73 research outputs found

    High Speed flywheel and test rig design for rural energy storage

    Get PDF
    There is considerable growth in the renewable energy sector to contribute to sustainable development, environmental conservation and most importantly to provide affordable energy to isolated rural communities of sub-Saharan Africa. Renewable energy sources such as solar and wind require energy storage since the source of energy is intermittent. Electrochemical batteries especially from lead acid are commonly used to store energy in Solar Home Systems (SHS) for rural electrification in sub-Saharan Africa. Disadvantages such as low efficiencies, low life cycle costs, high maintenance, comparatively short life and serious environmental and human toxicity effects exist. Since recycling is not widespread, replacement costs are high, as are the resultant environmental damage and health hazards from lead and sulphuric acid. In this thesis, an electromechanical flywheel energy storage device is proposed as an alternative to a lead acid battery in order to increase efficiency, life expectancy, increased high depth of discharge, low life cycle cost and elimination of adverse environmental effects. Due to income and service skill constraints in rural areas, the proposed, high speed flywheel systems (for long time energy storage) will require the use of low cost configurations and topologies, special considerations on the flywheel rotor profile design, robust electrical machines, simple power electronics and a low cost bearing set. Low loss magnetic bearings are also possible but were limited by time while also making their maintenance complex especially in rural areas. Conventional high strength composite materials used in flywheel rotor manufacture for high speed operation are expensive. Therefore there is a need to develop techniques to profile the rotor shape so as to improve on material usage and exhibit lower mechanical stresses. A robust electrical machine topology for high speed operation and a simple drive system are investigated to ensure simple assembly, low cost and low maintenance. vii The various flywheel components were designed using analytical and numerical methods. Two techniques were used to develop two optimal profiles for the flywheel rotor structure. Partial differential equations and analytical solutions were employed to develop the profiles. Analytical equations were used to design the electrical machine, drive, bearing system and other accessories. The final electromechanical battery prototype consisted of a composite flywheel rotor made from E-glass fibre materials, double rotor Axial Flux Permanent Magnet (AFPM) machine and a drive system using Brushless DC (BLDC) mode of operation. The system was designed for 300Wh of energy storage for the delivery of 100W and 500W of power and an operating speed range of 8,000 rpm-25,000 rpm. The design and development of the flywheel energy storage system and test rig using locally available materials was investigated. Experiments were conducted for speeds up to 6,000 rpm. The electromechanical battery was able to store a maximum of 77Wh of energy. The shortfall of the system to meet its design specifications was investigated and found to have been caused by vibrations resulting from prototyping issues. A thermal model was developed to predict the temperature rise in the system which showed a good correlation with the experimental results

    Space processes for extended low-G testing

    Get PDF
    Results of an investigation of verifying the capabilities of space processes in ground based experiments at low-g periods are presented. Limited time experiments were conducted with the processes. A valid representation of the complete process cycle was achieved at low-g periods ranging from 40 to 390 seconds. A minimum equipment inventory, is defined. A modular equipment design, adopted to assure low cost and high program flexibility, is presented as well as procedures and data established for the synthesis and definition of dedicated and mixed rocket payloads

    Comparison of interior permanent magnet synchronous machines for a high-speed application

