time for each ~44,000 terms. These computations were done 

in parallel on a small TORQUE-managed Linux cluster to complete the calculations in a 

reasonable amount of time. We combined and converted the results into a set of ordered 

term pairs (Mpair,M2S), where the first position is the mapped term and the second position 

is the term to which the first is mapped; self-mappings were ignored. Using the GOcats’ 

evaluation of the three scoping relations, is_a, part_of, and has_part, to create the “correct” 

set of mappings in a scoping paradigm, we defined the set of potentially false M2S 

mappings (pMf,M2S) as 

 𝑝𝑝𝑝𝑝𝑓𝑓,𝑀𝑀2𝑆𝑆 =  �𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝,𝑀𝑀2𝑆𝑆� − ��𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝,𝑀𝑀2𝑆𝑆� ∩ �𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝,𝐺𝐺𝐺𝐺𝑐𝑐𝑝𝑝𝐺𝐺𝐺𝐺(𝐺𝐺𝑐𝑐𝑠𝑠𝑝𝑝𝑖𝑖𝑛𝑛𝑠𝑠)��    (6) 

where Mpair,GOcats(scoping) is the set of ordered GO term mapping pairs produced from 

GOcats, under the constraint that only scoping relations were used in the graph (is_a, 

has_part, and part_of). The ratio of potential false scoping-type mappings to correct 

scoping mappings produced by M2S (M2Serror) is given by  

 𝑝𝑝2𝑆𝑆𝑒𝑒𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝 = �𝑝𝑝𝑀𝑀𝑓𝑓,𝑀𝑀2𝑆𝑆�
��𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝐺𝐺𝐺𝐺(𝐺𝐺𝐺𝐺𝑠𝑠𝑝𝑝𝑝𝑝𝑛𝑛𝑔𝑔)��

 (7) 

To look specifically at individual sub-ontologies, we filtered the M2S mapping pairs to 

those where both terms were a member of each sub-ontology. These were also intersected 

with the full set of GOcats mapping pairs (ref 63, SD1). 

4.5.3 Comparing Mapping Functionality between the Java and Perl Versions of 

Map2Slim 

 To ensure that the same mapping errors encountered using the Java version of M2S, 

which is integrated in OWLTools, are also present in the Perl version of M2S, which is 
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integrated in Blast2GO, we tested whether the mapping functionality was consistent 

between the two versions. Since the Perl version only supports GO slims and does not 

support custom specification of a list of GO terms, we compared the output of each 

version’s mapping of the HPA-sourced knowledge data to the “generic” GO slim dataset 

(32). Since some minor GAF formatting differences exist between the output files, we 

wrote a script to directly compare the gene-to-GO annotation mappings made by each 

version (ref 63, SD2). 

4.5.4 Annotation Enrichment Analysis of Breast Cancer Dataset 

 To evaluate the effects that GOcats ancestor paths had on real data, we performed 

GO annotation enrichment using categoryCompare (29)—and an updated version of the 

GO graph, data-version: releases/2017-12-02—on an Affymetrix microarray dataset of 

ER+ breast cancer cells with and without estrogen exposure (65). In this dataset, we 

ignored time point information and only considered data associated with the presence and 

absence of estrogen exposure.   

 The categoryCompare package can consider GO ancestor terms for annotated terms 

in the experimental dataset when calculating enrichment. We therefore created two 

mapping dictionaries in Python where a key of each term in GO maps to a set of its ancestor 

terms in the GO graph. For the traditional method of inferring ancestors, we created this 

mapping from a version of the GO graph with the has_part relation omitted. For testing 

GOcats’ effect on enrichment, we created a version of this mapping with the has_part 

relation re-interpreted as part_of_some. We applied these ancestor mappings to all 
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annotations in the human GOA database, generated: 2017-11-21 08:07 (77). R scripts and 

Python scripts for generating the enrichment results can be found in (ref 63, SD3). 

 To compare FDR-adjusted (target FDR=0.01) p-values between enrichment results 

produced by GOcats ancestors and traditional ancestors, we filtered the enriched terms 

identified by the traditional method with an alpha cutoff of 0.01 and counted the number 

of terms identified by GOcats’ analysis whose adjusted p-value was less than the traditional 

analysis. Identical adjusted p-values were ignored. We then performed a one-sided 

binomial test (i.e. “coin-toss analysis” with directional change from 0.5) comparing the 

number of significantly enriched adjusted p-values that improved with GOcats versus total 

number of enriched terms found in the traditional analysis (with identical adjusted p-values 

excluded). To identify uniquely enriched terms found using the GOcats-enhanced 

enrichment analysis, we compared the sets of significantly enriched terms (alpha cutoff 

0.01 for adjusted p-values) in each enrichment results table and selected terms only found 

in the GOcats-enhanced set.  

4.5.5 Annotation Enrichment of Equine Cartilage Development Dataset 

 To further test the effects that GOcats’ ancestor path tracing has on term 

enrichment, we again performed GO annotation enrichment using categoryCompare (29) 

applied to differentially-expressed genes identified by DESeq2 from RNAseq datasets 

derived from developing equine cartilaginous tissues (interzone and anlagen) across two 

gestational time points and their neonatal derivatives (articular cartilage and epiphyseal 

cartilage, respectively). The time points were fetal interzone tissue at 45 days of gestation 

(iz_45); fetal anlagen tissue at 45 days (anl_45); fetal interzone tissue at 60 days of 
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gestation (iz_60); anlagen fetal tissue at 60 days (anl_60); neonatal articular cartilage 

(ac_neo); and neonatal epiphyseal cartilage (epi_neo). At least six biological replicates 

were acquired for each tissue type and time point (separate equine fetuses from similar 

breeds) with RNA-seq readings of 30-40 million reads per sample. 

 We downloaded equine gene annotations from AgBase (78) and built two full 

ancestor annotation mappings for each gene, one using GOcats’ re-evaluation of the 

has_part relation and the other using the traditional method of omitting the has_part 

relation altogether. 

 For each pairwise time point comparison from the DESeq2 analyses (iz/anl_45-

iz/anl_60, iz/anl_60-ac/Epi_neo, or iz/anl_45-ac/Epi_neo), we selected positively- or 

negatively-changing genes by filtering to those changing genes which had an adjusted p-

value ≤ 0.01. Based on the sign of each gene’s fold expression from the dataset we 

classified these genes into categories for categoryCompare as “positive”, “negative”, or 

“all” (either positively or negatively changing in expression). Enrichment was performed 

on each of these three categories for each three pairwise time point comparisons (early, 

late, and extreme) for each two tissue types using two ancestor mappings: GOcats’ and the 

traditional omission of has_part, yielding 36 total enrichment analyses. 

 Using the enrichment results from the “all” category for each pairwise time point 

comparison and tissue type, we again evaluated the improvement in the adjusted p-value 

seen using the GOcats’ ancestors when compared to the traditional method of mapping 

ancestors using a binomial test (see Chapter 2.2 for details). 



95 
 

 In addition to the “positive”, “negative”, and “all” gene sets identified from the 

individual pairwise time point analyses, we also defined special gene sets relating to the 

scope of the whole time series. These were defined as i) early: those genes that significantly 

increased or decreased in fold-change during the iz/anl_45-iz/anl_60 time point 

comparison but did not significantly change in the iz/anl_60-ac/epi_neo time point 

comparison ii) late: those genes that did not have a significant fold-change in the iz/anl_45-

iz/anl_60 time point comparison but did significantly change in the iz/anl_60-ac/epi_neo 

time point comparison iii) transient: those genes that significantly change during the 

iz/anl_45-iz/anl_60 time point comparison but then significantly change in the opposite 

direction during the iz/anl_60-ac/epi_neo time point comparison and iv) consistent: those 

genes that experience fold change in expression consistently throughout the time series. 

We also divided each of these whole time series gene sets into positive and negative sets 

corresponding to the sign of the fold-change. In the case of transient, the directionality 

corresponds to the fold change in the first, iz/anl_45-iz/anl_60 time point comparison.  

 To evaluate GOcats’ potential to improve the statistical power of annotation 

enrichment, we compared early and late time point annotation enrichments derived from 

GOcats ancestor traversal to the extreme time points annotation enrichment derived from 

traditional ancestor traversal. Here we define the following sets of annotations for each 

tissue type evaluated: 

EarlyUniqueEnrichedTermsGocats = 45_to_60Gocats – 45_to_60no_hp – Transientno_hp (8) 

The 45_to_60GOcats and 45_to_60no_hp variables are the sets of GO terms identified when 

comparing the iz/anl_45 time point to the iz/anl_60 time point using GOcats or the 

traditional ancestor mapping method of ignoring the has_part relation, respectively. 
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Transientno_hp is the set of enriched terms categorized as transient for the whole time series 

using the traditional ancestor mapping method.  

