43,025 research outputs found

    Experimental Testing of Burglar Resistance of Fenestration

    Get PDF
    Currently, windows and glass facades are increasingly being used as a building envelope. These are elements that are functional and aesthetic, but there is a need to focus on their safety. Windows as a part of protection system are one of the most vulnerable assets, so they need to be addressed. The paper is focused on the experimental investigation of two types of windows that are commonly used in buildings. The subjects of the interests are wooden frame windows and PVC frame windows. In the experiment, burglar resistance was investigate, carried out by dynamic tests with different weights of steel balls dropped from various heights. Results of the experimental measurement pointed to the limit energy glass panels were broken. Windows with safety film were also tested. The measured results were further evaluate

    Experimental testing of low energy rockfall catch fence meshes

    Get PDF
    Flexible catch fences are widely used to protect infrastructure like railways, roads and buildings from rockfall damage. The wire meshes are the most critical components for catch fences as they dissipate most of the impact energy. Understanding their mechanical response is crucial for a catch fence design. This paper presents a new method for testing the wire meshes under rock impact. Wire meshes with different lengths can be used and the supporting cables can be readily installed in the tests. It is found that a smaller boulder causes more deformation localisation in the mesh. Longer mesh length makes the fence more flexible. Under the same impact condition, the longer mesh deforms more along the impact direction and shrinks more laterally. Supporting cables can reduce the lateral shrinkage of the mesh effectively. Most of the impact energy is dissipated by stretching of the wires. Wire breakage has not been observed

    Experimental Testing Program in Elementary Chemistry: A Preliminary Report

    Get PDF
    An experimental testing program is described which utilizes questions that are partly computer composed, in addition to a section composed by the instructor, and a retesting option to the student. Results from a trial of the program for one term indicate that (1) course grades were improved, (2) the student withdrawal failure rate was unaffected, and (3) the employed students took greater advantage of the retest than did the unemployed students

    Experimental testing of tape springs folded in three dimensions

    No full text
    One of the main drivers in satellite design is the minimization of mass, in the attempt to reduce the large costs involved in the launch of the spacecraft. However, the recent advances in micro electro mechanical systems (MEMS) have allowed a further reduction in the mass of on-board equipment. With advances in micro ion propulsion systems for attitude control, and the miniaturisation of ground based mobile communications, the satellite power requirement does not reduce linearly with mass. This creates the need for photovoltaic cell areas larger than the surface area of the satellite bus. Therefore small satellite deployable structures become increasingly important. The major design requirements for such systems are reliability and low cost. The simpler the components of the system are (i.e. the minimum number of moving parts, lubrication etc), the more chance of the system meeting the design requirements. For this reason, there has been significant investigation into the deployment dynamics of tape springs folded in two dimensions, to form simple hinges which do not require lubrication and automatically locks in the deployed configuration. The present work focuses on using tapes springs to support a new conceptual area deployment design for nano/micro satellites. The deployment of this design incorporates bi-axial folding, which requires the tape springs to unfold in three dimensions. Little research has been carried out in this area. The design of a test rig to determine the properties of this three dimensional deployment is presented in detail. This rig measures both the bending and twisting moments produced from the three- dimensional fold. The combination of these two moments defines the main deployment properties of the tape springs and hence the final array. The experimental results will be compared to theoretical results produced using shell theory and non- linear, finite element analysis

    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms

    Full text link
    Remote job submission and execution is fundamental requirement of distributed computing done using Cluster computing. However, Cluster computing limits usage within a single organization. Grid computing environment can allow use of resources for remote job execution that are available in other organizations. This paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of preparing test Grid computing environment that we use for experimental testing of concepts. This paper presents experimental testing of remote job submission and execution mechanisms through LRM specific way and Grid computing ways. Moreover, the paper also discusses various problems faced while working with Grid computing environment and discusses their trouble-shootings. The understanding and experimental testing presented in this paper would become very useful to researchers who are new to the field of job management in Grid.Comment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    Experimental testing of flight control head up displays

    Get PDF
    Experiments and tests with 4 generations of head up displays was reported. The CV 191, based on fighter aircraft gunsights was replaced by the CV 193, with several improvements. The CV 193 V incorporates the velocity vector reference mark, eliminates much other data, clusters the rest in a small area of the visual field and is seen together with the outside landscape. The CV 91 presents only velocity vector and total angle of descent data, used when runway and horizon are visible; TC 121 displays an outline of the runway and can be used in visual and instrument approaches

    Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    Get PDF
    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested

    Constructive solution of highly effective photoenergy module: development and experimental testing

    Get PDF
    Based on experimental study and computermodeling of working temperature influence on the efficiency of Chinese production silicon solar cells identified temperature dependence of efficiency shows the feasibility of using Chinese production Si-SC in the construction of photovoltaic thermal system, which together with the heat pump is part of a combined system for hot water supply, heating and air conditioning. Based on a detailed analysis of the working temperature influence on the efficiency of photovoltaic processes that determine the solar cells work, it has been developed the optimal construction and technological solution of hybrid solar generated module, the main feature ofwhich is the heat exchange block, designed to reduce the solar cells working temperature. The experimental testing of hybrid modules samples equipped with developed cooling system, high-voltage part of power take-off system demonstrates their reliability and high efficiency which allow to achieve the such module efficiency up to 18.5 %.На основе экспериментального исследования в комплексе с компьютерным моделированием влияния рабочей температуры на эффективность кремниевых солнечных элементов китайского производства выявлена температурная зависимость их эффективности. Температурная зависимость показывает целесообразность использования солнечных элементов китайского производства в составе фотоэлектрической тепловой системы, которая вместе с тепловым насосом является частью комбинированной системы горячего водоснабжения, отопления и кондиционирования воздуха. На основе детального анализа влияния рабочей температуры на эффективность фотоэлектрических процессов, определяющих работу солнечных элементов, было разработано оптимальное конструктивно-технологическое решение гибридного солнечного генерирующего модуля, основной особенностью которого является теплообменный блок, предназначен для снижения рабочей температуры солнечных элементов. Экспериментальные испытания образцов таких модулей, оснащенных разработанной системой охлаждения и высоковольтной системой отбора мощности, демонстрируют их надежность и высокую эффективность, позволяющие достичь КПД гибридного модуля до 18,5 %

    On the experimental testing of fine Nitinol wires for medical devices

    Get PDF
    Nitinol, a nickel titanium alloy, is widely used as a biocompatible metal with applications in high strain medical devices. The alloy exhibits both superelasticity and thermal shape memory behaviour. Basic mechanical properties can be established and are provided by suppliers; however the true stress–strain response under repeated load is not fully understood. It is essential to know this behaviour in order to design devices where failure by fatigue may be possible. The present work develops an approach for characterising the time varying mechanical properties of fine Nitinol wire and investigates processing factors, asymmetric stress–strain behaviour, temperature dependency, strain rate dependency and the material response to thermal and repeated mechanical loading. Physically realistic and accurately determined mechanical properties are provided in a format suitable for use in finite element analysis for the design of medical devices. Guidance is also given as to the most appropriate experimental set up procedures for gripping and testing thin Nitinol wire
    corecore