    Get PDF
    Permanent Magnet machines have been increasingly used in high-speed applications due to the advantages they offer such as higher efficiency, output torque and, output power. This dissertation discusses the electrical and magnetic design of permanent magnet machines and the design and analysis of two 10 kW, 30000 rpm Interior Permanent Magnet (IPM) machines. This dissertation consists of two parts: the first part discusses high-speed machine topologies, and in particular the permanent magnet machine. Trends, advantages, disadvantages, recent developments, etc. are discussed and conclusions are made. The second part presents the design, analysis and testing of interior permanent magnet machines for a high-speed application. The machines are designed from first principles and are simulated using Ansys Maxwell software to understand the finite element analysis. In order to obtain a fair comparison between the machines, the required output criteria was used as the judging criteria (10kW, 30000 rpm). As a result, the rotor diameter, stator diameter, airgap length, and stack length were kept the same for both machines. The winding configuration was set as distributed windings, however the number of turns and other details were kept flexible in order to be able to obtain the best design for each machine. Similarly, the magnet volume was kept flexible as this could be used as a comparison criteria relating to the cost of the machines. The two IPM topologies are compared with respect to their torque, magnetic field, airgap flux, core loss, efficiency, and cost. The radial IPM produces a smoother torque output, with lower torque ripple, and has lower losses compared to the circumferential IPM which produces a higher torque and power output. Furthermore, the circumferential IPM also experiences much higher torque ripple and core losses, both of which are highly undesirable characteristics for high-speed machines. In addition, the circumferential IPM has a much more complex manufacturing process compared to the radial IPM which would significantly increase the cost of prototyping the machine, thus the radial IPM was selected for prototyping and brief experimental analysis. The radial IPM has been experimentally tested under no-load conditions. These results were successfully compared to the simulated and analytical results to show correlation between the design and experimental process. Potential areas of further work may include conducting detailed loss analysis to understand the effects that changing various design parameters has on the core loss and overall performance. Detailed thermal and mechanical analysis of the machines may also result in interesting conclusions that would alter the design of the machine to make it more efficient

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Space Power

    Get PDF
    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed

    Generator design for, and modelling of, small-scale wind turbines

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Feasibility of high frequency alternating current power distribution for the automobile auxiliary electrical system

    Get PDF
    This study investigates the feasibility and potential benefits of high frequency alternating current (HFAC) for vehicle auxiliary electrical systems. A 100Vrms, 50kHz sinusoidal AC bus is compared with 14V DC and 42V DC electrical systems in terms of mass and energy efficiency. The investigation is focused on the four main sub-systems of an on-board electrical network, namely: the power generation, power distribution, power conversion and the electrical loads. In addition, a systemlevel inquiry is conducted for the HFAC bus and a comparable 42V DC system. A combination of computer simulation, analytical analysis and experimental work has highlighted benefits for the HFAC power distribution sub-system and for low-torque motor actuators. Specifically, the HFAC conductor mass is potentially 70% and 30% lighter than comparable 14V DC and 42V DC cables, respectively. Also, the proposed cable is expected to be at least 80% more energy efficient than the current DC conductor technology. In addition, it was found that 400Hz AC machines can successfully replace DC motor actuators with a rated torque of up to 2Nm. The former are up to 100% more efficient and approximately 60% lighter and more compact than the existing DC motors in vehicles. However, it is argued that the HFAC supply is not feasible for high-torque motor actuators. This is because of the high energy losses and increased machine torque ripple associated with the use of HFAC power. The HFAC power conversion sub-system offers benefits in terms of simple power converter structure and efficient HFAC/DC converters. However, a significant limitation is the high power loss within HFAC/AC modules, which can be as high as 900W for a 2.4kW load with continuous operation. Similar restrictions are highlighted for the HFAC power generation sub-system, where up to 400W is lost in a 4kW DC/HFAC power module. The conclusion of the present work is that the HFAC system offers mass and energy efficiency benefits for the conventional vehicle by leveraging the use of compact lowtorque motor actuators and lightweight wiring technology

    Sustainable energy for a resilient future: proceedings of the 14th International Conference on Sustainable Energy Technologies