EarlySupportedEnrichedTerms = EarlyEnrichedTermsGOcats∩Consistentno_hp (9) 

Consistentno_hp is the set of enriched terms categorized as consistent for the whole time 

series using the traditional ancestor mapping method. 

LateUniqueEnrichedTermsGocats = 60_to_neoGocats – 60_to_neono_hp – Transientno_hp (10) 

The 60_to_neoGOcats and 60_to_neono_hp variables are the sets of GO terms identified when 

comparing the iz/anl_60 time point to the ac/api_neo time point using GOcats or the 

traditional method of ignoring the has_part relation, respectively.  

LateSupportedEnrichedTerms = LateEnrichedTermsGOcats∩Consistentno_hp (11) 

4.5.6 RNASeq Analysis of Equine Cartilage Development Time Points. 

 Our collaborators, Dr. James MacLeod and Dr. Rashmi Dubey, collected tissue 

samples across six experimental groups (Table 4.7) and compared differential gene 

expression at a transcriptome level using mRNA sequencing. The following protocol was 

executed by these collaborators. Sample collection methods have been described 

previously (66,79) and were conducted in accordance with an approved University of 

Kentucky Institutional Animal Care and Use Committee protocol (# 2014-1215). Total 

RNA was isolated using a commercial kit (Qiagen RNeasy Micro Kit, cat# 74004) after 

homogenization on ice as previously described (80). Following ethanol precipitation and 

re-solubilization in sterile distilled water, the total RNA was quantified using a 

fluorometric assay (Qubit, Life Technologies, Q10210, Q32852) and assessed for chemical 
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contaminants using a spectrophotometer (NanoDrop ND 1000) and for structural integrity 

with a Bioanalyzer 2100 (Agilent Technologies, Eukaryotic Total RNA Nano & Pico 

Series II). All RNA samples met quality thresholds of 260/280 absorbance ratios of 1.7-

2.0, 260/230 absorbance ratios of 1.8-2.1, and an Agilent RNA integrity number (RIN) of 

≥ 7.0. 

 RNAseq libraries were constructed using the TruSeq HT Stranded RNA Sample 

Preparation Kit (Illumina San Diego, CA). PolyA+ RNA was selected from 1 µg of total 

RNA and first-strand synthesis performed using random hexamer primers and SuperScript 

IITM reverse transcriptase (Life Technologies). Resulting double-stranded cDNA was then 

blunt-ended and ligated to indexed adaptors, followed by PCR amplification for 12 cycles 

with Kapa HiFi polymerase (Kapa Biosystems, Woburn, MA). Libraries were initially 

quantitated using Quant-it© (Life Technologies, Grand Island, NY) and the average size 

determined on an AATI Fragment Analyzer (Advanced Analytics, Ames, IA). They were 

then diluted to a final concentration of 5nM and further quantitated by qPCR on a BioRad 

CFX Connect Real-Time System (Bio-Rad Laboratories, Inc. CA).  

 Strand-specific sequencing was performed using a paired-end mRNA-seq protocol 

at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign. A 

minimum of 30 million reads were generated for each sample, trimmed (Trimmomatic 

Version 0.36 (81)), and then mapped to the equine reference genome (EquCab2.0, 

chromosomes 1-31, M, X, and Un, NCBI Annotation Release 102) using MapSplice 3.0 

Beta (82). Default settings were used. Steady state levels of mRNA levels were compared 

between the six experimental groups at all protein-coding gene loci structurally annotated 

in the equine genome (EquCab2.0, NCBI Annotation Release 102) by DESeq2 analysis 
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(26). DESeq2 modeled the read count data using negative binomial distribution and 

performed the statistical testing for differential gene expression. The analysis returned a p-

value determined by Wald statistics and an adjusted p-value (to apply corrections for 

multiple comparisons testing). The Benjamini-Hochberg multiple-test correction was 

applied to evaluate the false-discovery rate (FDR). The DESeq2 identified 5572 (ANL_45 

to ANL_60), 5464 (ANL_45 to Epi_neo), 7049 (ANL_60 to Epi_neo), 9929 (IZ_45 to 

IZ_60), 9975 (IZ_45 to AC_neo), and 8329 (IZ_60 to AC_neo) differentially expressed 

genes, which have an adjusted p-value < 0.01 after multiple testing corrections.  

 Scripts and snakemake (54) workflows for performing annotation enrichment 

across genes identified from the results of these DeSEQ2 analyses can be found in our 

FigShare directory (ref 63, SD4). 

 



 
 

Table 4.1 Frequency of Relations in the Gene Ontology and Suggested Semantic Correspondence Classes to Reduce Ambiguity.† 

 

Relationship 
Frequency in GO 

(CC+BP+MF) 
Frequency in 

GO CC 
Frequency in 

GO BP 
Frequency in 

GO MF Correspondence Class Correspondence Members 
is_a 72455 5591 54689 12175 Scoping (hyponymy)  hyponym "is_a" hypernym 
part_of 8613 1702 5751 1160 Scaling (meronymy) meronym "part_of" holonym 
has_part 736 156 339 241 Scaling (meronymy) holonym "has_part" meronym 

happens_during 24 0 24 0 
Spatiotemporal  

(process-process) 
process "happens_during" 

process 

ends_during 1 0 1 0 
Spatiotemporal  

(process-process) process "ends_during" process 

occurs_in 181 0 180 1 

Spatiotemporal 
(process-entity or 
process-process) 

process "occurs_in" entity  
OR 

process "occurs_in" process 
regulates 3368 0 3322 46 Active (actor-subject) actor "regulates" subject 
positively_regulate
s 2916 0 2880 36 Active (actor-subject) 

actor "positively_regulates" 
subject 

negatively_regulat
es 2937 0 2285 52 Active (actor-subject) 

actor "negatively_regulates" 
subject 

regulated_by‡ 0 0 0 0 Active (actor-subject) subject "regulated_by" actor 

before‡ 0 0 0 0 
Spatiotemporal  

(prior-latter) prior "before" latter 
† GO-core data-version: releases/2016-01-12 (available in (57)) 
‡ These relationships are not found in GO but are part of the Relations Ontology  



 
 

Table 4.2 Prevalence of Potential has_part Relation Mapping Errors in GO. 

Sub-Ontology 

Estimated Potential 
False Mappings  

(epMF) 
True Mappings 

(MT) MT ∩ epMF 

Potential False 
Mappings  

pMF = epMF (MT ∩ 
epMF) 

True Mappings 
without HP 
(IA_POMT)* 

Lost Mappings 
(MT - IA_POMT)* 

Cellular Component 30036 56025 6396 23640 49679 6346 
Molecular Function 10074 62436 1746 8328 56194 6242 
Biological Process 93092 555543 3277 89815 527869 27674 

* IA_PO refers to a graph created with only is_a and part_of relationship edges. 



 
 

Table 4.3 Summary of GO term Mapping Errors Resulting from Misevaluation of Relations with Respect to Semantic Scoping 

(Sub) 
Ontology 

Map2Slim 
Mappings 

(Mpair,M2S_ont)* 

GOcats Scoping 
Mappings 

(Mpair,Gocats_ont)* 

Potentially false 
Map2Slim Mappings  
pMF,M2S = Mpair,M2S - 

(Mpair,M2S ∩ Mpair,Gocats_all)* 

Map2Slim Correct 
Mappings 

MT,M2S = Mpair,M2S ∩ 
Mpair,Gocats_all* 

Possible Map2Slim Error Fraction 
pMF,M2S / Mpair,M2S_ont 

All GO 1036141 820467 325180 710961 0.314 

Cellular 
Component 71835 56025 22059 49776 0.307 

Molecular 
Function 86163 62436 29955 56208 0.348 

Biological 
Process 878143 555543 273166 604977 0.311 

* GOcats_all refers to GOcats-derived mapping pairs across all of GO, while GOcats_ont refers to GOcats-derived mapping pairs for the 
indicated ontology in each row. 



