8 research outputs found

    Wide Bandgap Based Devices

    Get PDF
    Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits

    ANALYSIS OF FAILURE MECHANISMS THAT IMPACT SAFE OPERATION OF ALGAN/GAN HEMTS

    Get PDF
    The reliability of AlGaN/GaN high electron mobility transistors (HEMTs) is tra- ditionally determined via thermal lifetime acceleration stress tests. More recently it has been proposed that electric field has a prominent role in limiting lifetimes. Multi- ple failure mechanisms have been proposed as a result of device degradation observed when stressed under high applied electric fields, as typical when the device is biased into the OFF-state. One potential reason for multiple mechanisms could be due to varying levels of quality and maturity of the GaN processes in the reported literature. The work presented in this dissertation seeks to provide clarity and understanding into the failure mechanism of AlGaN/GaN HEMT devices under high electric fields. The devices in this study were fabricated in a commercial GaN process, notable for exceptional ruggedness and industry leading 65V qualified operational bias for RF power amplifiers. A series of OFF-state, high electric field step-stress experiments, as described in literature, were performed to assess if any were applicable to this process. It was discovered that device degradation could only be induced when stressed close to the breakdown limits. This lead to the development of a unique stress method that enables the device to be held close to catastrophic breakdown, while avoiding an over stress event that would prevent the device from being studied at the conclusion of the experiment. It was discovered via careful electrical and optical analysis that failure was due to a localized degradation of the Schottky gate diode properties. The physical analysis found the failure inconsistent with the widely reported inverse piezoelectric effect. Instead the failures resemble recently proposed time dependent dielectric breakdown of the AlGaN barrier laye

    GaN-based power devices: Physics, reliability, and perspectives

    Get PDF
    Over the last decade, gallium nitride (GaN) has emerged as an excellent material for the fabrication of power devices. Among the semicon- ductors for which power devices are already available in the market, GaN has the widest energy gap, the largest critical field, and the highest saturation velocity, thus representing an excellent material for the fabrication of high-speed/high-voltage components. The presence of spon- taneous and piezoelectric polarization allows us to create a two-dimensional electron gas, with high mobility and large channel density, in the absence of any doping, thanks to the use of AlGaN/GaN heterostructures. This contributes to minimize resistive losses; at the same time, for GaN transistors, switching losses are very low, thanks to the small parasitic capacitances and switching charges. Device scaling and monolithic integration enable a high-frequency operation, with consequent advantages in terms of miniaturization. For high power/high- voltage operation, vertical device architectures are being proposed and investigated, and three-dimensional structures—fin-shaped, trench- structured, nanowire-based—are demonstrating great potential. Contrary to Si, GaN is a relatively young material: trapping and degradation processes must be understood and described in detail, with the aim of optimizing device stability and reliability. This Tutorial describes the physics, technology, and reliability of GaN-based power devices: in the first part of the article, starting from a discussion of the main proper- ties of the material, the characteristics of lateral and vertical GaN transistors are discussed in detail to provide guidance in this complex and interesting field. The second part of the paper focuses on trapping and reliability aspects: the physical origin of traps in GaN and the main degradation mechanisms are discussed in detail. The wide set of referenced papers and the insight into the most relevant aspects gives the reader a comprehensive overview on the present and next-generation GaN electronics

    Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II

    Get PDF
    Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems

    Feature Papers in Electronic Materials Section

    Get PDF
    This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book

    Experimental observation of TDDB-like behavior in reverse-biased green InGaN LEDs

    No full text
    none7nononeBuffolo, M.; Meneghini, M.; De Santi, C.; Felber, H.; Renso, N.; Meneghesso, G.; Zanoni, E.Buffolo, Matteo; Meneghini, Matteo; DE SANTI, Carlo; Felber, Henry; Renso, Nicola; Meneghesso, Gaudenzio; Zanoni, Enric

    PROGNOSTIC MODELING FOR RELIABILITY PREDICTIONS OF POWER ELECTRONIC DEVICES

    Get PDF
    The applications of semiconductor power electronic devices, including power and RF devices, in industry have stringent requirements on their reliability. Power devices are subject to various types of failure mechanisms under various stressors. Prognostics and health management (PHM) allows detecting signs of failures, providing warnings of failures in advance, and performing condition-based maintenance. There is a pressing need to develop a robust prognostic model to detect anomalous behavior and predict the lifetime of devices that can be applicable to different types of power transistors. In the present dissertation, a comprehensive prognostic model for remaining useful life (RUL) prediction of semiconductor power electronic devices is developed. The model consists of an anomaly detection module and a RUL prediction module including a non-linear system process model describing the evolution of parametric degradation, and a measurement model. The anomaly detection module uses principal component analysis (PCA) for dimensionality reduction and feature extraction, as well as k-means clustering to establish baseline clusters in the feature space. The novel singular-value-weighted distance (SVWD) is developed as the distance measure in the feature space, based on which Fisher criterion (FC) is used for anomaly probability calculation. The system process model incorporates variables concerning loading conditions and physics-of-failure of devices, and uses particle filter (PF) approach for process model training and RUL prediction. For PF methodology, a novel resampling technique, called MHA-replacement resampling, is developed to solve the particle degeneracy in classic PF techniques and sample impoverishment in traditional resampling techniques. The developed prognostic model is first implemented on IGBT modules for validation. It was reported that the module package of power transistors was susceptible to various types of fatigue-related failure modes due to coefficient of thermal expansion (CTE) mismatches under temperature/power cycles introducing thermomechanical stresses. The physics-of-failure "driving variable" is derived from Paris equation. The model is validated on several time-series IGBT module degradation data under power cycles from literature sources, based on SIR particle filter for RUL prediction with good accuracy. Then the model is implemented on GaN HEMTs, a representative of wide-bandgap semiconductor power devices. GaN HEMTs are susceptible to degradation mechanisms such as ohmic contact inter-diffusion that leads to voiding in the field plate at high temperature under RF accelerated life tests (ALTs). The time-series data of the physics-of-failure "driving variable" is obtained from diffusion computation in Mathematica with the temperature prole coming from COMSOL thermal simulation. The RUL prediction results based on SIR lter are also satisfactory for GaN HEMTs. For each type of device, the new resampling technique is validated through performance benchmarking against state-of-the-art resampling techniques. Another reliability threat for GaN HEMTs, especially in aerospace and nuclear applications, is the degradation due to radiation effect on the device performance. Gamma radiation has been found to lead to generation of defects in AlGaN/GaN layers, which form complexes acting as carrier traps, thus reducing carrier density and current. EPC GaN HEMTs are irradiated under a wide range of Gamma ray doses and critical DC characteristics are recorded before and after radiation to quantify their shifts during the irradiation. Future work needed to allow implementation of the developed prognostic model for RUL estimation is proposed
    corecore