3 research outputs found

    Experimentation as a service over semantically interoperable Internet of Things testbeds

    Get PDF
    Infrastructures enabling experimental assessment of Internet of Things (IoT) solutions are scarce. Moreover, such infrastructures are typically bound to a specific application domain, thus, not facilitating the testing of solutions with a horizontal approach. This paper presents a platform that supports Experimentation as s Service (EaaS) over a federation of IoT testbeds. This platform brings two major advances. Firstly, it leverages semantic web technologies to enable interoperability so that testbed agnostic access to the underlying facilities is allowed. Secondly, a set of tools ease both the experimentation workflow and the federation of other IoT deployments, independently of their domain of interest. Apart from the platform specification, the paper presents how this design has been actually instantiated into a cloud-based EaaS platform that has been used for supporting a wide variety of novel experiments targeting different research and innovation challenges. In this respect, the paper summarizes some of the experiences from these experiments and the key performance metrics that this instance of the platform has exhibited during the experimentation

    Embracing the future Internet of Things

    Get PDF
    All of the objects in the real world are envisioned to be connected and/or represented, through an infrastructure layer, in the virtual world of the Internet, becoming Things with status information. Services are then using the available data from this Internet-of-Things (IoT) for various social and economical benefits which explain its extreme broad usage in very heterogeneous fields. Domain administrations of diverse areas of application developed and deployed their own IoT systems and services following disparate standards and architecture approaches that created a fragmentation of things, infrastructures and services in vertical IoT silos. Coordination and cooperation among IoT systems are the keys to build “smarter” IoT services boosting the benefits magnitude. This article analyses the technical trends of the future IoT world based on the current limitations of the IoT systems and the capability requirements. We propose a hyper-connected IoT framework in which “things” are connected to multiple interdependent services and describe how this framework enables the development of future applications. Moreover, we discuss the major limitations in today’s IoT and highlight the required capabilities in the future. We illustrate this global vision with the help of two concrete instances of the hyper-connected IoT in smart cities and autonomous driving scenarios. Finally, we analyse the trends in the number of connected “things” and point out open issues and future challenges. The proposed hyper-connected IoT framework is meant to scale the benefits of IoT from local to global

    4W1H in IoT semantics

    Get PDF
    International audienceIoT systems are now being deployed worldwide to sense phenomena of interest. The existing IoT systems are often independent which limits the use of sensor data to only one application. Semantic solutions have been proposed to support reuse of sensor data across IoT systems and applications. This allows integration of IoT systems for increased productivity by solving challenges associated with their interoperability and heterogeneity. Several ontologies have been proposed to handle different aspects of sensor data collection in IoT systems, ranging from sensor discovery to applying reasoning on collected sensor data for drawing inferences. In this paper, we study and categorise the existing ontologies based on the fundamental ontological concepts (e.g., sensors, context, location, and more) required for annotating different aspects of data collection and data access in an IoT application. We identify these fundamental concepts by answering the 4Ws (What, When, Who, Where) and 1H (How) identified using the 4W1H methodology
    corecore