 
 

Table 4.4 Uniquely Enriched Terms between GOcats Paths and Traditional Paths from the 
Breast Cancer Dataset Analysis 

GO Term Description Adjusted p-

value 

Uniquely 

enriched in 

GO:0035590 purinergic nucleotide receptor signaling pathway 0.000119296 GOcats 

GO:0016502 nucleotide receptor activity 0.000103448 GOcats 

GO:0035586 purinergic receptor activity 0.000129432 GOcats 

GO:0036387 pre-replicative complex 6.03E-05 GOcats 

GO:0042023 DNA endoreduplication 2.70E-10 GOcats 

GO:0006313 transposition, DNA-mediated 1.31E-28 GOcats 

GO:0031261 DNA replication preinitiation complex 5.55E-06 GOcats 

GO:0032196 transposition 1.31E-28 GOcats 

GO:0004888 transmembrane signaling receptor activity 0.006197782 GOcats 

GO:0035587 purinergic receptor signaling pathway 0.000129432 GOcats 

GO:0098039 replicative transposition, DNA-mediated 1.31E-28 GOcats 

GO:0099600 transmembrane receptor activity 0.006197782 GOcats 

GO:0001614 purinergic nucleotide receptor activity 0.000119296 GOcats 

GO:0005656 nuclear pre-replicative complex 6.03E-05 GOcats 
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GO:0000988 transcription factor activity, protein binding 0.002944403 GOcats 

GO:0051716 cellular response to stimulus 0.008043537 Traditional paths 

GO:0007059 chromosome segregation 1.54E-06 Traditional paths 

GO:0045005 DNA-dependent DNA replication maintenance of 

fidelity 

0.001514676 Traditional paths 

GO:0008094 DNA-dependent ATPase activity 0.000454406 Traditional paths 

GO:0140097 catalytic activity, acting on DNA 6.04E-09 Traditional paths 

GO:0050896 response to stimulus 0.000712619 Traditional paths 

GO:1902969 mitotic DNA replication 0.001852706 Traditional paths 

 



 
 

Table 4.5 Binomial Test Results for GOcats Verses Traditional Enrichment for Equine Cartilage Development Time Point Comparisons 

Tissue Type Time Series Comparison Total Enriched Terms 
Enriched Terms with Lower  

P-value with GOcats*  
One-sided 

Binomial Test 

Anlagen 
45-day fetal to 60-day fetal (early) 228 183 6.22E-21 
60-day fetal to neonatal (late)  140 129 5.31E-27 
45-day fetal to neonatal (extreme) 158 139 5.01E-24 

Interzone 
45-day fetal to 60-day fetal (early) 82 55 1.32E-03 
60 day fetal to neonatal (late) 233 196 1.23E-27 
45-day fetal to neonatal (extreme) 233 215 2.58E-44 



 
 

Table 4.6 Neighbor Versus Extreme Time Point Comparison of Enriched Terms in Equine 
Cartilage Development Enrichment Analyses 

Tissue type GO Term Set 
Terms in 

set 

anlagen 

EarlyEnrichedTerms 50 
EarlySupportedEnrichedTermsⱡ 1 
EarlyUniqueEnrichedTermsGocats

ⱡ 49 
LateEnrichedTerms 41 
LateSupportedEnrichedTermsⱡ 0 
LateUniqueEnrichedTermsGocats

ⱡ 41 

Interzone 

EarlyEnrichedTerms 22 
EarlySupportedEnrichedTermsⱡ 3 
EarlyUniqueEnrichedTermsGocats

ⱡ 19 
LateEnrichedTerms 81 
LateSupportedEnrichedTermsⱡ 3 
LateUniqueEnrichedTermsGocats

ⱡ 78 
ⱡ Sets defined in equations 8-11  
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Table 4.7 Comparison of Equine fetus tissue samples 
 

  

Sample Description Age Tissue source 
Equine 
Fetus 

Interzone   (n=7) 45-46 days 
gestation 

Carpal and tarsal joints 
Anlage   (n=6) Metaphysis of distal humerus and femur 

Equine 
Fetus 

Interzone   (n=7)  57-66 days  
gestation   

Carpal joints 
Anlage   (n=7) Metaphysis of distal humerus and femur 

Equine 
Neonate 

Articular cartilage   (n=7) 0-9 days 
postnatal 

Femorotibial joint 
Epiphyseal cartilage   
(n=7) 

Proximal tibia  
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Figure 4.1 GOcats Data Flow Diagram for Creating Categories of GO 
 

A) GOcats enables the user to extract subgraphs of GO representing concepts as defined 
by keywords, each with a root (category-defining) node. B) Subgraphs extracted by GOcats 
are used to create a mapping from all sub-nodes in a set of subgraphs to their category-
defining root node(s). This allows the user to map gene annotations in GAFs to any number 
of customized categories. 
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Figure 4.2 The has_part Relation Creates Incongruent Paths with Respect to Semantic 
Scoping. 
 

Some tools may create questionable GO term mappings, i.e. “nuclear envelope” to “plasma 
membrane,” since the has_part relation edges point in from super-concepts to sub-
concepts. GOCats avoids this by re-interpreting the has_part edges into part_of_some 
edges. 
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Figure 4.3 Comparison of Adjusted p-values for Significantly-enriched Annotations Using 
GOcats Paths vs Excluding has_part Edges 
 

Most significantly-enriched GO terms had an improved p-value when GOcats re-evaluated 
has_part edges for the enrichment of the breast cancer data set in this investigation. 
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CHAPTER 5. ANNOTATION ENRICHMENT ANALYSIS APPLICATIONS 

5.1 Identifying Enriched Annotations and Putative Gene Targets among Differentially-

expressed Genes during the Fetal Developmental Progression of Equine Tissue 

5.1.1 Background and Experimental Design 

 As described in Chapter sections 4.5.5 and 4.5.6, we used GOcats along with 

CategoryCompare2 to perform annotation enrichment for DESeq2 RNAseq datasets 

derived from developing equine cartilaginous tissues (interzone and anlagen) across two 

gestational time points and their neonatal derivatives, articular cartilage and epiphyseal 

cartilage, respectively, in collaboration with Dr. James MacLeod and Dr. Rashmi Dubey. 

The immediate goal was to identify enriched annotations between each time point along 

the developmental process to determine what molecular functions, biological processes, 

and cellular locations are characteristic of anlagen and articular cartilage development. 

These results would then be leveraged to identify key regulatory drivers of development 

and differentiation in each tissue type. 

 As previously described, enrichment was performed as pairwise analyses between 

each time point for each tissue type: fetal interzone tissue at 45 days of gestation (iz_45); 

fetal anlagen tissue at 45 days (anl_45); fetal interzone tissue at 60 days of gestation 

(iz_60); anlagen fetal tissue at 60 days (anl_60); neonatal articular cartilage (ac_neo); and 

neonatal epiphyseal cartilage (epi_neo). For each pairwise time point comparison from the 

DESeq2 analyses (iz/anl_45-iz/anl_60, iz/anl_60-ac/Epi_neo, or iz/anl_45-ac/Epi_neo), 

we selected positively- or negatively-changing genes by filtering to those changing genes 
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which had an adjusted p-value < 0.01. Based on the sign of each gene’s fold expression 

from the dataset, we classified these genes into categories for categoryCompare2 as 

“positive”, “negative”, or “all” (either positively or negatively changing in expression). 

Enrichment was performed on each of these three categories for each three pairwise time 

point comparisons for each of the two tissue types, yielding 18 total enrichment analyses. 

Annotations were obtained from transcript IDs by mapping them to gene annotations 

available from AgBase (78). Enrichment was performed while utilizing the full ontological 

ancestor paths for each annotation using GOcats’ path tracing algorithms. Details 

describing the Snakemake workflows that streamline the combined use of GOcats and 

CategoryCompare2 for this time-series analysis can be found in chapter 2.2. 

 In addition to individual pairwise time point analyses, we also defined special gene 

sets relating to the scope of the whole time series. These were defined as i) early - those 

genes that significantly increased or decreased in fold-change during the iz/anl_45-

iz/anl_60 time point comparison, but did not significantly change in the iz/anl_60-

ac/epi_neo time point comparison; ii) late - those genes that did not have a significant fold-

change in the iz/anl_45-iz/anl_60 time point comparison, but did significantly change in 

the iz/anl_60-ac/epi_neo time point comparison; iii) transient - those genes that 

significantly change during the iz/anl_45-iz/anl_60 time point comparison, but then 

significantly change in the opposite direction during the iz/anl_60-ac/epi_neo time point 

comparison; and iv) consistent - those genes that experience fold change in expression 

consistently throughout the time series. We also divided each of these whole time series 

gene sets into positive and negative sets corresponding to the sign of the fold-change. In 



112 
 

the case of transient, the directionality corresponds to the fold change in the first, iz/anl_45-

iz/anl_60 time point comparison. 