    Get PDF
    Volume I, 898 pages, ISBN 9780853583134 Energy Technologies & Renewables Session 1: Biofuels & Biomass Session 5: Building Energy Systems Session 9: Low-carbon/ Low-energy Technologies Session 13: Biomass Systems Session 16: Solar Energy Session 17: Biomass & Biofuels Session 20: Solar Energy Session 21: Solar Energy Session 22: Solar Energy Session 25: Building Energy Technologies Session 26: Solar Energy Session 29: Low-carbon/ Low-energy Technologies Session 32: Heat Pumps Session 33: Low-carbon/ Low-energy Technologies Session 36: Low-carbon/ Low-energy Technologies Poster Session A Poster Session B Poster Session C Poster Session E Volume II, 644 pages, ISBN 9780853583141 Energy Storage & Conversion Session 2: Heating and Cooling Systems Session 6: Heating and Cooling Systems Session 10: Ventilation and Air Conditioning Session 14: Smart and Responsive Buildings Session 18: Phase Change Materials Session 23: Smart and Responsive Buildings Session 30: Heating and Cooling System Session 34: Carbon Sequestration Poster Session A Poster Session C Poster Session D Policies & Management Session 4: Environmental Issues and the Public Session 8: Energy and Environment Security Session 12: Energy and Environment Policies Poster Session A Poster Session D Volume III, 642 pages, ISBN 9780853583158 Sustainable Cities & Environment Session 3: Sustainable and Resilient Cities Session 7: Energy Demand and Use Optimization Session 11: Energy Efficiency in Buildings Session 15: Green and Sustainable Buildings Session 19: Green Buildings and Materials Session 24: Energy Efficiency in Buildings Session 27: Energy Efficiency in Buildings Session 28: Energy Efficiency in Buildings Session 31: Energy Efficiency in Buildings Session 35: Energy Efficiency in Buildings Poster Session A Poster Session D Poster Session

    Power management of a 1kW HTPEMFC based CHP system

    Get PDF
    Includes bibliographical references (leaves 142-149).There is a growing interest in fuel cell technology for portable, stationary and transportation applications. This is driven by the need for a greener and more fuel efficient energy generation source. Fuel cells are electrochemical energy generating devices, which require natural gas for the production of electrical and thermal power, simultaneously

    Contribution to the design and control of a hybrid renewable energy generation system based on reuse of electrical and electronics components for rural electrification in developing countries

    Get PDF
    While the Cambodia’s government is making effort to increase electricity production for its energy demand, it still remains dependent on the existing or the expansion of the centralized grid lines which have high initial investment cost. The temporally solution is to employ a distributed energy generation system which has lower life cycle cost and provides a diversity of technologies to meet the desired applications. Minimizing environmental impacts represents a major objective of sustainable development considering resources depletion and the limited capabilities of the environment to adapt. The potential of renewable energy resources has been well understood as the solutions to power rural development and to reduce the environmental impacts of energy generation. Due to advance in technologies and increasing consumer demands, there has been a vast amount of electrical and electronic waste which introduces severe impacts on the environment. The current strategies mainly rely on conventional waste collection and processing techniques for material recovery. This thesis proposed a solution of reusing discarded components in an isolated hybrid renewable energy system as the solution for electrification of rural Cambodia. This is frugal innovation, local solution with local materials for and with local people. A suitable configuration for the proposed system is a solar-hydro hybrid generation system since solar and water resources are plentiful in rural Cambodia. The components that are reused in the solution after being discarded include computer power supply units (PSUs) for the solar part, uninterruptable power supply units (UPSs) and three phase induction machines for the electrohydro part. Used auto-mobile batteries will be used for the system storage. The thesis presents in the first part the evaluation of the environmental impacts of the proposed reuse solution for rural electrification. The study of the environmental impacts is based on Life Cycle Assessment (LCA) methodology which compares the life cycle impacts of the proposed solution to that of a conventional solution. Moreover, a sensitivity analysis is achieved in order to evaluate the impacts of uncertainties of the environmental impacts. The second part of this work deals with the technological aspects of the reuse solution in both theory and experimentation. The first part of this aspect is focused on the repurposing of used computer power supply units (PSUs), through limited modifications of the circuits in order to increase its range of operation. The PSU which usually contains one of a few types of isolated DC-DC converters is repurposed as charge controller with MPPT control in a cheap micro-controller with very good results. The last part of this thesis studies a new configuration of generators based on re-used three-phase induction motors. The proposed single-phase generator is based on a three-phase machine in a modified version of the coupling and with a rather uncommon supply. Modelling is highly investigated. An inverterassisted topology where two windings will be supplied separately by two inverters for excitation and the remaining winding is connected to load. A new modeling of the generator has been studied. The results of simulation were compared to experimental test results in open loop study. These results have demonstrated the advantages of the new configuration in comparison to the previously proposed inverter-assisted topology in term of efficiency and minimization of torquerippl
    corecore