5.1.2 Results 

 The resulting enrichment tables from the 42 total enrichment analyses performed 

among all pairwise and whole time series comparisons can be found in our FigShare 

repository (83). To summarize the results derived from the anlagen tissue analyses, we 

observed a high enrichment of generic terms such as “system development,” “extracellular 

region,” and “anatomical structure development” among the “consistent” genes, which was 

expected considering the developmental stage at which the samples were collected and the 

fact that this group represented transcript expression that did not change significantly 

across the time series. We also observed relatively high enrichment of neuronally-relevant 

terms such as “nervous system development” and “neuron differentiation,” This is likely 

due to the high number of housekeeping genes and general, developmentally-related genes 

that appeared in this gene set. Interestingly, we observed high enrichment of immune 

system response processes that were specific to positively-expressed transcripts in the 

“late” development stage. These included “adaptive immune response," “Immune effector 

process,” and “inflammatory response.” However, it is not clear whether these processes 

are directly linked to the tissue differentiation process or are simply enriched due to the 

developmental time point at which tissue samples were collected. In the early anlagen time 

point, we observed a negative expression of transcripts related to cellular components such 

as “contractile fiber,” “myofibril,” and “sarcomere”, suggesting an early (before 60 days 

gestation) down-regulation of genes affecting these cellular structures. These genes 
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included CAPZB, ACTA1, TMOD1, TMOD3, TMOD2, GLRX3, MYL4, SLC4A1, 

TNNC1, TNNC2, MYL9, TNNT1, MYH7, TPM1, CAPN3, NEXN, PPP1R12A, TTN, 

CFL2, SYNPO2L, XIRP2, FHOD3, MYO18B, ANK1, KLHL41, KLHL40, MYBPC1, 

SMPX, PPP3CB, and SCN3B. Transient genes represent those whose expression increased 

and then decreased throughout the entire time series. In anlagen tissue, this category was 

marked by cardiovascular development related terms like “angiogenesis,” “vasculature 

development,” and “blood vessel development.” 

 In the results from the interzone tissue analyses, we again observed a high 

enrichment of generic terms such as “response to hormone” and “cartilage development”, 

as well as some more specific processes related to common cellular events such as “RNA 

polymerase II transcription factor activity sequence-specific DNA-binding” and 

“transcription factor activity RNA polymerase II proximal promoter sequence-specific 

DNA binding” among the positively-expressed, consistent gene set. Alternatively, in the 

negatively-expressed consistent gene set, we observed a down-regulation of genes related 

to nervous system development and neuronal differentiation. Among the negatively-

expressed, early gene set, we observed enrichment of “translation,” as well as several 

protein-localization concepts, especially targeting the membrane including “cotranslational 

protein targeting to membrane,” “SRP-dependent cotranslational protein targeting to 

membrane,” and “protein localization to endoplasmic reticulum.” Meanwhile, we did not 

observe any enrichment of terms among the positively expressed, early gene set. This 

suggests that down-regulation of genes related to protein localization may be critical for 

the early phases of interzone tissue differentiation. In the late interzone gene sets, we did 

not observe any significant or specific enriched terms; we only observed generic, 
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housekeeping terms related to DNA replication in the negatively expressed gene set, 

indicating the obvious conclusion that cell division slows at the end of the development 

cycle. As expected, the transient gene set enrichment results for interzone tissue was also 

laden with generic terms such as “organelle,” “cell,” and “intracellular part” for the gene 

set that initially decreased in expression, and similarly generic terms related to the cell 

cycle for the gene set that initially increased in expression. 

 As a demonstration of our ability to organize enrichment results, we generated a 

table of enrichment results which displays the immediate ontological parent and child terms 

as nested lists above and below each enriched term, respectively with their associated 

enrichment p-values where appropriate (Table 5.1). For better visualization, we displayed 

p-values as the negative decadic logarithm of the adjusted p-value (target FDR=0.01) and 

color coded them based on their relative enrichment in the results. This example was 

produced using enrichment results from the pairwise enrichment analysis of the ANL_45 

and ANL_60 timepoints for both positively and negatively expressed transcripts. 

5.2 Determining Features Unique to Kentucky Lung Adenocarcinoma Mutational 

Profiles. 

5.2.1 Background and Experimental Design 

 Lung cancer has the highest morbidity of any cancer worldwide (84). In the US, the 

state of Kentucky ranks highest in lung cancer incidence, with an age-adjusted incidence 

per 100,000 of 96.8, compared to the nationwide average of 63.0 (85). To test the 

hypothesis that Kentucky lung cancer genomic profiles are in some way unique from the 

general population, colleagues within the University of Kentucky conducted the first ever 
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genomic characterization of lung cancers from the Appalachian region of Kentucky, and 

compared somatic mutational data from whole genome sequencing results to those 

obtained from national cohorts (86). 

 To briefly summarize, their study focused on squamous cell carcinoma. Tumor and 

non-tumor DNA samples were taken from 51 patients from the Appalachian region which 

were subject to whole-genome sequencing. Non-silent mutations were analyzed for their 

significance based on mutational frequency using MutSigCV (version 1.4) (27). These 

mutational frequencies were compared with mutational frequencies taken from whole -

genome sequences available in The Cancer Genome Atlas (TCGA) (59)—a cohort of 178 

lung squamous cell samples from patients across the US. To detect genes with mutational 

frequencies significantly higher in the Kentucky cohort versus the TCGA, our collaborators 

used a Fisher’s exact test, along with a Benjamini-Hochberg procedure to calculate false 

discovery rates (86). 

 Following the publication of this study, we collaborated with two of its authors, 

Mr. Jinpeng Liu and Dr. Chi Wang, to analyze results from a new cohort of Kentucky lung 

cancer patients, now termed Kentucky Lung Cancer Genomes (KLCG). This dataset was 

composed of comparisons in mutational frequencies between KLCG patients and patient 

data from TCGA and was performed using the same methodology as the previous study. 

However, these results were produced from lung adenocarcinoma samples, rather than the 

squamous cells analyzed previously. We were interested in performing annotation 

enrichment analysis across the two cohorts to identify which biological concepts and 

processes might be unique among Kentucky adenocarcinomas.  
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 The dataset was provided as a CSV file with one gene per row. Columns displaying 

the mutational frequency determined by MutSigCV for each cohort, KLCG and TCGA 

were also present, along with the p-value determined by the previously-mentioned Fisher’s 

exact test for each gene. We compiled foreground genes for the KLCG cohort by selecting 

genes that had a higher mutational frequency in the KLCG dataset than the TCGA dataset 

and that also had a p-value from the Fisher’s exact test lower than 0.01. Foreground genes 

were enriched against the universe, which was comprised of the whole set of genes in the 

dataset, using the enrichment methods described in Chapter2.2. 

 In addition to enrichment tables, we also compiled protein-protein interaction 

networks by querying genes that were annotated to the terms that were highly enriched. 

This was done using scripts which accessed the Search Tool for the Retrieval of Interacting 

Genes (STRING) using STRING’s REST application programing interface (see Chapter 

2.3).  

5.2.2 Results 

 In order to display enriched annotations cleanly within the context of potentially 

co-mutated or functionally-related gene sets, we grouped significantly-enriched 

annotations with mutually-exclusive sets to which they were annotated in the dataset. 

Within each group of gene supersets, the annotations are listed in order of decreasing 

adjusted p-value (target FDR = 0.01). These results are displayed in Table 5.2, where gene 

supersets—sets of genes that share mutually-exclusive, significantly enriched GO 

annotations (adjusted p < 0.01)—are listed in the merged green cells, and their associated 

GO term enrichments are listed below.  
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 Curiously, the largest superset of genes was associated with enriched annotations 

relating to cardiovascular neuromuscular signaling, comprising 14 genes and 20 

significantly-enriched annotations. The group with the second largest number of associated 

annotations was comprised of the genes EIF2AK3 and EIF2AK4, which are associated with 

seven terms related cellular stress response. Another promising hit are the genes associated 

with adrenergic receptor binding: APLP1, ARRB1, NEDD4, and GNAS, as evidence 

continues to mount regarding adrenergic receptors’ role in lung cancer (87). 

 Concepts seemingly unrelated to lung cancer such as “regulation of oogenesis” and 

perhaps even the largest category including cardiac neuromuscular signaling may be 

attributed to idiosyncrasies among the sample population in the KLCG cohort. In other 

words, considering that whole-genome sequencing was used in the study, it is possible that 

somatic mutational frequencies unrelated to mutations driving adenocarcinoma were 

detected among the local population sampled in the KLCG cohort.  

 Using the gene supersets identified when grouping mutually-exclusive sets of 

enriched GO terms, we queried the STRING (55) database to find known and predicted 

interaction networks involving the identified genes (see Chapter 2.3). As expected with 

genes grouped by functional annotations, highly-connected networks of known and 

predicted protein interactions were observed after a single iteration of additional nodes 

were added in STRING (Figure 5.1 and 5.2). Of the cardiovascular-related gene superset, 

we found that CACNA1S, CACNA1G, and CACNA1I formed the center of the largest 

connected portion of the network (Figure 5.1). STRING’s functional enrichment analysis 

identified 11 of these 12 nodes as enriched for “ion gated channel activity,” complementing 

our enrichment results. Meanwhile, in the protein-protein interaction network produced for 
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adrenergic receptor binding proteins, a node that STRING added to the network served as 

the hub, ARDB2: beta-2 adrenergic receptor (Figure 5.2). The pink edge connecting this 

protein with mutated genes in this dataset, NEDD4—an E3 ubiquitin ligase, ARRB—a 

regulator of agonist-mediated G protein coupled receptor signaling, and GNAS—the 

stimulatory alpha subunit of G protein indicates experimentally determined, known 

interactions. Additional protein-protein interaction networks for the remaining gene 

supersets are available in tabular format on our FigShare repository (88).  

 While these results serve to guide further investigation into the factors driving the 

increased incidence of lung cancer in Kentucky, we wish to use this application to highlight 

the versatility that our tool affords the scientific community. In this demonstration, GOcats 

is integrated seamlessly within data analysis pipelines with increased complexity. Here, 

using simple scripts within the Snakemake workflow management system, GOcats’ 

augmented ontological path traversal algorithms can be integrated with annotation 

enrichment software, and enriched annotations can be leveraged to identify potential 

interacting proteins. These identified proteins can be queried with other tools like STRING, 

utilizing their available REST APIs.  

 As information is compiled digitally within online repositories with increased 

frequency and volume, we envision that the ability to synchronize tools for distilling and 

leveraging this information toward solving scientific questions will become increasingly 

more valuable. This is why we are not only interested in utilizing a fuller extent of the 

knowledge available in ontologies like GO but are also driven to create open-sourced and 

well-documented command-line-implemented software tools that can be integrated into 

complex data analysis pipelines. Such an effort, we hope, will benefit the scientific 
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community by providing increased freedom to custom-tailor scalable and reproducible 

analyses in the age of “big data.” 

 



 
 

Table 5.1 Enrichment Results of ANL_45/ANL_60 Pairwise Time-series Comparison for Positively and Negatively Expressed 
Transcripts, Nested to Show Enrichment of Parent and Child GO Terms 

Parent GO 
Term 

Enriched GO 
term 

Child GO 
Term Term Name 

Enrichment Score 
-1 * log10(padjust) 

GO:0005575   cellular_component 3.045586915 
GO:0005576   extracellular region 15.88165181 

 *GO:0044421  extracellular region part 15.88165181 
  GO:0031012 extracellular matrix 5.419450707 
  GO:0005615 extracellular space 14.62882797 
  GO:0043230 extracellular organelle 11.5465223 

GO:0005575   cellular_component 3.045586915 
 *GO:0005576  extracellular region 15.88165181 
  GO:0044421 extracellular region part 15.88165181 

GO:0048856   anatomical structure development 12.35823978 
GO:0032502   developmental process 12.91040648 

 *GO:0009653  anatomical structure morphogenesis 14.72401342 
  GO:0048598 embryonic morphogenesis 2.834108421 
  GO:0035239 tube morphogenesis 7.192389905 
  GO:0048646 anatomical structure formation involved in morphogenesis 4.981839946 
  GO:0022603 regulation of anatomical structure morphogenesis 8.465784815 
  GO:0032989 cellular component morphogenesis 4.699408113 
  GO:0009887 animal organ morphogenesis 7.385570738 
  GO:0048729 tissue morphogenesis 4.539976396 

GO:0044421   extracellular region part 15.88165181 
 *GO:0005615  extracellular space 14.62882797 
  GO:0070062 extracellular exosome 11.4548025 

GO:0048856   anatomical structure development 12.35823978 
GO:0048731   system development 12.91040648 

 *GO:0048513  animal organ development 13.36794458 
  GO:0060485 mesenchyme development 4.891109643 
  GO:0007423 sensory organ development 2.495327041 
  GO:0009887 animal organ morphogenesis 7.385570738 
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  GO:0030323 respiratory tube development 2.395968026 
  GO:0001822 kidney development 5.432238868 
  GO:0048568 embryonic organ development 2.59086998 
  GO:0051216 cartilage development 4.256882426 
  GO:0030324 lung development 2.495327041 
  GO:0007420 brain development 2.3922436 
  GO:0060348 bone development 5.245113228 
  GO:0007507 heart development 3.872241758 

GO:0008150   biological_process 2.250719589 
 *GO:0032502  developmental process 12.91040648 
  GO:0048869 cellular developmental process 7.502195616 
  GO:0051093 negative regulation of developmental process 4.59473031 
  GO:0050793 regulation of developmental process 6.462111444 
  GO:0048646 anatomical structure formation involved in morphogenesis 4.981839946 
  GO:0048856 anatomical structure development 12.35823978 
  GO:0051094 positive regulation of developmental process 4.539267389 
  GO:0009653 anatomical structure morphogenesis 14.72401342 

GO:0048856   anatomical structure development 12.35823978 
GO:0007275   multicellular organism development 12.59459121 

 *GO:0048731  system development 12.91040648 
  GO:0060541 respiratory system development 2.099836782 
  GO:0072358 cardiovascular system development 8.105726276 
  GO:0001944 vasculature development 8.044546974 
  GO:0001655 urogenital system development 5.515275258 
  GO:0001501 skeletal system development 6.736505449 
  GO:0007417 central nervous system development 3.429519496 
  GO:0048513 animal organ development 13.36794458 
  GO:0072359 circulatory system development 9.526431307 
  GO:0007399 nervous system development 4.564314103 
  GO:0072001 renal system development 5.554539988 

GO:0048856   anatomical structure development 12.35823978 
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GO:0032501   multicellular organismal process 7.114525733 
 *GO:0007275  multicellular organism development 12.59459121 
  GO:0046661 male sex differentiation 2.119420753 
  GO:2000026 regulation of multicellular organismal development 6.293635737 
  GO:0048731 system development 12.91040648 
  GO:0009790 embryo development 2.882079966 
  GO:0035295 tube development 8.105726276 

GO:0032502   developmental process 12.91040648 
 *GO:0048856  anatomical structure development 12.35823978 
  GO:0030900 forebrain development 2.564714972 
  GO:0001568 blood vessel development 7.221338988 
  GO:0048513 animal organ development 13.36794458 
  GO:0048468 cell development 5.654074116 
  GO:0048839 inner ear development 2.54300648 
  GO:0007275 multicellular organism development 12.59459121 
  GO:0009888 tissue development 11.4548025 
  GO:0032835 glomerulus development 2.757171443 
  GO:0035295 tube development 8.105726276 
  GO:0061061 muscle structure development 4.681644792 
  GO:0048731 system development 12.91040648 
  GO:0009653 anatomical structure morphogenesis 14.72401342 
  GO:0060322 head development 3.239951832 



 
 

Table 5.2 Enriched annotations among genes with higher mutational frequency in the KLCG cohort versus the TCGA cohort 
Gene 

superset 
GO Term Description Ontology 

Namesapce 
Enrichment 
adjusted p-

value 

Odds ratio Associated genes from 
this dataset 

{'SCN5A', 'CACNA1S', 'CACNA1G', 'KCNMB4', 'SHISA9', 'GABRA2', 'KCND2', 'ABCA2', 'CUBN', 'CACNA1I', 'LRRC38', 'HCN2', 'ATP1A3', 
'CACNG4'}  

GO:0019228 neuronal action potential biological 
process 

0.00023226 10.5981219 CACNA1I;KCNMB4;KC
ND2;SCN5A;CACNA1G  

GO:0008332 low voltage-gated calcium channel 
activity 

molecular 
function 

0.00133456 92.5578635 CACNA1I;CACNA1G 
 

GO:0090676 calcium ion transmembrane 
transport via low voltage-gated 
calcium channel 

biological 
process 

0.00263156 46.2759644 CACNA1I;CACNA1G 

 
GO:0086010 membrane depolarization during 

action potential 
biological 
process 

0.00313866 7.43737313 CACNA1I;SCN5A;HCN2
;CACNA1G  

GO:0051899 membrane depolarization biological 
process 

0.00342211 5.41498399 CACNA1I;SCN5A;CAC
NG4;HCN2;CACNA1G  

GO:0140200 adenylate cyclase-activating 
adrenergic receptor signaling 
pathway involved in regulation of 
heart rate 

biological 
process 

0.00356167 7.15086108 CACNA1I;SCN5A;HCN2
;CACNA1G 

 
GO:0086045 membrane depolarization during av 

node cell action potential 
biological 
process 

0.0043243 30.8486647 SCN5A;CACNA1G 
 

GO:0086046 membrane depolarization during sa 
node cell action potential 

biological 
process 

0.0043243 30.8486647 SCN5A;CACNA1G 
 

GO:0086012 membrane depolarization during 
cardiac muscle cell action potential 

biological 
process 

0.00434943 10.7032967 SCN5A;HCN2;CACNA1
G  

GO:0086023 adenylate cyclase-activating 
adrenergic receptor signaling 
pathway involved in heart process 

biological 
process 

0.00452046 6.63923241 CACNA1I;SCN5A;HCN2
;CACNA1G 

 
GO:1902495 transmembrane transporter 

complex 
cellular 
component 

0.00481981 2.32266522 CACNA1I;ATP1A3;LRR
C38;KCNMB4;SHISA9;
KCND2;ABCA2;SCN5A;
CACNG4;CUBN;CACN
A1S;GABRA2;HCN2;CA
CNA1G 
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GO:1990351 transporter complex cellular 

component 
0.00556553 2.28173543 CACNA1I;ATP1A3;LRR

C38;KCNMB4;SHISA9;
KCND2;ABCA2;SCN5A;
CACNG4;CUBN;CACN
A1S;GABRA2;HCN2;CA
CNA1G  

GO:0003062 regulation of heart rate by chemical 
signal 

biological 
process 

0.0056392 6.1958209 CACNA1I;SCN5A;HCN2
;CACNA1G  

GO:0086103 g-protein coupled receptor signaling 
pathway involved in heart process 

biological 
process 

0.00626199 5.99557053 CACNA1I;SCN5A;HCN2
;CACNA1G  

GO:0086027 av node cell to bundle of his cell 
signaling 

biological 
process 

0.00882831 18.5068249 SCN5A;CACNA1G 
 

GO:0060371 regulation of atrial cardiac muscle 
cell membrane depolarization 

biological 
process 

0.00882831 18.5068249 SCN5A;CACNA1G 
 

GO:0086016 av node cell action potential biological 
process 

0.00882831 18.5068249 SCN5A;CACNA1G 
 

GO:0098874 spike train biological 
process 

0.00949279 3.53928612 CACNA1I;KCNMB4;KC
ND2;SCN5A;HCN2;CAC
NA1G  

GO:0001508 action potential biological 
process 

0.00949279 3.53928612 CACNA1I;KCNMB4;KC
ND2;SCN5A;HCN2;CAC
NA1G  

GO:0034703 cation channel complex cellular 
component 

0.00999474 2.49126948 CACNA1I;LRRC38;KCN
MB4;SHISA9;KCND2;S
CN5A;CACNG4;CACNA
1S;HCN2;CACNA1G 

{'EIF2AK3', 'EIF2AK4'} 
 

GO:0036491 regulation of translation initiation in 
response to endoplasmic reticulum 
stress 

biological 
process 

0.00133456 92.5578635 EIF2AK3;EIF2AK4 

 
GO:0032057 negative regulation of translational 

initiation in response to stress 
biological 
process 

0.00263156 46.2759644 EIF2AK3;EIF2AK4 
 

GO:0004694 eukaryotic translation initiation 
factor 2alpha kinase activity 

molecular 
function 

0.00263156 46.2759644 EIF2AK3;EIF2AK4 
 

GO:0010998 regulation of translational initiation 
by eif2 alpha phosphorylation 

biological 
process 

0.00263156 46.2759644 EIF2AK3;EIF2AK4 
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GO:0036490 regulation of translation in response 

to endoplasmic reticulum stress 
biological 
process 

0.00639548 23.1350148 EIF2AK3;EIF2AK4 
 

GO:0032055 negative regulation of translation in 
response to stress 

biological 
process 

0.00639548 23.1350148 EIF2AK3;EIF2AK4 
 

GO:0070417 cellular response to cold biological 
process 

0.00882831 18.5068249 EIF2AK3;EIF2AK4 

{'UNC13A', 'RELN', 'PLA2G6', 'NTRK1', 'CUBN', 'CACNG4', 'ADORA1', 'GRM5'} 
 

GO:1900451 positive regulation of glutamate 
receptor signaling pathway 

biological 
process 

0.00232885 13.9169643 UNC13A;CACNG4;REL
N  

GO:0051968 positive regulation of synaptic 
transmission; glutamatergic 

biological 
process 

0.00402178 6.88557214 CACNG4;CUBN;NTRK1
;RELN  

GO:0051966 regulation of synaptic transmission; 
glutamatergic 

biological 
process 

6.78E-05 6.58928287 UNC13A;CACNG4;CUB
N;ADORA1;GRM5;PLA2
G6;NTRK1;RELN 

{'IL4R', 'CACNA1G', 'PLA2G6', 'CDK5R2', 'CACNA1I', 'GATA2'} 
 

GO:1903307 positive regulation of regulated 
secretory pathway 

biological 
process 

0.00232566 5.97190235 CACNA1I;CDK5R2;GAT
A2;CACNA1G;IL4R  

GO:0045921 positive regulation of exocytosis biological 
process 

0.00456258 4.17641522 CACNA1I;CDK5R2;PLA
2G6;GATA2;CACNA1G;
IL4R  

GO:0045956 positive regulation of calcium ion-
dependent exocytosis 

biological 
process 

0.00955052 7.72767857 CACNA1I;CDK5R2;CAC
NA1G 

{'MUC12', 'MUC5B', 'MUC19', 'MUC20', 'MUC3A'} 
 

GO:0016266 o-glycan processing biological 
process 

0.00616309 4.65479042 MUC5B;MUC12;MUC3A
;MUC20;MUC19  

GO:0002223 stimulatory c-type lectin receptor 
signaling pathway 

biological 
process 

0.00950897 4.15445894 MUC5B;MUC12;MUC3A
;MUC20;MUC19 

{'APLP1', 'ARRB1', 'NEDD4', 'GNAS'} 
 

GO:0031690 adrenergic receptor binding molecular 
function 

0.00029903 15.5074627 NEDD4;ARRB1;APLP1;
GNAS  

GO:0031698 beta-2 adrenergic receptor binding molecular 
function 

0.00263156 46.2759644 NEDD4;GNAS 

{'DYNC2H1', 'TRIM58', 'DNAH10', 'DNAH6'} 
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GO:0045505 dynein intermediate chain binding molecular 

function 
0.00239791 8.08513952 DNAH10;TRIM58;DYNC

2H1;DNAH6  
GO:0008569 atp-dependent microtubule motor 

activity; minus-end-directed 
molecular 
function 

0.00614164 9.275 DNAH10;DYNC2H1;DN
AH6 

{'IGF1', 'NTRK1', 'ATP1A3', 'GRM5'} 
 

GO:1904646 cellular response to amyloid-beta biological 
process 

0.00313866 7.43737313 ATP1A3;IGF1;GRM5;NT
RK1  

GO:1904645 response to amyloid-beta biological 
process 

0.00452046 6.63923241 ATP1A3;IGF1;GRM5;NT
RK1 

{'GATA2', 'JAGN1', 'FASN'} 
 

GO:0030223 neutrophil differentiation biological 
process 

0.00133456 92.5578635 JAGN1;FASN 
 

GO:0030851 granulocyte differentiation biological 
process 

0.00358998 11.5959821 JAGN1;GATA2;FASN 

{'IGF1', 'IRS2', 'DYRK2'} 
 

GO:0045725 positive regulation of glycogen 
biosynthetic process 

biological 
process 

0.00434943 10.7032967 IGF1;IRS2;DYRK2 
 

GO:0070875 positive regulation of glycogen 
metabolic process 

biological 
process 

0.00519906 9.93813776 IGF1;IRS2;DYRK2 

{'IGF1', 'WEE2'} 
 

GO:1905880 negative regulation of oogenesis biological 
process 

0.00263156 46.2759644 IGF1;WEE2 
 

GO:0060283 negative regulation of oocyte 
development 

biological 
process 

0.00263156 46.2759644 IGF1;WEE2 

{'XDH', 'SEMA6A'} 
 

GO:1900747 negative regulation of vascular 
endothelial growth factor signaling 
pathway 

biological 
process 

0.00639548 23.1350148 XDH;SEMA6A 

 
GO:1902548 negative regulation of cellular 

response to vascular endothelial 
growth factor stimulus 

biological 
process 

0.00882831 18.5068249 XDH;SEMA6A 

{'UNC13A', 'RELN', 'NTRK1', 'CUBN', 'CA7', 'EIF2AK4', 'ADORA1', 'CACNG4'} 
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GO:0050806 positive regulation of synaptic 

transmission 
biological 
process 

0.00864377 2.92088369 UNC13A;CACNG4;CUB
N;ADORA1;CA7;NTRK1
;EIF2AK4;RELN 

{'GNAS', 'SALL3', 'TFAP2B', 'TBX3'} 
 

GO:0035137 hindlimb morphogenesis biological 
process 

0.00505914 6.40988163 TFAP2B;SALL3;TBX3;G
NAS 

{'ARHGEF2', 'RELN', 'SEMA6A'} 
 

GO:2001224 positive regulation of neuron 
migration 

biological 
process 

0.00181994 15.4642857 SEMA6A;ARHGEF2;RE
LN 

{'IGF1', 'ARRB1', 'GNAS'} 
 

GO:0005159 insulin-like growth factor receptor 
binding 

molecular 
function 

0.0029176 12.650974 IGF1;ARRB1;GNAS 

{'GATA2', 'NKX6-2', 'SOX1'} 
 

GO:0021514 ventral spinal cord interneuron 
differentiation 

biological 
process 

0.00519906 9.93813776 NKX6-2;SOX1;GATA2 

{'RBMXL2', 'SNRPA', 'RBMXL3'} 
 

GO:0000243 commitment complex cellular 
component 

0.00717967 8.69475446 RBMXL3;RBMXL2;SNR
PA 

{'SLC15A4', 'SLC25A29'} 
 

GO:0089709 l-histidine transmembrane transport biological 
process 

0.00133456 92.5578635 SLC25A29;SLC15A4 

{'STRA6', 'TFAP2B'} 
 

GO:0097070 ductus arteriosus closure biological 
process 

0.0043243 30.8486647 TFAP2B;STRA6 

{'EGR3', 'SOX13'} 
 

GO:0045586 regulation of gamma-delta t cell 
differentiation 

biological 
process 

0.00639548 23.1350148 SOX13;EGR3 

{'PPP1R16B', 'GATA2'} 
 

GO:1903589 positive regulation of blood vessel 
endothelial cell proliferation 
involved in sprouting angiogenesis 

biological 
process 

0.00882831 18.5068249 PPP1R16B;GATA2 

 



 
 

 
Figure 5.1 Protein-protein interaction network produced after one iteration of additional 
nodes in STRING from a query of  SCN5A, CACNA1S, CACNA1G, KCNMB4, SHISA9, 
GABRA2, KCND2, ABCA2, CUBN, CACNA1I, LRRC38, HCN2, ATP1A3, and CACNG4 
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Figure 5.2 Protein-protein interaction network produced after one iteration of additional 
nodes in STRING from a query of APLP1, ARRB1, NEDD4, and GNAS 
  



130 
 

CHAPTER 6. FUTURE DIRECTIONS 

 The work demonstrated in this dissertation represent critical first steps toward our 

goal of automating the enumeration of compactly-represented concepts in GO. We 

envision developing a tool which can automatically identify and delineate subgraphs of 

GO that represent distinct biologically-relevant concepts that are optimized to the 

granularity of available annotated data and knowledge. We plan on enabling the tool to use 

rank-frequency based metrics to select candidate keywords from the GO corpus to 

represent broad concepts. From these keywords, the tool will build subgraphs in a similar 

manner to GOcats’ current handling of user-supplied keywords. Finally, the tool will apply 

metrics to test the quality of each identified subgraph before finalizing the identification of 

each compactly-represented concept subgraph. These metrics will include relative 

subgraph density and size, enrichment of semantically-similar words within each subgraph, 

and frequency of inner-subgraph term co-occurrence among annotations in relevant 

knowledgebases. We plan on allowing for the adjustment of these test metrics, enabling 

users to fine-tune the granularity of subgraph delineation while maintaining 

reproducibility. Designing a version of GOcats that allows for users to input keywords to 

delineate subgraphs has not only given us the opportunity to quickly provide the scientific 

community with a helpful GO term organizing tool, but is a necessary first step toward our 

long-term goal of developing more automated, unsupervised methods of ontology 

organization. In short, these user-defined subgraphs will be used to test the accuracy of 

future automatically-selected subgraphs. Furthermore, we can use these subgraphs to test 

subgraph quality metrics. However, additional steps must be taken to further these goals. 

Specifically, we must enable an automated assignment of relations, classifying them on the 
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basis of whether they are relevant for mereological classification and we must enable robust 

and unsupervised methods to automatically enumerate compactly-represented concepts 

present in OBO-formatted ontologies as subgraphs. 

6.1 Developing Heuristics to Automatically Assign Semantic Scaling and Scoping 

Correspondences between Annotation Terms Connected by Relationships in GO 

and Other Ontologies 

 Following the issues identified relating to the lack of descriptions and 

inconsistencies involving semantic scoping among ontological relationships (see Chapter 

subsections 1.8, 1.9 and Chapter 4), we intend to develop methods that disambiguate 

scoping and scaling correspondences among ontological relationships. We hypothesize 

that, through combining the use of natural language processing (NLP) and the traversal of 

the Relations Ontology (RO) (1), we will be able to automatically classify semantic 

correspondences for each relationship in RO such that scaling, scoping and other 

relationship correspondences can be used to inform ontology term categorization in a way 

that enables an automatic and unbiased categorization of GO terms. These relation classes 

will be used to disambiguate the type of relationship encountered in any ontology which 

uses relationships contained in RO, so that term categorization can occur by a thorough 

evaluation of the semantics of given relationships, and not by making assumptions of 

relationship edge directionality or omitting relationships which have problematic scoping 

correspondences (Figure 4.2), as such omissions limit the amount of information available 

from ontologies (Table 4.2).  
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6.1.1 Defining relationship correspondence classes.  

 The following five general classes for relational correspondence will stand as a 

starting point for reducing ambiguity (See Table 4.1): scoping (hyponym-hypernym), 

scaling (meronym-holonym), spatiotemporal (process-process, process-entity, entity-

entity), active (actor- subject), and equivalence. These general classes were determined 

based on an initial evaluation of the relationships contained within GO: is_a, part_of, 

has_part, regulates, positively_regulates, negatively_regulates, starts_during, 

ends_during, occurs_in, and never_in_taxon. A sixth class, other, will also be used to bin 

relationships that do not meet the other criteria and will serve to inform us on how to 

improve categories or if additional classes need to be created. 

6.1.2 Parsing and classifying relationships in the Relations Ontology.  

 RO, like GO, is a graph with nodes and edges; except in RO, nodes represent 

semantic relationships and edges are also semantic relationships that define how two 

relationships are related to one another. We have already developed methods to read, parse, 

and create graph objects from obo-formatted ontologies like the RO. Furthermore, our 

current methods have already proven successful at extracting and categorizing subgraphs 

from such ontologies given a set of criteria. Therefore, we are in a favorable position to 

evaluate the RO, and extract and categorize relationships into the aforementioned groups 

using logical heuristics that rely on NLP.  

 NLP tools such as the Natural Language Tool Kit (NLTK) (89) can easily and 

automatically identify parts- of-speech. Auxiliary verbs (like “has,” “can,” and “is”) can 
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be distinguished from lexical verbs (like “regulates,” or “innervates”), simplifying, for 

example, the distinction of the scoping and scaling classes (with many auxiliary verbs and 

few or no lexical verbs) from the active classifier (prominent lexical verbs). NLP is also 

capable of more complex and sophisticated processing, and we anticipate utilizing 

advanced features to evaluate definition lines and example phrases contained for many of 

the term entries in RO. We do not anticipate that NLP will be a computationally expensive 

task, especially considering the size of RO. However, we can use the relational logic of the 

RO graph to decrease the amount of NLP computations; if a relationship term is determined 

to be active, for example, then all of its parent terms up until a branch point in the graph 

should be considered active without requiring redundant, individual evaluation. Then, we 

will test the predicted relationship directional logic derived from the NLP analysis directly 

against a specific ontology to validate the ontology-specific result. Using the relationships 

in GO, we can then validate the whole approach. 

 One potential problem with this approach is that certain relationship types might 

not be uniformly utilized from a directional perspective across all ontologies in the OBO. 

In other words, one ontology may utilize the same relationship type in a slightly but 

significantly different way from another. This may necessitate the development of methods 

that compare relationship directional utilization between ontologies to detect inconsistent 

directionality of specific relationship types within certain ontologies. A simple example of 

such a situation is if one ontology consistently places the directionality of the regulates 

relation from an entity to a process, whereas another consistently places the directionality 

of this relation from a process to an entity. Another similar situation could arise if both of 

these utilizations occur within a single ontology. The former situation could be rectified by 
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independently determining the direction of relationships for each ontology prior to 

correspondence classification while the latter represents a fundamental error in the 

ontological framework that should require the attention of the ontology’s curators for 

correction.  

6.1.3 Justification 

 When developing GOcats, we anticipated that some relationships in GO, such as 

has_part would prove problematic in aggregating terms into common categories due to the 

fact that the edge pointed from a whole entity to its part, opposing the usual semantic 

directionality with respect to the granularity encountered in GO. Therefore, we created a 

rule whereby the scoping directionality of this particular relationship edge type was 

inversed during our categorization methods (See Chapter 4 and Chapter 2.1.4). Indeed, 

when comparing GOcats’ categories to those created by M2S, we found many examples of 

where the has_part relationship produced questionable term categorizations when M2S 

was used, which were not made by GOcats. For example, the terms “nuclear envelope,” 

“endomembrane system,” and “cell projection cytoplasm” were all erroneously rooted to 

the category, “plasma membrane” by M2S, while GOcats did not make these mappings. 

We determined from manually examination that the error is caused by the reversed 

directionality of the has_part relationship, and that tools such as M2S follow only edge 

directionality when rooting terms. Figure 4.2 shows some examples of this.  

 We have also calculated upper boundary estimates on the number of potential false 

mappings that could potentially occur from the reversed directionality of such 

relationships, if current mapping tools continue to take edge directionality alone into 
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account when mapping specific terms to general terms. We did this by calculating the 

number of possible mappings that could occur between applicable ancestors and 

descendent terms about every has_part relationship (See Chapter 4.5.1 and 4.5.2). Across 

all of GO, we found that 121,579 potential false mappings are possible considering this 

relationship alone. When we compared the number of potential false mappings to total 

possible mappings in each of the three sub-ontologies in GO, potential false mappings 

accounted for 42%, 13%, and 16% of all possible mappings in cellular component, 

molecular function, and biological process ontologies, respectively. When simply ignoring 

these relationships altogether, as some methods do, we calculated a 12%, 12%, and 5% 

loss of information available to be gathered from the cellular component, molecular 

function, and biological process ontologies, respectively. 

6.1.4 Expected outcomes 

 Our current work has demonstrated the importance of defining scaling, scoping, 

and other semantic correspondences when categorizing ontology terms into generic 

concepts, as current methods have been shown to incorrectly map terms as a result of these 

relationships. Automating the process of determining these correspondences will enable 

the large-scale evaluation of RO relationships necessary to alleviate the mapping errors 

caused by non-conventional relationships across all OBO ontologies. Defining and later 

refining these heuristics will ensure that mapping tools like GOcats will be able to utilize 

all relationships in RO without the need for constant updating when new relationships are 

added in the future. Finally, it will allow GOcats to be expanded into OBOcats, a tool for 
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the categorization of ontological terms across ontologies in the OBO Foundry (71); all of 

which follow the same data structure formatting guidelines. 

6.2 Developing Algorithms That Automatically Identify Compactly-represented 

Concepts in GO and Other Ontologies 

 We hypothesize that automating the identification of compactly-represented 

concepts based on scoping relationships within biological ontologies will aid in their 

maintenance and use by: i) indicating which concepts are less organized than others within 

their graphical representation, ii) allowing for an evaluation of which concepts any given 

ontology is equipped to annotate, unbiased by the manual definition of categories, and iii) 

mapping fine-grained terms to general terms in an ontology without necessitating user 

selection of concepts or ontology terms, thus allowing for an unbiased organization of 

enriched ontology terms following gene-annotation enrichment. We endeavor to combine 

an evaluation of the lexical composition of ontologies along with their graph structure to 

detect compact concepts within an ontology, quantify the degree of compactness, and allow 

mapping of fine-grained terms to general concepts within these subgraphs.  

6.2.1 Defining ontological concept compactness. 

 Like the concept categories extracted from GO using GOcats (see Chapter 3), the 

concepts identified here will be represented by a subgraph of the ontology in question. The 

compactness of a concept will be measured by taking into account the average degree of 

connections among nodes in the subgraph representing that concept, the average degree of 

connections in the entire graph, and the amount of overlap between the subgraphs. A 

category that is highly compact will have a significantly higher degree of connections 
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among its members than the graph’s average and will minimize overlap with other 

concepts. We intend to devise a compactness score taking these parameters into 

consideration in order to provide a cutoff for which concepts are significantly represented 

in the ontology. 

6.2.2 Automatic enumeration of ontological concepts via lexical analysis. 

 Most semantic similarity metrics used to describe semantic distances between terms 

in an ontology depend on the concept of information content (IC), which is related to the 

frequency at which a word is used; it is assumed that the less frequently a word is used, the 

more IC it contains (34–37). This can be appreciated by considering that the word “the” 

has been used over 2000 times in this text while the word “correspondence” has been used 

approximately 38 times; it can be inferred that the latter conveys more meaning than the 

former in this text. These methods usually use an external corpus to determine IC. 

However, our goal is to evaluate the concepts represented solely within the confines of the 

ontology itself. Furthermore, unlike these methods, our goal involves creating a tool to bin 

specific terms into previously unspecified concepts, not finding distances from terms to 

one or a set of manually predetermined nodes within the graph.  

 Zipf’s law describes a statistical distribution by which the rank order of each word 

in a corpus is inversely proportional to its frequency and can be fit linearly on a log/log 

scale (90). Using each ontology as a corpus, we will fit the words contained within to a 

Zipf distribution to arrive at an IC scoring scheme which suits our needs to acquire 

candidate terms that are not too specific or too general and potentially describe biologically 

meaningful concepts. Using these IC scores and the inherent graph structure of the 
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ontology, we expect to programmatically single out concept-representative terms within 

any ontology. Using methods like those already developed for GOcats, we will then be able 

to extract subgraphs of fine-grained terms contained under each concept-representative 

term and define a score to describe the degree of compactness of each concept. 

6.2.3 Justification 

 As shown in Chapter 3, we have evidence that GO contains distinctly separable 

subgraphs that describe unique biological concepts. Figure 3.1-3.3. are graphical 

representations of these subgraphs made using Cytoscape 3 (61) by linking all subgraph 

nodes (grey) to their respective category nodes (blue). Except for macromolecular 

complex, fine-grained terms group neatly into one or multiple concept categories. This 

demonstrates that although the graph structure of GO and similar ontological databases 

may be complex, they can still be partitioned neatly and meaningfully. These categories 

were partitioned using sets of user-provided keywords, similar to those we propose 

automatically identifying via Zipf distributions. Furthermore, when we compared the 

categories created by GOcats with these keywords to categories made by providing M2S 

with explicit GO terms of the desired categories, the categories were very similar, as 

evidenced by high Jaccard indices (Table 3.3). Those with large discrepancies such as 

“plasma membrane” could be accounted for, in part, by mapping errors encountered by 

M2S, as outlined in Chapter 4.2.1 and quantified in Table 4.2.  

 Using GOcats, we enumerated every word within the name and definition fields of 

every node in the Gene Ontology and plotted their absolute frequency versus rank on a 

log/log scale using the Matplotlib Python package (91). We plotted results from each sub-
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ontology in GO (cellular_component, biological_process, and molecular_function) as well 

as for the whole of GO. As shown in Figure 6.1, each plot shows a roughly linear 

distribution, consistent with what would be consistent in a Zipf or power law distribution. 

6.2.4 Expected outcomes 

 We expect these new methods to enumerate and extract many distinct concept 

categories within an ontology. Considering our success in extracting subgraphs of user-

defined concepts from GO using GOcats, we do not expect to encounter any issues with 

the partitioning of subgraphs once a concept is identified. Although it is likely that 

additional concepts will be identified using the automated, unbiased method suggested here 

for categorizing genes and gene products in GO, we expect that this method will perform 

nearly identically to the currently implemented GOcats method when comparing the same 

concepts. Finally, when using this method to evaluate the structural organization of 

ontologies, we expect that major GO revisions will coincide with significant instances of 

non-compact subgraphs. 

 



 
 

FIGURE 6.1 DISTRIBUTION OF WORD FREQUENCY VERSUS WORD RANK IN THE GENE ONTOLOGY 
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